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Abstract

We prove that every for every complete lattice-ordered effect algebra E there exists an orthomodular
lattice O(E) and a surjective full morphism (j>E : O(E) —>• E which preserves blocks in both directions:
the (pre)imageofa block is always a block. Moreover, there is a 0, 1 -lattice embedding <p"E : E -*• O(E).

2000 Mathematics subject classification: primary 06C15; secondary 03G12, 81P10.

1. Introduction

Effect algebras have recently been introduced by Foulis and Bennett in [9] for the
study of the foundations of quantum mechanics. The class of effect algebras includes
orthomodular lattices and a subclass equivalent to MV-algebras (see [4]).

In [30], Riecanova proved that every lattice-ordered effect algebra is a union of
(essentially) MV-algebras. This result is a generalization of the well-known fact that
every orthomodular lattice is a union of Boolean algebras. Generalizing the terminol-
ogy from orthomodular lattices, a maximal sub-MV-effect algebra of a lattice-ordered
effect algebra is called a block. Later, Riecanova and Jenca proved in [24] that the
set of all sharp elements of a lattice-ordered effect algebra forms an orthomodular
lattice. Both papers show that the class of lattice-ordered effect algebras general-
izes the class of orthomodular lattices in a very natural way. In [18] a new class,
called homogeneous effect algebras was introduced and most of the results from [30]
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182 GejzaJenca [2]

and [24] were generalized for the homogeneous case. The main result of [18] is that
every homogeneous effect algebra is a union of effect algebras satisfying the Riesz
decomposition property.

Intuitively, one can consider the class of lattice-ordered effect algebras as an "un-
sharp" generalization of the class of orthomodular lattices, and the class of homoge-
neous effect algebras as an "unsharp" generalization of the class of orthoalgebras (see
[10]). In these generalizations, the role of Boolean algebras is played by MV-effect
algebras and by effect algebras with the Riesz decomposition property. The problems
concerning this generalization were examined, for example, in [31] and [19]. The
present paper continues this line of research.

The basic question we deal with in this paper is: "How are the blocks in a complete
lattice-ordered effect algebra organized?". The main result is that for every complete
lattice-ordered effect algebra E, there exists an orthomodular lattice O(E) and a
surjective full morphism of effect algebras <pE '• O(E) -> E such that for every
block B of O(E), <pE(B) is a block and for every block M of E, <p^ (M) is a block
of O (E). This shows that the block structure of every complete lattice-ordered effect
algebra is the same as the block structure of some orthomodular lattice. For the finite
case, this result was proved in [19]. Moreover, we prove that the lattice E can be
0, 1-embedded into the lattice O(E).

Our construction of O (E) is based on certain relations on the set of all quotients
(that is, comparable pairs of elements) of E. We hope that it will be possible to adapt
the techniques we have developed in this paper in order to deal with the more general
orthocomplete non-lattice-ordered case. Most of the theorems were designed with
this long-term goal in mind.

2. Definition and basic relationships

An effect algebra is a partial algebra (E; ffi, 0, 1) with a binary partial operation ©
and two nullary operations 0, 1 satisfying the following conditions.

(El) If a © b is denned then b ffi a is defined and a © b = b © a.

(E2) If a © b and (a © b) © c are defined then b © c and a © (b © c) are defined and
(a © b) © c = a © (b © c).

(E3) If a@b = a®c then b = c.

(E4) If a © b = 0 then a = 0.

(E5) For every a e E there is an a' e E such that a © a' = 1.

(E6) For every a e E, a © 0 = a.

Effect algebras were introduced by Foulis and Bennett in their paper [9]. In the
original paper, a different but equivalent set of axioms was used.
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[3] Lattice ordered effect algebras 183

In their paper [26], Chovanec and Kopka introduced an essentially equivalent
structure called a D-poset. Their definition is an abstract algebraic version the D-poset
of fuzzy sets, introduced by Kopka in the paper [25]. Another equivalent structure
was introduced by Giuntini and Greuling in [12]. We refer the reader to [7] for more
information on effect algebras and related topics.

One can construct examples of effect algebras from an arbitrary partially ordered
abelian group (G, <) in the following way: choose any positive u e G; then, for
0 < a, b < M,definea©6 if and only if a + b < u andputa©b = a + b. With such
a partial operation ©, the interval [0, u] becomes an effect algebra ([0, u], ffi, 0, w).
Effect algebras which arise from partially ordered abelian groups in this way are called
interval effect algebras, see [2].

In an effect algebra E, we write a < b if and only if there is a c e E such that
a® c = b. It is easy to check that for every effect algebra the relation < is a partial
order on E. Moreover, it is possible to introduce a new partial operation G; b 0 a is
defined if and only if a < b and then a ® (b Q a) = b. It can be proved that, in an
effect algebra, a © b is defined if and only if a < b', if and only if b < a'. The partial
operations © and 0 are connected by the rules

(2.1) a®b = {a'Qb)'

(2.2) a Q b = (a' © b)'.

Let Eo c E be such that 1 e EQ and, for all a,b e Eo with a > b,aQ b e Eo.
Since a! = 1 © a and a ffi b = (a' Q b)', Eo is closed with respect to © and '. We
then say that (Eo, ©, 0, 1) is a subeffect algebra of E. Another way to construct a
substructure of an effect algebra E is to restrict © to an interval [0, a], where a e E,
letting a act as the unit element. We denote such effect algebra by [0, a]E-

EXAMPLE 1. Let G be the set of all real functions, partially ordered in the usual
way. Let u be the constant function u(x) = 1. Then the restriction of + from G to
the set [0, u] gives rise to an effect algebra, which we denote by [0, l][Ot11. Note that
[0, l] t < u i is a complete distributive lattice.

Let Ex, E2 be effect algebras. A map (p : Ex -*• E2 is called a morphism of effect
algebras if and only if it satisfies the following condition.

(Ml) 0(1) = 1 and, for all a, b 6 Eu if a © b exists in £, then 4>(a) © <p{b) exists
in E2 and <p{a ®b)= 4>{a) ffi <t>(Jb).

Every morphism preserves ', 0, < and ©.
A morphism 0 : Ex -*• E2of effect algebras is called full if and only if the following

condition is satisfied.

(M2) If0(a)ffi0(&)existsin£"2and</>(a)ffi0(6) e 0(£,)thenthereexistai, bx e EX

such that Q] ffi bx exists in Ex and 0(a) = 4>ifl\) and <PQ>) =
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A bijective and full morphism is called an isomorphism of effect algebras.
An ideal of an effect algebra £ is a subset / of £ satisfying the condition

a,bel a n d a © f c e x i s t s <=$• a®bel.

The set of all ideals of an effect algebra £ is denoted by / (£ ) . I(E) is a complete
lattice with respect to inclusion.

An element c of an effect algebra is central (see [14]) if and only if [0, c] is an
ideal and, for every x e E, there is a decomposition x = JCI ® x2 such that xx < c and
x2 < d. It can be shown that this decomposition is unique. The set C(E) of all central
elements of an effect algebra is called the centre ofE. C(E) is a Boolean algebra. For
every central element c of £, E is isomorphic to [0, c]F. x [0, c']E- For every central
element c of E and every element a e E, a A c exists and the mapping oh>f lAc i sa
full morphism from E onto [0, c]E; in other words, (a\ ®a2) Ac = (a] Ac)® (a2 A c)
and a = (a Ac) ® (a A d).

If E is an effect algebra such that (E, <) is a lattice, then we say that £ is a
lattice ordered effect algebra. If (£, <) is a complete lattice, then we say that E is
a complete lattice ordered effect algebra. An orthoalgebra E (see [11]) is an effect
algebra such that a < a' implies a = 0. It is easy to check that an effect algebra £ is
an orthoalgebra if and only if a A a' = 0 for all a e E.

EXAMPLE 2. Recall, that an orthomodular lattice is an algebra (0 ; v, A, ', 0, 1)
such that ( 0 ; V , A , O , l ) i sa bounded lattice and a < b if and only if b' < a',a" — a,
a A a' = 0, (a v b)' = a' A £>', and the orthomodular law

(2.3) a < b = > i) = ( i v ( i A a ' )

is satisfied. Equip 0 with a partial operation as follows: a © b is denned if and only
if a < 6' and then a @ b = a v b. Then (O; ®, 0, 1) is an orthoalgebra. On the
other hand, for every lattice-ordered orthoalgebra ( 0 ; ®, 0, 1), (0 ; v, A, ', 0, 1) is an
orthomodular lattice. However, there exist non-lattice-ordered orthoalgebras.

EXAMPLE 3. An MV-algebra (see [4,28]) is a commutative semigroup (M; ®, ->, 0)
satisfying the identities x © 0 = x, ->->x — x, x ® -i0 = ->0 and

x © ->(x ®->y) = v © ->(y ® ->x).

There is a natural partial order in an MV-algebra, given by y < x if and only
if * = x © ->(* © ~>y). Every MV-algebra (M; ffi, ->, 0) can be considered as
an effect algebra (M;©,0, --0), when we restrict the operation © to the domain
{(*, y) • x < - y } .
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Every lattice-ordered effect algebra satisfies the de Morgan laws. More generally,
for an interval [0, a] and x, y e [0, a], we have

(2.4) a 0 (x V y) = (a Q x) A (a 0 y)

(2.5) a 0 (x A y) = (a 9 *) V (a Q y).

A substitution a = b' and an application of (2.2) now yields

(2.6) b®(xvy) = (b@x)v(b®y)

(2.7) b®(x Ay) = (b@x)A(b@ y),

for all ^ ,3; < b'.
Let E be a lattice-ordered effect algebra. For a pair of elements a, b e is, the

following conditions are equivalent:

• a Q {a A b) = (a V b) Q b.
• aQ (a Ab) < b'.
• There are a\,a2 such that a = a\ < a2, ax < b,a2 < b'.
• There are ax, c, b\ such that ax ® c © b\ exists and a = ax © c and i> = b\ ffi c.

