
London Mathematical Society ISSN 1461–1570

ERGO 6: A GENERIC PROOF ENGINE THAT USES
PROLOG PROOF TECHNOLOGY

MARK UTTING, PETER ROBINSON and RAY NICKSON

Abstract

To support formal reasoning in mathematical and software engineer-
ing applications, it is desirable to have agenericprover that can be
instantiated with a range of logics. This allows the prover to be ap-
plied to a wider variety of reasoning tasks than a fixed-logic prover.
This paper describes the design principles and the architecture of the
latest version of the Ergo proof engine, Ergo 6. Ergo 6 is a generic
interactive theorem prover, similar to Isabelle, but with better sup-
port for proving schematic theorems with user-defined constraints,
and with a different approach to handling variable scoping. A major
theme of the paper is that Prolog implementation technology can
be generalized to obtain efficient implementations of generic proof
engines. This is demonstrated via a Qu-Prolog implementation of
Ergo 6.

1. Introduction

Theorem provers are increasingly being used to assist with aspects of software development
and hardware design [25]. In many of these applications, fully formal machine-assisted proof
is essential, because the proofs are often large, and it is impractical to check such proofs
by hand. Also, many of the systems being developed are proprietary or of interest only to a
small community, so the usual quality-checking of proofs by peer review is not appropriate.

However, there are many different logics and theories that are being applied to software
and hardware design. Theorem provers support this variety of logics in two main ways.

1. Some systems provide a prover with a single fixed logic, and encode the other logics
within that logic. Some of the major interactive theorem provers that take this approach
are HOL [6], PVS [16] (both based on higher-order logic) and ACL2 [12] (a successor
to the well-known Boyer–Moore prover [2]).

2. Others provide a generic prover, which can beinstantiatedto work on many different
logics. Examples of provers that take this approach are Isabelle [20], mural [9],
JAPE [1] and ELF [21].

Both approaches have merit. Provers that use the first approach can provide a higher
degree of automatic proof assistance, because the logic is known in advance.

In contrast, the generic provers typically provide a more direct embedding of a new
logic, but cannot provide much automation until the logic is known. Instead, they typically
provide atactic language, which is a programming language that can be used to control the

Received 15 December 1999, revised 21 December 2001;published29 November 2002.
2000 Mathematics Subject Classification 68T15
© 2002, Mark Utting, Peter Robinson and Ray Nickson

LMS J. Comput. Math. 5 (2002)194–219https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/5
https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

prover as it builds proofs. Thus, after instantiating the generic prover with a new logic, one
can write tactics that automate common steps in that logic.

Another important factor in the design of modern theorem provers is the need for speed.
Because many proofs are large, and a single tactic may perform several thousand proof
steps, a prover must be fast in order to provide good interactive response times.

This paper describes a design for a generic interactive theorem prover that endeavours
to maximise two (conflicting) goals:inference speedandflexibility (by which we mean
allowing users to define their own custom logics, tactics, proof strategies and even side-
conditions). We now expand on these two points and explain the key goals of the prover.

1.1. Flexibility

The primary goal of Ergo 6 is to allow an interactive user (or a tactic) to explore high-
levelschematictheorems in a flexible way, possibly even modifying a theorem as its proof
is being developed. To this end, our design goals for Ergo include the following.

• Support forschematic theorems, with constraints on the schematic variables, including
user-defined constraints.
For example, we want to prove theorems like:

(∀x (A ⇒ B)) ⇐⇒ (A ⇒ (∀x B)).

Here,A andB are schematic variables, so this theorem holds for all instantiations
of A andB. In fact, the observant reader will notice that it doesnot hold for all
instantiations ofA, but only for those that do not containx free. We want to be able
to discover constraints like thisduring the proof, and constrain the theorem so that it
becomes valid. In this case, we must add the constraintx not_free_in A.

• Proof and use of derived inference rules.
For example, after defining a new operator in some theory that we are developing,
we should be able to derive some basic results about that operator, and then use those
results as inference rules in subsequent proofs. If the prover is to scale up to handle
large proofs, it is essential that using a derived result must comprise a single proof
step – it must not require the proof of the derived inference rule to be rerun. Derived
inference rules are essential for scalability, and for providing high-level reasoning
support for user-defined concepts. But ensuring the soundness of derived rules that
include user-defined side-conditions is challenging. Note that a theorem is simply a
special case of a derived inference rule: one that has no premises.

• Support for interactive proof, with users being able to focus on any part of the proof
that is interesting.
On the other hand, it is also necessary to support automated proof via tactics.

• Support for answer extraction and theorem specialization.
Theorems can be specialized during their proof, by applying inference rules that
constrain the generality of the proof. For example, in refinement proofs, we should
not have to specify the desired program in advance, but should be able to extract it
during the refinement process. We might start with the theorem:

Sqrt⇒ out2 = in,

where ‘out2 = in’ is a specification of some unknown program,Sqrt, and then grad-
ually instantiateSqrt to some formula that corresponds to a square-root program.

195https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Developing programs hand-in-hand with their proofs in this way typically results in
simpler developments [4].

• Construction of an explicit record of each proof, including all the inference rules used,
what tactics were applied, and user-comments about the proof.
This allows proofs to be redisplayed in various formats, checked by independent
proof-checker programs, transformed into tactics, edited and reused within other
proofs.

1.2. Inference speed

Several decades of research into implementing logic programming languages such as
Prolog [3,24] have resulted in quite efficient implementation techniques for this restricted
form of theorem proving (SLD-resolution). The prover described in this paper attempts to
maximize prover speed by taking advantage of this Prolog technology as much as possible,
while relaxing its restrictions.

The The Software Verification Research Centre (SVRC) at the University of Queens-
land, Australia, where Ergo was developed, has invested about 12 person-years into effi-
cient implementation techniques for schematic reasoning. It has produced the Qu-Prolog
language [26], an extended Prolog that incorporates this technology. We demonstrate in this
paper that by using Qu-Prolog it is possible to build a prover that compares favourably with
other generic schematic provers.

1.3. Structure of the paper

The rest of the paper is structured as follows. Section2 describes the architecture of the
Ergo 6 proof engine, and then Section3outlines its semantics. Section4describes the imple-
mentation technology that was used to implement this architecture, as well as its advantages
and disadvantages. Section5 describes the implementation of the core proof engine. Other
aspects of Ergo 6, such as the implementation of the theory database, support for theory
interpretation and instantiation [7, 30], details of the textual and graphical user interfaces
and the Gumtree tactic language for proof construction [14] (based on ANGEL [13]), are
beyond the scope of this paper.

2. Ergo6 proof engine architecture

The following subsections describe the Ergo 6 proof engine in stages, starting with how
object-level terms are represented, then showing how proofs are constructed, and finally
explaining its support for constraints, context and annotations.

2.1. Encoding of object-logic terms

Ergo 6 requires all object-logic constants to be declared with an arity, and performs basic
syntactic well-formedness checks, but it is otherwise untyped, with no distinction between
terms and formulae.

To understand how object-level terms are encoded, it is necessary to explain the features
of the meta-language, Qu-Prolog. Object-level constants, functions and predicates are en-
coded by meta-level (Qu-Prolog) constants; object-level variables are encoded by Qu-Prolog
object variables (for example,x); object-level quantifiers are encoded by Qu-Prolog quan-
tifiers (for exampleall x A), and substitutions are encoded as explicit Qu-Prolog sub-
stitution terms (for example,[2/x]B; the Qu-Prolog substitution notation [T/x,U/y]B

196https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

stands for the termB with all free occurrences of the object variabley replaced byUand all
free occurrences ofx replaced byT.). Thus the scopes of object-level variables are expressed
by the Qu-Prolog quantifiers. This is similar to thehigher-order abstract syntaxapproach
used in many logical frameworks (for example, Isabelle [19], ELF andλProlog [21]), but
with multiple meta-level binders rather than just one (λ). Another difference is that Qu-
Prolog’s substitution terms are used to represent object-level substitutions, whereas the
above systems useβ-reduction[21]. An advantage of the Ergo approach is that encoding an
object-logic into the meta-level is often more direct and natural, but a disadvantage is that
implementation of the meta-level (explicit substitutions in Qu-Prolog) is more complex.

