
J. Austral. Math. Soc. Ser. B 25 (1984), 349-365

HARMLESS DELAYS IN A PERIODIC ECOSYSTEM
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Abstract

Sufficient conditions are obtained for the existence of a unique linearly asymptotically
stable positive periodic solution of an ecosystem model of two species competition in a
periodic environment with time lags in interspecific interactions. It is shown that if the
self-regulating intraspecific interaction effects are strong enough and act without time
delays then time delays of any length in the interspecific interactions cannot destabilise an
otherwise stable ecosystem in a periodic environment.

1. Introduction

The purpose of this article is to establish a set of sufficient conditions for the
existence of a unique linearly asymptotically stable positive periodic solution for a
nonautonomous system of the form

(1.1)

In the context of population dynamics a model system of the form (1.1) means
that the interspecific interactions occur with time delays T, S* 0, T2 > 0 in a
periodic environment, if/, and/2 are assumed to be periodic in / with a common
period w > 0.

Although model ecosystems in periodic environments have been investigated by
a large number of authors (for some references see Gopalsamy [4], [5]), periodi-
cally varying environments in time delayed model ecosystems of two or more
interacting species have not been investigated in the literature. The need for
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multispecies ecosystem models in periodic environments and time delayed inter-
actions is evident from the extensive literature of that type relating to single
species. While it is known that periodic ecosystems can support more species than
uniform environments (Gopalsamy [4]), time delays might destabilise the system
leading to a possible loss of one or more species. Furthermore, periodic environ-
ments in population dynamics have some relevance to natural selection and
evolution; we will consider this aspect briefly at the end.

It will be an interesting and worthwhile investigation to examine the effects of
time delays in the interspecific interactions in periodic environments; it is known
that even in the case of constant environments such an investigation is more
complicated. See for example Shibata and Saito [10] and Gopalsamy and Ag-
garwala [2] where it has been shown that such delays can lead to an onset of
instability of steady states and Hopf-type bifurcation to oscillations including
chaotic ones.

The principal finding of the following analysis of (1.1) is that, under suitable
hypotheses on /, and /2, the system (1.1) has a linearly asymptotically stable
unique positive periodic solution for all nonnegative delays T,, T2 (while our
numerical experiments suggest that the periodic solution of (1.1) is globally
asymptotically stable and is independent of the delay parameters T,, T2 it is not
known how one can prove such a strong result). Since time delays are usually
associated with possible destabilization of otherwise stable systems, we can
describe the time delays appearing on (1.1) as "harmless".

It has been recently shown by the author (Gopalsamy [6]) that if the self-regu-
lating negative feedback in each species is strong enough and acts without time
delays, then time delays of any length in the interspecific interactions cannot
destabilise an otherwise stable ecosystem in a temporally uniform environment.
The result of this paper is thus an extension to a periodic environment of the
"harmless" nature of interspecific interaction delays in a temporally constant
environment mentioned above.

2. Existence and uniqueness of periodic solutions

We will now formulate the problem of existence of periodic solutions of the
periodic delay differential system

dX'{t) - - x ( t ) f ( t x ( t ) x ( t - r ) )
* ' ' ' ' ' 2 '2 ' <>0, (2.1)
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(where TI2, T2I are nonnegative constants) in a form suitable for the application of
fixed point theory of positive operators. We make the following assumptions
regarding/, and/2 in (2.1).

(H|) The partial (Frechet) derivatives of/,,/2 satisfy the following:

YL<0, i,j=\,2 for all t > - r where T = max(r,2, T21). (2.2)

(H2) f,(t,xi,x2)=fl(t + u,xi,x2) fora l l f>- r , ; t , > 0 , x 2 > 0 . (2.3)

(H3) There exist positive constants blh b", ait, a" (/ = 1,2) such that
bu ~ aux, <ftU, xux2) < ft," - <*,.,

*,//«,/ < bt/a% (2.4)

for / = 1,2 and (*,, x2) e R+ X R+. If T = 0 then one can show that (2.1)-(2.4)
will imply that the nondelayed periodic system (2.1) will have an asymptotically
stable strictly positive periodic solution (for details see Gopalsamy [5]); this result
will become a special case of what we obtain in the following.

