London Mathematical Society ISSN 1461-1570

ERGO 6: A GENERIC PROOF ENGINE THAT USES
PROLOG PROOF TECHNOLOGY

MARK UTTING, PETER ROBINSON anD RAY NICKSON

Abstract

To support formal reasoning in mathematical and software engineer-
ing applications, it is desirable to haveyanericprover that can be
instantiated with a range of logics. This allows the prover to be ap-
plied to a wider variety of reasoning tasks than a fixed-logic prover.
This paper describes the design principles and the architecture of the
latest version of the Ergo proof engine, Ergo 6. Ergo 6 is a generic
interactive theorem prover, similar to Isabelle, but with better sup-
port for proving schematic theorems with user-defined constraints,
and with a different approach to handling variable scoping. A major
theme of the paper is that Prolog implementation technology can
be generalized to obtain efficient implementations of generic proof
engines. This is demonstrated via a Qu-Prolog implementation of
Ergo 6.

1. Introduction

Theorem provers are increasingly being used to assist with aspects of software developn
and hardware desig@5p]. In many of these applications, fully formal machine-assisted proof
is essential, because the proofs are often large, and it is impractical to check such pro
by hand. Also, many of the systems being developed are proprietary or of interest only tc
small community, so the usual quality-checking of proofs by peer review is not appropriat
However, there are many different logics and theories that are being applied to softwe
and hardware design. Theorem provers support this variety of logics in two main ways.

1. Some systems provide a prover with a single fixed logic, and encode the other logi
within thatlogic. Some of the major interactive theorem provers that take this approac
are HOL [6], PVS [16] (both based on higher-order logic) and ACLZ [a successor
to the well-known Boyer—Moore prover [2]).

2. Others provide a generic prover, which carnrtstantiatedto work on many different
logics. Examples of provers that take this approach are Isali#le rhural [9],
JAPE [1] and ELF [21].

Both approaches have merit. Provers that use the first approach can provide a hig
degree of automatic proof assistance, because the logic is known in advance.

In contrast, the generic provers typically provide a more direct embedding of a ne
logic, but cannot provide much automation until the logic is known. Instead, they typicall
provide atacticlanguage, which is a programming language that can be used to control tt

Received 15 December 1999, revised 21 December Zailished29 November 2002.
2000 Mathematics Subject Classification 68T15
© 2002, Mark Utting, Peter Robinson and Ray Nickson

https://doi.org/10.1112/51461157000000759 RubiBhéd Cdimeppt Chietiidde (HOGPERYIP2IO

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/5
https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

prover as it builds proofs. Thus, after instantiating the generic prover with a new logic, or
can write tactics that automate common steps in that logic.

Another important factor in the design of modern theorem provers is the need for spee
Because many proofs are large, and a single tactic may perform several thousand pr
steps, a prover must be fast in order to provide good interactive response times.

This paper describes a design for a generic interactive theorem prover that endeavo
to maximise two (conflicting) goalsnference speednd flexibility (by which we mean
allowing users to define their own custom logics, tactics, proof strategies and even sic
conditions). We now expand on these two points and explain the key goals of the prover

1.1. Flexibility

The primary goal of Ergo 6 is to allow an interactive user (or a tactic) to explore high
level schematicheorems in a flexible way, possibly even modifying a theorem as its proo
is being developed. To this end, our design goals for Ergo include the following.

¢ Supportfoischematic theorems, with constraints on the schematic variables, includir
user-defined constraints.
For example, we want to prove theorems like:

(Vx (A= B)) <= (A= (Vx B)).

Here, A and B are schematic variables, so this theorem holds for all instantiation:
of A and B. In fact, the observant reader will notice that it does hold for all
instantiations ofd, but only for those that do not contairfree. We want to be able

to discover constraints like thduring the proof, and constrain the theorem so that it
becomes valid. In this case, we must add the consteaiot_free_in A.

» Proof and use of derived inference rules.

For example, after defining a new operator in some theory that we are developin
we should be able to derive some basic results about that operator, and then use th
results as inference rules in subsequent proofs. If the prover is to scale up to han
large proofs, it is essential that using a derived result must comprise a single pro
step — it must not require the proof of the derived inference rule to be rerun. Derive
inference rules are essential for scalability, and for providing high-level reasonin
support for user-defined concepts. But ensuring the soundness of derived rules t
include user-defined side-conditions is challenging. Note that a theorem is simply
special case of a derived inference rule: one that has no premises.

e Support for interactive proof, with users being able to focus on any part of the proc
that is interesting.
On the other hand, it is also necessary to support automated proof via tactics.

« Support for answer extraction and theorem specialization.
Theorems can be specialized during their proof, by applying inference rules th:
constrain the generality of the proof. For example, in refinement proofs, we shoul
not have to specify the desired program in advance, but should be able to extrac
during the refinement process. We might start with the theorem:

Sqrt= ouf’ = in,

where ‘out = in’ is a specification of some unknown progragyrt, and then grad-
ually instantiateSqrtto some formula that corresponds to a square-root program

https://doi.org/10.1112/51461157000000759 Published online by CAdrf@Hndge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

Developing programs hand-in-hand with their proofs in this way typically results in
simpler developments [4].

¢ Construction of an explicit record of each proof, including all the inference rules usec
what tactics were applied, and user-comments about the proof.
This allows proofs to be redisplayed in various formats, checked by independe
proof-checker programs, transformed into tactics, edited and reused within oth
proofs.

1.2. Inference speed

Several decades of research into implementing logic programming languages such
Prolog [3,24] have resulted in quite efficient implementation techniques for this restricte
form of theorem proving (SLD-resolution). The prover described in this paper attempts 1
maximize prover speed by taking advantage of this Prolog technology as much as possil
while relaxing its restrictions.

The The Software Verification Research Centre (SVRC) at the University of Queen:
land, Australia, where Ergo was developed, has invested about 12 person-years into ¢
cient implementation techniques for schematic reasoning. It has produced the Qu-Pro
language [26], an extended Prolog that incorporates this technology. We demonstrate in 1
paper that by using Qu-Prolog it is possible to build a prover that compares favourably wi
other generic schematic provers.

1.3. Structure of the paper

The rest of the paper is structured as follows. Secidescribes the architecture of the
Ergo 6 proof engine, and then Sectoutlines its semantics. Sectidescribes the imple-
mentation technology that was used to implement this architecture, as well as its advanta
and disadvantages. Sectibuescribes the implementation of the core proof engine. Other
aspects of Ergo 6, such as the implementation of the theory database, support for the
interpretation and instantiatiof [30], details of the textual and graphical user interfaces
and the Gumtree tactic language for proof constructiig] (based on ANGEL13]), are
beyond the scope of this paper.

2. Ergo6 proof engine architecture

The following subsections describe the Ergo 6 proof engine in stages, starting with hc
object-level terms are represented, then showing how proofs are constructed, and finz
explaining its support for constraints, context and annotations.

2.1. Encoding of object-logic terms

Ergo 6 requires all object-logic constants to be declared with an arity, and performs ba:
syntactic well-formedness checks, but it is otherwise untyped, with no distinction betwee
terms and formulae.

To understand how object-level terms are encoded, it is necessary to explain the featu
of the meta-language, Qu-Prolog. Object-level constants, functions and predicates are
coded by meta-level (Qu-Prolog) constants; object-level variables are encoded by Qu-Pro
object variables (for examplg); object-level quantifiers are encoded by Qu-Prolog quan-
tifiers (for exampleall x A), and substitutions are encoded as explicit Qu-Prolog sub-
stitution terms (for examplg2/x]B; the Qu-Prolog substitution notation[T/x,U/y]B

https://doi.org/10.1112/51461157000000759 Published online by Cdf@pdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

stands for the terrB with all free occurrences of the object variapleeplaced byJand all

free occurrences afreplaced byl'.). Thus the scopes of object-level variables are expresse
by the Qu-Prolog quantifiers. This is similar to thigher-order abstract syntaapproach
used in many logical frameworks (for example, Isabellg]] ELF andiProlog [21]), but
with multiple meta-level binders rather than just ong. (Another difference is that Qu-
Prolog’s substitution terms are used to represent object-level substitutions, whereas
above systems ugereduction[21]. An advantage of the Ergo approach is that encoding an
object-logic into the meta-level is often more direct and natural, but a disadvantage is tt
implementation of the meta-level (explicit substitutions in Qu-Prolog) is more complex.

