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The Gravitational Radius of an Irradiated Disk
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Abstract: We derive an updated, analytic formula for the gravitational radius, rg, of an irradiated, thin disk.

For such a disk, the region outside the gravitational radius will produce a thermal wind, while the region

interior to the gravitational radius will be stable. We find that rg ≈ 1.4 (M∗/M⊙)/
(

T0/104K
)

AU. The value

of 1.4AU is approximately one fifth of currently used values.

The analysis uses the adiabatic approximation. We argue that the same formula applies for the non-

adiabatic, isothermal case.
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1 Introduction

An irradiated, thin disk is stable provided that r < rg,

where r is a cylindrical coordinate representing the dis-

tance from the centre of the star to a point in the disk,

and rg is the gravitational radius. The gravitational radius

marks the boundary between a static atmosphere and a

photoevaporating atmosphere (r > rg), where it is assumed

that the temperature of the upper atmosphere is approx-

imately constant for the r values of interest (Hollenbach

et al. 1994).

To determine rg, authors equate the sound speed to the

Keplerian speed. This gives a good, intuitive derivation

for rg given by

rg = GM∗m̄

kBT0

≈ 6.8
(M∗/M⊙)
(

T0/104 K
) AU, (1)

where kB is Boltzmann’s constant, T0 is the gas temper-

ature at the base of the flow, m̄ the mean mass per gas

particle, G the universal gravitational constant, and M∗
the mass of the central star. In this paper, we extend this

analysis and suggest that a more appropriate value for

rg is

rg = (γ − 1)

2γ

GM∗m̄

kBT0

≈ 1.4
(M∗/M⊙)
(

T0/104 K
) AU, (2)

where γ is the ratio of the specific heats (in this case

we have assumed a monatomic gas and set γ = 5/3).

The value of 1.4AU is one fifth of the value given in

equation (1).

Equation (2) is consistent with the numerical results

of Woods et al. (1996, see their Figure 8) who examined

the evaporation of X-ray irradiated disks associated with

active galactic nuclei (AGN). Equation (2) is also consis-

tent with the work of Begelman et al. (1983) who showed,

theoretically, that thermal winds could arise from r values

within the rg value given by equation (1).
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Figure 1 Thermal disk wind.

2 Thermal Disk Wind

The hypothetical flow scenario is shown in Figure 1.

The wind arises from an unstable section of the disk

and expands in a roughly conical shape. We analyse the

flow by adopting cylindrical coordinates (r, θ, z), with

the star at the origin, and the z axis perpendicular to the

accretion disk.

To simplify the analysis, we assume a steady-state,

adiabatic, axisymmetric flow around the z axis.

Given these assumptions our basic equations are:

continuity:

∇ · (ρv) = 0, (3)

momentum:

ρ(v · ∇)v = −∇p + ρg, (4)

energy:

∇ ·
(

v

(

p + u + 1

2
ρv2 + ρφg

))

= 0, (5)
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where v is the velocity, u the internal energy, p the

pressure, ρ the density, and φg is the gravitational potential

φg = − GM∗√
r2 + z2

, (6)

M∗ being the mass of the central star and G the gravita-

tional constant, and

g = −∇φg. (7)

For a gas, we can assume that

p = (γ − 1)u, (8)

where γ is the ratio of specific heats. Combining equations

(8) and (5) implies

∇ ·
(

v

((

γ

γ − 1

)

p + 1

2
ρv2 + ρφg

))

= 0. (9)

The angular velocity of the flow is readily obtained

from the θ component of equation (4) which, from

axisymmetry, is force free, i.e.,

(v · ∇)v|θ = 0, (10)

and has the solution

vθ(r) = L

r
, (11)

where L, the specific angular momentum, is a constant.

For most cases of interest,

L ≈
√

GM∗r0, (12)

where r0 is the initial value of r when z ≈ 0.

Using Gauss’ Law and noting, from Figure 1, that the

normals on the surfaces of our domain of integration are

everywhere perpendicular to θ̂, we can write

∫

S

(

1

2
ρv2 +

(

γ

γ − 1

)

p + ρφg

)

v · dS = 0, (13)

where S and dS represent the jet flow surface and an

element of that surface, respectively. Because, by con-

struction, only the top and bottom sections of the flow

volume contribute non-zero values to the above integral,

we have
(

1

2
ρv2 +

(

γ

γ − 1

)

p + ρφg

)

vzr�r = constant. (14)

For equation (14), we assume that the top and bottom

sections of the flow volume have dS = dSẑ and that vz > 0.

Similarly, the mass conservation equation (equation (3))

gives

ρvzr�r = constant ≡ N 1. (15)

Dividing equation (14) by equation (15) provides us with

a Bernoulli equation

1

2
v2 +

(

γ

γ − 1

)

p

ρ
+ φg ≡ E = constant. (16)

Here, E is the sum of the (specific) thermal, kinetic, and

gravitational energies which is a constant along the flow.