If a, £> satisfy any (or, equivalently, all) of these conditions then we say that a, b are
compatible (in symbols a -o- ft). It is easy to check that a < b or a < b' implies that
a <-»• b. Moreover, a •<->• i» if and only if a •o- ft'. We say that a subset A c £ is
compatible if and only if we have a +*• b for all a, b e A. If M is a lattice ordered
effect algebra such that M is a compatible subset of M then we say that M is an MV-
effect algebra. It was proved in [5] that there is a natural, one-to-one correspondence
between MV-effect algebras and MV-algebras, as outlined in Example 3. Every MV-
effect algebra is a distributive lattice. A lattice-ordered effect algebra is an MV-effect
algebra if and only if, for all elements a, b,

aAb = 0 =>• a < b',

that means, the sum of every disjoint pair exists (see [1]). An orthoalgebra that is an
MV-effect algebra is a Boolean algebra.

Let L be a lattice. We say that Lo C L is a full sublattice of L if and only if

• for all A c. Lo such that V A exists in L, V A e Lo, and
• for all A c Lo such that / \ A exists in L, /\ A e Lo.

Note that a full sublattice of a complete lattice is complete.
Let E be a lattice-ordered effect algebra. A subeffect algebra of E that is maximal

with respect to the property of being an MV-effect algebra is called a block. According
to [30], blocks coincide with maximal compatible subsets of E. Moreover, every block
is a full sublattice of E, (see [24]). Since every singleton is a compatible set, a lattice-
ordered effect algebra is a union of its blocks.
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If L is a compatible sublattice of a lattice-ordered effect algebra, then there is a
block M 2 L. Since M is a distributive lattice, L is distributive as well.

If E is an orthomodular lattice then every block is a Boolean algebra. Thus, the
fact that every lattice-ordered effect algebra is a union of its blocks is a generalization
of the well-known fact that every orthomodular lattice is a union of Boolean algebras.

We say that an element a of an effect algebra is sharp if and only if a A a' = 0. We
write S(E) for the set of all sharp elements of an effect algebra E. An orthoalgebra can
be characterized by E = S(E). Every central element is sharp, hence C(E) c S(E).
In general, S(E) is not closed with respect to ©, (see [15]). However, by [24], if E
is lattice ordered, then S(E) is a subeffect algebra and a full sublattice of E. For a
block M of a lattice-ordered effect algebra, we have S(E) n M = S(M) = C{M),
(see [24]).

An effect algebra E is called homogeneous if and only if, for all u, vu v2 € E such
that u < V\® v2 < u', there are «i, u2 such that wi < i>i, u2 < v2, and u = u\ © «2-
Homogeneous effect algebras were introduced in [18]. Every orthoalgebra and every
lattice-ordered effect algebra is homogeneous. The set of all sharp elements of a
homogeneous effect algebra is closed with respect to ffi, hence it forms an orthoalgebra.

In [18], most of the results (concerning compatibility, blocks, and sharp elements)
from [30] and [24] were generalized for the homogeneous case. The situation is more
complicated here. In a homogeneous effect algebra, the blocks need not be lattice-
ordered anymore (they only satisfy the Riesz decomposition property) and the notion
of compatibility has to be generalized as well.

EXAMPLE 4. Let B be a Boolean algebra with at least two elements. Let us equip
B x B with a partial © operation as follows: (*i, x2) © (yx, y2) is defined if and only
if xy A y2 = x2 A j] = 0 and then

{xi,x2) © (yi,y2) = (xi V yx V (x2 A y2), x2 V y2 V (x, A yx)).

Then (B x B, ffi, (0, 0), (1, 1)) is an effect algebra denoted by DB. In DB, we have
(*i> x2) < (yu y2) if and only if x\ < x2 and yx < y2. Thus, DB is the same lattice
as the "ordinary" Boolean lattice B x B. However, if B has more than one element
then DB is not an MV-effect algebra: we have (1,0) A (0, 1) = 0 but (1, 0) © (0, 1)
does not exist.

It is easy to check that

and that

S(DB) = {(x,x):xeB).

Note that S(DB) is a Boolean algebra. This implies that S(DB) = C(DB). Since, for
\B\ > 1, there are unsharp elements in DB, DB is not an orthomodular lattice.
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3. Generalized test spaces

In this section we present a slightly generalized version of the notion of test space,
originally introduced by Foulis and Randall in [11] and [29]. Despite of its relative
simplicity, the notion of test space (and its generalizations) is a very useful tool for
construction of orthoalgebras and effect algebras. See for example [6], [8], or [19] for
constructions that use test spaces.

Let X be a nonempty set and let ^V, 2T be subsets of 2X. We say that a triple
(X, £?, jY) is a generalized test space if and only if the following conditions are
satisfied.

(GTS1) X =
(GTS2) Jf is an ideal of 2*, that is, Jf is nonempty and for all o h o 2 c X w e have
Oi U o2 e Jf if and only if O), o2 e Jf.

(GTS3) For all t, c t2 c X such that t, 6 &, we have t2 € & if and only if
t2 \ t, e JV.

(GTS4) For all t, c t2 c X such that t2 \ tx e JV, we have t, e & if and only if
t2 6 &.

A generalized test space is a test space if and only if JV = {0}. For a test space, the
Axioms (GTS2) and (GTS4) collapse to tautologies and (GTS3) transforms to

(TS) If t,, t2 e & and t, c t2, then t, = t2.

(GTS 1) and (TS) are the original axioms of a test space.

EXAMPLE 5. Let X be the system of all measurable subsets of the real interval
[0, 1]K and let & be the set of all finite systems t c X such that the elements of t
are measurable, pairwise disjoint and fj,(UA£tA) = 1. Let JV be the set of all finite
pairwise disjoint systems of sets with zero measure. Then (X, 3', JV) is a generalized
test space.

Throughout this section, we assume that (X, 5"", JV) is a generalized test space.
An element of S is called a test. Since X is nonempty, (GTS1) implies that there

is at least one test. We say that a subset f of X is an event if and only if there is a test
t e ^ such that f c t .

LEMMA 3.1. Every element of JV is an event.

PROOF. Let t, be a test and let oe^f. Put t2 = t, U o. We have t 2 \ t 1 c O £ t / .
Since jY is an ideal of sets, t2 \ t, e JV. By (GTS3), t, e Sf and t2 \ t, 6 JY imply
that t2 is a test. Thus, o c t2 is an event. •

The elements of JS are called null events.
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We say that two events f, g of a generalized test space (X, S?', jY) are

(i) orthogonal (in symbols f _L g) if and only if f n g e JY and f U g is an event,
(ii) local complements (in symbols f loc g) if and only if f D g € JY and f U g is

a test,
(iii) perspective (in symbols f ~ g) if and only if they share a local complement.

Note that every pair of tests is perspective, since 0 is a local complement of every
test.

LEMMA 3.2. For an event f we have f ~ 0 if and only iff e J/'.

PROOF. Suppose that f ~ 0. There is a test t such that f loc t. Since f U t is a test,
(GTS3) implies that f U t \ t = f \ f n t i s a null event. Since f loc t, f n t is a null
event. Therefore, f = (f \ f n t) U (f D t) is a null event.

Suppose that f e JY. Since f is an event, there is a test t 3 f • Since t D f = f e JY
and t U f = t e 9, f loc t. Since t is a test, 0 loc t. Therefore, f ~ 0. D

LEMMA 3.3. Let t be a test and let f be an event such that f ~ t. Then f is a test.

PROOF. Let h be a local complement shared by f and t. Both tUh and tare tests. By
(GTS3),tUh\t e JY. Sincetloc h,tnh e jY'. Therefore, h = (tUh\t)U(tr~lh) e JY
and, since f U h \ f c h, f U h \ f e / . By (GTS4), f U h e ^ a n d f U h \ f e ^
imply that f e 5 . D

We say that a generalized test space is algebraic if and only if for all events f, g, h
we have

f ~ g and f loc h =$• g loc h.

LEMMA 3.4. In an algebraic generalized test space, perspectivity is transitive.

PROOF. Suppose that f ~ g ~ h. There are events Ui, u2 such that f loc Ui loc g
and g loc u2 loc h. Since u2 loc h and U] ~ u2, Ui loc h. Therefore, f ~ h. D

Note that, in an algebraic generalized test space, both jY and SY are equivalence
classes of ~.

LEMMA 3.5. In an algebraic generalized test space, iff\ ~ f2 and fi _L g then

PROOF. Let h be a local complement of f] U g. Since fi loc h U g and fi ~ f2,
f2 loc h U g. This implies that f2 1 g. Moreover, as fi U g loc h loc f2 U g,
f, U g ~ f2 U g. •
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THEOREM 3.6. Let (X, &, J/) be an algebraic generalized test space. Let <? be
the set of all events of {X, S?, jV). Define on &'/ ~ a relation L and a partial
operation © with domain ± in the following way: [f]~ ± [g]~ if and only iff ± g
and then [f]~ © [g]~ = [f U g]~. Then (S/ ~, ©, jV, 3T) is an orthoalgebra.

PROOF. Let us prove that J_ and © are well-defined. Suppose that fi ~ f2 and
gi ~ g2 and fi -L gi. By Lemma 3.5, f! i . g2 and fi U gj ~ fi U g2. Again, by
Lemma 3.5, this implies that f2 ± g2 and fi U g2 ~ f2 U g2.

(El) is trivially true, so let us prove (E2). If both sides of the associative equality
exist, they are (obviously) equal. Suppose that ([f]~ © [g]~) © [h]~ exists. Then f _L g
and ([f]_ © [g]~) = [f Ug]~. Therefore f U g ± h and we see that [fU © ([g]^ © [h]_)
exists.

