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Fredholm theory for

arbitrary measure spaces

C.S. Withers

The classical formulae for Fredholm integral equations, including

expansions in terms of eigenfunctions such as Mercer's Theorem

are extended to square-integrable kernels on an arbitrary measure

space.

1. Introduction

We shall generalise the results of Withers [&] on Fredholm integral

equations for n x n matrix kernels from Lebesgue measure on ir to an

arbitrary measure space (fi, A, y) . Our statement of Mercer's Theorem in

§3 requires a topology on fi and for the f i r s t time is extended to kernels

which have an infinite number of both positive and negative eigenvalues.

That such an extension was possible for Q a locally compact space and

positive semi-definite kernels was noted by Gohberg and KreTn [2] , p. 113.

Partial results had been obtained for special cases in ir by Kneser,

Lichtenstein and Gunther; (see Smirnov, [5] , §^9)- We shall assume

throughout that L (fi, A, \x) is separable. This condition is discussed in

§ 4 .

Some of the basic results in §2 are known to hold for completely

continuous linear operators on a Hilbert space; see, for example, Gohberg

and KreTn [2], pp. 28, 111, 168, and 1.2, p. 207- The same authors ([2],

p. 123) consider extensions to "matrix measures":
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2 8 4 C . S . W i t h e r s

(No/O)(*) = j NQ(x, y)dvQ{y)fQ(y) , NQ symmetric.

n*n nx-n nxl

However by choosing a measure y dominating the elements of y 5 th is

case easily reduces to the case we consider, provided T = -^7- has an

inverse almost everywhere (y) in ft , for then

where

(N/)(x) = j N(x,

N(x, y) = T*(x)NQ(x, y)T{y)

is symmetric, that is, M* = M ,

f = TfQ , g = TgQ .

Finally recall that the solution of / - AM/ = g requires that

condition (l) below on M merely be satisfied by M for some m i l ,

(/-AM)"1^ = {l-Xtf)-1.^ + AN + . . . + ) s

(For example for ft a bounded set in if and iV(ar, 1/) = | x-y | ~ , we need

not a < p/2 but a < p ; see Pogorzelski [3 ] , p. 79.)

2 . Some genera l r e s u l t s

We shal l use the notation of Withers [ £ ] , including the definition of

eigenvalues {A-} and eigenfunctions {<)>•}, , and the use of script to

denote the operator associated with a kernel , with the understanding that

ft i s now a general set and integration with respect to Lebesgue measure

over ft occurring in [£] i s replaced by integration with respect to y .

Then Fredholm's Theorems and the resu l t s of §2, i1* of [S] carry over. (An

al te rna t ive proof i s given by the method of Smithies [6] . )

We assume throughout that If i s a complex measurable n x n function

2
on ft satisfying
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(1) 0 < j j \\N(x, y)fdv(x)d\i(y) < - .

This condit ion ensures the exis tence of so lu t ions t o

N<ji = A"1^ , N*\\> = X"1^ , 0 < \<t>\2d\i < °° , 0 <

whenever A i s an eigenvalue of N , t h a t i s a zero of

{ /•A r

- \ d\ \ trace[N(x, x, \)-N(x, x))dv.(x)\ .

Thus if

(3) I

then

-A trace

Hence forward we shall assume that N is symmetric:

(5) N*(y, x) = N(x, y) in fi2 .

One can show tha t when N i s bounded and \i(Q) < °° then

(6) 3(A) = T T (l-A/A.)exp{A/A.} ,

so t h a t by ( 2 ) ,

(7) t r a c e N ( x , x ) d y ( x ) = [ A .~P , p = 2 , 3 , . . . ,

J r 1

where W i s the kerne l of AT ; ( e / . [ 3 ] , p . 178, where fc should be

z e r o ) .

In §3 we s h a l l obtain (6) and (7) under d i f f e r en t cond i t i ons .

Let ft be any measurable subset of Q such t h a t y (ft-fi ) = 0 .

Note tha t / - AW/ = g defines f in ft - Q in terms of g in ft - ft

and / in ft , so t h a t we need only solve for / i n ft .

For g rea te r completeness we add the following g e n e r a l i s a t i o n s of the
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Hilbert-Schmidt Theorem and the mean-convergence theorems.

Suppose N s a t i s f i e s ( l ) , ( 5 ) , and

(8) sup [ \\N(x, y)fd\i{x) < °° .

Suppose also h is a complex measurable n x 1 function on ft such

that \h\2 = \h{x)\2dv-{x) < °° , and f = Uh . Then the Fourier series

r.x_/ , j.*f is absolutely and uniformly convergent in ft and equals

f(x) almost everywhere (u) in ft . When (l), (5) hold then for

p = 1, 2, ... ,

V , 2

<j> .(x)<j) . (w ) * A . - $ \x* y) d\i\x)d\i\y) -

v % t p

trace N {x, x)d\i{x) -

as q -»• » by (7).