Equation (11) implies that

v2 = v2
r + v2

θ + v2
z = v2

p + L2

r2
, (17)

vp being the poloidal velocity component (v2
p = v2

r + v2
z).

The pressure is given by the ideal gas equation

p = ρkBT

m̄
, (18)

kB being Boltzmann’s constant, T the gas temperature,

and m̄ the mean mass per gas particle. Combining equa-

tions (17), (16), and (6) gives

1

2
v2
p +

(

γ

γ − 1

)

p

ρ
− GM∗√

r2 + z2
+ L2

2r2
= E. (19)

Suppose that vp = 0, z ≪ r and r = r0, i.e., the parcel of

gas is at or near the surface of a thin disk. Then at this

starting point of the flow

E ≈
(

γ

γ − 1

)

p

ρ
− GM∗

2r0

. (20)

If E > 0 the system is unbound and a disk wind can

form. At E = 0

(

γ

γ − 1

)

p

ρ
= GM∗

2r0

. (21)

Combining equations (21) and (18) implies

r0 = (γ − 1)

2γ

GM∗m̄

kBT0

≡ rg, (22)

where T0 is the gas temperature at the base of the flow.

For a constant T0, r0 > rg implies E > 0 and the system is

unbound, while for r0 < rg, E < 0 and the system is bound.

For a fully ionised gas, m̄ ≈ 1.1 × 10−27 kg, γ = 5/3 (i.e.,

we assume that the gas is essentially monatomic) and

rg ≈ 1.4
(M∗/M⊙)
(

T0/104 K
) AU. (23)

3 The Non-Adiabatic Case

Equation (23) is valid for an adiabatic flow from the sur-

face of an accretion disk. For an irradiated disk, however,

the flux of extreme ultraviolet photons will tend to keep the

coronal gas above the disk at a temperature of 104 K. Thus,

one needs to take into account the heat flux in determining

the behaviour of the flow. The appropriate modification to

the energy equation is

∇ ·
(

v

((

γ

γ − 1

)

p + 1

2
ρv2 + ρφg

))

= q, (24)

where q is the heat flux and we assume that q > 0, i.e.,

heat energy is being added to the system.
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Figure 2 Thermal disk wind with labelled surfaces of the flow

volume.

Taking the volume integral of equation (24) and using

Gauss’ Law implies

∫

S

((

γ

γ − 1

)

p + 1

2
ρv2 + ρφg

)

v·dS =
∫

V

q dV, (25)

where V is the integration volume shown in Figure 2. By

construction, surfaces 2 and 3 do not contribute to the

surface integral, so we can write

2πr4�r4vz4

((

γ

γ − 1

)

p4 + 1

2
ρ4v

2
4 + ρ4φg4

)

= 2πr1�r1vz1

((

γ

γ − 1

)

p1 + 1

2
ρ1v

2
1 + ρ1φg1

)

+
∫

V

q dV. (26)

Dividing equation (26) by equation (15), we obtain

(

γ

γ − 1

)

p4

ρ4

+ 1

2
v2

4 + φg4

=
(

γ

γ − 1

)

p1

ρ1

+ 1

2
v2

1 + φg1 +
∫

V
q dV

N1

. (27)

We are interested in the surface properties of the flow,

as such we let surface 4 approach surface 1. In the limit,

where
∫

V
q dV

N1

≪
(

γ

γ − 1

)

p1

ρ1

+ 1

2
v2

1 + φg1, (28)

equation (27) approximately approaches equation (16) and

the analysis proceeds as for the adiabatic case with the

same resulting gravitational radius.

Equation (27) indicates that if r0 > rg then

(

γ

γ − 1

)

p1

ρ1

+ 1

2
v2

1 + φg1 > 0. (29)

Since q > 0 then

(

γ

γ − 1

)

p4

ρ4

+ 1

2
v2

4 + φg4 > 0. (30)

So, once started, the flow will continue to leave the disk.

4 Conclusion

By invoking the adiabatic approximation, it is possible to

determine the gravitational radius of a flat disk with an

isothermal corona:

rg = (γ − 1)

2γ

GM∗m̄

kBT0

≈ 1.4
(M∗/M⊙)
(

T0/104 K
) AU. (31)

This formula is functionally the same as given in

Hollenbach et al. (1994), but differs by a factor of 0.2

(for the case of a monatomic case with γ = 5/3). An addi-

tional non-adiabatic analysis indicates that equation (31)

is also true for the isothermal case. Equation (31) may have

application to irradiated AGN disks as well as protostellar

disks (Woods et al. 1996).
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