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Abstract

The object of the present paper is first to derive an interesting unification (and generalization) of a
fairly large number of finite summation formulas including, for example, those that appeared in this
Journal recently. We then briefly remark on its various (known or new) special cases which are
associated with certain classes of hypergeometric polynomials in one and two variables. We also give
several further generalizations (involving multiple series with essentially arbitrary terms) which are
shown to be applicable in the derivation of analogous summation formulas for hypergeometric series
(and polynomials) in three and more variables. Finally, with a view to presenting relevance of these
types of results in various seemingly diverse areas of applied sciences and engineering, some indication
of applicability is provided.

1980 Mathematics subject classification (Amer. Math. Soc): 33 A 30, 33 A 65.

1. Introduction

Making use of the fractional derivative operator 3)£ defined by

(1.1) Sf{z^} = r ^ ) ^ - " - 1 (M * A; X * 0,-1,-2,...),

Manocha and Sharma ([1], [2]) derived a number of interesting sums involving
products of a certain class of Gaussian hypergeometric 2FX polynomials. Re-
cently, while correcting several errors in some of the results of Manocha and
Sharma [1], Qureshi and Pathan [4] applied the fractional derivative operator 3)£
along the lines of Manocha and Sharma [1] in order to establish the formula (see
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[4, page 178, Equation (2.4)]):

[2]

f
x)

\-n, a + N-n; 1 [-«, c;
•2FA X\2FA

[ b + N-n; J [ d;

_ (a)N

{b)N
3*2

-N, 1 - b - N, c;

1 - a - N, d;

which is due to Manocha and Sharma [1, page 475, Equation (31)]; they also gave
an alternative proof (without using 2%) of the following result of Manocha and
Sharma (see [2, page 233, Equation (15)]; see also [4, page 180, Equation (3.5)]):

N

n = 0

- / I , a;

-N, l - b - N , c\
y_
X

1 - a - N, d;

where (and throughout this paper) (k)n = T(X + n)/T(\).
In our attempt to present a direct (rather elementary) proof of the summation

formula (1.2), without using the fractional derivative operator 3)*, we were led
naturally to an interesting unification (and generalization) of a fairly large
number of finite summation formulas including, for example, (1.2) and (1.3)
which happen to be among the main results of [1], [2], and [4]. In Section 2 we
state and prove this basic result, and briefly remark on its numerous (known or
new) special cases associated with certain classes of hypergeometric polynomials
in one and two variables. Finally, in Section 3 we give several further generaliza-
tions involving multiple series with essentially arbitrary terms, and show how
these general results can be applied with a view to deriving analogous summation
formulas for various classes of hypergeometric series (and polynomials) in three
and more variables. Some indication of applicability of these classes of summa-
tion formulas is also provided.
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2. Unification (and generalization) of (1.2) and (1.3)

189

In terms of the Pochhammer symbol (\)n used in (1.2) and (1.3), let Fp
g\

r
s\"

denote the generalized (Kampe de Feriet's) double hypergeometric series (see, for
example, [6, page 27, Equation (28) et seq.])

(<*,): K ) ; (O;
(2-1) x,y

(R):(bs);(dv);

= £ A
n

7 = 1 x y

7 - 1 /
7 - 1

where, for convergence,
(i) p + r < q + s + 1, p + u < q + v + 1, |JC| < oo, and |j>| < oo, or
( i i ) p + r = q + s + l , p + u = q + u + l , a n d

1*1 +\y\ < 1, rfp>q,
\max{|jc| , \y\} < 1, if p < q,

unless, of course, the series terminates [that is, when (for example) one of the
numerator parameters av...,ap is zero or a negative integer]; here, and in what
follows, (ap) abbreviates the array of p parameters av...,ap, with similar
interpretations for (/J^), et cetera, an empty product is to be interpreted as 1, and
none of the denominator parameters is zero or a negative integer.

Our unification (and generalization) of the summation formulas (1.2) and (1.3)
is given by

(2.3)
n-0 n (»,)*_. no»;),

pp.1 +r + p;l +u + h
' r a: s + a; v + k

n
( * , ) ; ( » . ) + JV-11;

l!mY'+"»JT—?
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7 - 1

j-i Y' (-y)

-N + l+m, (£h) + 1+ m,\ -(Sa) - N;

l+h+ork+p
o-oY

provided that each side exists, it being understood (in addition to the conditions
stated already) that x # 0, and I - yj - N * 0, - 1 , - 2 , . . . (j = 1,. . . , p).