A stronger result is given by the following lemma needed for Mercer's

Theorem. (See, for example, [3], p. 130, for the method of proof.)
LEMMA. When N satisfies (l), (5), and

oo

(9) I |<}>.(x)| /|X.| converges uniformly in ft
1 v

' I P ! \_** \J I f I-* ttâ  J- -̂J Ci^T-' tT./ fa kS I \*f J- I ' i iS "SI L* I I* U /*\

t- 0

then

(10) \ <f>. (x)<j> .{y)*/\. = N(x, y) almost everywhere (yxy) in Q. ,

and the convergence is (elementoise) absolute and uniform.

Formula (10) is the function form of the formula for Hermitian

matrices: N = U A U* where UU* = 1 and A is diagonal.

3 . Merce r ' s Theorem

Suppose (ft, T) i s a t opo log i ca l space. Taking any fL as in §2,

https://doi.org/10.1017/S0004972700023881 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023881


Fredholm t heo ry 287

l e t TQ = {Tnfio : T € T} .

THEOREM 1 . Suppose N satisfies ( l ) , ( 5 ) , and

( 1 1 ) for x in Q , for some m > 1 ,

trace ( i ^ U , x)-2Re N2Jx, y)+N2Jy, y))

is continuous at y = x .

Then {<{>.} are continuous in Q, . Suppose also that

(12) N has only a finite number of negative eigenvalues,

(13) sur> trace N(x, x) < °° ,

o
N is continuous in fi

Then (10) holds.

NOTES (i) If Q is the support of \i , in the sense that

(15) every T t <\> in Q contains a measurable set of positive

measure,

then (10) and (xU) imply

CO

(16) I X^bAx^Ay)* = N(x, y) in fi/ .

In particular (15 ) holds for £2 c if if n consists of the points of

increase of \i .

(ii) Condition (lU) may be weakened to

(3.1+') Re N.. is continuous at each (x, x) in Q , 1 £ i 5 n .

However (lit1), (13) (and (ll) if N has negative eigenvalues), imply

(ll*) via the inequality for positive semidefinite A' :

(IT) W x , y)-N(x', y')f s
S trace yv(x, a;)trace (iV(j/, y)+N(y', y')-ZRe N(y, y'))

+ trace iV(j/' , j / ' )trace [N(X, x)+N(x', x')-2B.e N(x, x')) .

In p a r t i c u l a r ( 8 ) , (9) of Withers [S] imply N i s continuous in Q
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so that by Mote ( i ) the conclusion there and (12), (13) of [£] hold

2
everywhere in fi

( i i i ) Suppose y(fl) < °° 3 [p, , T ) compact. Then (lM ensures that

conditions ( l ) , (13) hold; also the inequality

f \\N{x, s)-N{y, s)fd\i(s) 5 y(f2) sup | | tf(x, s ) - # ( # , s ) | | 2

implies that ( l l) holds when (fi., T ) iff metrisable.

(iv) 4s m iMcreases3 ( l l ) becomes weaker.

Proof. This i s v i r tual ly unaltered from that of Theorem 1 of [S] ,

consisting of proving that (9) holds, "by showing that

N(x, x) - u ..̂  , r^..,,

is real and non-negative where {X , ..., X } includes all negative

eigenvalues.

When trace N(x, x) is bounded away from zero, (13) may be removed.

COROLLARY 1 . Suppose N satisfies the conditions of the theorem

with (13) replaced by

(18) 0 < trace N{x, x) in Q .

Let ^n(
x? y) ~ K{x)N(x, y)K(y) where K(x) = (trace N(x, x))~2 . Let

d\iAx) = trace N(x, x)d\i{x) , and § .{x) = §.{x)K(x) . Then (10) holds

with N, y, {if)-} replaced by i1/., \x^, \^^-\ • Hence if also
^ 0 0 0̂-

(19) 0 < inf trace N(x, x) ,
o
0

then (5) holds.

Proof. {lk) implies K(x) > 0 , so that

where § = K'§ . Also N {x, y) = K(x)N (X, y)K(y) . In some
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applications a version of the theorem is required when there are an

infinite number of both positive and negative eigenvalues. For this

purpose it is convenient to introduce the notion of the positive and

negative parts of N .