We will use the following notation:

K = {h: [-""".os) -» R» discontinuous, h{t + to) = h(t),t> -r),

|A(
[0, w]

x2|U(A:1, JC2) e B],

G, = {(JC,,JC2) &K,\\{xi,xiyi\<b,= min(bu/au,b2l/a2l)},
G2 = {(xltx2) G K, \\(xlt x2)\\ < b" = maxCfer/ar, bu

2/a"2)},

G2 = closure of G2 in B, and

G2/G, = complement of G, in G2; G, C G2 by (2.4).

The cone K = KXY. Kx induces a partial order in B and we will write
(x,, x2) s* (_>>,, y2) if and only if xt — yt G. Kx, x2 — y2 G Kv We define an
operator N on B as follows

2)
) f o r r>0 , (2.5)
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where

N{(t, x},x2) = f Gu(m, u, t - s)gi(m, s, xl(x)x2(s - T12)) ds

+ f'Gn(m,0, t - s)gt(m, s, x^s), x2(s - r]2))ds,
0

N2(t, xx,x2) = ( G22(w, w, / - s)g2(m, s, xx(s - T 2 1 ) , X2(S)) ds

r2](m,0,t- s)g2(m,s,x]{s- T 2 1 ) , X2(S)) ds,

for t > 0, with

x2(s - T1 2)) = mx,(s) + x,(s)/,(.s, JC,(J), X2(^ - T,2)) ,8l\m' >̂ - l̂V^J) -^2\^ T12/J mX^\S) ~r X]\S jf^S, X^S ) , X2\S Tx2)),

g2(m, s, X, (J - T21), x2(s)) - mx2(s) + x2(s)f2(s, x^(s - T21)X2,(S)),

Gil(m,0,t-s) = e-mi'-s\ i¥=j, i, j = 1,2,

(2.8)

t, x , x 2

m being a suitably selected positive constant (more will be said below) while n is a
positive constant such that nu > r.

We note immediately the following from the definition of N: if (*,, x2) E
G2/Gx then N(x]t x2)(t) ^ 0 and if iV(x,, x2) is periodic in t of period w for
t > 0 then iV(X|, x2) is periodic in f with period w for / > -T. The existence of at
least one positive periodic solution of (2.1)-(2.4) is established by means of a few
lemmas and a result of Schmitt [9].

LEMMA 1. A necessary and sufficient condition for (x^t), x2(t)), t s* -T to be a
periodic solution o/(2.1)-(2.4) of period u is that (xt, x2) be a fixed point of N such
that

N(xux2)(t) = (xx(t),x2(t)) and (x,, x2) E K n (G2/Gt).

PROOF. The details of proof are similar to those of Lemma 2 of Busenberg and
Cooke [1]. We first verify the continuity of N(xu x2) assuming that N(x^, x2)(t)
is periodic in t of period w. The continuity of N(xu x2) for t > 0 follows from the
definition in (2.5)-(2.8) which also provides lim,_0+ N(xu x2)(t). It will follow
from (2.9) and the assumed periodicity of N(xu x2) that N(xu x2) is continuous
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for / ^ -T . Now we will verify the periodicity of N(xu x2) in /. A simple
computation leads to

Nt(t + « , xltx2) - Nx(t, * „ x2) = e-m%(t), (2.10)

where

F , ( 0 = / Gu(m,a,t- s)gl(m, s, xx(s), x2(s - T 1 2 ) ) ds
J/
o

/
o
/ Gn(m,0, t - s)gx(m, s, x^s), x2(s - T12)) ds

Gl2(m,0, a - s)gi(m,s, x{(s), x2(s - T12)) ds

- / Gu(m, a,-s)gi(m,s,xl(s), x2(s - r]2)) ds

- f'Gn(m,0<-s)gl(m,s,xl(s),x2(s - T12)) ds, (2.11)

•'o
which on simplification using the periodicity of/, shows that Fx{t) = 0 whenever
x]yx2 E B, thus implying the periodicity of JV, in t of period w. A similar
argument for iV2 proves that (JC,, x2) G5=> iV(x,, x2) E 5 .