The Qu-Prolog unification algorithmi §] extends that of standard Prolog, with syntactic
equality replaced by alpha-equivalence (equality up to change of bound variable). F
example, ifall is declared as a quantifier, then unifyial x A) with [2/x]B
succeeds by instantiatingto [2/x,x/y]C andBto (all y C), forsome new Cand
y. Unification problems that do not have a unique solution are delayed, and are then retri
when their variables are instantiated. Such unification problems can also be inspected
solved by user-defined predicates. For logical correctness, Qu-Prolog carries out ‘occu
checks during unification, but for efficiency minimises the impact of occurs checking b
avoiding it when it is clearly not required.

In order to distinguish between the type of substitution discussed above, and me
level substitution (binding of meta-variables to meta-level terms), we refer to the latter ¢
instantiation. Note that instantiations ‘pass through’ quantified terms (no change of bour
variable is required) because, at the meta-level, these quantified terms are simply structu

Note that schematic variables (Qu-Prolog meta-variables) represent arbitrary object-le
terms or predicates. When a schematic variable occurs within the scope of a quantifi
not_free_in constraints can be used to express holes in the scope. For example,
(Vx (A = B)) we might addx not_free_in A.

Qu-Prolog’s object variables are not standard Prolog meta-variables. Instead, they :
a special class of meta-level variables that are syntactically distinguished by starting wi
a single! character, or (in this paper) a lower-caser y (Qu-Prolog and Ergo provide
commands for declaring user-defined prefixes of object variable names). They range o
object-level variables of the object-logic, so cannot be instantiated to arbitrary terms, and
unifiable only with other Qu-Prolog object variables. With these restrictions, they behav
almost like constants, except that they have two special propestikstitutabilityand
distinctness/unifiability.

The substitutabilityproperty means that Qu-Prolog object variables can appear in th
domain of substitutions (indeed, they are the only terms that are allowed in the dome
of substitutions!). This provides a way of replacing free object variables by some othe
term. For example, the following-introduction rule allows us to prov@ y A) by proving
[T/y]A instead, typically by instantiating the new meta-variable some witness term:

rule ex_intro === [TIy]A

Thedistinctness/unifiabilityproperty means that two Qu-Prolog object variabkeand
y, may represent theameobject-level variable, or twdlifferent object-level variables.
Unifying x andy by writing (x = y) constrains them so that they represent the same

https://doi.org/10.1112/51461157000000759 Published online by Cadr@bfidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

object-level variable, whereas making themtinct (for examplex not_free_in y)

makes them represent different object-level variables. As long as two object variables ¢
neither unified nor made distinct, the question as to whether they represent the same obj
level variable is undecided. If an object variable is distinct from all other object variables i
the proof, it is effectively a constant. For example, the constraint fov thi2 A rule shown
later (Figure3) forcesx2 to be distinct from all object variables in the hypotheses during
the proof ofA, so thatx2 behaves like a constant and cannot be instantiated.

2.2. Proof construction

Proof construction in Ergo is similar to that of the Isabelle theorem pravérlsabelle is
ageneric successor to the LCF family of tactic-based theorem pra&jr&xperience with
Isabelle has demonstrated that it is sufficiently generic to model many different reasonil
styles, such as natural deduction, sequent calculi [20] and window inferenc&7[23,

One of the main advances made by Isabelle was its representation of inference ru
asdata, rather than as ML functions like the LCF provers. This gives more flexibility in
the way that inference rules can be used, allows a nice symmetry between forward prc
and backward (ogoal-directed) proof, and enables derived inference rules to be provec
Indeed, proof (forward or backward) in Isabelle is simply the composition of inference rule
to produce derived inference rules.

Similarly, in Ergo, inference rules are data, with each inference rule contairing-a
clusionC and a sequence pfemisesAy, ..., A,. This is written as:

A1,..., Ay
C .

Proofs are trees. Each proof tree corresponds to a valid inference rule, where the r
of the tree is the conclusion of the rule, and any unproege) nodes of the tree are the
premises. A new proof begins with the trivially correct inference rijef, and proceeds by
resolvinga given open node of the proof tree with an inference rule. It would also be possib
to resolve two previously constructed proof trees together, but the current implementatis
supports only backward proof.

Inlsabelle, proofs are an ML abstract data type, and the soundness of proofs is guarant
by the type system of ML, because it allows proof objects to be constructed only by validity
preserving operations. In Ergo, because Qu-Prolog is untyped (like most Prolog systen
we provide this security by hiding all proof trees within a trusted module, and allowing
clients to refer to the nodes of the tree only indirectly, n@e namegintegers). These
node names are similar to the numbering of subgoals in the Isabelle subgoal package, ex
that our node names are unique across the entire proof (even if a node is deleted, its ne
is never reused within that proof), so that it is easier for user interfaces to track chang
to the proof structure. It is occasionally useful for an inference rule to refer to the nod
names that will be allocated when the rule is applied to a proof tree. This can be done
prefixing the conclusion or premises of a ruleNdlgdeName ::: , whereNodeNameis a
metavariable which will be instantiated to the corresponding node name whenever the ri
is applied. (Note that most metalevel symbols in Ergo contain three repeated characte
like ::;, === or+++. Reuse of these operators in object-level theories should be avoide
since care would be needed to avoid ambiguity.)

https://doi.org/10.1112/51461157000000759 Published online by CAf@8dge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

A, B
thy:rl C (8,sA) (9,sB)
~_
(5.T9) (5, s.T5, thy, r1)
(2,12 (3,T3) (2,5T2) (3,sT3)

proof_step(thy, r1, 5, [8,9])

(0, TopGoal, thy, r) (0, s.TopGoal, thy,r)

Figure 1: The effect of a single proof step.
Open nodes are represented @yode,Term) pairs, proved nodes are represented by
(Node,Term,Thy,Rule)tuples, and.T is the application of the instantiatiorio the ternil".

The basic operations provided by the proof module are as follows.

e proof_start(Formula, Constraints Children).
This creates a new proof node, and marks it as being the root node of a proof. It retur
the name of this proof node in the singleton @stildren, so that following commands
can refer to the new proof node. (Note that the proof engine supports multiple proc
trees, but the current user interfaces support only one proof tree.) It also execut
Constraints, which are the initial constraints of the proof.

e proof_step(Theory, Rule,Node,Children).

This resolves the inference ruleneory : Rule against the open noddode (see
Figure 1; in Ergo, each theory has a separate name space, so the full name of
rule comprises a theory name and a rule name within that theory). This extends tl
proof tree with the premises of the rule, checks the rule’s constraints and adds the
to the proof and unifies the conclusion of the rule with the predicate of proof nods
Node. Note that this unification applies an instantiation to the entire proof, whicl
allows schematic variables in the root of the proof to be instantiated, supportin
answer extractiorChildrenis the list of new node names corresponding to the open
subproofs generated by the premises of the rule.

» proof_complete(Name, Root,OpenNodesConstraints).
This checks thaRootis the root node of a proof tree whose open nodes are exactly
OpenNodes. It then extracts a derived inference rule from that proof tree, and add:
as a new rule (calledame) in the current theor@onstraintscan be used to restrict
the generality of the rule by specifying additional constraints to those implicit in the
proof.

There are also several other predicates for extracting information from a given pro
node, such as its parent node, its children, whether or not it has been proved, and so or

By repeategroof _step commands, a goal-directed proof tree is built. At all times,
the proof tree represents a valid derived inference rule. At any point during a proof, tr
derived inference rule defined by the proof tree can be saved into the current theory, usi
theproof_complete command. Other commands are available to convert a proof tres
into a tactic, and to save a proof tree into a file for later rerunning, browsing or prett
printing.

https://doi.org/10.1112/51461157000000759 Published online by Cdf@8dge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

2.3. Rule constraints

One of the major advances in theorem-proving technology was the introduction c
schematic meta-level variables into proofs. This allows the right instantiations to be four
gradually during proof1], as in the square root example in Sectioh. Ergo 6 extends
this schematic proof style by allowing user-defirmatstraintso be placed on some of the
schematic variables, to restrict their possible instantiations. This increases the expressi
ness of the theorems that we can prove (just as constraint logic progranghisgriore
expressive than standard logic programming).

For example, in a theory about Z schem28][in which signatures are ordered lists of
name declarations, we might define a constrzsidg(S)that checks that names in a signature
are sorted, and another constrairgrgesig(d, $2, S) that merges two sorted signatures to
give S. This gives efficient linear-time manipulation of signatures, but still allows schemati
theorems about all signatures to be proved. A similar effect can be obtained by defini
the concepts of sorted signatures and merging in the object-level theory, but defining the
as constraints can be more efficient and allows the proof steps to match hand proofs m
closely [29]. These kinds of constraints are often referred wrasles.

