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ON TOPOLOGICAL ENTROPY OF
TRIANGULAR MAPS OF THE SQUARE

LLUIS ALSEDA, SERGII F. KOLYADA AND LUBOMIR SNOHA

We study the topological entropy of triangular maps of the square. We show that
such maps differ from the continuous maps of the interval because there exist
triangular maps of the square of "type 2°° " with infinite topological entropy. The
set of such maps is dense in the space of triangular maps of "type at most 2°° " and
the topological entropy as a function of the triangular maps of the square is not
lower semicontinuous. However, we show that for these maps the characterisation
of the lower bounds of the topological entropy depending on the set of periods is
the same as for the continuous maps of the interval.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

For a compact topological space X, denote by C(X, X) the set of all continuous
self-maps of X. The dynamical system given by a map G <E C(X,X) is called to-po-
logically chaotic or simple if the topological entropy h(G) of G is positive or zero,
respectively. A natural question is: which properties characterise the topologically
chaotic dynamical systems?

If / is a compact interval of the real line and / G C(I, I), then the topological
entropy of / is zero if and only if the period of any periodic point of / is a power of
two (see [7, 21]). To state this result in other words, denote by N the set of all positive
integers and introduce the Sharkovskii ordering ,> on the set N U {2°°} by:

3 ,> 5 ,> 7 .> . . . ,> 2 • 3 ,> 2 • 5 ,> 2 • 7 ,> . . . ,> 4 • 3 ,> 4 • 5 ,> 4 • 7 ,> . . . ,> . . .

.> 2n • 3 .> 2n • 5 ,> 2" • 7 ,> . . . ,> 2°° ,> . . . ,>2n .> ... .> 16 ,> 8 ,> 4 ,> 2 ,> 1.

We shall also use the symbol ,^ in the natural way. For s € N U {2°°} we denote
by S(s) the set {k € N : s .^ k} (5(2°°) stands for the set {1,2,4,... ,2* , . . . }) and by

Received 23rd July, 1992
The authors thank the Institute of Mathematics of the Ukrainian Academy of Sciences and the Centre
de Recerca Matematica, co organisers of the Soviet—Czechoslovak—Spanish summer school on Dynamical
Systems (Kiev, 1991), where this work was started. They also thank the organisers of ECIT 91 (Lisboa)
for the opportunity given to LI. Alseda and L. Snoha to meet and discuss this paper. LI. Alseda was
partially supported by the DGICYT grant number PB90-0695.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 SA2.00+0.00.

55

https://doi.org/10.1017/S000497270001546X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001546X


56 LI. Alseda, S.F. Kolyada and L. Snoha [2]

Per (/) we denote the set of periods of all periodic points of / . The Sharkovskii theorem
[22] says that for every f G C(I,I) there exists s G NU{2°°} such that Per(/) = S(s).
Conversely, for every s € N U {2°°} there exists f G C{I,I) with Per(/) = S{s). If
Per( / ) = S(s), then / is said to be of type 3. When speaking of types we consider
them to be ordered by the Sharkovskii ordering.

It is known (see [21]) that if / is an interval map then h(f) — 0 if and only
if / is of type at most 2°°. Thus, the maps of type 2°° are the boundary between
topologically chaotic and simple maps on the interval. All these maps are simple.

More about the topological dynamics of one-dimensional maps can be found in
[2, 4, 23]. Recently, necessary and sufficient conditions for the topological entropy
to be positive in terms of the existence of periodic orbits of certain kinds were found
for the continuous self-maps of graphs (see [6, 20]) and for the orientation preserving
diffeomorphisms of two-dimensional discs (see, for example, [11, 19]).

In the present paper we study the topological entropy of triangular maps on the
square. We recall that if I is a compact interval of the real line, then a continuous
map F from I2 into itself is called triangular if F(x,y) = (f{x),g(x,y)), that is, if
the first coordinate of the image of a point depends only on the first coordinate of
that point. Here f : I —* I and g : I2 —* I are continuous. We can also write
F(x,y) = (f(x),gx(y)) where gx : I —> I is a family of continuous maps depending
continuously on x. The set of all continuous triangular maps from I2 into itself will be
denoted by C^(I2,I2).