The Qu-Prolog unification algorithm [15] extends that of standard Prolog, with syntactic
equality replaced by alpha-equivalence (equality up to change of bound variable). For
example, ifall is declared as a quantifier, then unifying(all x A) with [2/x]B
succeeds by instantiatingA to [2/x,x/y]C andB to (all y C), for some new C and
y. Unification problems that do not have a unique solution are delayed, and are then retried
when their variables are instantiated. Such unification problems can also be inspected and
solved by user-defined predicates. For logical correctness, Qu-Prolog carries out ‘occurs’
checks during unification, but for efficiency minimises the impact of occurs checking by
avoiding it when it is clearly not required.

In order to distinguish between the type of substitution discussed above, and meta-
level substitution (binding of meta-variables to meta-level terms), we refer to the latter as
instantiation. Note that instantiations ‘pass through’ quantified terms (no change of bound
variable is required) because, at the meta-level, these quantified terms are simply structures.

Note that schematic variables (Qu-Prolog meta-variables) represent arbitrary object-level
terms or predicates. When a schematic variable occurs within the scope of a quantifier,
not_free_in constraints can be used to express holes in the scope. For example, in
(∀x (A ⇒ B)) we might addx not_free_in A.

Qu-Prolog’s object variables are not standard Prolog meta-variables. Instead, they are
a special class of meta-level variables that are syntactically distinguished by starting with
a single! character, or (in this paper) a lower-casex or y (Qu-Prolog and Ergo provide
commands for declaring user-defined prefixes of object variable names). They range over
object-level variables of the object-logic, so cannot be instantiated to arbitrary terms, and are
unifiable only with other Qu-Prolog object variables. With these restrictions, they behave
almost like constants, except that they have two special properties:substitutabilityand
distinctness/unifiability.

The substitutabilityproperty means that Qu-Prolog object variables can appear in the
domain of substitutions (indeed, they are the only terms that are allowed in the domain
of substitutions!). This provides a way of replacing free object variables by some other
term. For example, the following∃-introduction rule allows us to prove(∃ y A) by proving
[T/y]A instead, typically by instantiating the new meta-variableT to some witness term:

rule ex_intro === [T/y]A

(ex y A).

Thedistinctness/unifiabilityproperty means that two Qu-Prolog object variables,x and
y, may represent thesameobject-level variable, or twodifferent object-level variables.
Unifying x and y by writing (x = y) constrains them so that they represent the same

197https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

object-level variable, whereas making themdistinct (for example,x not_free_in y)
makes them represent different object-level variables. As long as two object variables are
neither unified nor made distinct, the question as to whether they represent the same object-
level variable is undecided. If an object variable is distinct from all other object variables in
the proof, it is effectively a constant. For example, the constraint for the∀ x2 A rule shown
later (Figure3) forcesx2 to be distinct from all object variables in the hypotheses during
the proof ofA, so thatx2 behaves like a constant and cannot be instantiated.

2.2. Proof construction

Proof construction in Ergo is similar to that of the Isabelle theorem prover [17]. Isabelle is
a generic successor to the LCF family of tactic-based theorem provers [18]. Experience with
Isabelle has demonstrated that it is sufficiently generic to model many different reasoning
styles, such as natural deduction, sequent calculi [20] and window inference [23,27].

One of the main advances made by Isabelle was its representation of inference rules
asdata, rather than as ML functions like the LCF provers. This gives more flexibility in
the way that inference rules can be used, allows a nice symmetry between forward proof
and backward (orgoal-directed) proof, and enables derived inference rules to be proved.
Indeed, proof (forward or backward) in Isabelle is simply the composition of inference rules
to produce derived inference rules.

Similarly, in Ergo, inference rules are data, with each inference rule containing acon-
clusionC and a sequence ofpremisesA1, . . . , An. This is written as:

A1, . . . , An

C
.

Proofs are trees. Each proof tree corresponds to a valid inference rule, where the root
of the tree is the conclusion of the rule, and any unproved (open) nodes of the tree are the
premises. A new proof begins with the trivially correct inference rule,T/T , and proceeds by
resolvinga given open node of the proof tree with an inference rule. It would also be possible
to resolve two previously constructed proof trees together, but the current implementation
supports only backward proof.

In Isabelle, proofs are an ML abstract data type, and the soundness of proofs is guaranteed
by the type system of ML, because it allows proof objects to be constructed only by validity-
preserving operations. In Ergo, because Qu-Prolog is untyped (like most Prolog systems),
we provide this security by hiding all proof trees within a trusted module, and allowing
clients to refer to the nodes of the tree only indirectly, vianode names(integers). These
node names are similar to the numbering of subgoals in the Isabelle subgoal package, except
that our node names are unique across the entire proof (even if a node is deleted, its name
is never reused within that proof), so that it is easier for user interfaces to track changes
to the proof structure. It is occasionally useful for an inference rule to refer to the node
names that will be allocated when the rule is applied to a proof tree. This can be done by
prefixing the conclusion or premises of a rule byNodeName ::: , whereNodeNameis a
metavariable which will be instantiated to the corresponding node name whenever the rule
is applied. (Note that most metalevel symbols in Ergo contain three repeated characters,
like :::, === or +++. Reuse of these operators in object-level theories should be avoided,
since care would be needed to avoid ambiguity.)

198https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

thy, r)thy, r)

(2, s.T2) (3, s.T3)(2,T2) (3,T3)

A , B

Cthy:r1

(5,T5)

(8, s.A) (9, s.B)

(5, s.T5, thy, r1)

proof_step(thy, r1, 5, [8,9])

(0, TopGoal, (0, s.TopGoal,

Figure 1: The effect of a single proof step.
Open nodes are represented by(Node,Term) pairs, proved nodes are represented by
(Node,Term,Thy,Rule)tuples, ands.T is the application of the instantiations to the termT .

The basic operations provided by the proof module are as follows.

• proof_start(Formula, Constraints,Children).
This creates a new proof node, and marks it as being the root node of a proof. It returns
the name of this proof node in the singleton listChildren, so that following commands
can refer to the new proof node. (Note that the proof engine supports multiple proof
trees, but the current user interfaces support only one proof tree.) It also executes
Constraints, which are the initial constraints of the proof.

• proof_step(Theory, Rule,Node,Children).
This resolves the inference ruleTheory : Rule against the open nodeNode (see
Figure 1; in Ergo, each theory has a separate name space, so the full name of a
rule comprises a theory name and a rule name within that theory). This extends the
proof tree with the premises of the rule, checks the rule’s constraints and adds them
to the proof and unifies the conclusion of the rule with the predicate of proof node
Node. Note that this unification applies an instantiation to the entire proof, which
allows schematic variables in the root of the proof to be instantiated, supporting
answer extraction.Children is the list of new node names corresponding to the open
subproofs generated by the premises of the rule.

• proof_complete(Name, Root,OpenNodes,Constraints).
This checks thatRootis the root node of a proof tree whose open nodes are exactly
OpenNodes. It then extracts a derived inference rule from that proof tree, and adds it
as a new rule (calledName) in the current theory.Constraintscan be used to restrict
the generality of the rule by specifying additional constraints to those implicit in the
proof.

There are also several other predicates for extracting information from a given proof
node, such as its parent node, its children, whether or not it has been proved, and so on.

By repeatedproof_step commands, a goal-directed proof tree is built. At all times,
the proof tree represents a valid derived inference rule. At any point during a proof, the
derived inference rule defined by the proof tree can be saved into the current theory, using
theproof_complete command. Other commands are available to convert a proof tree
into a tactic, and to save a proof tree into a file for later rerunning, browsing or pretty
printing.

199https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

2.3. Rule constraints

One of the major advances in theorem-proving technology was the introduction of
schematic meta-level variables into proofs. This allows the right instantiations to be found
gradually during proof [11], as in the square root example in Section1.1. Ergo 6 extends
this schematic proof style by allowing user-definedconstraintsto be placed on some of the
schematic variables, to restrict their possible instantiations. This increases the expressive-
ness of the theorems that we can prove (just as constraint logic programming [8] is more
expressive than standard logic programming).

For example, in a theory about Z schemas [29] in which signatures are ordered lists of
name declarations, we might define a constraintzsig(S)that checks that names in a signature
are sorted, and another constraintmergesig(S1, S2, S) that merges two sorted signatures to
giveS. This gives efficient linear-time manipulation of signatures, but still allows schematic
theorems about all signatures to be proved. A similar effect can be obtained by defining
the concepts of sorted signatures and merging in the object-level theory, but defining them
as constraints can be more efficient and allows the proof steps to match hand proofs more
closely [29]. These kinds of constraints are often referred to asoracles.