Let us prove (E3). Suppose that [f]~ © [h]~ = [g]~ © [h]~, that means, f, g _L h
and f U h ~ g U h; let u be a common local complement of f U h and g U h. We see
that h U u is a common local complement of f and g, therefore f ~ g and [f]~ = [g]~.

(E4) is trivial, so let us prove (E5). For an event f, [f]'_ is just the set of
all local complements of f. Obviously, [f]',, can be characterized by the property
[f]~ © [fL = P.

The proof of (E6) is trivial.
Finally, let us prove that [f]~ < 0X implies [f]~ = Jf. Since f ± f, we have

f n f = f e JV. Therefore [f]^ = JY and we see that (g/ ~, ©, jV, 9~) is an
orthoalgebra. D

The orthoalgebra {SI ~, ©, Jf, £T) is called the orthoalgebra of the generalized
test space (X, &

4. The generalized test space of quotients

In this section we introduce our main tool. For every homogeneous effect alge-
bra E we shall construct a generalized test space £l(E), where tests are finite sets of
comparable pairs (called quotients) with certain properties.

The origins of the notion of a quotient and the relations / and \ lie in lattice
theory, see for example [13, Section ELI]. However, the definitions of / and \
introduced here do not coincide with their lattice-theoretical versions, even in the case
of a lattice-ordered effect algebra (see the remark following Proposition 4.3). In the
case of an MV-effect algebra, our definitions coincide with their lattice-theoretical
counterparts.

Let E be an effect algebra and let P be a subposet of E. Let a/b denote an ordered
pair of elements of P satisfying a > b. We say that a/b is a quotient of P. The set
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of all quotients of P is denoted by Q(P). We say that c/d is a subquotient of a/b (in
symbols c/d c a/b or a/b 3 c/rf) if and only ifb<d<c<a.

If a > b, we say that a/b is proper, otherwise we say that a/b is nu//.
We write a/b /* c/d if and only if a < c, b < d, c Q a — d © b and

(c Q a) A (a Q b) = 0. We write a/b \ c/d if and only if c < a, d < b,
a © c = b © d and (a © c) A (a © 6) = 0. It is easy to check that a/b \ c/d or
a/b /* c/d implies that aQb = cQd.

PROPOSITION 4.1. Let E be an effect algebra and let a/b, c/d e Q(E). The
following are equivalent:

(i) a/b \ c/d;
(ii) c/d / a/b;

(iii) b'/a' / d'/d;
(iv) d'/d \ b'/a'.

PROOF. The proofs of the equivalence of (i) and (ii) and of (iii) and (iv) are trivial.
Let us prove that (i) implies (iii). Since c < a, a' < d. Since d < b, V < d'. We

have

,d' e b' = (d' © b')" = (d® b')' = (b' ®d)' = bQd.

Similarly, d © a' = a © c and b' Q a' = a Qb. Therefore,

d'eb' = bOd — aGc = c'Qa'

and

(d' © b') A ib' © a') = (bed)A(aGb) = (aec)A(aGb)=O.

Let us prove that (iii) implies (i). By the previous parts of the proof,
b'/a' / d'/d = » d'/d \ b'/a' =>• c/d / a/b =>• a/b \ c/d. D

EXAMPLE 6. Let [0, l][0-1! be the effect algebra of all real functions of a real variable
[0, 1] -> [0, 1]. For a/b, c/d e Q([0, l][01]) we have a/b \ c/d if and only if, for
all x e [0, 1], a(x) ^ c(x) or b{x) £ d(x) imply a(x) = b(x) > c(x) = d{x).

For example, we may take

(see Figure 1).

a(x) = \x-O.5\+0.5,

b(x)=x, d(x) = 0.5 - \x - 0.5\

EXAMPLE 7. Let £ be a 6-element effect algebra with two atoms a, b, satisfying
a®a@a = a@b@b = \. On Q(E), the \ relation is not transitive: we have
I/a' \a® b/b and a ® b/b \ a/0, but I/a' X, a/0, because a A a' = a £ 0.
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0.2 0.6 0.8 1.0 0 0.2

FIGURE 1. a/b \ c/d in [0,1]'011

0.6 0.8

PROPOSITION 4.2. For every homogeneous effect algebra, /* and \ are transitive.

PROOF. Let E be a homogeneous effect algebra and let a/b, c/d, e/f e Q(E).
Assume that a/b /* c/d and c/d /* e/f. Obviously a < e and b < / . We see that

e Q a = (e Q c) ® (c © a) = (f © d) ® (d © b) = f Q b.

Suppose that* < eQa,aQb. SinceeQa < (aQb)' < x'andeQa = (eQc)®(cQa),
we obtain

x < (e 0 c) © (c 9 a) < x'.

Since E is homogeneous, there exist X\ < eQc andx2 < cQa such that x = x\ ©x2-
However, as c0<i = a ©ft, we have (e©c) A(c©<f) = (eQc) A (aQb) — 0 and thus
*i < eQc, aQb implies that xx = 0. As x2 < c © a, a Q b and (c © a) A (a © b) = 0,
*2 = 0. Therefore, (e Q a) A (a © b) = 0 and a/* /* e / / .

Assume that a/b \ c/d and c/d \ e/f. By Proposition 4.1, this is equivalent
to b'/d / d'/c' and d'/c' / f'/e'. Since / is transitive, b'/a' / f'/e' and hence
a/b \ e / / . D

PROPOSITION 4.3. Ler E be a lattice-ordered effect algebra and let a/b, c/d 6
Q(E). Then

(i) a /6 / c/d if and only if a *+ d, aV d = c, a Ad = b,
(ii) a/b \ c/d if and only ifc*+b,cVb = a,cAb = d.

PROOF. (i) Suppose that a/b / c/d. Since (cQa) @(a Qb)®b exists, the set
{cQa, aQb, b] is compatible and can be embedded into a block M. Asa = (aQb)®b,
a € M. Since c © a = d © b, we see that d = (dQb)@b = (cQa)®beM.
Therefore, a -o- rf. We see that

c © (a v d) = (c © a) A (c © rf) = (rf © b) A (a © b) = 0.

Therefore c = av d.
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Since a -o- d and c Qd = aQ b,

Therefore a Ad = b.
Suppose that a <* d, a v d — c and a A d = b. Obviously, a A d < a and
d < a v d. Since a -o- d, (a v d) © a = d © (a A b) and it is easy to check that
[a 0 (a A d)] A [d 0 (a A d)] = 0.

(ii) This follows from (i) by a permutation of {a, b, c,d). •

REMARK. In lattice theory, the relation /* is denned by the rule

ajb / c/d <=>• av d — c and a Ad = b

and \ is defined in a dual way. By Proposition 4.3, our "effect-algebraic /" is
more restrictive than the original lattice-theoretical /*. Both definitions coincide for
MV-effect algebras, because in this case the additional condition a -o- d is clearly
satisfied.

In what follows, the symbol s denotes the transitive closure of ( \ U /*). Obvi-
ously, = is an equivalence relation.

EXAMPLE 8. Let a/b, c/d e 0([O, l][01)). We have a/b = c/d if and only if for
all x e [0, 1]

a(x)^c(x) or b(x) ^ d(x) => a(x) = b(x) and c(x) = d(x).

We say that quotients a/b and c/d are disjoint if and only if for all x/y and z/w,

a/b 3 x/y = z/w C c/d =>• x — y.

We say that a/b and c/d are orthogonal (in symbols a/b _L c/d) if and only if
a/b and c/d are disjoint and (a Q b) © (c © d) exists in E. We say that a finite set f
of quotients is pairwise orthogonal if and only if any two distinct elements of f are
orthogonal. We say that a finite set of quotients f = [a\/b\,..., an/bn] is orthogonal
if and only if f is pairwise orthogonal and the sum |f | defined by

|f| = (a, ©/>,)©•• -®(anebn)

exists in E.

EXAMPLE 9. In [0, l ] [ 0 1 ] , we have a/b JL c/d if and only if, for all x e [0, 1], the
intervals (b(x), a(x)] and (d(x), c(x)] are disjoint.
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FIGURE 2. a/b ± c/d in [0, I]10'1'

EXAMPLE 10. In an orthoalgebra, wehavea/Z? 1 c/d if and only if {aQb)@{cQd)
exists.

Note that, for a/b / c/d and x/y c a/b, there is xo/yQ C c/d with x/y / xo/yo-
Indeed, we may put x0 = x ® (c 0 a) and y0 = y ® (c Q a). There is an analogous
relationship between \ and E.

PROPOSITION 4.4. Let E be a homogeneous effect algebra and let a/b, c/d, e/f 6
Q{E). If a/b = c/d and c/d is disjoint with e/f, then a/b is disjoint with e/f.

PROOF. Suppose that a/b f c/d. Let x/y and z/w be such that

a/b 3 x/y = z/w C. e/f.

There is xo/yo c c/d with x/y / xQ/y0. However, since c/d 3 XQ/ya = z/w rz e / /
and c/d, e/f are disjoint, x0 = y0 and hence JC = y.

Similarly, a/b \ c/d implies that a/b is disjoint with e/f. The rest of the proof
is a simple induction. •

Let E be a homogeneous effect algebra. Let us extend the relation = to the set of
all finite subsets of Q(E): for two finite sets of quotients f and g we write f = g if
and only if the following symmetric pair of conditions is satisfied.

• For every proper a/b e f there is exactly one c/d 6 g such that a/b = c/d.
• For every proper a/b e g there is exactly one c/d e f such that a/b = c/d.

It is obvious that = is an equivalence relation on the set of all finite sets of quotients.
Note that f = 0 if and only if f contains only null quotients.