Now suppose (X|, JC2) is a fixed point of N and let (x,, x2) E K n {G2/Gx).
Then it is easily seen that (*,, x2) is a solution of (2.1) and since ( x , , x 2 ) E K C\
(G2/G,) it will follow that (*,, x2) is a periodic solution of (2.1).

Conversely, let (xt,x2) be a periodic solution of period w of (2.1). Then
(x,, x2) is necessarily a periodic solution of

^ ) = g\(m> t, xx{t), x2(t - T12)),

/ ' (2-12)

^ — + mx2(t) = g2(m, t, xx{t - T21), x2(0) ,

for any arbitrary real constant m and hence for any fixed constant m > 0. It
follows from (2.12) that any periodic solution of (2.1) and hence of (2.12) is a
fixed point of N(xit x2). We claim that such a fixed point is in K D (G2/G,) .
Suppose (JC,, x2) £ K n (G2/G,) . The following possibilities can arise:

(i) Either *,, x2 or both x, and x2 may become negative for some value of t and
it will follow from (2.1) that subsequent values of JC,, x2 or xx and x2 will be
negative and hence from (2.4) and (2.1) their derivatives will be negative for all
subsequent /, implying that xt, x2 or xt and x2 cannot be periodic.

(ii) While (*,, x2) E K C B there may be a value of t, say t*, such that
*,(/*) > b"/a" or x2(?*) > b"/a" and in such a case xt(t) or x2(?) cannot be
periodic since respectively dxx{t*)/dt < 0 or dx2(t*)/dt < 0, which will imply
that the values of x,(r*) or x2(t*) cannot be repeated from below.
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(iii) Similarly if there is a t* such that 0 < x,(/*) < bu/au or 0 < x2(t*) <
bll/all then such solutions cannot be periodic since dxx(t*)/dt > 0 or dx2(t*)/dt
> 0, which will mean that the values of *,(/*) or x2(/*) cannot be repeated from
above.

Thus, every periodic solution of (2.1)-(2.4) is a fixed point of N in K D
(G2/G.) C B.

LEMMA 2. Let N be as in (2.5)-(2.6). Suppose X e (0,1) and \N(xx, x2) =
(jCj, x2) for some (x,, x2) £ K - {0}. Then there exist af > 0, a£ > 0 such that

0<x{(t)<a*<bu
{/a»,

for t E [-T, oo).

PROOF. If \N(xu x2) = (x,, x2) then from the definition of N we get for all
t > 0 and (x,, x2) G K - {0},

, x,(r), JC2(/ - T I 2 ) ) + *,(0m(X - 1),

^ , x,(r - T21), *2(/)) + x2(?)m(X - 1).

For all / ̂  0 such that x,(0 ^ fey/aJ1 or x2(t) > b^/au
2 we have dxjdt < 0 or

dx2/dt < 0; but these are impossible since x,, JC2 are periodic in /. Thus by the
continuity and periodicity of JC|, x2 we have x,(/) < a* < b"/a", x2(t) < a^ <
b2/a\ for all / > 0; by the definition and periodicity the same will follow for all
t > -T. A similar argument holds when x,(0 < 0 or x2(t) < 0, noting that in such
a case dxx/dt > 0 or dx2/dt > 0, again contradicting the periodicity of (x,, x2) in

LEMMA 3. 77ie operator N maps K D (G 2 /G,) m/o /T and is completely continu-
ous.

PROOF. From the definition of N and (2.4) we derive that

Ar,(r, JC,,X2) > / GI I (m,<o,r-s)xI(s)[m + 6,, - a,,x,(5)] dsJo

+ f'Gn(m,0, t - s)x,{s)[m + bu - auxt(s)] ds. (2.14)

For (x, ,x2) £ ATI (G2/C,), we have 0 < x , < 6 " / a " and hence we get
Nt(t, x,, x2) > 0 for all / > 0 by a proper choice of the positive constant say w,.
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We make a similar choice say m2 for m for the case N2(t, xv x2) >• 0 and then
choose m — max(mi, m2). Thus we have

N: KD (G2/Gx) - K for/>0,

and by the periodicity of N we have the same for / s* -T.
To prove the complete continuity of N we proceed as follows. We know that if

(x,, x2) G B then N(x]t x2) G B and so we can restrict t to the set [0, nu],
nu > T. We write N = L° Q where L is the linear operator, L: B -* B,