For f,<p G C(I,I) let d1{f,9) = maxi e / \f{x) - v(x)\ and if F(x,y) = {f(x),gx(y))
and $(x,y) = {<p(x),i/>x(y)) are maps from CA.(I2,I2) we set

d2(F, *) = max max{\f{x) - <p(x)\, \gx(y) -
( ) G J 3

Then, (C(I,I),di) and (C&(l2,12),d2) are metric spaces. We shall have this in mind
whenever we consider the sets C(I,I) and C&(I2,I2) as spaces.

It is known (see [14]) that the characterisation of the set of periods for maps
from C&(J2,I2) coincides with the one for maps from C(I,I). That is, for every
F G C&(I2,I2) there exists a G N U {2°°} such that Pei(F) = S(s). Conversely, for
every s G N U {2°°} there exists F G CA\l2,I2) such that Per(F) - S(s). As in the
case of interval maps we say that a triangular map F has type s if Per (F) = S(s).
On the other hand, from [15] (see also [16]), we know that if F G C^(I2,I2) is of type
greater than 2°° then h(F) > 0; if it is of type less than 2°° then h(F) = 0 and if F
is of type 2°° then both cases are possible. In fact, there exist examples of maps from
C A ( / 2 , / 2 ) of type 2°° with topological entropy zero and with positive entropy. Thus,
the dynamics of triangular maps of type 2°° is more complicated than that of interval
maps of type 2°°. In connection with this problem the following natural question was
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proposed by J. Llibre at the Soviet-Czechoslovak-Spanish summer school on Dynamical
Systems. Does there exist k < oo such that h(F) ^ Jfe whenever F 6 C&(I2,I2) is of
type 2°°? The negative answer to this question is a consequence of the following result.

THEOREM A. There is a map $ 6 C A ( / 2 , / 2 ) , of type 2°°, with /i($) = oo.

Moreover, there are a lot of such maps, since we have

THEOREM B . The set of all maps from CA (I2,12) of type 2°° with infinite topo-
logical entropy is dense in the space of all maps from CA (/2, / 2) of type at most 2°° .

The next theorem shows again that there are substantial differences between trian-
gular and interval maps. Topological entropy on the interval is lower semi-continuous
but this is not the case for triangular maps.

THEOREM C. The topological entropy, as a function of the continuous triangular
maps of the square, is not lower semi-continuous.

However, a very important property of the topological entropy of interval maps
can be extended to triangular maps on the square. Namely, the characterisation of the
lower bounds of topological entropy depending on the set of periods (see [5, 12, 13]).
To state this result we have to introduce some notation.

Let A, be the largest root of the polynomial xq — 2xq~2 — 1, where q > 1 is odd.
Then, if n = 2m • q with m ^ 0 and q~£ 1 odd we set

^ _ f 1 if q = 1,

The following result shows that the characterisation of the lower bounds of the
topological entropy for triangular maps is the same as for interval maps.

THEOREM D. Let F e CA(/2,/2) have a periodic orbit of period n. Then
h(F) ^ logrn. Conversely, for each n 6 N there exists a map Fn £ C&(I2,I2) °^
type n such that h(Fn) — logrn.

REMARK. From the proof of Theorem D, we see that this result is also valid in the
general case of triangular maps on / " for any n.

The paper is organised as follows. In Section 2 we introduce some notation and we
state some known preliminary results. In Section 3 we prove Theorems A and B. In the
very short Section 4 we prove Theorem C and, lastly, in Section 5 we prove Theorem D.

2. DEFINITIONS AND PRELIMINARY RESULTS

We start by noting that, without loss of generality, we can assume that / = [0,1]
and we shall do so in the rest of the paper for simplicity.
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If F = (f,gx) is a map from C&(I2,I2) then / is called its basis map. For x £ I
we define the fibre on x by Ix = {x} x I. Denote by pr : I2 —> I the first projection,
that is, if (x,y) G I2 and A C I2 then pr((z,y)) = x and pr(^) = {x G / : IXDA ^ 0}.

Now let X be a compact metric space and let / G C(X, X). The iterates of / are
defined inductively by f° = id and fn+1 = / o / n , n > 0 . A point x G X is periodic if
fn(x) = x for some n > 0. The least such n is called the period of x. A point of period
one is called a fixed point. The orbit of x G X under / is Orb(/, z) = {/"(*) : n ^ 0}.

oo
Similarly, for A c X we put Orb(/ , A) = (J /n(.A). If x is periodic with period n

n=0

then its orbit is called a periodic orbit with period n. The set of periodic points of a

map / G C{X,X) wiU be denoted by P{f).