LEMMA 4.5. Let E be a homogeneous effect algebra and let f, g be finite sets of
quotients. Iff = g and f is (pairwise) orthogonal, then g is (pairwise) orthogonal.

PROOF. Suppose that f is pairwise orthogonal. Let a\/b\,ai/b2 e g such that
ax/b\ 5̂  a2/b2. If one of a\/bx, a2/b2 is null then fli/fci J. #2/^2. so let us assume
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that both a\/bi, a2/b2 are proper. Since f = g, there are C\/d\, c2/d2 6 f such that
= ai/bu c2/d2 = a2/b2 and C\\d\ ^ c2/d2. Since f is pairwise orthogonal,
_L c2/d2. Therefore, ax/b\ _L a2/b2.

Suppose that f is orthogonal. Then g is pairwise orthogonal and it remains to
observe that the elements occurring in the sum |f | are (up to some zeros) the same as
the elements occurring in the sum |g|. Therefore, g is orthogonal. EH

LEMMA 4.6. Let E be a homogeneous effect algebra and let

• t={a1/b1,...,an/bH}£Q(E)

be a pairwise orthogonal n-element set. Let

g = {cl/dl,...,cn/dn}^Q(E)

be a finite set such that, for all i e {1,... ,«}, Cj/dj = ai/bj. Then f == g.

PROOF. We have to prove that, for proper aj/bj and c,/d;, Oj/bj = c,/rf, implies
that i = j . Suppose that i ^ j . Since f is pairwise orthogonal, a,/fo, -L aj/bj.
However, a,/&, s c,/d, = aj/bj. Therefore, a,/fr, = aj/bj and this is a contradiction
with atfbi L aj/bj. D

Note that we cannot omit the assumption that f is pairwise orthogonal from
Lemma 4.6. To see this, let f = {a\/bi, a2/b2) be such that a\/b\ = 02/^2 and
ax/b\ is proper. Then for g = {a\/b\, a\/b\\ we have g # f.

Let E be a homogeneous effect algebra. Let & be the set of all finite orthogonal
sets t c Q(E) with |t| = 1 and let Jf be the set of all finite sets of null quotients.
We define a triple Q. (E) by £2 (E) = (Q(E), £?, JV). It is evident that Q, (E) forms a
generalized test space. Note that, for all events f, g of Q(E), f s g implies that f ~ g.

The main aim of the following two sections of this paper is to prove the following
theorem.

THEOREM 4.7. Let E be a complete lattice-ordered effect algebra. Let f be a finite
set of quotients of E. Then the following are equivalent:

(a) f is an event of Q(E);
(b) f is an orthogonal set of quotients;
(c) f is a pairwise orthogonal set of quotients.

It will then turn out that Q (E) is an algebraic generalized test space. Later we shall
prove that the orthoalgebra O(E) of ti(E) is actually an orthomodular lattice with
the same block structure as E.
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5. Reduced quotients

Let E be an effect algebra and let a/b e Q(E). We say that a/b is a reduced
quotient if and only if

a/b \ c/d =*• a/b = c/d.

Note that a/b is reduced if and only if x < b and x A (a Q b) = 0 imply x = 0.
A null quotient a/a is reduced if and only if a = 0. In an orthoalgebra, a proper

quotient a/b is reduced if and only if b = 0. On the other hand, in a totally ordered
effect algebra every proper quotient is reduced.

We say that a finite set {a\/b\, ..., an/bm) of quotients is compatible if and only if
{a\,b\,..., an, bn) is a compatible set.

The aim of this section is to show that for every pairwise orthogonal finite set f
of quotients in a complete lattice-ordered effect algebra there exists a compatible
pairwise orthogonal finite set fR of reduced quotients with f s f 5 .

EXAMPLE 11. A quotient a/b e <2([0, 1][<M1) is reduced if and only if

a(x) = b(x) = » a(x) = b(x) = 0.

An effect algebra E is sharply dominating if and only if, for every x e E, the
element x^ defined by

** = f\ [t : t e [x, 1] n S(E)}

exists and is sharp. It is easy to see that in a sharply dominating effect algebra E, the
element x1 defined by

xi = \/{t:te[O,x]nS(E))

exists and is sharp for all x e E. Moreover, we have xv = xri and xu = xn. We say
that x^ is the sharp cover of x and that xl \s the sharp kernel of x. In his paper [3],
Cattaneo proved that for every sharply dominating effect algebra the set of all sharp
elements forms a subeffect algebra which is an orthoalgebra. See [16] for another
version of the proof.

EXAMPLE 12. The lattice-ordered effect algebra DB from Example 4 is sharply
dominating, even if B is incomplete. We have

(xux2y = (*i vx2,xi vx2) and
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We say that an effect algebra E is orthocomplete if and only if every chain has a
supremum in E. See [23] and [22] for results on orthocomplete effect algebras. A
lattice-ordered effect algebra is orthocomplete if and only if it is a complete lattice.

PROPOSITION 5.1. ([21, Corollary 5]) Every orthocomplete homogeneous effect
algebra is sharply dominating. Moreover, for every block M, x e M implies that

Since all complete lattice-ordered effect algebras are orthocomplete and homoge-
neous, we may apply Proposition 5.1 for them. Note that Proposition 5.1 implies that
every subset of a complete lattice-ordered effect algebra of the form [xl, x] U [x, x^]
is compatible.

LEMMA 5.2. Let E be a complete lattice-ordered effect algebra. For all y e E,
yri = y*' is the greatest element of the set

(5.1) {x e E : x < y and y A x = 0} .

PROOF. Let us prove that y 4 is the upper bound of the set (5.1). For every x,
x < y'. Therefore, x -o- y and there is a block M 2 {y,x}. By [21, Lemma 1],
y A x = 0 implies that yf A x = 0. Since M is an MV-effect algebra, this implies that
x < yv = y'K

Since y4 < y' and

y A y'; = y A yv < y1 A yv = 0,

y' ; belongs to (5.1). •

PROPOSITION 5.3. Let E be a complete lattice-ordered effect algebra and let
a/b 6 Q(E). The following are equivalent:

(i) a/b is reduced;
(ii) b/\{aQb)v = 0;

(iii) a < (a 0 Z?)t;
(iv) 6 < (a 0 &)* 0 (a e fc).

PROOF, (i) =$• (ii): Suppose that * < b,x < (aOb)p. Since x <b,x< (a eh)'.
By Lemma 5.2, x < (a Q b)v implies that x A (a Q b) = 0. Since a/b is reduced,
this implies that x = 0.

(ii) = > (iii): Let M be a block of E with a,b e M. By Proposition 5.1,
(a G ^ e M and hence (a 0 &)f/ e M. Since (a © ft)1' is sharp, (a Q b)v is central
in M. Thus, we may compute

a A (a 0 t)-f/ = ((a © ft) 0 ft) A (a © &)*' = ((a © ft) A (a © ft)1') 0 (ft A (a © b)v).
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By Lemma 5.2, (a © b) A (a © b)v = 0. By assumption, b A (a © b)v = 0. Since
a A (a © b)v = 0 and M is an MV-effect algebra, a < (a © b)v' = {a © b)f.

(iii) =>• (iv): Weseethata = {aQb)®b < (aQb)r,henceb < (a
(iv) ==> (i): Suppose that* < b,xA(aQb) = 0. SinceJ: < b <

we have x < (a Q b)'. By Lemma 5.2, x < (a Q b)' and x A (a 6 b) = 0 imply
* < (a 0 &)'1 = (a 6 b)^'. Since (a 0 ft)t A (a © b)v = 0,x = b. D

The following lemma is crucial.

LEMMA 5.4. Let E be a complete lattice-ordered effect algebra. Let a/b be a
reduced quotient of E and let M be a block of E with a © b e M. Then a, b e M.

PROOF. By Proposition 5.3, a < (a © b)f. This implies that a e [a © b, (a © Z?)t].
Therefore, by Proposition 5.1, a e M. Since a, (aQb) e M,b = aQ{aQb) e M. •

COROLLARY 5.5. Let E be a complete lattice-ordered effect algebra, let f be a finite
set of reduced quotients of E such that [a Q b : a/b € f} is compatible. Then f is a
compatible set of quotients.

P R O O F . Le t a/b, c/d e f. Since aQb <-> c © d, there exists a block M wi th
a Q b,c Q d e M. By Lemma 5.4, a, b,c,d € M. Therefore, {a/b, c/d} is a
compatible set of quotients. Thus, f is a compatible set of quotients. •

COROLLARY 5.6. Every reduced pairwise orthogonal finite set of quotients of a
complete lattice-ordered effect algebra is compatible.

PROOF. This follows from Corollary 5.5. •

EXAMPLE 13. If a/b is a quotient of [0, l][0 ' l ] then aR/bR is given by

aR = \a(x) if a(x) > b(x), = \b{x) if a(x) > b(x),
~~ (0 ifa(x) = b(x), X [0 ifa(x)=b(x).

(See Figure 3.)

Let E be a complete lattice-ordered effect algebra. Let us introduce a mapping
R : Q(E) -+ Q(E), given by a/b H* aR/bH, where aR = a A {a © Z?)t and
bR = b A(aQb)r. We say that aR/bR is tfie redwcf of a/b.

PROPOSITION 5.7. Let E be a complete lattice-ordered effect algebra. For every
a/b 6 Q(E), a/b \ aR/bR andaR/bR is reduced.
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FIGURE 3. a/b and aR/bR in [0,I]'0-"

0.6 0.8

PROOF. Obviously, aR < a and bR < ft. Let M be a block with a, ft e M. By
Proposition 5.1, (a © ft)1" e M. Since (a Q by is sharp, (a © ft)f is central in M.
Therefore,

aQaR = aO(a/\{aQ ft)*) = a A (a © ft)f/ = (ft © (a © ft)) A (a © ft)t;

= (ft A (a © b)v) © ((a 9 b) A (a © ft)1') = ft A (a © ft)f/

= ft©(ft A (a ©ft)1) = 6 © ft*.