L{ux,u2){t)

C" \ u\(s) C i \l u\(s)
- Gu{m,u,t- s) as + G]2{m,0,t- s)\

Jo u2(s) Jo L"2(5)

ds, (2.15)

and Q is the nonlinear operator

Q(ul,u2)(t) = Q(ul,u2)(no + t) for

It can be found that

. . . C m + b\ m + bl
,, M,)( / ) | | =£ max L ,

for/>0,

(II, , u2

\d
—

(2.16)

(2.17)

The complete continuity of the linear map L follows from (2.17). Now since Q is
continuous and maps bounded sets into bounded sets it will follow that L ° Q is
completely continuous.

To prove the existence of periodic solutions of (2.1)—(2.4) we will use the
following result of Schmitt [9].

THEOREM (Schmitt). Let Ht and H2 be nonempty bounded open neighbourhoods of
the origin in a Banach space B with a positive cone K such that Ht C H2 and let N:
K fl (H2/Ht) — K be completely continuous and which satisfies the following
conditions:

(a) There exists (z,, z2) G K C B, \\(zu z2)\\ = 1 and a p. satisfying /x >
supflK*,, x2) - N(yu y2)\\,(xx, x2) e K n //,, (yt, y2) G K D dH2} such that all
solutions (xt, x2) G K n (H2/H}) of(xt, x2) = N(xx, x2) + X(z,, z2) with 0<\
< n satisfy (x,, x2) & 3//,.
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(b) All solutions (x,, x2) G K D (H2/Hx) o/(x,, x2) = AiV(x,, x2), 0 < X < 1
•safw/y (x,, x2) & dH2.

Then N has at least one fixed point in K D (H2/Ht).

We can now present our existence result.

THEOREM 1. Assume that / , , f2 of (2.1) ttrtw/y (2.2)-(2.4). 7>2e« there exists nt
least one positive periodic solution of (2.1)—(2.4).

PROOF. By Lemma 1, it is enough to show that the operator N: K n (G2/G,) -»
K c B has at least one fixed point in G2/Gx and we will do this by applying the
result of Schmitt [9]. First we let

H2 = { ( * , , x2) e B\\\{xx,x2)\\ < msLx(b1/al b"2/a
u
2)} = G2,

Hx = {(xltx2) G B\\\(Xi, x2)\\ < min(bu/au, bu/au)} = G,.

By Lemma 3, ./V: ATI (H2/Hx) -» K is completely continuous. Choose /x = oo
and (z,, z2) = (1,1). Then all solutions (x,, x2) £ K n (H2/Hx) of (JC,, x2) =
A (̂jC|, x2) + X(z,, z2), 0 < X < oo, satisfy (2.1) and hence by their periodicity
{xx, x2) ^ 3// , . The condition (a) of Schmitt's theorem is satisfied since ju = oo
by choice and (x,, x2) and (z,, z2) are periodic. By Lemma 2 the condition (b) of
Schmitt's theorem is satisfied. Thus there exists at least one fixed point of TV in
K n (H2/Hx) and hence there exists at least one positive periodic solution of
(2.1)-(2.4) and the proof is complete.

We remark that so far no restriction on the magnitudes of the delays T12, T2, has
been imposed except that they be nonnegative.

3. Uniqueness of the periodic solution

Applications of fixed point theorems to prove the existence of solutions of
nonlinear problems usually suffer from the drawback that the uniqueness of
solutions has to be proved often by other methods. We will use the following
result of Smith [11] which is a slight variation of his Theorem 3.5 (see also
Busenberg and Cooke [ 1 ]).

THEOREM (Smith). Let N be an operator on a cone K in the Banach space B and
let K* = {(x,, x2) G K n B, 0 =£ ||(x,, x2)|| < C*} where C* is some positive
constant. Assume the following:
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(a) / / (x , , ; c 2 )G A * - { ( 0 , 0 ) } and N(xx, x2) = (*„ x2) then (*„ x2) G
interior of A*.

(b) N is monotonic nondecreasing on A*.
(c) If(xx, x2) is in the interior of K* and ifQ<\< 1 then there exists an r\ > 0

depending on (JC,, x2) and X such that N(Xxu Xx2) > X(l + 7])N(xu x2). Then N
has at most one fixed point different from (0,0) in A* C B.