Now we recall the definition of topological entropy. Let X be a compact topological

space and let G G C(X,X). If A is a family of subsets of X then we set

n-l n-1

An = AQ = \ ( | G~x(Ai) : Ai G A for i = 0,. . . ,n — 1 and J | G~*(J4J) ^
%=o i=o

If A is an open cover of X, denote by Af(A) the minimal possible cardinality of a
subcover chosen from A. Then

1
h(G,A) = lim — logM(AQ)

n—>oo n

is the topological entropy of G on the cover A. The topological entropy of G is then
defined by (see [1]):

h(G) = sup{h(G,A) : A is an open cover of X} .

We shall also use Bowen's definition of topological entropy (see [8, 10]), which is
equivalent to the above one. Let (X, p) be a compact metric space and let G 6 C(X, X).

A subset E of X is called (n,e)-separated if for every two different points x,y G E

there exists 0 ^ j < n with p(G*(x),G'(y)) > e. A set E\ C X {n,e)-spans another
set K C X provided that for each x G K there is y G Ex for which p(G'(x),G'(y)) < e
for all 0 ^ j < n.

For a compact set K C X let rn(e,K) be the minimal possible cardinality of a
set Ei which (n, e)-spans K and let an(e,K) be the maximal possible cardinality of
an (n, e)-separated set E contained in K (we shall write rn(e,K, G) and sn(e,K, G)

if we wish to stress the dependence on G). Finally define

r(e, K, G) = lim sup - log rn(e, K, G)
n—.oo n
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and s(e, K, G) = lim sup — log sn(e, K, G).

Then we set hp(G, X) = lim s (e, K, G)

= lim r(e,K,G)
e—>0

and (see [9, 10])
h(G) = hp(G,X).

We shall often use the well known formula h(Gn) = n • h(G) , n ^ 0.
For F 6 CA(/2 , / 2) set hf(F) = suph(F,Ix). Then, from Bowen's formula (see

Theorem 17 in [8]; see also [16]) one gets

h(f) + hf(F) > h(F) > max{h(f),hf(F)}.

So, if the basis map / of F is simple, that is, of type at most 2°°, then h(F) = hj(F).
If Xi,X2 are compact topological spaces, / 6 C(Xx,Xi) and g € C{X2,X2) then

f,g are said to be topologically conjugate if there is a homeomorphism <p : Xi —> X^
such that g o tp — tp o f. In such a case h(f) = h(g) and Per(/) = Per (g). A set A is
called /-invariant if f(A) C A. The closure of A is denoted by Cl(A).

3. TRIANGULAR MAPS OF TYPE 2°° WITH INFINITE ENTROPY

We have mentioned in the introduction that in [15] it was proved that there exist
continuous triangular maps of the square of type 2°° with positive topological entropy.
Now we are going to strengthen this result by proving Theorems A and B.

PROOF OF THEOREM A: Let F : (a;,y) >-» (/.(«),g{x,y)) be the continuous
triangular map of type 2°° with positive topological entropy from [15] (see also [16]).
So /*(z) = A»z(l — x) is the logistic unimodal map of type 2°° , g(x,0) = g(x,l) = 0
for every x and h(F) > 0 is finite.

For every positive integer n, Fn is a continuous triangular map and so, there is a
map hn such that Fn{x,y) = (f?(x),hn(x,y)). Clearly, hn(x,0) = hn(x,l) = 0.

Take a sequence of points 0 = ai < &i < 02 < 62 < • • • < <*„ < bn < • • • converging
to 1. We are going to construct a map $ — (<p,ipx) from C&(I2,I2) of type 2°° with
/i($) = 00. First, define the basis map <p £ C(I, I) such that y|[On,6n] = v^1 ° f* ° an
for each n ^ 1, where <rn is the unique increasing affine map from [an)frn] onto [0,1]
and y|[6nian+1] is affine for each n ^ 1.