Moreover,

(a © ft) A (a © as) = (a 0 ft) A a A (a © ft)f/ = 0.

Let us prove that aR/bR is reduced. By Proposition 5.3, this is equivalent to
bR A (a* © bRy = 0. Since a/b \ aR/bR, aQb = aRQbR. Thus,

bR A (a* © bR)v = ft A (a © ft)f A (a © ft)f' = 0. •

PROPOSITION 5.8. Let E be a complete lattice ordered effect algebra and let
a/b, c/d e Q(E). Then a/b ~ c/d if and only ifaR/bR = cR/dR.

PROOF. If aR/bR = cR/dR then a/b \ aR/bR = cR/dR / c/d.
Suppose that a/b /* c/d. By Proposition 4.3, a **• d so there is a block M with

{a, ft, c, d] c M. By Proposition 5.1, ( c e ^ e M f l 5(£) = C{M). Therefore,

cR = c A (c © rf)f = ((c © a) © a) A (c © d)f

= ((c © a) A (c 0 d)^) © (a A (c © d)1).

By Lemma 5.2, c © a < (c © d)' and (c © a) A (c © d) = 0 imply that

. cQa<(ced)a = (c 0d) t ; .
Therefore, (c © a) A (C © d)* = 0 and

cR = a A (c © rf)r = a A (a © ft)f = a*.

As a consequence, dR = c* © (c © d) = a" © (a © ft) = bR. •
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Let E be a complete lattice-ordered effect algebra. For a finite n -element set
f = {fli/fei ajbn) we write f* = [aR/bR, ..., aR/bR}.

PROPOSITION 5.9. Let E be a complete lattice-ordered effect algebra. Let f be
a finite pairwise orthogonal set of quotients. Then f = fR and fR is a painvise
orthogonal compatible set of quotients.

PROOF. By Lemma 4.6, f = fR. By Lemma 4.5, f* is pairwise orthogonal. By
Corollary 5.5, fR is compatible. •

6. Compatible sets of quotients

In this section we are going to prove a restriction of Theorem 4.7 for compatible
events, (see Proposition 6.6.) Using Proposition 5.9, it is then possible to extend the
result to the general case.

Let D be a bounded distributive lattice. Up to isomorphism, there exists a unique
Boolean algebra B{D) such that D is aO, 1-sublattice of B(D) and D generates B(D)
as a Boolean algebra. This Boolean algebra is called an R-generated Boolean algebra.
We refer to [13, Section II.4] for an overview of results concerning R-generated
Boolean algebras. See also [17] and [27]. For every element x of B(D), there exists
a finite chain x\ < • • • < xn in D such that x = x\ + • •• + xn, where + denotes
the symmetric difference, as in Boolean rings. We then say that {x,}"=1 is a D-chain
representation of x. It is easy to see that every element of B(D) has a D-chain
representation of even length.

Note that if D{ is a 0, 1-sublattice of a distributive lattice D2 then B(D\) is a
subalgebraof B(D2).

LEMMA 6.1. ([20, Lemma 7]). Let L be a finite 0, l-sublattice of an MV-effect
algebra M. The mapping <pL : B(L) —> M given by

(6.1) <PL(X) =

where {*,} ]̂ is a L-chain representation ofx, is a faithful surjective homomorphism
of effect algebras. The value of <j>L(x), as given by (6.1), does not depend on the choice

Note that, since every compatible 0, 1 -sublattice L of a lattice-ordered effect algebra
is a sublattice of some block M, Lemma 6.1 is true even if we merely suppose that L
is a compatible 0, 1-sublattice of a lattice-ordered effect algebra.
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Let L be a lattice. An element a of L is join-irreducible if and only if a = b v c
implies that a = b or a = c; it is meet-irreducible if and only if a = b A c implies
that a = b or a = c. The set of all nonzero join-irreducible elements of a lattice L is
denoted by J (L) and the set of all non-unit meet-irreducible elements of a lattice L is
denoted by M(L).

Let L be a finite distributive lattice. Then the mapping r : L ->• 2 7 a ) given by
r(x) = {a € 7(L) : a < x) is a 0, 1-embedding of L into 2y(L). Since, for every finite
distributive lattice L, r(L) R-generates 2J{L\ the injective mapping r : L -*• 2J(L)

uniquely extends to an isomorphism of Boolean algebras r : B(L) -> 2J(L).
In what follows, X/> denotes the usual covering relation on a poset P, so that a ^P b

if and only if b is a maximal element of the set [x e P : x < a}. In a finite distributive
lattice L, we have a >L b if and only if r(a) \ r(fc) is a singleton.

Let L be a finite distributive lattice. We have a € J(L) if and only if there is a
unique b such that a >L b. Therefore {a + b : a >L b, a e J(L)} is the set of all
atoms of B{L).

Let L be a finite 0, 1-sublattice of a lattice-ordered effect algebra E, and let
f = {a.\/b\,..., an/bm) be a compatible set of quotients such that f c Q(L). We
write

+f = al+bl + --- + an+bn,

where the + on the right-hand side is taken in B(L).

LEMMA 6.2. Let E be a complete lattice-ordered effect algebra and let {a/b, c/d}
be compatible. Let L 3 {a, b,c, d] be a finite compatible 0, X-sublattice of E. Then
a/b = c/d implies that a + b = c + din B(L).

PROOF. By Proposition 5.8, a/b = c/d implies that aK/bR = cR/dR. Let M be a
block of E such that L c M. Since a Q b e M, Lemma 5.4 implies aR/bR € Q(M).
Therefore {a/b, c/d, aR/bR = cR/dR] is a compatible set of quotients. Let L\ be a
finite compatible lattice such that L C L , C M and {aR, bR) c L\.

By Proposition 5.7, a/b \ aR/bR. By Proposition 4.3, ftva" = aandfcAa* = bR.
Therefore, we may calculate in B(L\) that

a + b = (bv aR) +b = a* + (b AaR) = aR + bR.

Similarly, c/d \ c*/rf* implies that c + d = cR + dR. Therefore

in B(Liy and, since 5(L) is a subalgebra of fl(Li), a + & = c + din fi(L). •
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PROPOSITION 6.3. Let E be a complete lattice-ordered effect algebra and let
[a/b, c/d} be compatible. Let L 2 {a, b, c, d) be a finite compatible 0, l-sublattice
of E. Suppose that a >L b. Then a/b = c/d if and only ifa + b = c + din B(L).

PROOF. Suppose that a + b = c + d. Since a >~L b, r(a) \ r(b) is a singleton.
Let e 6 r(a)\r(b). Since e is join-irreducible and nonzero, there is a single element
f e L such that e >L f. We claim that a/b \ e/f. Indeed,

a A {b v e) = (a A b) V (a A e) = b V e,

hence a > bve > b. Since a ^L b, we have either bve = a orbve = b. However,
b V e = b implies that e e f(b), which contradicts e 6 r(a) \ r(b). Therefore
bv e = a.

Since L is distributive, the intervals [b, b v e] and [b A e, e] are isomorphic. As
bve = a>Lb,e>LbAe. Since e is join-irreducible and nonzero, e covers exactly
one element, hence b A e = / . We have proved that bv e = a and a A e = / . By
Proposition 4.3, a/6 \ e / / .

Since a + b = c + d, r(a) \ r(b) = r(c) \ r{d) and r(c) \ r(d) is a singleton.
This implies that c >L d and, as for a/b, we deduce c/d \ e/f. Therefore,
a/b \ e/f / c/d and a/b = c/d.

The converse implication follows by Lemma 6.2. •

LEMMA 6.4. Lei £ be a complete lattice-ordered effect algebra and let {a/b, c/d}
be compatible. Let L 2 [a, b, c, d} be a finite compatible 0, l-sublattice of E. Then
a/b and c/d are orthogonal if and only if a + b and c + d are disjoint in B(L).

PROOF. Suppose that a/b and c/d are orthogonal and that a + b and c + d are not
disjoint in B{L). Then there exists e e {r(a) \ r(b)) D (r(c) \ f{d)).

Let aQ/b0,..., an/bn and co/do,..., ck/dk be sequences of quotients of L such that

• • • >L bn-\ =an>Lbn = b

• • • >L <4_i = ck >L dk = d.

r(a)\r(b) = \Jn
i=0(r(ai)\r(bi))

and similarly for r(c) \ r(d). Therefore e e (r(a,) \ r(bd) n (r(c,) \ r(dj)) for
some i, j . Since a, ^L bt and c, >-L dh this implies that f{a{) \r(bi) = r(cj) \ r(dj),
which means a,- + bt = cj + dj. By Proposition 6.3, a,/6,- == Cj/dj. This contradicts
a/b 1 c/d.

and

In 2](L\

a

c

we

= a0

= c0

have

>-L bo

do

= ax>

= c, >

-L b\

•L d\

= a2

= c2
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Suppose that a + b and c + d are disjoint in B(L). Let x/y, z/w € Q(E) be such
that

a/b 3 x/y =s z/w c c/<i.

Obviously {a, &, x, y} and {c, rf, z, w} are compatible sets. SincexQy = zQw <a,c
and x Q y = zQw < b',d',it follows that [a, b, c,d,x Q y = zQ w] is compatible
as well. By Lemma 5.4, this implies that the sets of quotients

fi := [a/b, x/y, aR/bR, xR/yR}, f2 := [c/d, z/w, cR/dR, zR/wR), and

g := [a/b,c/d, aR/bR, cR/dR, xR/yR]

are compatible. Moreover, by Proposition 5.8, xR/yR = zR/wR. Let L\, L2 and K
be finite compatible 0, 1-sublattices of E such that f] c Q(L\), f2 c Q(L2) and
g c fi(A-).