Ergo 6 associates a set of constraints with each proof tree, and allows constraints to be
attached to inference rules. Whenever an open node of the proof is resolved with a rule, the
rule’s constraints are combined with the constraints of the proof. Thus the proof tree always
includes the constraints of the rules that have been used to build it, and these constraints
become side-conditions of the resulting inference rule or theorem.

To ensure that constraints can be managed efficiently, we require constraints to be side-
effect-free Prolog predicates whose truth depends only upon their arguments. Whenever a
proof step instantiates a variable, the constraints that involve that variable may be rechecked.
The check may return either ‘false’, in which case the proof step fails, or a new set of
constraints, which replace the original constraint. The new set of constraints may contain
just the original constraint unchanged, or some simplified constraints, or may be empty
(which means that the original constraint has been fully satisfied). For soundness, constraints
must also satisfy a weak commutativity property with respect to instantiation. That is, given
a constraintc(A) with a parameterA, the following condition must hold for all termst
(comma is left-to-right Prolog conjunction here):

c(A), A = t ⇒ A = t, c(A).

For example,nonvar(A) is a legal constraint, butvar(A) is not, becausevar(A), A = 1
succeeds, whileA = 1,var(A) fails. This property ensures that it is always sound to delay
the checking of constraints until later in the proof. In fact, checking a constraint too early
(before its arguments are instantiated) may cause it to fail – this reduces completeness, but
not soundness.

A third restriction on constraints is that when all the arguments of a constraint are fully
instantiated terms, then the constraint must evaluate to either false or true (that is, it must
either fail, or return the empty set of constraints). In standard Prolog terminology, such fully
instantiated terms are calledground terms. We also require all pairs of object variables in
the terms to be either identical or distinct. Thus a fully instantiated term corresponds to
exactly one term of the object logic.

The kinds of constraints needed to express rules vary between logics – we provide
some support for logic designers to define new constraints. Several standard constraints
are supplied:nonvar(T); ground(T); delay_until(Cond, Constr), which delays

200https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

the checking of constraintConstr until condition Cond (an instantiation condition such
asnonvar(T) or ground(T)) is satisfied; andx not_free_in T , which ensures that
object variablex cannot appear free in termT .

Other examples of the use of constraints are to implement arithmetic of constants using
Qu-Prolog or infinite-precision integers, and to define the properties of a class of constants,
such as a lexicographical ordering relation.

2.4. Special support for context

Since many logics have some notion ofcontext, it is useful to support context directly
in logical frameworks [21]. This section briefly describes the theory designer’s view of
how context is supported by Ergo. An efficient implementation of these context facilities is
discussed in Section5.

The logical framework of Ergo is based on sequent calculus, with each proof node
conceptually containing a sequent,C −→ F , whereC is thecontextof the node andF is a
formula of the current object-logic. In sequent calculi based on Gentzen’s LJ calculus [5],
C is simply a list of formulae. Ergo extends this by allowing each node of a proof tree to
containseveralnamed contexts, each of which is a list of uniquely labelled terms. Multiple
contexts are useful when a logic requires that different kinds of contexts be manipulated in
different ways. For example, an Ergo implementation of theZc logic for Z schemas used
one context for typing information and another for general assumptions. This allows the
inference rules that discard all general assumptions to execute in constant time, rather than
in a time proportional to the number of assumptions [29].

As is the case for the normal symbols of a logic, the meaning of contexts is embodied
entirely in the inference rules. To support goal-directed proof efficiently, inference rules
specify the contexts of their premises by describing how they differ from the context of
their conclusion. The full syntax of each premise of an inference rule is:

NAME ::: (n1 === s1 &&&. . . &&&nk === sk) ---> F .

where eachni is the name of a context list and eachsi is acontext specification.
The following kinds of context specifications are supported.

• Initialise. Set the context list to be empty.

• Add. Add a term to the context list.

• Delete. Delete a term from the context list.

• Filter. Apply a filter function to the context list. The only predefined filter isnfi(x),
which succeeds on terms that do not contain free occurrences of the variablex (for
schematic terms, it adds constraints to ensure that those terms cannot be instantiated
to contain a freex).

As examples, Figure2 shows three rules from the Ergo standard theory library, in Ergo
syntax. These rules are part of an LJ-like logic that uses the context namedhyp to represent
antecedents. The first is an∨-elimination rule, the second is a form of∃-elimination, and
the third is the assumption axiom.

In the first rule, the first premise has the same context as the conclusion, while the second
and third premises are each augmented with a new hypothesis.

In the second rule, the existentially quantified term is first removed from the hypotheses,
then the remaining hypotheses are filtered with a not-free-in constraint, and then the new

201https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

rule or_elim ===
A or B,

hyp+++[A] ---> C,
hyp+++[B] ---> C

C.

theorem ex_elim_c(x,A) ===
hyp --- [ex x A] ??? nfi(x) +++ [A] ---> C
--

C
provided

x not_free_in C.

rule assump(ID) ===
Node:::C

provided
context_search(hyp, Node, ID, C).

Figure 2: Example rules from the Ergo standard theories.

hypothesis is added. The conclusion of the rule is also constrained with the appropriate
not-free-in constraint.

In the third rule, the built-in constraintcontext_search is used to search for the
conclusion in the hypotheses.Node is the identifier of the conclusion, andID is the identifier
of the corresponding hypothesis (ifID is not specified when theassump rule is applied,
then any context term that unifies with the conclusion may be used).

2.5. Annotations

Finally, we describe user-definedannotations, which may be attached to any node of the
proof tree. Although annotations do not affect the soundness of proofs, it is useful to provide
support for them in the core prover so that operations that modify the proof can preserve the
annotations that are attached to proof nodes. For example, theproof_tactic command
that converts a proof tree into a tactic offers the option of recording and regenerating anno-
tations. Annotations are useful for attaching to nodes and subtrees of the proof [10], such
higher-level information as: tactic invocations, user commands, comments describing proof
strategies and rationales, user interface information, and instructions for the presentation of
printed proofs.

For example, one of the Ergo user interfaces uses annotations to record the exact text
of each successful proof-construction command entered by the user, including comments
and whitespace. These annotations are stored as part of the proof record, and are used to
recreate the original proof script when required. This proof script can be used as a basis for
reuse by editing, if the proof fails to rerun in a modified theory at some later date.

3. A meta-logic for Ergo

Since Ergo is a generic prover, it is important that it have a clear semantics, so that
object-logic designers can check that they have correctly encoded an object logic. This
section describes a meta-logic for Ergo.

202https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Because Ergo is implemented in Qu-Prolog, it relies heavily on the unification algorithm
of Qu-Prolog and the built-in not-free-in constraints that relate object-variables to Qu-Prolog
terms. For this reason, we have chosen to explain the semantics of the meta-logic in the
same way as is used to prove the correctness of the Qu-Prolog unification algorithm [15].
In fact, we consider the meta-logic for Ergo to be an extension of the logic used in the
Qu-Prolog unification paper. In other words, the Ergo meta-logic includes all the constants
and theorems of that paper.

The semantics is based on functions that map terms (and formulae) at the meta-level to
terms (and formulae) at the object-level via ameaning function,m, that maps constants at the
meta-level to constants at the object-level, andvariable valuations, v, that map variables at
the meta-level to terms at the object-level. For a fixed meaning functionm and each variable
valuationv, we define the functionm∗

v that maps terms at the meta-level to terms at the
object-level. The definition form∗

v is given in [15] for abstract Qu-Prolog terms, and follows
the recursive structure of terms in a straightforward manner. The value of each constant is
determined bym, and the value for each meta-level variable is determined byv.

Note that Qu-Prolog object-variables map to variables underv (since object-variables
range over variables at the object-level), and substitution terms and not-free-in constraints at
the meta-level can be fully evaluated after mapping them to the object level. This is because,
at the object-level, we have complete information about occurrences of variables in terms.

3.1. Formulae and terms of the meta-logic

The formulae of the meta-logic can be divided into four categories:

1. formulae representing the valid rules of Ergo;

2. constraint predicates that describe when rules are applicable;

3. formulae for processing structural subterms of rules, such as premise lists; and

4. formulae constructed from other formulae using logical connectives (∧, ⇒, ¬ and
true).