PROOF. For convenience, let

p

(2.4) A, =

7 = 1

P

(2.5) « = 0,1,2,

and denote the left-hand side of (2.3) by 5. Then, making use of the definition
(2.1), we readily have

= £
/ = 0

l\ m\

and, upon replacing n by « + /, we find that

(2-6)
i.t-o (N-l-m)\
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Since

(2.7)

and

(2.8) l+m + n ~ Vl+

the right-hand side of (2.3) follows when we substitute from (2.7) and (2.8) into
(2.6), and rewrite the innermost sum as a generalized hypergeometric polynomial.

REMARK 1. In view of the elementary identity

(2.9)

the second member of (2.3) simplifies considerably when we set
r = s = u = v=-0, and we thus obtain the summation formula:

n («,)„_„ no»A

p.l +pA+h
q: o; k

(ap):-n, (yp) + N - «; -N + n, (ih) + n;

k:q;p

7-1

-tf, ( { * ) : ( « , ) ; ! - ( 8 . ) - J V ;

x

in terms of a terminating version of the generalized Kampe de Feriet series
defined by (2.1).
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REMARK 2. For Y = y, (2.10) reduces immediately to the elegant form:

[6]

(2.U)
XI

7 - 1 7 = 1

q: o;
x,y

n;

-N, Uh),l-(Sa)-N;

which evidently yields the summation formula (1.2) in the further special case

when p = q = 0 and h = k = p = a = l.

REMARK 3. Yet another interesting special case of our formula (2.3) occurs

when we set h = k = p = o = 0 and Y = x. Since it is easily verified that

(2.12)
-N + I + m;

1
N-l-m

= E — I - m

0, otherwise,

it follows from (2.3), in this case, that

( a p ) : - n , (ar);-N + n , { c u ) ;

(2-13)
{d0);

q

n
7=1

p
uA r+v

7 = 1

-N,

l-(ar)-N,{dv);

provided that 1 - ay - N # 0, - 1 , - 2 , . . . (j = 1 , . . . , r). The summation for-
mula (1.3) is an obvious further special case of (2.13) when p = q = 0 and
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Indeed, by suitably specializing each of the summation formulas (2.9), (2.11)
and (2.13), we can deduce a fairly large number of results which are scattered
throughout the literature (see [1], [2], and [4] for details).

3 . Further generalizations and multivariable applications

A closer examination of the proof of the general hypergeometric summation
formula (2.3), detailed in Section 2, suggests the existence of a much deeper
further generalization involving double series with essentially arbitrary terms
(subject, of course, to existence and convergence requirements). More generally,
for every bounded multiple sequence

{«(&!, . . . ,£ , . ; l,m,n,t)}, kJtl, m, n, t = 0 ,1 ,2 , . . . (j = 1 , . . . , r ) ,

we can apply the proof of (2.3) mutatis mutandis in order to establish the
following multivariable extension of (2.3):

(3-1)
N Y ° " N"

L (N-l-m _ I \ Q { k i t...,kr.,i,m,N-n,i+m + n ) ,

which holds true whenever each side exists.
Formula (3.1) reduces to the hypergeometric sum (2.3) in the special case when

z1 = • • • = zr = 0 and [see Equations (2.4) and (2.5)]

(3.2) fl(0, . . . , 0 ; l,m,n,t) = \l+m fi, vm0n<t>, (I, m, n, t = 0 , 1 , 2 , . . . ) .

In view of the elementary series identity (2.9), a special case of (3.1) when

(3.3) a(kx,. . . ,*, ; /, m, n, t) = A(ku ..., kr; I + m, n, t),

where { A(fcx,..., kr; I, m, n)} is a bounded sequence of multiplicity r + 3, yields
the following multivariable extension of the general hypergeometric summation
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formula (2.10):
(3.4)

kr v / «,w

n-0

which, for Y = y, reduces immediately to the elegant form:
(3-5)

N • , _.% , . . v „ o o « N-n

E E

J - J E
For zx= • • • = zr = 0, this last summation formula (3.5) would provide a

generalization of the hypergeometric sum (2.11) to double series with essentially
arbitrary terms. A similar multivariable extension of the hypergeometric summa-
tion formula (2.13) follows from (3.1) upon setting Y = x and