The cone A = A, X A, where A", = {h G 5^: fc(f) > 0 , ( 6 [-T, OO)} is slightly
too wide in that solutions of the form {xx(t),0} and {0, x2(t)} for (2.1) are also
possible. We choose a narrower cone K* in 2? as follows: define

5 = {(*„ x2) EB\bu/au < IIJC.II < K/a", b2l/a2l ^ \\x2\\ < bu
2/a\), (3.1)

and let

K* = {X(xux2) <EB\(xux2) ES,X^0}. (3.2)

Since G2/G, C AT*, it is not difficult to see that N: G2/Gx -+ B has at least one
fixed point which is a periodic solution of (2.1)—(2.4). We will prove that this
solution is unique by applying the result of Smith cited above. The following
lemmas are needed first.

LEMMA 4. If (xt, x2) G K* — {0,0} and if N(xu x2) — (xu x2) then (*,, x2)
G interior of A"*.

PROOF. If (*,, x2) = N(xx, x2) and (x,, x2) G K* - {0,0}, then (*,, x2) is a
periodic solution of (2.1)—(2.4) and hence we have

(bu- aux})x, <—r-<{b\-a"xxx)xu

dx ( 3 3 )

{b2l - a2lx2)x2<-^< {bu
2 - au

2x2)x2,

and hence any nonzero periodic solution (*,, x2) of (2.1)—(2.4) has to be such
that

bu/au<xt(t)<b1/al

b2,/a2l<x2(t)<b"2/a
u
2,

for / > - T , which proves the lemma.

LEMMA 5. The mapping N defined by (2.5)-(2.9) is monotone nondecreasing on
K*.
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PROOF. Let (x,, x2) e K*, (yx, y2) e K* such that (x, - yx, x2 - y2) e K*
and (x,, x2) ¥* (yx, y2). Then x, >yx, x2 > y2. From the definition of N we
derive that

Nx(t,xx,x2) - iV,(r, ;>,, y2)

= f Gu{m,u>,t- s){m[xx(s) - yx{s)] + xx(s)fx(s, xx(s), x2(s - T12))

-y\(.s)fi{s, yx{s), y2{s - T 1 2 ) )} A

+ f'Gu(m,0, t- s)

X {m[xx(s) - yx(s)] + [xx(s)fx(s, xx(s), x2(s - T12))

(3.4)

with a similar relation for A 2̂(/, xx, x2) — Â C'* Ji> ^2)- Since/, is continuous,/is
bounded on K*; also it will follow from (xx, x2) # (_y,, ^2) that

0?£xx(s) -yx(s)>0 and 0 e x 2 ( s ) - j 2 ( s ) > 0 ;

a sufficiently large positive constant m will make the right side of (3.4) positive. A
similar argument will lead to N2(t, xx, x2) — N2(t, yx, y2) > 0 perhaps with a
larger constant m. Finally we can choose the bigger of these two constants m to
yield

N(xx,x2)-N(yx,y2)^0 for (x, -yx, x2 -y2) G K* - {(0,0)}.

The monotonicity of iV on K* follows.

LEMMA 6. Let (x,, x2) e interior of K* and let X be a constant such that
0 < A < 1. Suppose / , , f2 satisfy (2.2)-(2.4). Then there exists a positive constant TJ
such that

N{Xxx,Xx2)^X(l+i])N(xx,x2). (3.5)

PROOF. A direct computation leads to

Nx(t, Xxx, Xx2) - XNx(t, x , , x2)

-XI G,,(m, w, t - s)gx(s, xx(s), x2(s - rx2))Hx(s, X, x, , x 2 ) ds
Jo

+ X f'Gxx(m,0, t - s)gx(s, xx(s), x2(s - TX2))HX(S, X, x , , x 2 ) ds, (3.6)
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where

„ , , ^ _ mxjjs) + -X|(-y)/i(-y, hXjjs), Xx2(s - TI 2))
/ / , ( 5 , A, Xu X2) — , v 1 \ r I /~~\ 7 V\ ' • \ i - ' )

mxx{s) + X , ( J ) / , ( J , *,(*), *2(s - TI 2))

Since/, is decreasing (see (2.2)) with respect to x, and x2 there exists a positive
constant say TJ, such that

Hl(s,\,xl,x2)>iil forO<\<\,s>0,(xx,x2)eK*, (3.8)

and hence

Nt(t, \xlt\x2) > A(1 + ij,)JV,(*, JC,, JC2).