Ergo 6 associates a set of constraints with each proof tree, and allows constraints to
attached to inference rules. Whenever an open node of the proof is resolved with a rule, |
rule’s constraints are combined with the constraints of the proof. Thus the proof tree alwa
includes the constraints of the rules that have been used to build it, and these constra
become side-conditions of the resulting inference rule or theorem.

To ensure that constraints can be managed efficiently, we require constraints to be si
effect-free Prolog predicates whose truth depends only upon their arguments. Wheneve
proof step instantiates a variable, the constraints that involve that variable may be recheck
The check may return either ‘false’, in which case the proof step fails, or a new set ¢
constraints, which replace the original constraint. The new set of constraints may conte
just the original constraint unchanged, or some simplified constraints, or may be emp
(which means that the original constraint has been fully satisfied). For soundness, constra
must also satisfy a weak commutativity property with respect to instantiation. That is, give
a constraint(A) with a parameter, the following condition must hold for all terms
(comma is left-to-right Prolog conjunction here):

c(A), A=t = A=t,c(A).

For examplenonvar(A) is alegal constraint, bwar(A) is not, becausear(A), A =1
succeeds, whild = 1,var(A) fails. This property ensures that it is always sound to delay
the checking of constraints until later in the proof. In fact, checking a constraint too earl
(before its arguments are instantiated) may cause it to fail — this reduces completeness,
not soundness.

A third restriction on constraints is that when all the arguments of a constraint are full
instantiated terms, then the constraint must evaluate to either false or true (that is, it mi
either fail, or return the empty set of constraints). In standard Prolog terminology, such full
instantiated terms are callggdoundterms. We also require all pairs of object variables in
the terms to be either identical or distinct. Thus a fully instantiated term corresponds
exactly one term of the object logic.

The kinds of constraints needed to express rules vary between logics — we provi
some support for logic designers to define new constraints. Several standard constra
are suppliednonvar(T); ground(T); delay_until(Cond, Constr), which delays

https://doi.org/10.1112/51461157000000759 Published online by CatH{ddge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

the checking of constrair€onstruntil condition Cond (an instantiation condition such
asnonvar(T) orground(T)) is satisfied; andx not_free_in T, which ensures that
object variablex cannot appear free in terf.

Other examples of the use of constraints are to implement arithmetic of constants usi
Qu-Prolog or infinite-precision integers, and to define the properties of a class of constar
such as a lexicographical ordering relation.

2.4. Special support for context

Since many logics have some notionaaintext, it is useful to support context directly
in logical frameworks 21]. This section briefly describes the theory designer’s view of
how context is supported by Ergo. An efficient implementation of these context facilities i
discussed in Sectiob.

The logical framework of Ergo is based on sequent calculus, with each proof noc
conceptually containing a seque@t—> F, whereC is thecontextof the node and" is a
formula of the current object-logic. In sequent calculi based on Gentzen’s LJ calblilus [
C is simply a list of formulae. Ergo extends this by allowing each node of a proof tree t
containseveralnamed contexts, each of which is a list of uniquely labelled terms. Multiple
contexts are useful when a logic requires that different kinds of contexts be manipulated
different ways. For example, an Ergo implementation of Zhdogic for Z schemas used
one context for typing information and another for general assumptions. This allows tt
inference rules that discard all general assumptions to execute in constant time, rather t
in a time proportional to the number of assumptions [29].

As is the case for the normal symbols of a logic, the meaning of contexts is embodie
entirely in the inference rules. To support goal-directed proof efficiently, inference rule
specify the contexts of their premises by describing how they differ from the context c
their conclusion. The full syntax of each premise of an inference rule is:

NAME:: (n1===s51 &&&...&&&ny ===s3) ---> F .

where eacl; is the name of a context list and eaghs acontext specificatian
The following kinds of context specifications are supported.

« Initialise. Set the context list to be empty.
* Add. Add aterm to the context list.
* Delete. Delete aterm from the context list.

« Filter. Apply afilter function to the contextlist. The only predefined filtenfigx),
which succeeds on terms that do not contain free occurrences of the varidbte
schematic terms, it adds constraints to ensure that those terms cannot be instantic
to contain a free).

As examples, Figur2 shows three rules from the Ergo standard theory library, in Ergo
syntax. These rules are part of an LJ-like logic that uses the context eyped represent
antecedents. The first is anelimination rule, the second is a form #&felimination, and
the third is the assumption axiom.

Inthe first rule, the first premise has the same context as the conclusion, while the secc
and third premises are each augmented with a new hypothesis.

In the second rule, the existentially quantified term is first removed from the hypothese
then the remaining hypotheses are filtered with a not-free-in constraint, and then the n

https://doi.org/10.1112/51461157000000759 Published online by Catblidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

rule or_elim ===
A or B,
hyp+++[A] —> C,
hyp+++B] > C
C.

theorem ex_elim_c(x,A) ===
hyp --- [ex x A] ??? nfi(x) +++ [A] ---> C

C
provided
x not_free_in C.

rule assump(ID) ===
Node:::C
provided
context_search(hyp, Node, ID, C).

Figure 2: Example rules from the Ergo standard theories.

hypothesis is added. The conclusion of the rule is also constrained with the approprie
not-free-in constraint.

In the third rule, the built-in constrairdontext_search is used to search for the
conclusion inthe hypotheségode is the identifier of the conclusion, aiid is the identifier
of the corresponding hypothesis (@ is not specified when thessump rule is applied,
then any context term that unifies with the conclusion may be used).

2.5. Annotations

Finally, we describe user-definadnotationswhich may be attached to any node of the
proof tree. Although annotations do not affect the soundness of proofs, it is useful to provi
support for them in the core prover so that operations that modify the proof can preserve t
annotations that are attached to proof nodes. For examplprdbé tactic command
that converts a proof tree into a tactic offers the option of recording and regenerating anr
tations. Annotations are useful for attaching to nodes and subtrees of the pdhafijch
higher-level information as: tactic invocations, user commands, comments describing prc
strategies and rationales, user interface information, and instructions for the presentatior
printed proofs.

For example, one of the Ergo user interfaces uses annotations to record the exact |
of each successful proof-construction command entered by the user, including comme
and whitespace. These annotations are stored as part of the proof record, and are use
recreate the original proof script when required. This proof script can be used as a basis
reuse by editing, if the proof fails to rerun in a modified theory at some later date.

3. A meta-logic for Ergo

Since Ergo is a generic prover, it is important that it have a clear semantics, so th
object-logic designers can check that they have correctly encoded an object logic. Ti
section describes a meta-logic for Ergo.

https://doi.org/10.1112/51461157000000759 Published online by CathAdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

Because Ergo is implemented in Qu-Prolog, it relies heavily on the unification algorithr
of Qu-Prolog and the built-in not-free-in constraints that relate object-variables to Qu-Prolc
terms. For this reason, we have chosen to explain the semantics of the meta-logic in 1
same way as is used to prove the correctness of the Qu-Prolog unification algdrghm [
In fact, we consider the meta-logic for Ergo to be an extension of the logic used in th
Qu-Prolog unification paper. In other words, the Ergo meta-logic includes all the constar
and theorems of that paper.

The semantics is based on functions that map terms (and formulae) at the meta-leve
terms (and formulae) at the object-level vimaaning functiony, that maps constants at the
meta-level to constants at the object-level, gadable valuationsv, that map variables at
the meta-level to terms at the object-level. For a fixed meaning funetemd each variable
valuationv, we define the functiom: that maps terms at the meta-level to terms at the
object-level. The definition for.; is given in [L5] for abstract Qu-Prolog terms, and follows
the recursive structure of terms in a straightforward manner. The value of each constan
determined byn, and the value for each meta-level variable is determined by

Note that Qu-Prolog object-variables map to variables undsince object-variables
range over variables at the object-level), and substitution terms and not-free-in constraint:
the meta-level can be fully evaluated after mapping them to the object level. This is becau
at the object-level, we have complete information about occurrences of variables in tern

3.1. Formulae and terms of the meta-logic

The formulae of the meta-logic can be divided into four categories:

1. formulae representing the valid rules of Ergo;

2. constraint predicates that describe when rules are applicable;

3. formulae for processing structural subterms of rules, such as premise lists; and
4

. formulae constructed from other formulae using logical connectives(, — and
true).