We now discuss each of the first three categories in more detail.
The valid rules of Ergo include all the fundamental inference rules supplied by a the-

ory designer, plus all the derived inference rules that can be proved using Ergo. The
meta-logic formula representing such a rule is called anErgo-rule, and has the form
rule(Concl,Prems,Constr)whereConcl is the conclusion of the rule,Premsis a list of
premises andConstr is a conjunction of constraints representing the ‘side conditions’ of
the rule.

Proofs in Ergo are explicitly represented by their proof trees. For the meta-logic, however,
we take a similar approach to that of Isabelle, and consider each step of an Ergo proof as a
proof of an Ergo-rule, with the conclusion of the rule being the root of the proof tree and
the premises being the list of open (unproven) nodes.

The conclusion and each premise of an Ergo-rule is a generalised sequent represented
by a meta-logic term of the formseq(Succ,Contexts),whereSuccis the succedent of the
generalised sequent (a theory-specific term), andContextsis a list of contexts. Each context
is a term of the formcontext(Name,CSpec),whereNameis an atom that names the context
andCSpecis a term representing the context specification of the context. The terms used to
represent context specifications are of the form

nil, add(ID,Formula,CSpec), del(ID,CSpec), nfi(ObjVar,CSpec),

203https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

wherenil represents the empty context,addanddel respectively add and remove formulae
from a context, andnfi is used to add a not-free-in constraint to variables in a context.ID is
an identifier for the context formula that is added/deleted.

In the implementation, for efficiency reasons, context is managed by reference to node
identifiers and context names. If a context is not mentioned in the rule, then it is unchanged
by the application of the rule. In order to simplify the discussion of the meta-logic, we take
the view that each context list in each sequent is a list of named contexts, with each possible
context name of the theory appearing exactly once. Furthermore, to simplify the unification
of sequents we assume that the named contexts appear in the same order in each context
list.

Each context specification of the conclusion of each Ergo-rule is typically a variable
that is instantiated to the corresponding context specification of the sequent to which the
rule is applied. Rules that access context will have a context-search constraint on one or
more of these variables. The context specifications of each premise are modifications of the
corresponding context specifications of the conclusion.

The three rules of Section2.4are represented in the meta-logic as follows:

• theor_elim rule:

rule(seq(C,[context(hyp, H)]),
[seq(A or B, [context(hyp, H)]),
seq(C,[context(hyp,add(ID1, A, H))]),
seq(C,[context(hyp,add(ID2, B, H))])],

true);
• theex_elim_c rule:

rule(seq(C,[context(hyp, H)]),
[seq(C,[context(hyp,add(ID1, A,nfi(x,del(ID2, ex x A, H))))])],
x not_free_inC ∧ context_search(ID2, ex x A, H));

• theassump rule:

rule(seq(C,[context(hyp, H)]), [], context_search(ID, C, H)).

The constraint part of an Ergo-rule is used to describe when the rule is applicable. It is
a conjunction of constraint formulae, which comprise the second category of meta-logic
formulae, and have the form

ObjVar not_free_in Term,
Term1 = Term2,

context_search(ID,Formula,CSpec).

These represent not-free-in constraints, unification constraints, and context-searching con-
straints, respectively, which are the main built-in constraints of Ergo. Note that each context
search constraint of the meta-logic refers to the context specification of the relevant context
directly rather than through its name, as is done in the implementation.

Users designing logics for Ergo can also define their own oracles as constraints on rules,
and these become additional meta-level constraint formulae. For example, a theory about
arithmetic includes a rule with the constraint

delay_until(ground(Exp), arith_oracle(Exp, Result))

for evaluating ground expressions. The correctness of the rule depends on the correctness
of the code that implements the oracle.

204https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

We note that these constraints are Qu-Prolog goals, and are called when encountered.
On the other hand, constraints can, in principle, be generated and solved in any order. A
consequence of this is that, in order to preserve correctness, constraints cannot rely on any
non-logical features of Qu-Prolog. More precisely, user-defined constraints must satisfy the
three properties described in Section2.3: they must be side-effect-free Qu-Prolog predicates
whose truth depends only upon their arguments, they must satisfy the weak commutativity
property, and they must be decidable when applied to fully instantiated terms. The built-in
constraints satisfy these requirements, and it is the theory designer’s responsibility to make
sure that user-defined constraints also do so. Thanks to the delay, thearith_oracle
constraint described above also satisfies this condition.

The third category of meta-level formulae is concerned with the change to a proof tree
(as represented by an Ergo-rule) when a rule is applied. The only formula in this group is
replace(T , L1, L2, L3), which describes how the list of premises (open nodes of the proof
tree),L2, becomes the new listL3 by replacing the elementT (the conclusion of the rule)
by the listL1 (the premises of the rule).

3.2. Semantics of the meta-logic

Our main objective is to describe whatrule formulae are theorems of the meta-logic,
and to write down axioms that allow us to deduce newrule theorems. We first extend
the meaning functionm to the constants of the meta-logic (such asseq, context, list
constructors,∧ and⇒) in the obvious way. Note that any constraintC evaluates to true or
false when applied to fully instantiated terms, som∗

v(C) is either true or false. Next, we say
what it means for a formula of the meta-logic to be a theorem.

Definition 1. A formula,T , of the meta-logic is atheoremif and only if m∗
v(T) is true for

all variable valuationsv.

We note that, as in [15], the⇒, ∧ and¬ connectives are the pointwise lifted versions
of the usual propositional connectives, and a consequence of this is that the meta-logic is
an instance of a standard propositional calculus in which, for example, we can carry out
Hilbert-style reasoning.

Definition 2. The meta-logic formula,replace(T , L1, L2, L3), is true in a valuationv if
and only if there are someLa andLb (at the object-level)such that

m∗
v(L2) = La

_ [m∗
v(T)] _ Lbm

∗
v(L3) = La

_ m∗
v(L1)

_ Lb,

where ‘_’ is list concatenation.

For defining the meaning ofrule(_,_,_), it is convenient to be able to extract the con-
straints from the rest of the rule, so we first define a variant ofrule without constraints.

Definition 3. The meta-logic formula,rule(Concl,Prems), is true in a valuationv if and
only if

m∗
v(Prems)

m∗
v(Concl)

is a valid object-level inference rule.

Definition 4. rule(Concl,Prems,Constrs)is defined asConstrs⇒ rule(Concl,Prems).

205https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

The validity of an Ergo-rule follows directly from these definitions and the definition of
theoremhood.

Corollary 1. The rule rule(Concl,Prems,Constrs)is a theorem if and only if

m∗
v(Prems)

m∗
v(Concl)

is a valid object-level inference rule for all valuationsv such thatm∗
v(Constrs)is true.

It is the responsibility of the designer of each Ergo theory to check that the fundamental
inference rules of the theory represent valid object-level inference rules. The meta-logic
formulae that represent fundamental inference rules of the Ergo theory are axioms of the
meta-logic.

Next we present the axioms of the meta-logic used to derive new Ergo-rules. We use
the semantics to justify the soundness of these axioms. It then follows that any derived
inference rule proved in Ergo is valid, since Ergo is an implementation of this meta-logic.

3.3. Axioms of the meta-logic

For a given Ergo theory, the meta-logic contains axioms that represent the fundamental
inference rules of the Ergo theory, and also the general axioms that state how Ergo derives
new inference rules for the theory. We now consider the latter set, which are applicable to
all theories.

The following axiom describes how two rules can be joined together to produce a new
rule. This axiom is justified by noting that the semantics ofreplace describes how the
proof tree described by the first rule is modified by the application of the second rule to
produce the proof tree described by the third rule.

Axiom 1.

rule(Root,Prems)∧ rule(RC, RP)∧ replace(RC, RP,Prems,NPrems)

⇒ rule(Root,NPrems).

The following theorem justifies the mechanism for rule application in Ergo. This corre-
sponds to theproof_step command introduced in Section2.2.

Theorem 1 (apply rule).

rule(Root,Prems,Constraints)∧
rule(RConcl,RPrems,RConstraints)∧
replace(Concl,RPrems,Prems,NPrems)∧
⇒
rule(Root,NPrems,Constraints∧ RConstraints∧ (Concl= RConcl)).