Obviously, a + b >BIL,) x + y. By Lemma 6.2, a + fc =«(/.,) a* + bR and
JC + y =BlLl) xR + yR. Therefore aR + bR >B(Ll) xR + yR. Since B(L, n AT)
is a subalgebra of B(LX), we have aR + bR >BmnK) xR + yR. Since B(LX n /iT)
is a subalgebra of 5(AT), this implies that aR + bR >B(K) x

R + yR. Similarly,
cR + dR >B(K) ZR + wR = xR + yR. Since a + b and c + d are disjoint in B(L), they
are disjoint in B(L D A") and hence also in B(K). By Lemma 6.2, a s + fcR =B(K) a + b
and c^ + dR =B(JC) c + rf. Thus aK + fc* and cR + dR are disjoint elements of B(K).
This implies that x s + yR = 0, so xR = yR and hence x = y. •

PROPOSITION 6.5. Ler E be a complete lattice-ordered effect algebra. Let
f = [a\/b\, . . . , an/bn] c (2(£) 6e a compatible set of quotients. Let L be a finite
compatible 0, \-sublattice of E with [a\, b\,..., an, bn] e L. Then f is orthogonal if
and only if, for all i ^ j , at + bt and a, + bj are disjoint in B(L).

PROOF. (=>): This follows from Lemma 6.4.
(•<=): By Lemma 6.4, the elements of f are pairwise disjoint. It remains to prove

that

exists. By assumption, the sum

(ai+b1)®---®(an+bn)

exists in the effect algebra B{L). Since (f>L is a morphism of effect algebras, the sum

bx) © • • • © <t>L(an + bn)

exists in E. It remains to observe that, for all i, <j>L(aj + bt) = a-t Qbh •
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It is now clear that, for every finite compatible 0, 1-sublattice L of a complete lattice
ordered effect algebra E,

{alb :a>Lb,ae J(L)}

is a compatible test of £2 (£). On the other hand, for a finite compatible and orthogonal
set of quotients f = {a\/bx,..., an/bn} we have

+f=(a1+b1)</---v(an + bn)

in every B(L) with f c Q(L), where L is a finite compatible 0, 1-sublattice of E.

PROPOSITION 6.6. Let E be a complete lattice-ordered effect algebra. Let f be a
finite compatible set of quotients of E. Then the following are equivalent:

(a) f is an event ofQ(E);
(b) f is an orthogonal set of quotients;
(c) f is pairwise orthogonal.

PROOF, (a) implies (b) and (b) implies (c) by definition.
To show that (c) implies (a), we shall prove that there exists a compatible and

orthogonal finite set t 2 f with |t| = 1. Let f = {ay/b\,...,ajbn\. Let L be a
finite compatible 0, 1-sublattice of E with {au bu ..., an, bn] c L. Let (c,)^, be an
L-chain representation of the complement of a\ + b\ + • • • + an + bn in B(L). By
Proposition 6.5,

t = { a , / & , , . . . , ajbn, c2/cu ..., c2k/c7k^)

is orthogonal. By Lemma 6.1, we have |t| = 1. •

COROLLARY 6.7. Let E be a complete lattice-ordered effect algebra. Lett £ Q(E)
and g c Q(E) be events of Q(E) such that f U g is compatible. Let L be a
finite compatible 0, l-sublattice of E with f, g c Q{L). Then f ± g if and only if
+f ±BiL) +g and f loc g if and only if+t ±B(L) +g and <pL((+f)v(+g)) = 1.

PROOF. This follows from Propositions 6.5 and 6.6. •

PROOF (Proof of Theorem 4.7). Let f be a finite pairwise orthogonal set of quotients.
Since f = fR, fR is pairwise orthogonal. By Corollary 5.6, fR is compatible. By
Proposition 6.6, f* is an event of Q(E), therefore there exists a test to 2 fR- Put
t = f U (to \ fR). By Lemma 4.6, t = to. By Lemma 4.5, t is a test. •
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PROPOSITION 6.8. Let E be a complete lattice-ordered effect algebra and let f, g
be events o/£2(£). Then f _L g if and only if, for all x/y e f and z/w e g, we have
x/y ± z/w.

PROOF, f ± g if and only i f f n g e ^ K a n d f U g i s a n event of ft (£). The rest
follows by Theorem 4.7. •

7. ft (£) is algebraic

Let f be a finite orthogonal set of quotients and let z/w e Q(E). We say that z/w
is covered by f if and only if there arezi/u>i,..., zn/wn such that

• Z = Z\,

• wn = w,
• for all 1 < i < n, wt = Zi+i,
• for all 1 < / < n, there are c/d and e/f such that Zi/wt = c/d C c / / ef.

PROPOSITION 7.1. Let E be a complete lattice-ordered effect algebra and let the a
test of£l(E). Let z/w be such that, for all e/f e t , zQ w <+ e Q f. Then z/w is
covered by t.

PROOF. Let us write t = {ex/fx,..., em/fm}. By Corollary 5.5, t* U {zR/wR} is
a compatible set of quotients. Let L be a finite compatible 0, 1-sublattice of E with
t* U {zR/wR} c Q(L). By Lemma 6.1,

Since (pL is faithful, this-implies that (ef + /,*) v • • • v (eR + fR) = 1.
Let Z\/wx,..., zn/wn c Q(L) be such that

• zR=zx,
• Wn = 10*,

• for all 1 < i < n, zi = wi+x,
• for all 1 < i < n, Zi Vj, wt.

In B(L), we have

Z
R + W

R = (zi + iw,) v • • • v (zn + wn).

Since each z, + io, is an atom of B(L), we see that for every 1 < / < n there exists
some 1 < j < m such that z,- + wt < eR + ff. Therefore there exist c,d e L such
that zi + wi = c + d and ef >c>- d> ff. By Proposition 6.3, Zi/wi = c/d.

Since zR/wR is covered by tR, z/w is covered by t. •
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THEOREM 7.2. For every complete lattice-ordered effect algebra E, Q (E) is an
algebraic generalized test space.

PROOF. Let f, g, h be such that f ~ g, g loc h. We shall prove that f loc h.
There is an event u such that f loc u and g loc u. Since |f| © |h| = 1, it suffices

to prove that every pair of quotients a/b e f and c/d e h is disjoint. Assume the
contrary and let x/y, z/w be proper quotients such that

a/b 3 x/y = z/w c c/d.

Since (x Q y) © |u| and (z © w) © |g| exist and x © u = z © w, we see that, for
all e/f e u U g , xQy = zQw<(eQ / ) ' . Therefore xQy = zQw<+eQf.
By Proposition 7.1, this implies that x/y is covered by the test u U g. However, since
x/y E a/b e f l u , x/y is disjoint with every element of u. Therefore x/y is covered
by g. In particular, there exists a proper quotient x\/yx c x/y such that X\/yx c p/q
for some p/q e g. As x\/y\ c x/y and x/y = z/w, there exists a proper quotient
Zi/wi c z/w such that Z\/w\ = x\/yx. Obviously Z\Qw\ < zQw implies that, for
all e/f e uU g, xi Q yi = z\ Q wx < (e © / ) ' and hence x\ © y\ = Z\ © ifi -o- e © / .
By Proposition 7.1, this implies that Zi/ioj is covered by the test u U g. Since
Zi/wi E z/w c c/d € h ± g, zi/ifi is covered by u. In particular, there is r/s e u
such that there is a proper quotient zi/wz E Z\/wu r/s. As Z\/wt m xx/yu there is a
proper quotient x2/y2 E ^ I / ^ I such that x2/y2 = Z2/W2. We see that

p/q 3 ^l/yi 3 x2/y2 = z2/w2 c zi/w, c r/s

and ^2/^2 is proper. This is a contradiction with r/s L p/q. D

For a complete lattice-ordered effect algebra, we denote the orthoalgebra of £1 (E)
by O(E).

COROLLARY 7.3. For every complete lattice-ordered effect algebra E, the mapping
4>E : 0{E) -> E given by 4>E([^]~) = |f| 's a surjective full morphism of effect
algebras.

PROOF. It is easy to check that (pE is a morphism of effect algebras. Let s, t e E
and suppose that s © t exists. Then, in Q(E), {s/0} ± {s © t/s} and hence, in O(E),
the sum [{s/0}]~ © [{s © t/s}]~ exists. Since 4>E([{s/0}]~) = s for all s e E,4>E is
surjective. •

To abbreviate our notations, let us write

• f < g instead of [f]~ < [g]~,
• a/b _L f instead of {a/b} i . f,
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• a/b<f instead of {a/b} < f.

PROPOSITION 7.4. Let E be a complete lattice-ordered effect algebra and let f, g
be events of £2 (£). Then f < g (/"and on/y (£ for all a/b e Q(E), a/b _L g implies
a/b _L f.

PROOF. Suppose that f < g. There is an event v such that v l f and v U f ~ g. If
a/b _L g then a/b _L v U f and a/b 1 f.

Suppose that, for all a/b e Q(E), a/b _L g implies that a/£> J. f. Let u be a
local complement of g. By assumption, every quotient in u is orthogonal to f. By
Proposition 6.8, this implies that f U u is an event. Let v be a local complement of
f U u. Then u is a local complement of f U v. Consequently, f U v ~ g and f < g. •

COROLLARY 7.5. Let E be a complete lattice-ordered effect algebra and let f, g be
events of ft (£). Then f ~ g if and only if, for all a/b e Q (E), a/b 1 f if and only if
a/b J_ g.

PROOF. This follows from Proposition 7.4. •

PROPOSITION 7.6. Let E be a complete lattice-ordered effect algebra and let f, g
be events of Q. (£). Then f < g if and only if, for all x/y e f, x/y < g.