(3.6) « ( & ! , . . . , £ , ; l,m,n,t) = A(klt...,kr; l,m),

kj, l,m,n,t = 0 , 1 , 2 , . . . (j = l , . . . , r ) ,

where {A(k1,...,kr; I, w ) } i s a bounded sequence of multiplicity r + 2; making
use of the identity (2.12), we thus obtain the summation formula:

(3.7) £ ( - l )" (£ ) £ E E ' A ^ , . . . , * , ; / , m)
n = 0 * ! , . . . , Jtr = O / = 0 m = 0

- * W E ( ; ) ( - ^ ) " E A ( k l , . . . , k r ; N - * , « ) £ • • • £ ,

provided that both sides exist.
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By appropriately specializing the multiple sequences involved, each of our
general results (3.1), (3.4), (3.5) and (3.7) can now be applied with a view to
deriving the corresponding finite summation formulas for various classes of
hypergeometric series (and polynomials) in three and more variables, such as the
(Srivastava-Daoust) generalized Lauricella series in r + 2 variables (see [6, page
37, Equation (21) et seq.]). For example, in terms of Srivastava's general triple
hypergeometric series F(3)[x, y, z] (see [5, page 428]; see also [6, page 44,
Equation (14) et seq.]), the special case r = 1 of our last result (3.7) can be readily
applied to deduce the following three-variable generalization of the hypergeomet-
ric summation formula (2.13):

(3-8)
n = 0

- H , n, ( c j ; (eT);
x,y,z

7 - 1 y - 1 7 - 1

k: r+v\q+i>)

(Vk): l-(ar)-N,(dv);

(ap) + N,{eT);

where a horizontal dash indicates an empty set of parameters, and (as before)
x * 0 and 1 - a, - N * 0, - 1 , - 2 , . . . (j = 1,. . . , /•).

The hypergeometric summation formula (3.8), which indeed is contained in
such substantially deeper results as (3.1) and (3.7), unifies and generalizes scores
of hitherto scattered results in the literature (see [3] for details). It corresponds,
when z = 0, to the hypergeometric summation (2.13). More importantly, (3.8)
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reduces, when h = k = 0, to the interesting form:

(3.9) £ (-iy(»)F<»

-n, (ar);-N + n, ( c j ; (eT);
x,y,z

n
7 - 1 7 - 1

(ap)+N,(er);

7 - 1 7 - 1

1 + i p
+ u r+v

-N,

l-(ar)-N,(dB);

which (in conjunction with various known summation theorems for generalized
hypergeometric series [6]) is capable of yielding numerous results of possible use
in applied mathematics and theoretical physics. Indeed, it is well known that
hypergeometrtic series (and hypergeometric polynomials) in one and more varia-
bles occur rather frequently in a wide variety of problems in applied mathematics
and theoretical physics, and also in engineering sciences, statistics, and operations
research (see, for examples, Srivastava and Karlsson [6, Section 1.7] and the
various references cited there). For instance, a considerably vast field of physical
and quantum chemical situations lead naturally to such special cases of the
hypergeometric polynomials

(3-10)

as the Bessel polynomials and the classical orthogonal polynomials including, for
example, Hermite, Jacobi (and, of course, Gegenbauer, Legendre, and
Tchebycheff), and Laguerre polynomials, many of which occur, among numerous
other places, in Schrodinger's wave mechanics. In particular, in the evaluation of
multicentre integrals in certain variational calculations of molecular electron
structure, one often encounters such integrals as

(3.11)
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where L(
n
a)(x) denotes the Laguerre polynomials

which satisfy a large number of useful summation (or addition) formulas includ-

ing

(3.13) £ Urn){x)I$+?(y) = L<S+»{x + y),

(3.14)
n _ 0

= (-l)N(x+y)N
 p(a.B,ly-x

( l)(fi l) N \ +

and

(3.15)
k = 0

where P^a^\x) denotes the classical Jacobi polynomial and yfc(x1,..., jcr) is a
certain hypergeometric polynomial in r variables.

In the special case when r = 2, if we replace the Laguerre polynomials by a
substantially more general hypergeometric polynomial of the type defined by
(3.10), the integral in (3.11) would lead to a double hypergeometric polynomial
belonging to the class considered in this paper, and the needed results like (3.13)
and (3.14) would follow upon suitably specializing the finite summation formulas
which we have presented here.

We conclude by remarking that such summation (or addition) formulas as the
ones given in this as well as the preceding sections, involving hypergeometric
polynomials in one and more variables, would considerably facilitate the calcula-
tion of various multicentre integrals associated with hydrogenic-like functions.
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