We now discuss each of the first three categories in more detail.

The valid rules of Ergo include all the fundamental inference rules supplied by a the
ory designer, plus all the derived inference rules that can be proved using Ergo. T
meta-logic formula representing such a rule is calledEago-rule, and has the form
rule(Concl,Prems,Constr) whereConclis the conclusion of the ruld&remsis a list of
premises and€onstris a conjunction of constraints representing the ‘side conditions’ of
the rule.

Proofs in Ergo are explicitly represented by their proof trees. For the meta-logic, howeve
we take a similar approach to that of Isabelle, and consider each step of an Ergo proof &
proof of an Ergo-rule, with the conclusion of the rule being the root of the proof tree an
the premises being the list of open (unproven) nodes.

The conclusion and each premise of an Ergo-rule is a generalised sequent represel
by a meta-logic term of the formeq(SuccContexts) whereSuccis the succedent of the
generalised sequent (a theory-specific term),@atextss a list of contexts. Each context
is a term of the forntontext(NameCSpec) whereNameis an atom that names the context
andCSpeds a term representing the context specification of the context. The terms used
represent context specifications are of the form

nil, add(ID,Formula,CSpec), del(ID,CSpec), nfi(ObjVvar,CSpec),

https://doi.org/10.1112/51461157000000759 Published online by CathBdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

wherenil represents the empty conteatidanddel respectively add and remove formulae
from a context, andfiis used to add a not-free-in constraint to variables in a corf@xs
an identifier for the context formula that is added/deleted.

In the implementation, for efficiency reasons, context is managed by reference to no
identifiers and context names. If a context is not mentioned in the rule, then it is unchang
by the application of the rule. In order to simplify the discussion of the meta-logic, we tak
the view that each context listin each sequent is a list of named contexts, with each possi
context name of the theory appearing exactly once. Furthermore, to simplify the unificatic
of sequents we assume that the named contexts appear in the same order in each co
list.

Each context specification of the conclusion of each Ergo-rule is typically a variabl
that is instantiated to the corresponding context specification of the sequent to which t
rule is applied. Rules that access context will have a context-search constraint on one
more of these variables. The context specifications of each premise are modifications of
corresponding context specifications of the conclusion.

The three rules of Sectidh4 are represented in the meta-logic as follows:

e theor_elim rule:

rule(seq(C [context(hyp, H)),
[seq(A or B[context(hyp, H)),
seq(C,[context(hypadd(ID1, A, H)))),
seq(C,[context(hypadd(ID2 B, H))])],
true);

» theex_elim_c rule:

rule(seq(C [context(hyp, H)),
[seq(C,[context(hypadd(ID1, A,nfi(x,del(ID2 ex x A, H))))]],
x not_free_inC A context_search(IDZ2x x A, H));

» theassump rule:
rule(seq(C [context(hyp, H)), [], context_search(ID, C, H)).

The constraint part of an Ergo-rule is used to describe when the rule is applicable. It
a conjunction of constraint formulae, which comprise the second category of meta-log
formulae, and have the form

ObjVarnot_free_inTerm
Term, = Termyp,
context_search(IDFormula,CSpec).

These represent not-free-in constraints, unification constraints, and context-searching ¢
straints, respectively, which are the main built-in constraints of Ergo. Note that each conte
search constraint of the meta-logic refers to the context specification of the relevant cont
directly rather than through its name, as is done in the implementation.

Users designing logics for Ergo can also define their own oracles as constraints on rul
and these become additional meta-level constraint formulae. For example, a theory ab
arithmetic includes a rule with the constraint

delay_until(ground(Exp), arith_oracle(Exp, Result))

for evaluating ground expressions. The correctness of the rule depends on the correctr
of the code that implements the oracle.

https://doi.org/10.1112/51461157000000759 Published online by Catidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

We note that these constraints are Qu-Prolog goals, and are called when encounte
On the other hand, constraints can, in principle, be generated and solved in any order
consequence of this is that, in order to preserve correctness, constraints cannot rely on
non-logical features of Qu-Prolog. More precisely, user-defined constraints must satisfy t
three properties described in Sectib: they must be side-effect-free Qu-Prolog predicates
whose truth depends only upon their arguments, they must satisfy the weak commutativ
property, and they must be decidable when applied to fully instantiated terms. The built-
constraints satisfy these requirements, and it is the theory designer’s responsibility to me
sure that user-defined constraints also do so. Thanks to the delayttheoracle
constraint described above also satisfies this condition.

The third category of meta-level formulae is concerned with the change to a proof tre
(as represented by an Ergo-rule) when a rule is applied. The only formula in this group
replace(T, I3, L2, L3), which describes how the list of premises (open nodes of the proo
tree), Ly, becomes the new ligtz by replacing the elemerit (the conclusion of the rule)
by the listL1 (the premises of the rule).

3.2. Semantics of the meta-logic

Our main objective is to describe whatle formulae are theorems of the meta-logic,
and to write down axioms that allow us to deduce reve theorems. We first extend
the meaning functiom to the constants of the meta-logic (suchsas], context, list
constructorsp and=) in the obvious way. Note that any constraihevaluates to true or
false when applied to fully instantiated termsys{(C) is either true or false. Next, we say
what it means for a formula of the meta-logic to be a theorem.

DEerINITION 1. Aformula,T, of the meta-logic is ¢heoremif and only if m3(T') is true for
all variable valuations.

We note that, as in [15], the>, A and— connectives are the pointwise lifted versions
of the usual propositional connectives, and a consequence of this is that the meta-logic
an instance of a standard propositional calculus in which, for example, we can carry ©
Hilbert-style reasoning.

DeriNITION 2. The meta-logic formulaieplace(T, I1, Lo, L3), is true in a valuation if
and only if there are some, andL,;, (at the object-levelsuch that

my(L2) = Ly~ [my(T)] ™ Lpmy(L3) = Ly~ mj(L1) — Ly,
where 7' is list concatenation.

For defining the meaning atile(_,_,), itis convenient to be able to extract the con-
straints from the rest of the rule, so we first define a variantilgfwithout constraints.

DeriNiTION 3. The meta-logic formulaiule(Concl,Prems), is true in a valuationif and
only if m}; (Prems)
m’(Concl)

is a valid object-level inference rule.

DEFINITION 4.rule(Concl,Prems,Constrs)is defined a€onstrs= rule(Concl,Prems).

https://doi.org/10.1112/51461157000000759 Published online by CatHndge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

The validity of an Ergo-rule follows directly from these definitions and the definition of
theoremhood.

CoroLLARY I. The rule rule(ConclPrems,Constrs)is a theorem if and only if
m}; (Prems)
m’(Concl)
is a valid object-level inference rule for all valuationsuch thatn} (Constrs)is true.

Itis the responsibility of the designer of each Ergo theory to check that the fundament
inference rules of the theory represent valid object-level inference rules. The meta-loc
formulae that represent fundamental inference rules of the Ergo theory are axioms of t
meta-logic.

Next we present the axioms of the meta-logic used to derive new Ergo-rules. We u
the semantics to justify the soundness of these axioms. It then follows that any deriv
inference rule proved in Ergo is valid, since Ergo is an implementation of this meta-logic

3.3. Axioms of the meta-logic

For a given Ergo theory, the meta-logic contains axioms that represent the fundamer
inference rules of the Ergo theory, and also the general axioms that state how Ergo deri
new inference rules for the theory. We now consider the latter set, which are applicable
all theories.

The following axiom describes how two rules can be joined together to produce a ne
rule. This axiom is justified by noting that the semanticseyflace describes how the
proof tree described by the first rule is modified by the application of the second rule f
produce the proof tree described by the third rule.

AXIOM 1.

rule(Root,Prems)A rule(RC, RP) A replace(RC, R P ,PremsNPrems)
= rule(Root,NPrems).

The following theorem justifies the mechanism for rule application in Ergo. This corre
sponds to thgroof _step command introduced in Secti@n2.

THEOREM I (APPLY RULE).

rule(Root,Prems.Constraints)a

rule(RConcl RPremsRConstraintsn
replace(ConclRPremsPrems NPrems\

=

rule(Root,NPrems Constraintsn RConstraintsn (Concl= RConcl)).

The first rule formula represents the current state of the proof, while the second ru
formula represents the rule being applied.