PROOF. Suppose that for all x/y e f we have x/y < g. Let h be a local complement
of g. Then f < g if and only if f _L h. Let x/y e f and z/w e h. Since
x/y i$ 8 -L h ~ z/w> w e s e e t n a t x/y -L z/w. By Proposition 6.8, f -L h. •

8. Perspectivity of sharp and compatible events

We say that an event f of Q (£) sharp if and only if |f | is sharp.

PROPOSITION 8.1. Let E be a complete lattice-ordered effect algebra. Let g be a
sharp event of£l(E) and let f be an event of£l(E). Then f <gifand only if'\f\ < |g|.

PROOF. Obviously, f < g implies that |f| < |g|.
Suppose that |f | < |g| and that a/b JL g. By Proposition 7.4, it suffices to prove

that a/b A. f. Suppose that a/b JL f. By Proposition 6.8, this implies that a/b JL c/d
for some c/d ef. As (a © b) 0 |g| exists, (a © b) © (c 0 d) exists. Therefore a/b is
not disjoint with c/d. In particular, (a © b) A (c © d) > 0. However, we then have

0 < (aQb) A(cQd) <aQb < \g\' and

0 < (a e b) A (c9 d) < c ed < \f\ < |g|.

This is a contradiction with |g| 6 5(£). •
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COROLLARY 8.2. Let E be a complete orthomodular lattice. Then the mapping
\p- : 0{E) —> E given by Vr([f]~) = |f| is an isomorphism.

PROOF. The proof is a trivial application of Proposition 8.1 and is omitted. D

PROPOSITION 8.3. Let E be a complete lattice-ordered effect algebra. Let f, g be
compatible events ofQ. (E) such that fUgw compatible. Let L be a finite compatible
0, 1-sublattice of E with f U g C Q{L). Then f < g if and only if+f < +g in B(L).

PROOF. Let (c,-)^, be an L-chain representation of the complement of+g in B(L)
and write h = {c2/c\,..., clk/cik_x\. By Corollary 6.7, g loc h.

Since Q(E) is algebraic, f < g is equivalent to f _L h. By Corollary 6.7, f _L h if
and only if +f _L +h. Obviously +f ± +h if and only if +f < +g. D

COROLLARY 8.4. Let M be a complete MV-effect algebra. Then the mapping
ty : O(M) ->• B{M) given by rjf ([f]~) = +f is an isomorphism of effect algebras.

PROOF. Let us prove that \\r is well-defined: suppose that f ~ g. Since M is an
MV-effect algebra, f U g is compatible. By Proposition 8.3, +f = +g. Obviously ty
is surjective. Suppose that ^(f) = ^(g)» which means +f = +g. By Proposition 8.3,

f~g.
It remains to prove that <p is a homomorphism. Suppose that [f]- ± [g]~. This

implies that f ± g. Let L be a finite 0, 1-sublattice of E with f U g c Q(L). By
Corollary 6.7, i/r(f) ± xfr (g) and, obviously,

9. O(E) is a lattice

Letf = [a\/b2, • • •, an/bn] be a compatible event of E. In what follows, (f) denotes

the (finite distributive) 0, 1-sublattice of E generated by the set {aub\,..., an, bn}.

Let f be an event of E. We denote the test

[a/b:aeJ{{tR)),a>Lb)

by tf. We write

V = {a/b eU-a/bl f J.

We have f ~ fR and f* loc f*. Since Q (£) is algebraic, f loc f*.

PROPOSITION 9.1. Let E be a complete lattice-ordered effect algebra. Let f be an
event ofSl(E) and let a/b € Q(E). Then a/b ± f if and only if a/b is covered by f*.
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PROOF. Suppose that a/b J_ f. We shall prove that a/b is covered by f*. For all
c/d ef,aQb+*cQd. Therefore, by Corollary 5.5, {aR/bR} U fR is a compatible
set of quotients. Obviously (f*) c (f* u {aR/bR}). As f* c Q((fR)), this implies
that {aR/bR} U f* is compatible. Therefore, for all c/d e f * U f*. a 0 b -o- c Q d. By
Proposition 7.1, a/b is covered by the test fR U f*. Since a/b _L fR, a/b is covered
byf*.

Suppose that a/b is covered by f*. As f loc f*, this implies that a/b < f* and hence
a/b ± f. D

COROLLARY 9.2. Lef E be a complete lattice-ordered effect algebra. Let f, g be
events of Q. (E). Then g < f i/an<i on/y if every a/b e g w covered by f**.

PROOF. Since f loc f*, g < f if and only if g 1 f*. By Proposition 6.8, g 1 f* if
and only if every a/b € g is orthogonal to f*. By Proposition 9.1, a/b _L f* if and
only if a /b is covered by f**. •

Let us write, for a/b e Q(E) and p e S(E), (a/b) n p = a A p/6 A /?. Note that
the reduction map is a special case of n since aR/bR = (a/b) n (a 9 b)1.

L E M M A 9 . 3 . Lef E be a complete lattice-ordered effect algebra and let p , a , b e E .
If p -o- a, b then {a/b} ~ {(a/b) n p, (a/fc) n p'}.

PROOF. Let L be a finite compatible 0, 1-sublattice of E with a, b, p e L. An
easy computation in B(L) yields (a A p + b A p)v(a A p' + b A p') = a + b. By
Proposition 8.3, [a/b] ~ {(a/fe) n /?, (a/Z?) n p'}. D

LEMMA 9.4. If E is a complete lattice-ordered effect algebra then

s A (s A f)f «* f A (s A f) t /o r all s,t e E.

PROOF. We have

J A ( = J A ( J A ! ) < J A ( J A I)1.

Similarly, s A t < t A (s A /)*• Thus, we have

SA(jA f)f. ( A M / j ' e l s A f, (J A r)f].

By Proposition 5.1, [s At, (s A t)^] is a compatible set, hence
s A (s Ar)f «* f A (s At)r. O

LEMMA 9.5. Let E be a complete lattice ordered effect algebra. Let a/b, c/d e
Q(E) be reduced. Then x/y < (a/b), (c/d) if and only if

x/y<(a/b)n((aeb)A(ced)Y and

x/y<(c/d)u{(aQb)A(cQd))\
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PROOF. We may assume that x/y is reduced. Suppose that x/y < (a/b), (c/d).
Then x Q y < (a 0 b) A (c 9 d) < ((a 0 b) A (c 0 d))f . By Proposition 5.1, since
{xQy, aQb, (aQb) A (cQd)} is a compatible set, {x0y, a©ft, ((aQb) A(ced)) f }
is a compatible set. As x/y and a/6 are reduced quotients, Corollary 5.5 implies that
{x, y, a, b, ((a © b) A (c 0 a1)) } is a compatible set. By Lemma 9.3, we have

{*/>} < {a/b} ~ {(a/ft) n ((a © 6) A (c 0 d))\ (a/b) n ((a © b) A (c © d))f'} .

Let u be a local complement of

{(a/ft) n ((a © b) A (c © d))f, (a/b) n ((a © ft) A (c © d ) ) v ) .

Since [x, y, a, b, {(a © b) A (c © a1)) } is a compatible set and x/y ± u, we have
x 0 y -o- e © / , for all

e / / 6 {(a/ft) n ((a © ft) A (C © a1))1, (a/ft) n ((a © ft) A (c © rf))f/J U u.

Therefore, by Proposition 7.1, x/v is covered by

{(a/ft) n ((a © ft) A (c © d))f, (a/ft) n ((a © ft) A (C © a1))1'J U u.

However, x/y ± u and, since x Q y < ((a Q b) A (c Q d)) e S(E), x/y and

a/ftn((a©ft)A(c©a'))t'aredisjoint. Therefore,x/y < (a/b)n((aQb)A(cQd)Y.

Symmetrically, one can prove x/y < (c/d) n ((a © ft) A (c © d)) .
The converse implication follows by Lemma 9.3. •

LEMMA 9.6. Let E be a complete lattice-ordered effect algebra. Suppose that
a/b, c/d e Q(E) are such that a © ft «* c 0 d. 77zen [{a/ft}]~ A [{c/d}]~ exwfs m
0(£) and equals [{aR A cR/(bR v ds) A (aR V cs)}]^.

PROOF. Suppose that x/y < a/b, c/d. Since {a Q b,c Q d,x Q y] is mutu-
ally compatible, Corollary 5.5 implies that [xR/yR, aR/bR, cR/dR) is a compat-
ible set of quotients. Thus, there is a finite compatible sublattice L of E with
{xR/yR, aR/bR, cR/dR] c <2(L). By Proposition 8.3, xR + yR < aR + bR, cR + d*
in B(L). A simple calculation in B(L) then yields

(a* + bR) A (cR + dR) = (aR A cR) + ((ftR v dR) A (aR v cR)),

hence we obtain

x* y* < (a« A c«) + (Q,* V dR) A (aR V c*)) < a s + ftR, cR + dR.

Again, by Proposition 8.3, we obtain
xR/y* ^aRA cR/ (bR v dR) A (aR v cR) < aR/bR, cR/dR. •
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LEMMA 9.7. Let E be a complete lattice-ordered effect algebra. Foralla/b,c/d e
Q(E), [{a/b}U A [{c/d}]~ exists in 0(E).

PROOF. We may assume that a/b and c/d are reduced. Following Lemma 9.5,
[ W&}]~ A [{c/d}]~ exists if and only if

[[(a/b) n {(a Qb)A(cQ </))'•)]_ A [[(c/d) n ((a © b) A (c © d))f

exists, and if one exists, and hence the other does too, then they are equal.
Let M be a block of £ with a © b, (a © b) A (c © d) e M. By Proposition 5.1,
((a eb)A(ced)Y e M. Since M n S(Jlf) = C(Jlf), ((a 0 6) A (c 0 d)f is central
in M. Therefore,

(9.1) (a/b) n ((a © b) A (C ©

= (a A ((a © b) A (c e<0) f ) © (^ A ((a © b) A (c © rf))1

= (a © b) A ((a © £) A (c © d))f .