A similar argument will show that there exists an TJ2 > 0 such that

N 2 ( t , \ x t , X x 2 ) > X ( l + T» 2 ) iV 2 ( r , X t , x 2 ) ,

and the result follows if we choose rj = min(7},, 7j2).

Now the following uniqueness result is a direct consequence of the result of
Smith [11] and the Lemmas 4, 5, 6.

THEOREM 2. Suppose /,, /2 o/(2.1) satisfy (2.2)-(2.4). 77ie« //iere exw/5 a unique
u-periodic strictly positive periodic solution o/(2.1).

4. Linear stability of the periodic solution

Let {x*(t), x*{t), t > -J) be the strictly positive unique periodic solution of
(2.1). Let {*,(/), x2(t), t > -T} be any other solution of (2.1). To study the linear
stability of (x\*, xf) we let

and derive that the perturbations (A",, X2) are governed by the linear variational
system (after neglecting the nonlinear terms in Xt, X2)

^ an(t)xi(t - rn)X2(t - TI2),
(4.2)

= -a2x{t)x*{t - T2x)Xx{t - T21) - ^ ( 0 ^ ( 0 * 2 ( 0 ,
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evaluated at (/, xf(/), x$(t - T1 2)) ,

(4.3)

evaluated at (t, xf(t - T21), x*(f ))•

To establish the linear asymptotic stability of (x*(t), x*(0) it is enough to prove
that of the trivial solution of (4.2)-(4.3). We will do this by means of a
combination of a comparison differential system and a Lyapunov function. First
we define

d\X,{t)\
dt

dX,(t)
dt

dX,(t)
dt

' =1 ,2 , (4.4)
if X,(t) <0,

and derive from (4.2)-(4.3) the following comparison system of differential
inequalities:

d\X,{t)\
dt

d\X2(t)\
dt

for / > 0, where

-biix*(t)\X[(t)\+b[2xi(t - rl2)\X2(t - TU)\ ,

£ b2tx?(t - T2I) | Xx{t - T22) | -b22x*2{t) | X2(t) | ,
(4-5)

-*„ =

(4-6)

-Z>22 = max{-a2 2(0}.

We can now formulate the result as follows. By the periodicity of atJ, the
constants btJ are independent of T (see also (2.2)).
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THEOREM 3. The unique strictly positive periodic solution {x*(t), x%(t), t > -T}

o/(2.1)-(2.4) is linearly asymptotically stable provided

\-bn\>b2] and \-b22\>bl2, (4.7)

where the constants bj} (/, j = 1,2) are as defined in (4.6).

PROOF. Consider the scalar valued Lyapunov-like function v(t) = V(t, Xx, X2)
where

v(t) = V(t, Xt, X2) =\Xl(t)\+\X2(t)\+ (' bnx*2{u)\X2{u)\du

bux*x(u)\X,{u)\du. (4.8)

Since xf, xf are strictly positive, it is found from (4.7)-(4.8) that

^ ^ -[(\bn\-b2l)x*(t)\X](t)\ + (\b22\-b12)x*2(t)\X2(t)\], (4.9)

for t>0. It follows from (4.7)-(4.9) that V{t, Xx, X1)>\Xx(t)\+\X1{t)\ and
dv/dt *s 0, which will imply the stability of the trivial solution of (4.2)-(4.3). We
claim that (4.9) also implies the asymptotic stability of the trivial solution of
(4.2)-(4.3) in the sense that

[ 0 , (4.10)

for all bounded initial conditions X^(s), X2(s), s G [-T,0]. Suppose (4.10) is not
true. Then we can find an increasing sequence {tm} -» oo as m -> oo such that

(\bn\-b2l)x*(tm)\X](tm)\+ (\b22\-bu)x*2(tm)\X2(tm)\> e,

m= 1,2,3,.... (4.11)

Using the right derivative dv/dt of v we derive that

<>('„ - o - » ( < J > - S'^rdT-^- (4-12)
If e is small enough we have from (4.9), (4.11), (4.12) that dv(r)/dT < (-e/2) and
v(tm — e) — v(tm) ** e2/2 and hence

v(tm.2)-2(e2/2)

v(to)-m{e2/2).
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Thus for sufficiently large m, v(tm) becomes negative which contradicts the
nonnegative nature of v for t > 0. This contradiction shows that |Ar,(/)| +

0 as t -> oo and the proof is complete.