Proof. We proceed by straightforward propositional reasoning. First, itis enough to assun
the antecedents, and to show that

rule(Root,NPrems Constraintsn RConstraintsa (Concl= RConcl)) .
Secondly, by using Definitiod, we can assume that

Constraintsn RConstraintsn Concl= RConcl,

https://doi.org/10.1112/51461157000000759 Published online by C2M5dge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

and showule(Root,NPrems). This follows using Axior, replacingRConclby Conclin
the second assumption (which is justified by the equality assumption). O

Next we look at a theorem that allows us to strengthen or simplify constraints.
THEOREM 2 (TRANSFORM CONSTRAINTS).

rule(Root,PremisesConstraints) A
(Constraints = Constraints)

=
rule(Root,PremisesConstraints).

Proof. This is achieved by propositional reasoning and Definition O

An example of strengthening constraints in Ergo occurs when we have a delayed unific
tion constraint that has more than one solution. Such constraints are typically strengther
by choosing one of the solutions. This is equivalent to adding new unification constrain
and new not-free-in constraints. For simplifying constraints, we are typically using som
theorem of the form

Constraints <« Constraints

which can be used in conjunction with the above theorem to apply the simplificatior
Simplifications of unification or not-free-in constraints are examples of the above.

The next theorem tells us that the use of Qu-Prolog’s variable instantiation preserves
correctness of rules. Note that the application of an instantiadiptg a term7", written
o T, gives the term obtained froffi by replacing each variable in the domaincoby its
corresponding instantiation.

THEOREM 3 (INSTANTIATE VARIABLE).

rule(Root,PremisesConstraints)a
(Constraints= X =T)

=

rule(cRoot, sPremises, €£onstraints),

where X is a variable andT is a term not containingk, or X and T' are both object-
variables. Hereg is the instantiation that instantiate$ to T'.

Proof. This theorem follows from theorems about Qu-Prolog unification. O
Finally, we state the axioms that give the semantics of searching contexts.
AXIOM 2 (CONTEXT HEAD).

F1 = F» = context_search(ID, £ add(ID, F, Context)).

AXIOM 3 (CONTEXT TAIL).

context_search(ID, £ Context)
= context_search(ID, £ add(ID,, F», Context)).

AXIOM 4 (CONTEXT DELETE).

context_search(IR F, Context)A —(ID1 =1D_2)
= context_search(IR F, del(ID2, Context)).

https://doi.org/10.1112/51461157000000759 Published online by Catbfidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

AXIOM 5 (CONTEXT NFI).

context_search(ID, FContext) A ObjVar not_free_inF
= context_search(ID, fi(ObjVar,Context)).

The Ergo implementation of context searching has the above semantics.

4. Implementation technology

Proof construction in the proposed architecture, as in Isabelle, has many similarities
Prolog. Indeed, Paulson shows that, with a depth-first control tactic, Isabelle is a highe
order Prolog interpreter [17]: inference rules are Horn clauses, usually containing scheme
metavariables; inference rules are composed using resolution, with the conclusion of ¢
rule unifying against a premise of another rule to produce the compound rule; and high
order unification is used to handle quantifiers and unknown function variables.

This section discusses the degree to which it is possible to implement the Ergo pro
engine using Prolog resolution, and the advantages and disadvantages of doing this. 1
is not just a matter of using Prolog as the implementation language for the proof engir
Rather, can we use the Prolog proof engine (SLD-resolution) to implement the Ergo pro
engine directly?

4.1. Advantages and disadvantages of using Prolog

The main advantage of using the Prolog resolution mechanism directly is speed. Sticl
identifies three main aspects of Prolog implementation technology that make it a high
efficient theorem prover [28].

1. Efficient representation of derived claused he Prolog SLD-resolution mechanism
(input resolution with depth-first seargmeans that the current state of a Prolog proof
(thederived clause) is simply the set of goals that remain to be proved. Since Prolc
uses depth-first search, this derived clause can be representestdgkaf goals,
which makes backtracking very efficient.

2. Compilation of clauses. Prolog usefputresolution, where one of the clauses being
resolved is always derived from the original query and the other comes from a databa
of clauses. Since the clause database is relatively fixed throughout a proof (exce
for asserting new theorems/lemmas), its clauses can be compiled into efficient co
(either interpreted bytecodes or machine code) that is customized according to t
structure of each clause. In contrast, compilation is not so effective for other form
of resolution, because there is no fixed set of clauses to compile.

3. Efficient representation of variable instantiationsProlog unifies two terms by de-
structively updating their variables to satisfy the unifying instantiation. The destruc
tive updates are recorded on a stack so that they can be undone upon backtrack
This scheme is simple, and highly efficient for depth-first search. Alternative scheme
are much less efficient: they typically require a new term to be created for the rest
of each unification (lots of copying), or they usiucture sharingvhere the result
of each unification is d@instantiation term) pair (processing of such results is more
complex than in the Prolog scheme).

For comparison, note that Isabelle uses multiple proof trees represented by ML de
structures, so none of the above advantages apply. The derived clauses (proof trees)

https://doi.org/10.1112/51461157000000759 Published online by Cat}8dge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

in the ML heap, so must be garbage collected; they cannot be compiled; and unificati
creates new terms.

By modifying Prolog systems in ways that preserve the above three properties, Stick
built high-speed theorem provers that are capable of thousands of inference steps per sec
The work described in this paper can be viewed as an extension of his approach, to all
even more flexible styles of proof, while retaining most of the advantages of the Prolc
technology.

Disadvantages of using Prolog to directly implement Ergo include the following.

1. We want to produce an explicit record of the whole proof, whereas the Prolog stac
based representation of the proof tree discards each subtree of the proof as soon
is completed.

2. We want to be able to construct incomplete proofs (for example, derived inferenc
rules), whereas Prolog always either completes an entire proof, or fails.

3. Prolog uses a fixed (and incomplete) search strategy (depth-first, left-first), where
we want to give the tactics and/or the user control over the search strategy.

4. Prolog uses quantifier-free first-order unification, whereas we want to unify term
involving quantifiers and higher-order terms.

5. Most Prolog implementations omit occurs checks, but occurs checks are necess
for avoiding faulty inferences in theorem proving [28].

We avoid the last two difficulties by using Qu-Prolog, which supports quantifiers, delay
difficult unifications (and allows user-defined heuristics to solve such delayed problem
and does include occurs checks. The next subsection discusses how the first three probl
can be solved.

4.2. Adesign that uses Prolog

This section develops a design for a prover that has much of the proof efficiency ¢
Prolog, yet builds explicit proof trees (possibly incomplete trees) and supports user-defin
search strategies. The actual Ergo 6 implementation (Segjiansimilar to this design,
but with more sophisticated data structures, and with support for context lists.

The key insight is that we can transform each inference rule into a Prolog clause that r
only performs the desired resolution step, but also extends a data structure that repres
the explicit proof tree.

For example, the obvious Prolog translation of a conjunction introduction rule is:

provel(A and B) :- provel(A), provel(B).

We modify this Prolog clause so that it builds an explicit proof tree. We add an extr:
parameter that builds a structure to record the term being proved and the name of the r
used to prove it. This structure has the farode(Thy, Rule,Term,SubTrees), wherkerm
is the term that is being provethy : Rulerecords the theory and name of the inference rule,
andSubTreess a list of the subtrees (alswde/4 structures) that result from applying
that inference rule. In unproved nod@dy, Ruleand SubTreesre variables. The clause
representation of thend_intro rule is now:

prove(node(fol, and_intro, A and B, [Subl,Sub2]))
Subl = node(_, _, A,),
Sub2 = node(, , B,),
prove(Subl),
prove(Sub?2).

https://doi.org/10.1112/51461157000000759 Published online by Cat8dge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

The two recursive calls tprove in this clause correspond to the Prolog depth-first
search strategy, so we remove them to allow more flexible search strategies. This redu
ourprove predicate to just a table of inference rules. However, we still retain much of the
Prolog feature oflause compilation, because each clause in the table is fixed (even thou
new rules can be added to the table), and can thus be compiled into efficient code tha
optimized for the particular structure of that inference rule.

A proof is basically just a sequence of calls to this table. Each call proves one node
the tree, by instantiating itBhy, RuleandSubTreegomponents.

It is simple to write a recursive tactic that implements the original Prolog depth-firs
search. For interactive proof, we can defingraof_step command, similar to the one
described in SectioB. (The only difference is that this one passes an entire proof node dat
structure as the third argument, whereas the real grgof _step command passes just
the nameof that proof node.) A sequence of calls to thimof_step predicate builds a
goal-directed proof tree.

proof_step(Thy, Rule, node(Term,Thy,Rule,SubProofs), SubProofs) :-
prove(node(Thy, Rule, Term, SubProofs)).