DEFINITION. By the 'positive' and negative' parts of N we mean

N = %(P+N) , N~ = %(P-N) where P is the kernel associated with the

unique non-negative square-root of the operator N ; (see, for example,

[4], p. 265). N , N can also be characterised as the almost everywhere -

unique positive semi-definite kernels satisfying (5) such that almost

everywhere (uxu) N = N - N~ and N is orthogonal to N~ :

M N" = N N = 0 . Continuity of N need not imply continuity of N , N~ ;

(see the example in [2], p. 118).

COROLLARY 2. Suppose N satisfies (l), (5), (ll). If N+, N~

satisfy (ih), and either (13) or (19), then (10) holds, and

(j) .{y)*/\. almost everywhere in Q ,

4> •(x)<$> .(#)*/A. almost everywhere in Q

the convergence being absolute and uniform.

Proof. By (ll), {*.} are continuous. Also (l) implies (l) for N ,

N . Now, {<(>•, A. > 0} and {<(>., X. < 0} are the eigenfunctions and
u *L 1,1,

eigenvalues of N , N~ to which we apply Theorem 1.

As in [S] we have the following expansions for the iterates and the

resolvent.

COROLLARY 3. Under the conditions of Theorem 1 or Corollary 2 for

J > 1 ,

r* — "7* P

(20) N.(x, y) = I A. d<f>.(x)<t>.(y)* almost everywhere in fi ,
J Is % Is U

(21) N(x9 y, X) = Z(^.-X)" ((>. {x)§ . {y )* almost everywhere in Q >

'Is Is is 0

if A is not an eigenvalue.

The convergence in (20) and (21) is absolute and uniform in £2. . If

N~

(x,

(x,

y)

y)

i

A.'

= _

>o

I
A . < 0

Is
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a l s o (15) h o l d s , t h e n we may d e l e t e " a lmos t e v e r y w h e r e " so t h a t (7) and (6)

h o l d .

Hence (15 ) and t r N (x, x)d\i (x) < °° , t r Pl~(x, x)d\i{x) < °°

imply

D{\) = y\ (i-x/x^.) .

We may compare these conditions with those of

THEOREM 2. If (l), (5), (8), (ll) for m = 1 , and (15) hold, then

(22) N.(x, y) = I \.-J<S>.(x)<t>.{y)* in fj 2 * j > 2 ,

c o n y e r g ' e n c e being absolute and uniform, and hence ( 7 ) aw<i ( 6 ) hold.

Proof. By (l l) for m = 1 , the right hand side of (22) is continuous

in y for a l l x in 0 .

r ?
For j > 1 l e t E. = \\N. ( s , x ) du (s ) . Then E.,., 5 £•.

J J J j + 1 J

so t h a t by ( 8 ) , £". i s bounded , «/ > 1 . For j > 2 ,

| | i V . ( z / , x ) - N . { y ' , x ) \ \ 2 = I ( f f ( j / , s ) - N ( y ' , s ) ) N . A S , x ) d \ i [ s ) 2
0 3 I I ; "7"-1-

S j ||iy(y, s)-N(y', s)\\2du(s)-Ej_1 .

Hence by (ll) for m = 1 , the left hand side of (22) is continuous in y

for all x in Q .

Kence by (6) of Withers [«], and (15), (22) holds.

Finally we give another mean-convergence theorem (cf. [3], p. 138)

THEOREM 3. If(l), (2), (8), (15) hold and

(23) for some x in Q and some m > 1 , Re trace N (x, y) and

trace N (y, y) are continuous at y = x ,

then for x, m as in (23)*
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(2U)
q 2

N (x, y) - i 4> •\X)<$> • (£/) X. d\i{y) =

= t r a c e N (x , x) - | | $ .(x) | X.~ ^ 0 as (? -»• °° .
1

Proof. {<}>•} are continuous at x by (23) so that by the generalised

QO

form of (6) of [Sj and (23), Re trace N (x, j/) - Re £ <(). (j/ )*()). (x)X .~2"?

is continuous at y = x and equals 0 almost everywhere (y) . Hence

(15) implies {2k).

4. Separability

We have assumed throughout that

Lo = V ' (n> A' V) •* &1, f y-measurable, \f\2d\i <

is separable. Here we note some conditions for this to be so.

THEOREM 4. If either

(a) X = (fi, T) is a locally compact, separable and metrisable

space, A contains the compact sets, and \i(K) < <*> for K

compact; or

(b) Q, € A , A is the o-algebra generated by some countable

subset of A , and y is a-finite;

then L is separable.

Proof. (a) follows from (13.11.6) of Dieudonne [ I ] . (b) follows from

Problems 5, 6, p . 38l of Taylor [ 7 ] .

By (b) we have

COROLLARY 4 . If 9, e (f ,

A = [Q.nB : B a Lebesgue-measurable set iin

ty : Cr •* R a Lebesgue-measurable function, d\i(x) = ty(x)dx , then L is

separable.
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