Clearly tp is of type 2°° since, for each n = 1,2... , it has no periodic points in
the interval (6n,an+i) and v|[On,6n] is topologically conjugate to / " .

It remains to define the maps ipx for x £ I. If x £ [an,frn] with n — 1,2,... ,
then we define V* € C(I,I) such that ij>x(y) = ffn1{hn(an(x),an(y))) for y G
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[an,bn], V>z(0) = 0, V>i(l) = 1 and V'sllo.a,,] a n d i>x\[bn,i] are affine. Set also V»i = id.
Finally, for x G [6n ,an+i] with n ^ 1, let ipx be any family of continuous maps de-
pending continuously on x such that $ is continuous. Say:

x ~Vz(y) 7Van+1(3/)
On+1 — "n On+1 —

It is clear that $ = (ip,*/),.) belongs to CA(I2,I2) and that, by construction, $|[On,fcn]
3

is topologically conjugate to Fn. Since h(Fn) = nh(F), h(F) > 0, and Fn is of type
2°°, we get that h(&) = oo and $ is of type at least 2°°. On the other hand, it is easy

oo

to see that every periodic point of $ with the first coordinate lying in \J [an,bn] U {1}
n = l

oo
has period a power of two. Further, if x £ (J (bn,an+i) then x is not a periodic point

n=i
of <p and so Ix contains no periodic point of $. Therefore $ is of type 2°°. This ends
the proof of the theorem. D

To prove Theorem B we need some auxiliary results.

LEMMA 3 . 1 . Let f G C(I, I) have no periodic orbits with odd periods greater
than 1. Let c be a fixed point of f and suppose that for some 6 > 0, f{x) > x for all
x G (c,c + 6]. Then there exists 0 < A < S such that

(i) f([c,c+A])c[c,c + 6].
(ii) For each x G (c ,c+A) there exists an n(x) such that x < f(x) <

f\x) < • • • < f<*\x) and fn<-'\x) >c + A.
(iii) Orb( / , [c + A ,c + « ] ) c [ c + A , l ] .
(iv) If g G C(I,I) maps (c, c + A) into [c, c + 5] and g(x) = f(x) for every

x G I\{c,c+A), then P(g) = P{f)U{x G P(g) : Orb(<7,x) C (c,c + A)}.

PROOF: Take the least Si > 0 such that /(c + Si) - c + 6 and 0 < A < *i such
that f(c + A) = c + Si. Then (i) holds trivially. Let x G (c,c+ A) and consider the
sequence {fn(x)}™=0. If / n (x) < c + A for all n, since f(x) > x for each x G {c,c + S],
we get that the sequence is increasing. Thus, there exists a = lim fn(x) and a ^ c+A.

n—>oo

Of course, a = / ( a ) ; a contradiction. This ends the proof of (ii). To prove (iii) we
claim that Orb(/, [c + Si, c + 6]) C [c + A, 1]. Suppose on the contrary that for some
z G [c + Si,c + S] and some positive integer k we have fk(z) < c + A. Clearly, k ^ 2.
Now take zi G [c + A ,c+ Si] with /(zi) = z. Then either for x = z and n = k or for
x — zi and n = k + 1 we have that n is odd and fn[x) < x < f(x). But this implies
(see [18, Proposition 2.2]) that / has a periodic point of an odd period greater than
1; a contradiction. So Orb(/, [c + Si,c + S]) C [c + A,l] and, thus, (iii) holds. Finally,
from (i)-(iii) we get that P{f) n {c,c + A) = 0. Hence, (iv) is satisfied. D
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In the sequel, the interval [c, c + A) from the lemma will be called an f-repulsive
right-hand side neighbourhood of c corresponding to [c, c + 8]. It is easy to see that for
any 0 < A' ^ A, [c, c + A') is also an /-repulsive right-hand side neighbourhood of
c corresponding to [c,c + 8]. Since an analogous result holds if f(x) < x for all x 6
[c — 8,c), in the sequel we shall also talk about f -repulsive left-hand side neighbourhoods
of c corresponding to [c — 8, c].

LEMMMA 3 . 2 . Let f,ge C(I, I) and let c be a fixed point of f. Let f have no
periodic orbits with odd period greater than 1. Then, for each e,T) > 0 tiere exist an
open interval L C I such that c € Cl(L) and the diameter of L is smaller than T); a
closed interval K C L such that c £ K and a map / £ C(I,I) satisfying the following
conditions:

(i) f\(I\L)U{c} = f\(I\L)U{c} •

(ii) f\n is topologically conjugate to g.