4.3. Analysis of this design

This style of using Prolog to build proof trees overcomes the first three disadvantag
of standard Prolog mentioned above. It creates explicit proof trees, and allows incomple
proofs and flexible search strategies. It also retains the Prolog efficiency advantages.

1. Efficient representation of derived clausedn our architecture, a proof is repre-
sented by a tree data structure, rather than a stack like the derived clause of Prol
However, this proof tree data structure is built within the Prolog heap, which is or
ganised as a stack. Furthermore, the sequence of proof steps that builds a proof t
is recorded in a stack-like fashion on the environment stack of the underlying Prolo
This means that when the underlying Prolog backtracks, proof steps are undone
reverse chronological order. This gives us a chronological ‘undo’ facility for free at
the user interface level.

It also allows us to write efficient Prolog tactics that gatbof step using various
search strategies, and automatically undo those proof steps upon failure. If failir
did not undo proof steps automatically, tactics would have to contain explicit code t
undo unwanted steps, and our experience with earlier versions of Ergo showed tt
this made it far harder to write searching tactics.

2. Compilation of clauses. Theproof_step command performs a backward proof
step using input resolution, where an open subproof of the proof tree is resolve
against an inference rule from a (relatively) fixed theory database. Thus mature Prol
compilation technology can be used to compile the inference rules. This efficienc
advantage is the main reason for preferring the goal-dirguteaf_step command
over a more general command that resolves two proof trees together.

3. Efficient representation of variable instantiationsOur proof engine uses the under-
lying Prolog representation of variables and variable instantions directly. Schemat
proof variables are simply Prolog variables (meta-level variables in logical and it
Qu-Prolog [26] terminology). They are instantiated by Prolog unification (for exam-
ple, when the conclusion of an inference rule is unified with a proof node). This i
convenient and efficient for depth-first searching tactics and for chronological ‘undc

https://doi.org/10.1112/51461157000000759 Published online by CatdHddge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

operations. However, it does make it harder to support non-chronological undo ope
ations.

For instance, the implementation of the architecture described in Sécttows
subtrees of a proof to be discarded in any order. However, variable instantiations th
were made by the discarded proof steps can be undone only in reverse chronologi
order. To implement more sophisticated undo operations, it would be necessary
undo a larger portion of the proof, and then rebuild some of its subproofs.

So, in using the underlying Prolog representation of variable instantiations we hay
followed the RISC principle: make common operations (goal-directed proof steps
chronological undo operations and tactic execution) fast, while less common oper
tions (non-chronological undo operations) are slower.

5. An efficient implementation

This section sketches the main features and data structures of our implementation
Ergo 6. The main differences from the simplified design in the previous section are th
proof trees are encoded into hash tables, and that context is manipulated more efficient

Qu-Prolog provides a set of global variables callegblicit parameterg22], with a
backtrackable assignment operation and clean logical semantics. It also priodiebesd
implicit parameters, which provide the functionality of hash tables. The assignment cor
mandip_set(IP,Index,Value), is equivalent to IP(Index) := Value, but is undone
upon backtracking. Similarlyp_lookup(IP,Index,Value) is used to query an indexed
implicit parameter. It succeeds whenellé(index)unifies withValue.

5.1. Proof tree data structures

The simple design outlined in Sectidnepresented an entire proof tree as a single Prolog
term. The actual implementation uses a more sophisticated representation.

Proof nodes are stored in amdexedimplicit parameter, calleshode. In fact, a more
obscure name is used. Since Qu-Prolog does not yet provide any module or ADT construc
the encapsulation of the proof data structures relies on choosing names for these impl
parameters that are unlikely to clash with names used by tactics. This does not prot
against malicious attempts to corrupt the proof data structure, but provides good protecti
against accidental corruption. This has two advantages over the single-term approach.

« It gives us constant-time access to every node of the tree.

It allows us to destructively update any node of the tree in constant time, usin
backtrackable assignment. This allows proof steps to be undone in non-chronologic
order, except for variable instantiations.

Each proof node is allocated a uniguame(an integer) as discussed in SectibrEach
node of the proof is represented by a term of the form:

proofnode(Parent, Term,Theory,Rule,Children).

If a node is open (unproved), then thbeory,RuleandChildrenfields contain variables,
otherwiseTheory: Ruleis the name of the inference rule that has been resolved with thic
node andChildrenis a list of node names corresponding to the subproofs generated by tt
premises of the rule. We can now describe the implementation of the main proof engil
commands.

https://doi.org/10.1112/51461157000000759 Published online by Cadblidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

Theproof_start/3 command allocates a new node naReotlD, and then creates
the root node of the proof by executing

ip_set(node, RootID, proofnode(root, Formula, _, _,)).
The implementation of thproof_step command is

proof_step(Thy, Rule, Id, Children) :-
ip_lookup(node, Id, proofnode(_,Term,Thy,Rule,Children)),
rule_apply(Thy, Rule, Term, Id, Children),
proof _non_circular(Thy, Rule).

Therule_apply/5 predicate looks uphy : Rule in the theory database (similar to the
prove4 tablein Sectiod.2) andoroof_non_circular/2 checksthat no circularities
arise involvingThy : Rule and the current proof, by checking théty : Rule does not
appear in a precalculated table of rules.

5.2. Context list data structures

The data structures used for context lists are designed to meet the following objective

» They achieve a high degree of structure sharing (to save space, and to save time
avoiding copying when creating new proof nodes). Structure sharing may occur eve
between context lists that have different names.

» They allow efficient updating of any point in any context list.

» They allow changes to the context list at a given proof node to be immediately visibl
at all nodes of its subtree.

» They automatically undo changes on backtracking.

» They allow the differences between the context of a conclusion and a premise to |
reported symbolically, as a context specification. (This allows proofs to be transforme
into inference rules.)

Our current implementation never copies context lists. If a rule applies a filter functiol
(for example nfi(x)) to a given context list, that context list is not immediately filtered
to obtain a new context list. Instead, the function is recorded at that point in the context li
and then whenever an access of the context list returns aitérom deeper in the context,
it applies the function to it. In other words, the application of filter functions is done lazily
at lookup time, rather than at rule-application time. It also means that filter functions ai
not applied to context terms that are never used.

Advantages of this approach are that it allows rule application to be very fast becau
contexts are not copied, and it allows updates of the parent’s context list to flow into tf
filtered list automatically. A disadvantage is that if a given term in a context list is frequentl
accessed, then filter functions may be applied to that term repeatedly (once every acce
Experiments suggest that this does not cause performance problems, but if it does in
future, then we may investigate caching the filtered context list.

To maximize sharing, all context lists are stored in a sifiglestwhich is represented as
an indexed implicit parameter, which we shall eahtext. The indexes into context
are integers, but these indexes are private to the proof engine, so that destructive listinser
algorithms can be used without affecting the user view of context lists.

https://doi.org/10.1112/51461157000000759 Published online by Ca@dbAdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

rule and_intro === rule all_intro(x2) ===
A, hyp ??? nfi(x2) ---> A
B e
---------- all x2 A.
A and B

rule implies_intro === rule all_elim(Ax,T) ===
hyp+++[A] ---> B all x A
A => B. [T/X]A.

define A <=> B === rule unfold ===
(A => B) and (B => A). [E/X]P
o
This enters A <=> B [DIx]P
into a table, so that provided defined(D,E).
defined(A<=>B,(A=>B)and(B=>A)
is true.
*

Figure 3: Inference rules used in the example proof

5.3. An example proof

This section shows all the data structures for a small proof that involves context term
quantifiers and constraints. The theorem is:
theorem all_intro2 === A <=> (all x A)
provided x not_free_in A.

The inference rules used (see Fig@jeare the usual sequent calculus rules, in the style
of Gentzen’s LJ calculus [5], with the assumption rule given in Se@idn

Figure4 shows a graphical view of the final proof tree. To avoid clutter, the figure use:
the context-specification notation from SectihAto describe changes to thgp context,
rather than repeating the full context at every node.

Figure5 shows how this proof tree is represented within the Ergo 6 proof engine, by th
bindings of three indexed implicit parametensde, hyp andcontext.