Similarly, we obtain

(c/d) n ((a © b) A (c © rf))f =(cQd)A ((a e b) A (c Q d))1.

By Lemma 9.4 (putting 5 = a © & and t = c © d),

(aQb) A ((a © 6) A (c © d))t -o- (c © d) A ((a © b) A (c © d)) t .

By Lemma 9.6,

[{(a/6) n ((fl © b) A (c e ^))t}]^ A [[(c/d) n ((a Gb)A(cQ d)f j]

exists in O(E). D

THEOREM 9.8. Let E be a complete lattice-ordered effect algebra. Then O(E) is
an orthomodular lattice.

PROOF. It is well known that an orthoalgebra is a lattice if and only if it is a (lower
or upper) semilattice. Therefore, it suffices to prove that for every pair f, g of events
of Sl(E), [f]~ A [g]~ exists in the orthoalgebra O(E). Let us write

F* = {a1/b1,...,an/bn} and g** = {c1/d1,..., cm/dm}.

For i € {1, . . . ,«} and j e { 1 , . . . , m) let e,7//y be such that

[f«y//y}]~ = [{<*./&,}]- A [[cj/dj}]~
and let

h = {«y//y : i e { 1 , . . . , n} and y € { 1 , . . . , m}}.
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By Theorem 4.7, h is an event of £2(£) and, by Proposition 7.6, h < f**, g**. It
remains to prove that, for every u < f**, g**, we have u < h. Let x/y e u. By
Corollary 9.2, x/y is covered by f** and g**. By a simple induction with respect to m
and n, it is easy to prove that

{x/y} ~ [xij/ytj : i 6 { 1 , . . . , n} and j e { 1 , . . . , m}},

where for each x^/yij we have Xjj/y^ c a,/ft,-, Cj/dj. This implies that, for all
i e {l , . . . , / i}andy e {1 m},

A

Consequently, by Proposition 7.6, x/y < h and, again by Proposition 7.6, u < h. •

10. 0£, 0£, compatibility and blocks

In this section, we shall show that there is one to one correspondence between
blocks of a complete lattice-ordered effect algebra E and blocks of O(E). Under 4>E,
the (pre)image of a block is always a block. Moreover, we prove that E, as a lattice,
embeds into O(E).

LEMMA 10.1. Let E be a complete lattice-ordered effect algebra and let f be a
reduced event of£l(E). Then

PROOF. Since f is reduced, f is compatible. Let M be a block with f c Q(M).
Since |f| € M, |f|; 6 M. Therefore, for all a/b 6 f we have |f|; 4* a, b. By
Lemma 9.3,

{a/b} ~ {(a/*) n|f|+, (a/^nlfl1 '} ,
hence
(10.1) f ~ ( J {(a/ft) n |f|*, (a/ft) n |f | ; '} .

a/bet

Since |f|f 6 C(M), we have

If I = © a e ft = ©(a e ft) A if i* 0 ( f l e ft) A |f i*'.
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Since |f |* < |f | and |f I4- e S(E), we see that

a/bet

Since, for all a/b € f,
|(«/&)n|f|*| = (aA

we obtain

a/bet

By Proposition 8.1, this implies that

| J {(a/^nlf^} ~ {|f|V0}-
a/bet

The rest follows from (10.1). •

LEMMA 10.2. Let E be a complete lattice-ordered effect algebra and let
[f]~, [g]~ e O(E). Then [f]~ «*O(£) [g]~ if and only if fa([f]~) ++E <pE([g]~).

PROOF. We may assume that f and g are reduced. By Lemma 10.1, we have

f ~ {|f|;/0} U {(a/b) n |f|;' : a/b e f}* ,

g ~ {|g|V0} U {(a/b) n |g|* : a/b e g } \

Let M be a block with |f |, |g| e M. Then [|f \K |f |] U [|g|*, |g|] e M. Since, for all
c/d e {|f|VO} U {(a/b) n |f|̂ ' : a/b e f}fi U {|g|V0} U {(a/b) n | g ^ : a/b e g}\
c Q d e M, we have c, rf € M for all such c/<i. Let L be a finite compatible
0, 1-sublattice of E such that

{|f|V0} U {(a/b) n |fI" : a/ft e f}* U {|g|;/0} U {(a/b) n |g|;/ : a/ft e g}R c Q(L).

Let tL be the test {e// : e e 7(L) and e >L / } .
By Proposition 8.3 and Corollary 6.7, it is easy to check that for every c/d e Q(L)

there exists h c t t such that h ~ {c/d}. Therefore [f]~ and [g]~ are covered by the
word ([{a/ft}]- : a/ft € tf). Thus [f]~ •* [g]~. •

THEOREM 10.3. Let E be a complete lattice-ordered effect algebra.

(a) If Mis a block of E then ^(M) is a block ofO(E).
(b) If B is a block of O(E) then (f>E(B) is a block of E.
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PROOF, (a) By Lemma 10.2, <pE
l(M) is a compatible subset of O(E). We shall

prove that ^ ' ( M ) is a maximal compatible subset of 0{E). Let y e O(E) and
suppose that, for all x e ^E

}(M), x +* y. Then, <pE({y} U <t>E\M)) 2 M is
compatible in £ by Lemma 10.2. Since M is a maximal compatible subset of E,
4>E{{y) U 0£!(Af)) = M. Therefore 0£(>>) 6 M and y e <pE

l(M).
(b) 0£(£) is compatible. Let M 2 0£(#) be a block of E. By part (a), <j>~E(M)

is a block of O(E). By the maximality of B, B = <pE
l(M) and we see that

M. D

For a complete lattice-ordered effect algebra E, a mapping </>£ : E ->• O(E) is
defined by <pE(x) = [{*/0}]~. Note that <}>E(<pE(xj) = x.

LEMMA 10.4. Let E be a complete lattice-ordered effect algebra, let a/b 6 Q{E)
be reduced and let p e S(E) be such that p 4> a Q b. Then (a/b) n p is reduced.

PROOF. We shall prove that x < b Ap and x A ((a A p) Q (b A /?)) = 0 imply that
JC=O.

Note that, since a/b is reduced and x, p <+ aQb, [x, a, b, p] is a compatible set;
let M 2 {x, a, b, p) be a block of E. We have (a A p) Q (b A p) = (a Q b) A p
since /? is central in M. Moreover,

(10.2) x A (a 0 b) = x A (((a e 6) A p) V ((a 0 6) A / / ) )

and, since x < p, x A (a Q b) A p' = 0. Since x < b, x A (a 0 b) = 0 and a/b is
reduced, x — 0. •

THEOREM 10.5. Ler E be a complete lattice ordered effect algebra. Then <f>*E is a
injective 0, l-lattice homomorphism.

PROOF. It is obvious that <p*E(0) = 0O(E) and that <t>*E(l) = 1O(E) and that 0£ is
injective. Let a,c e E. By Lemma 9.5,

PE(a) A <p*E(c) = [{tf/0}L A [{c/0}L = [{a/0} n (a A c ) ^ A [{c/0} n (a A c)V0]

= [{a A (a A c)x/0}]^ A [{c A (a A c

By Lemma 9.4, a A (a A c)f «* a A (a A c)1, hence we may apply Lemma 9.6 to
obtain

[{a A (a A c)V0}]^ A [{c A (a A c)f }}^ = [{a A C A (a A C ) V 0 } ] ^ = [{a A c/0}]~.
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It remains to prove that 4>*E preserves joins; in other words, that

[{a/0}], v [{c/0)L = [{a v c/0}]. •

This is equivalent to [{I/a}]. A [{l/c)]~ = [{I/a v c}]~. We have

(I/a)* =a ' t / f lAa ' t , (l/c)R = cn/cAcn.

By Lemma 9.5,

[{a'V* A a ' ^ A [{c'Vc A c'^L

= [{(a't/aA^)n(a'Ac')tj] A [\(cn/c A c") n (a' Acf ) ] .

We see that

(an/a A a'1) n (a' A c')1 = (a' A cf /a A (a' A c')f

(c'f/c A c'*) n (a' A c')f = (a' A cf /c A (a' A c')'

and that, by Lemma 10.4, both quotients are reduced. Moreover, since

{a' A c'Y 0 (a A (a' A c') f) = (1 0 a) A (a' A c')t = a' A (a' A c')1

and, similarly,

(a' A c')1 0 (c A (a' A c') f) = d A (a' A c') t ,

Lemma 9.4 implies that they are compatible. Therefore, we may apply Lemma 9.6 to
compute the meet of their perspectivity classes. After an easy computation we obtain

[(a' A cf la A (a' A c f ] A [(a' A c')f /c A (a' A c')1]

= [(a' A C y I (a V c) A (a' A c')1] •

Finally, it remains to observe that
(I/a V c)R = (a' A cf / (a v c) A (a' A c')f . •

COROLLARY 10.6. Let E be a complete lattice-ordered effect algebra. Then
(f)*E(S(E)) is a sub-orthomodular lattice ofO(E).

PROOF. By Theorem 10.5, <j>*E(S(E)) is closed with respect to 0, 1, v, and A. It
remains to prove that <j>*E(5(£)) is closed with respect to '. Let a e S(E). Then
4>*E(a) = [{a/0}].. In O(E), we have [{a/0}]~ = [{I/a}].. Since a, a' 6 5(£),
{I/a} is a sharp event of Sl(E). By Proposition 8.1, |{l/a}| = |{a'/0}| implies that
{I/a} ~ {a'/0} and we see that

W}1 •
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