(iii) Each periodic orbit of f is contained either in K or in L\K or in I\L.

(iv) / has at most three periodic points in L\K and they have period at

most 2.

(v)

PROOF: We first consider the case c / 1 . Choose 0 < 8 < min{e/2,77/2,1 - c}
such that \f(x) — c\ < e/2 for all x £ [c — 6, c + 8] C\ I. We consider three cases:

CASE 1. There exists a point b £ (c,c+S] such that c ^ f[b) ^ b. Then we set
L = (c,b) and we choose a closed interval K C. L and points d £ (c,mmK) and
d' £ (max if, b). We define / £ C(I,I) such that it satisfies conditions (i) and (ii),
f(x) = / ( m i n i f ) for each x € [<£,minIf], f(d') = c and / is affine on each of the
intervals [c,d], [maxK,d'] and [d',supL]. Then, / (C1(Z)) C C1(X) and / has no
periodic points in L\K. Thus, / is the desired map.

CASE 2. f(x) > x for each x £ (c,c + 8]. By Lemma 3.1 there exists an /-repulsive

right-hand side neighbourhood [c, c + A) of c corresponding to [c, c+ 8]. Then we set

L = (c,c + A) and we define / as in Case 1. Then, / has no periodic orbit contained

in L\K except for a fixed point in (d',c + A) . Thus, in view of Lemma3.1, / satisfies

the remaining conditions from the statement of the lemma.

CASE 3. f(x) < c for each x £ (c, c + 6]. Then, c ^ 0 and, without loss of generality,
we may assume that 0 ^ c — 8. If f(x) ^ c for some x £ [c — 6, c) then we can proceed
in a similar way to Cases 1 and 2 (but now one has to take L such that c = supL
instead of c = inf L). Therefore, we may assume that / ( x ) > c for each x £ [c — S,c).
Take 0 < £1 < 8 such that / ([c - 8uc + 8^) C [c - S,c + 8]. Then, / 2 ( x ) > c for all
x £ (c,c + Si] and f2(x) < c for all x £ [c — 81,c). We consider two subcases.
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SUBCASE 3A. Either f2(z) < z for some z G (c,c + Si] or f2{z') > z' for some

z' G [c — 6i,c). We shall only consider the first possibility. In the second one we can
construct / in a similar way. We take L — (f(z),z), a closed interval K C (c,z),

d G (cjmin.K') and d' G (max K, z). We define / € C(I, I) satisfying conditions (i) and
(ii), / ( x ) — / ( m i n i f ) for each x G [d, min K], f(d') = c and / is affine on each of the
intervals [f(z),c], [c,d], [m<ixK,d'} and \d',z}. Clearly, /(Cl(Z-)) C C\{L). Moreover,
it can be seen that {c} is the only periodic orbit of / lying in L\K. Thus, / is the
desired map.

SUBCASE 3B. f2{x) > x for each x £ (c,c+5i] and /2(x) < x for each x G
[c — 6i,c). Take 0 < A < Si such that /([c - A,c +A]) C [c-£i,c + 6i] and [c,c + A )
and (c — A,c] are /2-repulsive neighbourhoods of c corresponding to [c,c+£i] and
[c — Si,c], respectively. By Lemma3.1, we have that the interval [c — A, c + A] is not / 2 -
invariant and so it is not /-invariant. This implies that there exists either x G [c — A,c)
with f(x) > c + A or x G (e,c + A] with /(x) < c - A. We shall only consider the
first possibility. The proof of the lemma in the other case follows similarly.

We set ai = max{x G [c — A,c) : f(x) = c + A}. Since, by Lemma3.1, the interval
[c, c + A] is not /2-invariant there exists x G [c, c + A] such that /(x) < cti. Then we
set a2 = min{x G (c,c +A] : /(x) = 01} and 6 = max{/(x) : x G [a2,c + A]}. We
note that b < c by the hypotheses. Now we are ready to define the map / . We take
L — (01,02) and K C (0,02). We also take d G (c,minK) and a" G ( m a x i f ^ ) . Then
we define / G C(I,I) satisfying conditions (i) and (ii), /(x) = /(ai) = c + A for each
x G [01,6], f(x) = f(iainK) for each x £ [a1, min iif], /(a") = c and / is affine on each
of the intervals [b,c], [c,d], [maxif, d'\ and [a",02].