The first rule formula represents the current state of the proof, while the second rule
formula represents the rule being applied.

Proof. We proceed by straightforward propositional reasoning. First, it is enough to assume
the antecedents, and to show that

rule(Root,NPrems,Constraints∧ RConstraints∧ (Concl= RConcl)) .

Secondly, by using Definition4, we can assume that

Constraints∧ RConstraints∧ Concl= RConcl,

206https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

and showrule(Root,NPrems). This follows using Axiom1, replacingRConclby Concl in
the second assumption (which is justified by the equality assumption).

Next we look at a theorem that allows us to strengthen or simplify constraints.

Theorem 2 (transform constraints).

rule(Root,Premises,Constraints1) ∧
(Constraints2 ⇒ Constraints1)
⇒
rule(Root,Premises,Constraints2).

Proof. This is achieved by propositional reasoning and Definition4.

An example of strengthening constraints in Ergo occurs when we have a delayed unifica-
tion constraint that has more than one solution. Such constraints are typically strengthened
by choosing one of the solutions. This is equivalent to adding new unification constraints
and new not-free-in constraints. For simplifying constraints, we are typically using some
theorem of the form

Constraints1 ⇐⇒ Constraints2

which can be used in conjunction with the above theorem to apply the simplification.
Simplifications of unification or not-free-in constraints are examples of the above.

The next theorem tells us that the use of Qu-Prolog’s variable instantiation preserves the
correctness of rules. Note that the application of an instantiation,σ , to a termT , written
σT , gives the term obtained fromT by replacing each variable in the domain ofσ by its
corresponding instantiation.

Theorem 3 (instantiate variable).

rule(Root,Premises,Constraints)∧
(Constraints⇒ X = T)

⇒
rule(σRoot, σPremises, σConstraints),

whereX is a variable andT is a term not containingX, or X and T are both object-
variables. Here,σ is the instantiation that instantiatesX to T .

Proof. This theorem follows from theorems about Qu-Prolog unification.

Finally, we state the axioms that give the semantics of searching contexts.

Axiom 2 (context head).

F1 = F2 ⇒ context_search(ID, F1, add(ID, F2, Context)).

Axiom 3 (context tail).

context_search(ID, F1, Context)
⇒ context_search(ID, F1, add(ID2, F2, Context)).

Axiom 4 (context delete).

context_search(ID1, F, Context)∧ ¬(ID1 = ID_2)

⇒ context_search(ID1, F, del(ID2, Context)).

207https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Axiom 5 (context nfi).

context_search(ID, F,Context)∧ ObjVar not_free_inF
⇒ context_search(ID, F,nfi(ObjVar,Context)).

The Ergo implementation of context searching has the above semantics.

4. Implementation technology

Proof construction in the proposed architecture, as in Isabelle, has many similarities to
Prolog. Indeed, Paulson shows that, with a depth-first control tactic, Isabelle is a higher-
order Prolog interpreter [17]: inference rules are Horn clauses, usually containing schematic
metavariables; inference rules are composed using resolution, with the conclusion of one
rule unifying against a premise of another rule to produce the compound rule; and higher-
order unification is used to handle quantifiers and unknown function variables.

This section discusses the degree to which it is possible to implement the Ergo proof
engine using Prolog resolution, and the advantages and disadvantages of doing this. This
is not just a matter of using Prolog as the implementation language for the proof engine.
Rather, can we use the Prolog proof engine (SLD-resolution) to implement the Ergo proof
engine directly?

4.1. Advantages and disadvantages of using Prolog

The main advantage of using the Prolog resolution mechanism directly is speed. Stickel
identifies three main aspects of Prolog implementation technology that make it a highly
efficient theorem prover [28].

1. Efficient representation of derived clauses.The Prolog SLD-resolution mechanism
(input resolution with depth-first search) means that the current state of a Prolog proof
(thederived clause) is simply the set of goals that remain to be proved. Since Prolog
uses depth-first search, this derived clause can be represented by astackof goals,
which makes backtracking very efficient.

2. Compilation of clauses. Prolog usesinput resolution, where one of the clauses being
resolved is always derived from the original query and the other comes from a database
of clauses. Since the clause database is relatively fixed throughout a proof (except
for asserting new theorems/lemmas), its clauses can be compiled into efficient code
(either interpreted bytecodes or machine code) that is customized according to the
structure of each clause. In contrast, compilation is not so effective for other forms
of resolution, because there is no fixed set of clauses to compile.

3. Efficient representation of variable instantiations.Prolog unifies two terms by de-
structively updating their variables to satisfy the unifying instantiation. The destruc-
tive updates are recorded on a stack so that they can be undone upon backtracking.
This scheme is simple, and highly efficient for depth-first search. Alternative schemes
are much less efficient: they typically require a new term to be created for the result
of each unification (lots of copying), or they usestructure sharingwhere the result
of each unification is a(instantiation,term)pair (processing of such results is more
complex than in the Prolog scheme).

For comparison, note that Isabelle uses multiple proof trees represented by ML data
structures, so none of the above advantages apply. The derived clauses (proof trees) are

208https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

in the ML heap, so must be garbage collected; they cannot be compiled; and unification
creates new terms.

By modifying Prolog systems in ways that preserve the above three properties, Stickel
built high-speed theorem provers that are capable of thousands of inference steps per second.
The work described in this paper can be viewed as an extension of his approach, to allow
even more flexible styles of proof, while retaining most of the advantages of the Prolog
technology.

Disadvantages of using Prolog to directly implement Ergo include the following.

1. We want to produce an explicit record of the whole proof, whereas the Prolog stack-
based representation of the proof tree discards each subtree of the proof as soon as it
is completed.

2. We want to be able to construct incomplete proofs (for example, derived inference
rules), whereas Prolog always either completes an entire proof, or fails.

3. Prolog uses a fixed (and incomplete) search strategy (depth-first, left-first), whereas
we want to give the tactics and/or the user control over the search strategy.

4. Prolog uses quantifier-free first-order unification, whereas we want to unify terms
involving quantifiers and higher-order terms.

5. Most Prolog implementations omit occurs checks, but occurs checks are necessary
for avoiding faulty inferences in theorem proving [28].

We avoid the last two difficulties by using Qu-Prolog, which supports quantifiers, delays
difficult unifications (and allows user-defined heuristics to solve such delayed problems)
and does include occurs checks. The next subsection discusses how the first three problems
can be solved.

4.2. A design that uses Prolog

This section develops a design for a prover that has much of the proof efficiency of
Prolog, yet builds explicit proof trees (possibly incomplete trees) and supports user-defined
search strategies. The actual Ergo 6 implementation (Section5) is similar to this design,
but with more sophisticated data structures, and with support for context lists.

The key insight is that we can transform each inference rule into a Prolog clause that not
only performs the desired resolution step, but also extends a data structure that represents
the explicit proof tree.

For example, the obvious Prolog translation of a conjunction introduction rule is:
prove1(A and B) :- prove1(A), prove1(B).

We modify this Prolog clause so that it builds an explicit proof tree. We add an extra
parameter that builds a structure to record the term being proved and the name of the rule
used to prove it. This structure has the formnode(Thy, Rule,Term,SubTrees), whereTerm
is the term that is being proved,Thy : Rulerecords the theory and name of the inference rule,
andSubTreesis a list of the subtrees (alsonode/4 structures) that result from applying
that inference rule. In unproved nodes,Thy,RuleandSubTreesare variables. The clause
representation of theand_intro rule is now:

prove(node(fol, and_intro, A and B, [Sub1,Sub2]))
Sub1 = node(_, _, A, _),
Sub2 = node(_, _, B, _),
prove(Sub1),
prove(Sub2).

209https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

The two recursive calls toprove in this clause correspond to the Prolog depth-first
search strategy, so we remove them to allow more flexible search strategies. This reduces
ourprove predicate to just a table of inference rules. However, we still retain much of the
Prolog feature ofclause compilation, because each clause in the table is fixed (even though
new rules can be added to the table), and can thus be compiled into efficient code that is
optimized for the particular structure of that inference rule.

A proof is basically just a sequence of calls to this table. Each call proves one node of
the tree, by instantiating itsThy,RuleandSubTreescomponents.