The set of constraints associated with this proof is maintained by Qu-Prolog, so we sh
not describe its representation in detail. Once the proof tree is complete, the set contains:
constraintx not_free_in A from the statement of the theorem; a derived constraint
x2 not_free_in A, introduced whenthe assump rule applied to node 6 passes context
term 1 (A) through the filtenfi(x2); and a requirement that x andx2 be distinct object
variables. Only the first of these constraints becomes a side condition of the resultir
theorem, because? does not appear in the theorem, so the constraints involving it car
always be satisfied.

5.4. Performance

The following performance experiments were done on a lightly loaded 466Mhz Celero
processor, with 128Mb RAM running Linux 2.2.14. Ergo was run using Qu-Prolog 6.0 an
Isabelle99-2 was run under Poly ML (version 4.0).

https://doi.org/10.1112/51461157000000759 Published online by C@dbBdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

(all x A

hyp???2nfi (x2)

(all x A

hyp+++[(gl | x A)]

3[A:>(aIIxA)] 4[(aIIxA) :>A]

2[(A => (all x A)) and ((all x A) => A)]
|

1[A<:>(all xA)]

Figure 4: A proof ofA <=> (all x A) provided x not_free_in A.

node(1)=proofnode(root,A<=>(all x A), jprop,unfold, [2])
node(2)=proofnode(1, A => (all x A) and
(all x A) => A, jprop,and_intro, [3,4])

node(3)=proofnode(2, A => (all x A), jprop,implies_intro,[5])

node(5)=proofnode(3, (all x A), jpred,all_intro, [61)
node(6)=proofnode(5, A, jprop,assump, 1))
node(4)=proofnode(2, (all x A) => A, jprop,implies_intro,[7])
node(7)=proofnode(4, A, jpred,all_elim, [8])
node(8)=proofnode(7, (all x A), jprop,assump,)]
hyp(1)=1 hyp(5)=2 context(1)=initialise

hyp(2)=1 hyp(6)=3 context(2)=add(1,A,1)

hyp(3)=1 hyp(7)=4 context(3)=filter(nfi(x2),2)

hyp(4)=1 hyp(8)=4 context(4)=add(2,(all x A),1)

Figure 5: Ergo 6 data structures for the proof in Figdire

https://doi.org/10.1112/51461157000000759 Published online by Catdbdidge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

Table 1: Test results for Ergo and Isabelle

Testl Test2 Test3
A. Ergo 1.8 1.8 1.6
B. Isabelle 35 20.9 3.4
C. Isabelle (save) 7.9 22.1 4.4
Speedup = C/A 6.1 12.3 2.8

In order to obtain a reasonable comparison between Ergo and Isabelle, it was neces:s
to carry out large proofs (in order to obtain accurate timing figures) that used equivale
sets of inference rules. This was accomplished by taking two small proofs for which the
were already equivalent proofs in both systems, and repeatedly using rules that replica
goals in order to produce large proof trees.

The two theorems used were

DL:(PAQ=R=(Q0=R)=R)=({(P=R)=R)=R,
(2 : (AxVyA) = Vy3dxA.

The proof of the first theorem takes eleven steps, and the second takes six steps. Tac
were written in each system that proved these theorems automatically.

In order to construct large proofs, a rule was used that replaced a goal with the gc
conjoined with itself. Tactics were written that used this rule and conjunction introductiol
to generate four copies of the initial goal, prove three of these goals directly, and then rep
the process on the remaining goal. The replication step was carried out 400 times. TI
produced proof trees of about 15,600 proof nodes for the first theorem and about 9,6
proof nodes for the second theorem.

This technique was used to construct three test proofs in both Ergo and Isabelle:

» Testl: a proof of (1) with goal replication applied to the last node at each level;
» Test2: a proof of (1) with goal replication applied to the first node at each level;
» Test3: a proof of (2) with goal replication applied to the last node at each level.

Inboth Ergo and Isabelle the tactics discharged the first open node first. As a consequer
the number of open nodes at any point in the proof in Test 1 did not exceed five, while |
Test 2, the number of open nodes at one point in the proof reached 400.

In Ergo, the complete proof tree is stored during the proof while, by default, Isabell
does not store the proof tree. This can be changed by setting a flag 1Tedtéethe results
for the three test proofs for Ergo and Isabelle (with and without the proof tree saved). A
the times are in seconds.

This relatively good performance of Ergo is achieved largely because each inferen
rule is compiled directly into Qu-Prolog code (as described in Seetid)) which allows
the compiler to optimize each inference rule according to its structure. In contrast, Isabe
inference rules are represented purely as data, so these opportunities for compilation
optimization are not possible.

As described in Sectioh.2, the context lists of Ergo 6 are not compiled, because they
change frequently during a proof. So Ergo 6 can be slower than Isabelle in proofs that sea
context lists very frequently (because both systems are searching data structures, and

https://doi.org/10.1112/51461157000000759 Published online by Cﬁﬂﬂfjdge University Press

https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

is generally faster than Prolog). However, in most proofs only a small percentage of pro
steps search the context lists (2/11 and 1/6 steps in the above example proofs), so the sj
of applying (compiled) inference rules far outweighs the slower accessing of context list
as the above examples illustrated.

Other experiments showed that for simple inference rules, Ergo 6 is about five times fas
than the earlier window-inference-based version of Ergo. Furthermore, the speed of m
inferences in Ergo 6 is largely independent of the size of the context lists and the numk
of variables in the whole proof, whereas the earlier version slowed down dramatically :
these increased.

6. Conclusions

This paper has described the design and implementation of the Ergo 6 proof engine. |
a generic interactive proof engine, with expressiveness similar to that of Isabelle (though
does not support type-based overloading as Isabelle does). Its performance is quite goo
comparison with that of Isabelle, though more experiments on large proofs with identic:
theories and tactics would be necessary to make accurate comparisons.

This paper illustrates one way of effectively using Prolog implementation technolog
to implement a theorem prover that is highly generic and flexible. The key principle is t
represent each inference rule by a Prolog clause that can be queried as if it is data, but
still be efficiently compiled and executed. A similar effect could perhaps be obtained i
other systems (for example, Isabelle) by having two representations of each inference rt
one as a data structure and the other as compiled code that executes the inference ru
the most common (backwards) proof style.

Our representation of the proof tree relies on having efficient backtrackable hash tabl
(indexed implicit parameters), but these could be added to other Prolog systems. The |
of Qu-Prolog provides other advantages, such as more flexible unification and support
guantifiers, substitutions and constraint management.

The Ergo 4 proof engine was based on window infere28¢. [Ergo 6 is more general,
but can easily support window inference by proving appropriate inference rules. In fact, tt
generic nature of Ergo 6 makes it easy to support aspects of window inference that we
not easy to implement in Ergo 4 (for example, conditional opening rules, proof of derive
opening rules, higher-order relations), simply by proving additional inference rules. B
careful design, utilising the strengths of Prolog, with Ergo 6 we have been able to impro
both speed and flexibility dramatically (‘have our cake and eat it too’).

Appendix A. The Ergo6 and Qu-Prolog releases
A release of Ergo 6 is available at:
http://www.svrc.ug.edu.au/Software/ErgoHome.html.

This includes a hierarchy of about 40 predefined theories, ranging from Johanssol
propositional logic through to arithmetic and ZFC set theory. Qu-Prolog is needed to bui
and run Ergo 6. A release of Qu-Prolog is also available from the Software Verificatio
Research Centre, University of Queensland, Australia, where Ergo and Qu-Prolog we
developed. Readers will find the material at:

http://www.svrc.uq.edu.au/Software/QuPrologHome.html.

https://doi.org/10.1112/51461157000000759 Published online by CatdtBdge University Press

http://www.svrc.uq.edu.au/Software/ErgoHome.html
http://www.svrc.uq.edu.au/Software/QuPrologHome.html
https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

Acknowledgements. Thanks are due to Anthony Bloesch, Ed Kazmierczak, Peter Ke

ney, Peter Lindsay, John Staples and Owen Traynor for helpful input and discussions ab
future architectures for the Ergo proof tool. Special thanks to John Staples and Steve Ree
for their comments on early drafts of this paper. This work was funded by the Softwar
Verification Research Centre, a Special Research Centre of the Australian Research Cou

10.

11.

12.

13.