We note that the intervals [c, d'] and K are /-invariant and that {c} is the only
periodic orbit lying in [c, d']\K. Further, it is easy to see that there is a periodic orbit
{P11P2} of / of period 2 such that pj G (b,c) and p2 G (d',*^). On the other hand, if
x G (d',a2) is a periodic point of / such that Orb ( / .z ) C {b,c) U {d',a2) then, since

/([d',O2]) = [oi,c] and /([oi,c]) = [c,c+A], we have that x has even period. So,
x is a periodic point of / 2 . But, since the only such point is P2, {pi,P2} is the only
periodic orbit of / contained in (b, c) U ((£',02).

To end the proof of the lemma in this subcase it is enough to prove that if P is a
periodic orbit of / intersecting (oi,c) U (i',02) then P = {pi,P2}- Take such an orbit.
Assume first that P C [oi,c) U (d',c + A]. Since /(x) < c + A for each x G [oi,c],
/ (c + A) < b < c and /2(c + A) > c + A (see Lemma 3.1) we get that /(c + A) =
/(c + A) < a i . Thus, c + A £ P . Hence, P cannot contain any point from [ai,6] since
all such points are mapped by / to the point c -f A. Further, P cannot contain any
point from [02,0+ A) since all such points are mapped by / either into [0,ai) or into
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[ax,b]. Therefore, if P C [ai ,c)U(d' ,c + A] then P C (6,c)U(d' ,o2) and coincides with

{Pi>?2}- Now we assume that P <£_ \a\,c) U (d',c + A] . Since [c,d'J is /-invariant, this

means that P intersects / \ [ai, c + A] . Then, P must contain a point z 6 («i2, c + A]

such that f(z) = f(z) < a j . Therefore, f(z) > c- h because f([c - A , c + A]) C

[c — 6i,c + 61]. Moreover, by the hypotheses we have that / 2 ([c — A,ai]) C [c —

5i, a i ] . Also, by Lemma 3.1 we have that Orb ( / 2 , [c — £1, c — A]) C [0, c — A] . Hence,

Orb ( / 2 , [c - 61,ai]) C [0,ai] . Consequently, / 2 n + 1 ( z ) < ai for each n ^ 0. Moreover,

since / (x ) > ai for each z G L, we see that / 2 n ( z ) ^ L for each n ^ 0. Thus,

Orb (f,z)Cl\L and so, P = Orb (/ , z) = Orb (/, z) which contradicts the fact that
P intersects (ai,c) U (d',02) C L.

Now we are left with the case c = 1. The proof of this case follows similarly to the
proof of the case c ^ 1 with all inequalities reversed. U

PROOF OF THEOREM B: Let F(x,y) — (f{x),gx(y)) be a continuous triangular
map of type at most 2°° and let e > 0. To prove the theorem it suffices to find a
continuous triangular map F(x,y) — lf(x),'gx(y)j of type 2°° with infinite topological

entropy such that d% ( F, F J < e.

To construct this map we proceed as follows. Take a fixed point c of f and 77 > 0
such that di(gz,gc) < e/2 for each x 6 [c — 77,c + 77] fl / .

Let <f>(x,y) = {<p(x),ij)x(y)) be the triangular map of type 2°° with infinite topo-
logical entropy from the proof of Theorem A (recall that (p is of type 2°°). Now, let
f be the map given by Lemma 3.2 with <p instead of g. Since <p is of type 2°°, by
Lemma 3.2 (ii)-(iv), / is of type 2°°. Now we shall define the maps g~x for each x 6 / .
We consider the following cases (we use the notation from Lemma 3.2):

CASE 1. x E I\L. We set 7jx = gx. Then, by virtue of Lemma 3.2 (iii), each periodic
orbit of F intersecting (/ \ L) X I is contained in (I \ L) X I and, hence, by Lemma 3.2
(i) it has period a power of two because F (and / ) is of type at most 2°°.