It is simple to write a recursive tactic that implements the original Prolog depth-first
search. For interactive proof, we can define aproof_step command, similar to the one
described in Section2. (The only difference is that this one passes an entire proof node data
structure as the third argument, whereas the real Ergoproof_step command passes just
thenameof that proof node.) A sequence of calls to thisproof_step predicate builds a
goal-directed proof tree.

proof_step(Thy, Rule, node(Term,Thy,Rule,SubProofs), SubProofs) :-
prove(node(Thy, Rule, Term, SubProofs)).

4.3. Analysis of this design

This style of using Prolog to build proof trees overcomes the first three disadvantages
of standard Prolog mentioned above. It creates explicit proof trees, and allows incomplete
proofs and flexible search strategies. It also retains the Prolog efficiency advantages.

1. Efficient representation of derived clauses.In our architecture, a proof is repre-
sented by a tree data structure, rather than a stack like the derived clause of Prolog.
However, this proof tree data structure is built within the Prolog heap, which is or-
ganised as a stack. Furthermore, the sequence of proof steps that builds a proof tree
is recorded in a stack-like fashion on the environment stack of the underlying Prolog.
This means that when the underlying Prolog backtracks, proof steps are undone in
reverse chronological order. This gives us a chronological ‘undo’ facility for free at
the user interface level.
It also allows us to write efficient Prolog tactics that callproof_step using various
search strategies, and automatically undo those proof steps upon failure. If failing
did not undo proof steps automatically, tactics would have to contain explicit code to
undo unwanted steps, and our experience with earlier versions of Ergo showed that
this made it far harder to write searching tactics.

2. Compilation of clauses. Theproof_step command performs a backward proof
step using input resolution, where an open subproof of the proof tree is resolved
against an inference rule from a (relatively) fixed theory database. Thus mature Prolog
compilation technology can be used to compile the inference rules. This efficiency
advantage is the main reason for preferring the goal-directedproof_step command
over a more general command that resolves two proof trees together.

3. Efficient representation of variable instantiations.Our proof engine uses the under-
lying Prolog representation of variables and variable instantions directly. Schematic
proof variables are simply Prolog variables (meta-level variables in logical and in
Qu-Prolog [26] terminology). They are instantiated by Prolog unification (for exam-
ple, when the conclusion of an inference rule is unified with a proof node). This is
convenient and efficient for depth-first searching tactics and for chronological ‘undo’

210https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

operations. However, it does make it harder to support non-chronological undo oper-
ations.
For instance, the implementation of the architecture described in Section5 allows
subtrees of a proof to be discarded in any order. However, variable instantiations that
were made by the discarded proof steps can be undone only in reverse chronological
order. To implement more sophisticated undo operations, it would be necessary to
undo a larger portion of the proof, and then rebuild some of its subproofs.
So, in using the underlying Prolog representation of variable instantiations we have
followed the RISC principle: make common operations (goal-directed proof steps,
chronological undo operations and tactic execution) fast, while less common opera-
tions (non-chronological undo operations) are slower.

5. An efficient implementation

This section sketches the main features and data structures of our implementation of
Ergo 6. The main differences from the simplified design in the previous section are that
proof trees are encoded into hash tables, and that context is manipulated more efficiently.

Qu-Prolog provides a set of global variables calledimplicit parameters[22], with a
backtrackable assignment operation and clean logical semantics. It also providesindexed
implicit parameters, which provide the functionality of hash tables. The assignment com-
mand ip_set(IP,Index,Value), is equivalent to IP(Index) := Value, but is undone
upon backtracking. Similarly,ip_lookup(IP,Index,Value) is used to query an indexed
implicit parameter. It succeeds wheneverIP(Index)unifies withValue.

5.1. Proof tree data structures

The simple design outlined in Section4represented an entire proof tree as a single Prolog
term. The actual implementation uses a more sophisticated representation.

Proof nodes are stored in anindexedimplicit parameter, callednode. In fact, a more
obscure name is used. Since Qu-Prolog does not yet provide any module or ADT constructs,
the encapsulation of the proof data structures relies on choosing names for these implicit
parameters that are unlikely to clash with names used by tactics. This does not protect
against malicious attempts to corrupt the proof data structure, but provides good protection
against accidental corruption. This has two advantages over the single-term approach.

• It gives us constant-time access to every node of the tree.

• It allows us to destructively update any node of the tree in constant time, using
backtrackable assignment. This allows proof steps to be undone in non-chronological
order, except for variable instantiations.

Each proof node is allocated a uniquename(an integer) as discussed in Section2. Each
node of the proof is represented by a term of the form:

proofnode(Parent, Term,Theory,Rule,Children).

If a node is open (unproved), then theTheory,RuleandChildrenfields contain variables,
otherwiseTheory: Ruleis the name of the inference rule that has been resolved with this
node andChildren is a list of node names corresponding to the subproofs generated by the
premises of the rule. We can now describe the implementation of the main proof engine
commands.

211https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Theproof_start/3 command allocates a new node name,RootID, and then creates
the root node of the proof by executing

ip_set(node, RootID, proofnode(root, Formula, _, _, _)).

The implementation of theproof_step command is

proof_step(Thy, Rule, Id, Children) :-
ip_lookup(node, Id, proofnode(_,Term,Thy,Rule,Children)),
rule_apply(Thy, Rule, Term, Id, Children),
proof_non_circular(Thy, Rule).

Therule_apply/5 predicate looks upThy : Rule in the theory database (similar to the
prove4 table in Section4.2) andproof_non_circular/2 checks that no circularities
arise involvingThy : Rule and the current proof, by checking thatThy : Rule does not
appear in a precalculated table of rules.

5.2. Context list data structures

The data structures used for context lists are designed to meet the following objectives.

• They achieve a high degree of structure sharing (to save space, and to save time by
avoiding copying when creating new proof nodes). Structure sharing may occur even
between context lists that have different names.

• They allow efficient updating of any point in any context list.

• They allow changes to the context list at a given proof node to be immediately visible
at all nodes of its subtree.

• They automatically undo changes on backtracking.

• They allow the differences between the context of a conclusion and a premise to be
reported symbolically, as a context specification. (This allows proofs to be transformed
into inference rules.)

Our current implementation never copies context lists. If a rule applies a filter function
(for example,nfi(x)) to a given context list, that context list is not immediately filtered
to obtain a new context list. Instead, the function is recorded at that point in the context list,
and then whenever an access of the context list returns a termT from deeper in the context,
it applies the function to it. In other words, the application of filter functions is done lazily
at lookup time, rather than at rule-application time. It also means that filter functions are
not applied to context terms that are never used.

Advantages of this approach are that it allows rule application to be very fast because
contexts are not copied, and it allows updates of the parent’s context list to flow into the
filtered list automatically. A disadvantage is that if a given term in a context list is frequently
accessed, then filter functions may be applied to that term repeatedly (once every access).
Experiments suggest that this does not cause performance problems, but if it does in the
future, then we may investigate caching the filtered context list.

To maximize sharing, all context lists are stored in a singleforestwhich is represented as
an indexed implicit parameter, which we shall callcontext. The indexes into context
are integers, but these indexes are private to the proof engine, so that destructive list insertion
algorithms can be used without affecting the user view of context lists.

212https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

rule and_intro === rule all_intro(x2) ===
A, hyp ??? nfi(x2) ---> A
B ---------------------
---------- all x2 A.
A and B.

rule implies_intro === rule all_elim(A,x,T) ===
hyp+++[A] ---> B all x A
---------------- --------
A => B. [T/x]A.

define A <=> B === rule unfold ===
(A => B) and (B => A). [E/x]P
/* ----------
This enters A <=> B [D/x]P
into a table, so that provided defined(D,E).
defined(A<=>B,(A=>B)and(B=>A)
is true.
*/

Figure 3: Inference rules used in the example proof

5.3. An example proof

This section shows all the data structures for a small proof that involves context terms,
quantifiers and constraints. The theorem is:

theorem all_intro2 === A <=> (all x A)
provided x not_free_in A.

The inference rules used (see Figure3) are the usual sequent calculus rules, in the style
of Gentzen’s LJ calculus [5], with the assumption rule given in Section2.4.

Figure4 shows a graphical view of the final proof tree. To avoid clutter, the figure uses
the context-specification notation from Section2.4to describe changes to thehyp context,
rather than repeating the full context at every node.