As an example let us consider the case of two species Lotka-Volterra type
competition in a periodic environment for which we have

f2(t,xi(t-2i),x2{t)) = 1 -

where a, /? are positive constants and Kx, K2 are strictly positive continuous
periodic functions with a common period. Equations (4.6) and (4.7) for this
special case lead to

max{-a,,(f)}| = max(\/Kx(t)) > min (-a2 1(0)| = "un(0/K2(t)),

max{-a2 2(/)}|= max(l/K2(t)) > min(-a l 2 (0) | = min(a/A:i(O).

The inequalities reduce in the absence of temporal variations in Kx, K2 to the
inequality 0 < a/? < 1, which is well known for the global asymptotic stability of
the positive steady state corresponding to the above example in a constant
environment. The above example shows also that delays in interspecific interac-
tions have no influence on the local asymptotic stability of the unique periodic
solution of the periodic ecosystem. A number of cases of this type in a constant
environment have been established recently by the author (Gopalsamy [6]). A
numerical example is illustrated at the end.

5. Some ecological and evolutionary consequences

It can be found that all the conclusions on the existence, uniqueness and
stability of a periodic solution of (2.1)-(2.4) are valid when T12 = 0 or T2) = 0 or
both T12 = 0 and T21 = 0; thus it will follow that delays in interspecific compe-
tition do not destabilise an otherwise stable coexistence (oscillatory or nonoscilla-
tory) of two competing species. In forthcoming work we will extend the analysis
of the system (2.1)—(2.4) to a system of n-competing species with a hypothesis
similar to that of (2.4). It is however an open problem to investigate the effects of
delays in intraspecific competition in a periodic environment.
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Pianka ([8], pages 139-140) remarks that "In real populations, rates of in-
crease, competitive abilities and carrying capacities do vary from individual to
individual, with population density in space and time. Indeed temporal variation
in the environment may often allow coexistence by continually altering the
competitive abilities of populations inhabiting it. Moreover time lags are doubt-
lessly of some importance in real populations. Finally a heterogeneous environ-
ment may allow real competitors to evolve divergent resource utilization patterns
and to reduce interspecific competitive inhibition."

To understand the mechanism of selection pressure against competitive inhibi-
tion we first write the Malthusian parameters JLI,, /X2 of fitness for the two species
as follows (see MacArthur [7], pages 226-230):

dx2(t)

Since (xt(t), x2(tj) -» (**(O> **(O) for large t we can write the parameters of
fitness in the form

In these relations we can use

X(t-T ) x ( t ) _ T
X2\l Tl2) ~ X2\' ) T\2 fa

x*(t_T ) - x * ( t ) _ T dxtO ~ r2l + 62T2])

61, 62 G (0,1), and rewrite /i,, n2 in the form

*() l() ± f ! ^

=fiy, x*{t) - r 2 1 —^ f(
 2-^L

6i,82E(0,\).
It is seen that the presence of the delays T)2 and T2) provides additional sources

of variability in the fitness parameters and thereby in the selection pressure
against interspecific competition. Since a necessary and sufficient condition for
natural selection to act is differential (variable) rates of population growth, we
find that time delays coupled with periodicity of an environment may allow real
competitors to evolve divergent resource utilization patterns and to reduce
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interspecific competitive inhibition. For some remarks relating to the significance
of a periodic environment to sustain the coexistence of a large number of
competing species in the absence of delays, we refer to a recent article (Gopalsamy
[4]).
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The following example has been numerically solved and the solutions are
displayed graphically for two different values of the delay parameter T:

where #,(*) = 2.0 + sin(fff) and K2(t) = 2.5 + sin(wO-
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