References

R. BornaT andB. Surrin, ‘Jape: A calculator for animating proof-on-papekyto-
mated Deduction — CADE-14, 14th International Conference on Automated Dedu
tion, Townsville, North Queensland, Australlaecture Notes in Comput. Sci. 1249
(ed. William McCune, Springer, 1997) 412-41594

R. S. Boyer andJ. S. Moorg, A computational logi¢Academic Press, 1979194

P. DERANSART, A. Ep-DBALI andL. CErvVoNT, Prolog: the standard reference manual
(Springer, 1996).196

EpsGerR W. DIKSTRA, A discipline of programminéPrentice-Hall, Englewood Cliffs,
NJ, 1976). 196

GERHARD GENTZEN, ‘Investigations into logical deductionT,he collected papers of
Gerhard Gentzen, Stud. Logic Found. Math. F (ed. M. E. Szabo, North-Holland, 196¢
first published 1934) 68-131201,213

MiIkE GorpoN andT. F. MELHAM (eds), Introduction to HOL: a theorem-proving
environment for higher-order logi@Cambridge University Press, 1993)94

NicHoLAS HAMILTON, RAY NicksoN, OWEN TRAYNOR andMARrk UTTING, ‘Interpre-
tation and instantiation of theories for reasoning about formal specificatiere,
Twentieth Australasian Computer Science ConferdAGSC’97), Austral. Comput.
Sci. Comm. 19 (ed. M. Patel, Macquarie University, Sydney, 1997) 37-45; see als
Technical Report SVRC-96-21, Software Verification Research Centre, The Universi
of Queensland, 1996196

P. vaAN HENTENRYCK, Constraint satisfaction in logic programmingogic Program-
ming Series (The MIT Press, Cambridge, MA, 1982)00

C.B.JonEs, K. D. JonEs, P. A. LInpsay andR. Moorg, mural: a formal development
support syster(Springer, 1991).194

SAarA KaLvaLa, ‘Annotations in formal specifications and proofsgrm. Meth. Syst.
Des.5 (1994) 119-144.202

S. KANGER, ‘A simplified proof method for elementary logicZomputer programming
and formal system@d. P. Braffort and D. Hirschberg, North-Holland, 1963) 89-95.
200

MatT KAUFMANN andJ. STROTHER MOORE, ‘Design goals for ACL2’, CLI Technical
Report 101, Computational Logic, Inc., 1717 West Sixth Street, Suite 290, Austir
Texas 78703-4776, August 199494

A. P. MarTIN, P. H. B. GarpDINER and J. C. P. Woobpcock, ‘A tactic cal-
culus’ (abridged version), Formal Aspects of Computing (1996) 479-489;
the full version is available at thé&ormal Aspects of ComputingTP site:
ftp://ftp.cs.man.ac.uk/pub/fac. 196

https://doi.org/10.1112/51461157000000759 Published online by Cadbridge University Press

ftp://ftp.cs.man.ac.uk/pub/fac
https://doi.org/10.1112/S1461157000000759

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ergo 6: A generic proof engine that uses Prolog proof technology

ANDREW MARTIN, RAY NicksoNn and Mark UTTING, ‘A tactic language for Ergo’,
Formal Methods Pacific '9MDiscrete Math. Theor. Comput. Sci. (ed. Lindsay Groves
and Steve Reeves, Springer, 1997) 186-2096

PETER NickoLAs andPETER J. RoBINSON, ‘The Qu-Prolog unification algorithm: For-
malisation and correctnes¥heoret. Comput. ScL69 (1996) 81-112; also available
as Software Verification Research Centre Technical Report 94-23,203,203,205

SAM OWRE, JOHN RUSHBY, NATARAJAN SHANKAR andFRIEDRICH VON HENKE, ‘For-
mal verification for fault-tolerant architectures: prolegomena to the design of PVS’
IEEE Trans. Software Engrgl (1995) 107-125.194

L. C. PauLsoN, ‘Natural deduction as higher-order resolutiah’Logic Programming
3(1986) 237-258.198,208

L. C. PauLsoN, Logic and computation: interactive proof with Cambridge LFam-
bridge Tracts Theoret. Comput. Sci. (Cambridge University Press, 19%98.

LawreNcE C. PauLson, ‘The foundation of a generic theorem proved’, Automat.
Reason5 (1989) 363-397.197

LawreNnce C. PauLsoN, with contributions byTosias Nipkow, Isabelle: a generic
theorem prover, Lecture Notes in Comput. Sci. 828 (Springer, 1994.,198

FrANK PFENNING, ‘Logical frameworks’, Handbook of automated reasoningl. 2
(Elsevier Science Publishers, 2001194,197,197,201

PETER ROBINSON, ‘Qu-Prolog 6.0 user guide’, Tech. Rep. 00-20, Software Verification
Research Centre, School of Information Technology, The University of Queenslan
Brisbane 4072, Australia, (2000);
http://svrc.it.ug.edu.au/Bibliography/svrc-tr.html|?00-20.

211

PETER J. RoBINSON and JoHN STAPLES, ‘Formalizing the hierarchical structure of
practical mathematical reasoning’, Logic Comput3 (1993) 47—61.198,216

PETER VAN Roy, ‘1983-1993: The wonder years of sequential PROLOG implemen:-
tation’, J. Logic Programmind 9, 20 (1994) 385-441196

Joun RusHBY, ‘Mechanized formal methods: where next?FM99: The World
Congress in Formal Methods, Toulouse, France, 199%xture Notes in Comput.
Sci. 1708 (ed. Jeannette Wing and Jim Woodcock, Springer, 1999) 48-9%!1.

J. STAPLES, P. J. ROBINSON, R. A. PATERSON, R. A. HAGEN, A. J. CRaDDOCK and

P. C. WaLLIs, ‘Qu-Prolog: an extended Prolog for meta level programmiivgta-
programming in logic programmined. H. Abramson and M. H. Rogers, MIT Press,
Cambridge, MA, 1989) 435-452196,210

MaArk STAPLES, ‘Window inference in Isabelle’, presented at the Isabelle Users’
Workshop, 18-19 April 1995, University of Cambridge; available from
http://www.cl.cam.ac.uk/users/icp/Workshop/index.html. 198

Mark E. STickEL, ‘A Prolog technology theorem prover: Implementation by an ex-
tended Prolog compiler). Automat. Reaso#d. (1988) 353—-380.208,209

Mark UtTING and STEVE REEVEs, ‘Implementing Z. substitutions in Ergo’,
‘WESTAPP 2000: The Third International Workshop on Explicit Substitutions: The-
ory and Applications to Programs and Proofs, Norwich, UK’, preprint, 2000, 35-49
available fromhttp://www.cs.waikato.ac.nz/"marku. 200,200,201

https://doi.org/10.1112/51461157000000759 Published online by CadtBdge University Press

http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?00-20
http://www.cl.cam.ac.uk/users/lcp/Workshop/index.html
http://www.cs.waikato.ac.nz/~marku
https://doi.org/10.1112/S1461157000000759

Ergo 6: A generic proof engine that uses Prolog proof technology

30. Mark UTTING, RAY NicksoN andOwEeN TRAYNOR, ‘Theory structuring in Ergo 4.1’,
Austral. Comput. Sci. Comrh8 (1996), Proceedings of CATS'96, Computing: The
Australian Theory Symposium, 137-14696

Mark Utting marku@cs.waikato.ac.nz

Department of Computer Science
The University of Waikato

Private Bag 3105

Hamilton

New Zealand

Peter Robinson pjr@itee.uq.edu.au

Information Technology and Electrical Engineering,
The University of Queensland

Brisbane

Queensland 4072

Australia

Ray Nickson Ray.Nickson@mcs.vuw.ac.nz

School of Mathematical and Computing Sciences,
Victoria University of Wellington

P.O. Box 600

Wellington

New Zealand.

https://doi.org/10.1112/51461157000000759 Published online by CatdtBdge University Press

mailto:marku@cs.waikato.ac.nz
mailto:pjr@itee.uq.edu.au
mailto:Ray.Nickson@mcs.vuw.ac.nz
https://doi.org/10.1112/S1461157000000759

	Introduction
	Flexibility
	Inference speed
	Structure of the paper

	Ergo 6 proof engine architecture
	Encoding of object-logic terms
	Proof construction
	Rule constraints
	Special support for context
	Annotations

	A meta-logic for Ergo
	Formulae and terms of the meta-logic
	Semantics of the meta-logic
	Axioms of the meta-logic

	Implementation technology
	Advantages and disadvantages of using Prolog
	A design that uses Prolog
	Analysis of this design

	An efficient implementation
	Proof tree data structures
	Context list data structures
	An example proof
	Performance

	Conclusions
	The Ergo 6 and Qu-Prolog releases