Figure5 shows how this proof tree is represented within the Ergo 6 proof engine, by the
bindings of three indexed implicit parameters:node, hyp andcontext.

The set of constraints associated with this proof is maintained by Qu-Prolog, so we shall
not describe its representation in detail. Once the proof tree is complete, the set contains: the
constraintx not_free_in A from the statement of the theorem; a derived constraint
x2 not_free_in A, introduced when the assump rule applied to node 6 passes context
term 1 (A) through the filternfi(x2); and a requirement that x andx2 be distinct object
variables. Only the first of these constraints becomes a side condition of the resulting
theorem, becausex2 does not appear in the theorem, so the constraints involving it can
always be satisfied.

5.4. Performance

The following performance experiments were done on a lightly loaded 466Mhz Celeron
processor, with 128Mb RAM running Linux 2.2.14. Ergo was run using Qu-Prolog 6.0 and
Isabelle99-2 was run under Poly ML (version 4.0).

213https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

(all x A)5 A7

A => (all x A)3 (all x A) => A4

A <=> (all x A)1

A6

(all x A)8

2 (A => (all x A)) and ((all x A) => A)

hyp+++[(all x A)]hyp+++[A]

hyp???nfi(x2)

Figure 4: A proof ofA <=> (all x A) provided x not_free_in A.

node(1)=proofnode(root,A<=>(all x A), jprop,unfold, [2])
node(2)=proofnode(1, A => (all x A) and

(all x A) => A, jprop,and_intro, [3,4])

node(3)=proofnode(2, A => (all x A), jprop,implies_intro,[5])
node(5)=proofnode(3, (all x A), jpred,all_intro, [6])
node(6)=proofnode(5, A, jprop,assump, [])

node(4)=proofnode(2, (all x A) => A, jprop,implies_intro,[7])
node(7)=proofnode(4, A, jpred,all_elim, [8])
node(8)=proofnode(7, (all x A), jprop,assump, [])

hyp(1)=1 hyp(5)=2 context(1)=initialise
hyp(2)=1 hyp(6)=3 context(2)=add(1,A,1)
hyp(3)=1 hyp(7)=4 context(3)=filter(nfi(x2),2)
hyp(4)=1 hyp(8)=4 context(4)=add(2,(all x A),1)

Figure 5: Ergo 6 data structures for the proof in Figure4

214https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Table 1: Test results for Ergo and Isabelle

Test 1 Test 2 Test 3

A. Ergo 1.8 1.8 1.6

B. Isabelle 3.5 20.9 3.4

C. Isabelle (save) 7.9 22.1 4.4

Speedup = C/A 6.1 12.3 2.8

In order to obtain a reasonable comparison between Ergo and Isabelle, it was necessary
to carry out large proofs (in order to obtain accurate timing figures) that used equivalent
sets of inference rules. This was accomplished by taking two small proofs for which there
were already equivalent proofs in both systems, and repeatedly using rules that replicated
goals in order to produce large proof trees.

The two theorems used were

(1) : (P ∧ Q ⇒ R) ⇒ ((Q ⇒ R) ⇒ R) ⇒ ((P ⇒ R) ⇒ R) ⇒ R,

(2) : (∃x∀yA) ⇒ ∀y∃xA.

The proof of the first theorem takes eleven steps, and the second takes six steps. Tactics
were written in each system that proved these theorems automatically.

In order to construct large proofs, a rule was used that replaced a goal with the goal
conjoined with itself. Tactics were written that used this rule and conjunction introduction
to generate four copies of the initial goal, prove three of these goals directly, and then repeat
the process on the remaining goal. The replication step was carried out 400 times. This
produced proof trees of about 15,600 proof nodes for the first theorem and about 9,600
proof nodes for the second theorem.

This technique was used to construct three test proofs in both Ergo and Isabelle:

• Test1: a proof of (1) with goal replication applied to the last node at each level;

• Test2: a proof of (1) with goal replication applied to the first node at each level;

• Test3: a proof of (2) with goal replication applied to the last node at each level.

In both Ergo and Isabelle the tactics discharged the first open node first. As a consequence,
the number of open nodes at any point in the proof in Test 1 did not exceed five, while in
Test 2, the number of open nodes at one point in the proof reached 400.

In Ergo, the complete proof tree is stored during the proof while, by default, Isabelle
does not store the proof tree. This can be changed by setting a flag. Table1 lists the results
for the three test proofs for Ergo and Isabelle (with and without the proof tree saved). All
the times are in seconds.

This relatively good performance of Ergo is achieved largely because each inference
rule is compiled directly into Qu-Prolog code (as described in Section4.2), which allows
the compiler to optimize each inference rule according to its structure. In contrast, Isabelle
inference rules are represented purely as data, so these opportunities for compilation and
optimization are not possible.

As described in Section5.2, the context lists of Ergo 6 are not compiled, because they
change frequently during a proof. So Ergo 6 can be slower than Isabelle in proofs that search
context lists very frequently (because both systems are searching data structures, and ML

215https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

is generally faster than Prolog). However, in most proofs only a small percentage of proof
steps search the context lists (2/11 and 1/6 steps in the above example proofs), so the speed
of applying (compiled) inference rules far outweighs the slower accessing of context lists,
as the above examples illustrated.

Other experiments showed that for simple inference rules, Ergo 6 is about five times faster
than the earlier window-inference-based version of Ergo. Furthermore, the speed of most
inferences in Ergo 6 is largely independent of the size of the context lists and the number
of variables in the whole proof, whereas the earlier version slowed down dramatically as
these increased.

6. Conclusions

This paper has described the design and implementation of the Ergo 6 proof engine. It is
a generic interactive proof engine, with expressiveness similar to that of Isabelle (though it
does not support type-based overloading as Isabelle does). Its performance is quite good in
comparison with that of Isabelle, though more experiments on large proofs with identical
theories and tactics would be necessary to make accurate comparisons.

This paper illustrates one way of effectively using Prolog implementation technology
to implement a theorem prover that is highly generic and flexible. The key principle is to
represent each inference rule by a Prolog clause that can be queried as if it is data, but can
still be efficiently compiled and executed. A similar effect could perhaps be obtained in
other systems (for example, Isabelle) by having two representations of each inference rule:
one as a data structure and the other as compiled code that executes the inference rule in
the most common (backwards) proof style.

Our representation of the proof tree relies on having efficient backtrackable hash tables
(indexed implicit parameters), but these could be added to other Prolog systems. The use
of Qu-Prolog provides other advantages, such as more flexible unification and support for
quantifiers, substitutions and constraint management.

The Ergo 4 proof engine was based on window inference [23]. Ergo 6 is more general,
but can easily support window inference by proving appropriate inference rules. In fact, the
generic nature of Ergo 6 makes it easy to support aspects of window inference that were
not easy to implement in Ergo 4 (for example, conditional opening rules, proof of derived
opening rules, higher-order relations), simply by proving additional inference rules. By
careful design, utilising the strengths of Prolog, with Ergo 6 we have been able to improve
both speed and flexibility dramatically (‘have our cake and eat it too’).

Appendix A. The Ergo6 and Qu-Prolog releases

A release of Ergo 6 is available at:

http://www.svrc.uq.edu.au/Software/ErgoHome.html.

This includes a hierarchy of about 40 predefined theories, ranging from Johansson’s
propositional logic through to arithmetic and ZFC set theory. Qu-Prolog is needed to build
and run Ergo 6. A release of Qu-Prolog is also available from the Software Verification
Research Centre, University of Queensland, Australia, where Ergo and Qu-Prolog were
developed. Readers will find the material at:

http://www.svrc.uq.edu.au/Software/QuPrologHome.html.

216https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

http://www.svrc.uq.edu.au/Software/ErgoHome.html
http://www.svrc.uq.edu.au/Software/QuPrologHome.html
https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

Acknowledgements. Thanks are due to Anthony Bloesch, Ed Kazmierczak, Peter Kear-
ney, Peter Lindsay, John Staples and Owen Traynor for helpful input and discussions about
future architectures for the Ergo proof tool. Special thanks to John Staples and Steve Reeves
for their comments on early drafts of this paper. This work was funded by the Software
Verification Research Centre, a Special Research Centre of the Australian Research Council.

References

1. R. Bornat andB. Sufrin, ‘Jape: A calculator for animating proof-on-paper’,Auto-
mated Deduction – CADE-14, 14th International Conference on Automated Deduc-
tion, Townsville, North Queensland, Australia, Lecture Notes in Comput. Sci. 1249
(ed. William McCune, Springer, 1997) 412–415.194

2. R. S. Boyer andJ. S. Moore, A computational logic(Academic Press, 1979).194

3. P. Deransart, A. Ed-Dbali andL. Cervoni, Prolog: the standard reference manual
(Springer, 1996).196

4. Edsger W. Dijkstra, A discipline of programming(Prentice-Hall, Englewood Cliffs,
NJ, 1976). 196

5. Gerhard Gentzen, ‘Investigations into logical deduction’,The collected papers of
Gerhard Gentzen, Stud. Logic Found. Math. F (ed. M. E. Szabo, North-Holland, 1969;
first published 1934) 68–131.201,213

6. Mike Gordon and T. F. Melham (eds),Introduction to HOL: a theorem-proving
environment for higher-order logic(Cambridge University Press, 1993).194

7. Nicholas Hamilton, Ray Nickson, Owen Traynor andMark Utting, ‘Interpre-
tation and instantiation of theories for reasoning about formal specifications’,Proc.
Twentieth Australasian Computer Science Conference(ACSC’97), Austral. Comput.
Sci. Comm. 19 (ed. M. Patel, Macquarie University, Sydney, 1997) 37–45; see also
Technical Report SVRC-96-21, Software Verification Research Centre, The University
of Queensland, 1996.196

8. P. van Hentenryck, Constraint satisfaction in logic programming, Logic Program-
ming Series (The MIT Press, Cambridge, MA, 1989).200

9. C. B. Jones, K. D. Jones, P. A. Lindsay andR. Moore, mural: a formal development
support system(Springer, 1991).194

10. Sara Kalvala, ‘Annotations in formal specifications and proofs’,Form. Meth. Syst.
Des.5 (1994) 119–144.202

11. S. Kanger, ‘A simplified proof method for elementary logic’,Computer programming
and formal systems(ed. P. Braffort and D. Hirschberg, North-Holland, 1963) 89–95.
200

12. Matt Kaufmann andJ. Strother Moore, ‘Design goals for ACL2’, CLI Technical
Report 101, Computational Logic, Inc., 1717 West Sixth Street, Suite 290, Austin,
Texas 78703-4776, August 1994.194

13. A. P. Martin, P. H. B. Gardiner and J. C. P. Woodcock, ‘A tactic cal-
culus’ (abridged version), Formal Aspects of Computing8 (1996) 479–489;
the full version is available at theFormal Aspects of ComputingFTP site:
ftp://ftp.cs.man.ac.uk/pub/fac. 196

217https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

ftp://ftp.cs.man.ac.uk/pub/fac
https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

14. Andrew Martin, Ray Nickson andMark Utting, ‘A tactic language for Ergo’,
Formal Methods Pacific ’97,Discrete Math. Theor. Comput. Sci. (ed. Lindsay Groves
and Steve Reeves, Springer, 1997) 186–207.196

15. Peter Nickolas andPeter J. Robinson, ‘The Qu-Prolog unification algorithm: For-
malisation and correctness’,Theoret. Comput. Sci.169 (1996) 81–112; also available
as Software Verification Research Centre Technical Report 94-23.197,203,203,205

16. Sam Owre, John Rushby, Natarajan Shankar andFriedrich von Henke, ‘For-
mal verification for fault-tolerant architectures: prolegomena to the design of PVS’,
IEEE Trans. Software Engrg21 (1995) 107–125.194

17. L. C. Paulson, ‘Natural deduction as higher-order resolution’,J. Logic Programming
3 (1986) 237–258.198,208

18. L. C. Paulson, Logic and computation: interactive proof with Cambridge LCF. Cam-
bridge Tracts Theoret. Comput. Sci. (Cambridge University Press, 1987).198

19. Lawrence C. Paulson, ‘The foundation of a generic theorem prover’,J. Automat.
Reason.5 (1989) 363–397.197

20. Lawrence C. Paulson, with contributions byTobias Nipkow, Isabelle: a generic
theorem prover, Lecture Notes in Comput. Sci. 828 (Springer, 1994).194,198

21. Frank Pfenning, ‘Logical frameworks’,Handbook of automated reasoning, vol. 2
(Elsevier Science Publishers, 2001).194,197,197,201

22. Peter Robinson, ‘Qu-Prolog 6.0 user guide’, Tech. Rep. 00-20, Software Verification
Research Centre, School of Information Technology, The University of Queensland,
Brisbane 4072, Australia, (2000);
http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?00-20.
211

23. Peter J. Robinson and John Staples, ‘Formalizing the hierarchical structure of
practical mathematical reasoning’,J. Logic Comput.3 (1993) 47–61.198,216

24. Peter van Roy, ‘1983–1993: The wonder years of sequential PROLOG implemen-
tation’, J. Logic Programming19, 20 (1994) 385–441.196

25. John Rushby, ‘Mechanized formal methods: where next?’FM99: The World
Congress in Formal Methods, Toulouse, France, 1999, Lecture Notes in Comput.
Sci. 1708 (ed. Jeannette Wing and Jim Woodcock, Springer, 1999) 48–51.194

26. J. Staples, P. J. Robinson, R. A. Paterson, R. A. Hagen, A. J. Craddock and
P. C. Wallis, ‘Qu-Prolog: an extended Prolog for meta level programming’,Meta-
programming in logic programming(ed. H. Abramson and M. H. Rogers, MIT Press,
Cambridge, MA, 1989) 435–452.196,210

27. Mark Staples, ‘Window inference in Isabelle’, presented at the Isabelle Users’
Workshop, 18-19 April 1995, University of Cambridge; available from
http://www.cl.cam.ac.uk/users/lcp/Workshop/index.html. 198

28. Mark E. Stickel, ‘A Prolog technology theorem prover: Implementation by an ex-
tended Prolog compiler’,J. Automat. Reason.4 (1988) 353–380.208,209

29. Mark Utting and Steve Reeves, ‘Implementing Zc substitutions in Ergo’,
‘WESTAPP 2000: The Third International Workshop on Explicit Substitutions: The-
ory and Applications to Programs and Proofs, Norwich, UK’, preprint, 2000, 35–49;
available fromhttp://www.cs.waikato.ac.nz/˜marku. 200,200,201

218https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?00-20
http://www.cl.cam.ac.uk/users/lcp/Workshop/index.html
http://www.cs.waikato.ac.nz/~marku
https://doi.org/10.1112/S1461157000000759

Ergo6: A generic proof engine that uses Prolog proof technology

30. Mark Utting, Ray Nickson andOwen Traynor, ‘Theory structuring in Ergo 4.1’,
Austral. Comput. Sci. Comm.18 (1996), Proceedings of CATS’96, Computing: The
Australian Theory Symposium, 137–146.196

Mark Utting marku@cs.waikato.ac.nz

Department of Computer Science

The University of Waikato

Private Bag 3105

Hamilton

New Zealand

Peter Robinson pjr@itee.uq.edu.au

Information Technology and Electrical Engineering,

The University of Queensland

Brisbane

Queensland 4072

Australia

Ray Nickson Ray.Nickson@mcs.vuw.ac.nz

School of Mathematical and Computing Sciences,

Victoria University of Wellington

P.O. Box 600

Wellington

New Zealand.

219https://doi.org/10.1112/S1461157000000759 Published online by Cambridge University Press

mailto:marku@cs.waikato.ac.nz
mailto:pjr@itee.uq.edu.au
mailto:Ray.Nickson@mcs.vuw.ac.nz
https://doi.org/10.1112/S1461157000000759

	Introduction
	Flexibility
	Inference speed
	Structure of the paper

	Ergo 6 proof engine architecture
	Encoding of object-logic terms
	Proof construction
	Rule constraints
	Special support for context
	Annotations

	A meta-logic for Ergo
	Formulae and terms of the meta-logic
	Semantics of the meta-logic
	Axioms of the meta-logic

	Implementation technology
	Advantages and disadvantages of using Prolog
	A design that uses Prolog
	Analysis of this design

	An efficient implementation
	Proof tree data structures
	Context list data structures
	An example proof
	Performance

	Conclusions
	The Ergo 6 and Qu-Prolog releases