CASE 2. x is a periodic point of f in L\ K. We set g~x = gc. Then, since gc is of
type at most 2°° (recall that c is a fixed point of / ) , by Lemma 3.2 (iv) we get that
the map F will have no periodic points of period different from a power of two in Ix.

CASE 3. x e K. By Lemma 3.2 (ii) /|«- is topologically conjugate to <p. Thus, there
exists a homeomorphism £ : I —» K such that f\x o £ = £ o <p. Now take c", a fixed
point of gc, and use Lemma 3.2 with gc, tp^-i^ and e/2 instead of / , g and e to
obtain the map ~gx and intervals K C L satisfying all conditions from the statement of
the lemma (in particular we have di(gx,gc) < e/2). From the proof of Lemma 3.2 it
is clear that the intervals K and L depend only on the map gc, not on x. Moreover,
since ^ ( 0 ) = 0 and V'z(l) = 1 for each z £ / , we see that <7Z|JA jf also is independent
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of x. Since gc is of type at most 2°°, by Lemma 3.2 (i)-(iv) we get that g~x\j\j( has

no periodic point with period different from a power of two. Therefore, since f\x is

topologically conjugate to <p which has type 2°°, F\Kx(i\j(\
 n a s type at most 2°°.

On the other hand, J^l^ ~ is topologically conjugate to $ . Thus, F has infinite

topological entropy and

CASE 4. x £ L\ K but it ia not a •periodic point of f. Note that F has no periodic
point in Ix independently of the choice of ~gx for all x € / . So, for x £ / , we let gx

be an arbitrary one-parameter family of continuous maps in / , depending continuously
on x, such that di(gx,gc) < e/2 for each x £ L\ K which is not a periodic point
of / . Such a family exists because g~c = gc, c £ L, and for each z £ L for which
g~z has been defined we already have di(gz,gc) < e/2 and the same is true for each
zE [c-r),c + r,]n{I\L).

From all said above we have a map F with infinite topological entropy and type

2°° . To end the proof only it remains to show that d^ (F, FJ < e. To prove this we note

that, by Lemma 3.2 (v) we have d\ ( />/) < £• On the other hand, d\{gx,g~x) = 0 for

each x £ I\L. For x £ L C [c — TJ,c + r)} we have di(gx,gc) < e/2 and di(gc,gx) < e/2.

Hence, diCff*,^) < e for all x £ / and, thus, d2(F,Fj < e. D

4. PROOF OF THEOREM C

The idea of the proof is similar to the one used in [17] in the proof that, in
C&.(I2,I2) , the Sharkovskii ordering is not stable in the sense of Block.

PROOF OF THEOREM C: For A 6 [0,1] let FA : (x,y) >-* (\x,xg(y)) where g £

C(I,I) is any map with positive, say infinite, entropy. Since ^(Fil/j) = h(g) — oo, we

have h(Fi) — oo. On the other hand, for A < 1 we have h(Fx) = h(Fx\i0) = 0. D

5. LOWER BOUNDS OF THE TOPOLOGICAL ENTROPY FOR TRIANGULAR MAPS

In this Section we prove Theorem D. We start with some remarks and auxiliary

results.

REMARK 5.1. It is not difficult to see, (see for instance [3]) that if n < , k then rn ̂  r t .
Moreover, if k is not a power of two then rn <Tk-

The following technical lemma on the numbers Tn will be useful later.

LEMMA 5 . 2 . For each m ~£ 0 and s £ N we Aave

2- m logr . =logr2m,.
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PROOF: Let s = 2jq with j ^ 0 and q ^ 1 odd. If q - 1 then 2~ m logr , = 0 =

logT2m+, = log T2m.. If g > 1 then 2 - m l o g r , = 2~mlog(A,)2~J = log (A,)2 m+' =

log T2m+jq = log T2m, . D

The following proposition gives the lower bounds of the topological entropy for
continuous self-maps of the interval in terms of the set of periods (see [5, 12, 13]).

PROPOSITION 5 . 3 . Let f £ C(I,I) have a periodic orbit of period n. Then

h(f) ^ logr n . Conversely, for each n 6 N there exists a map fn (E C(I,I) of type n

such that h(fn) = logr n .

PROOF OF THEOREM D: AS usual, set F(x,y) = (f(x),gx(y)). Denote a periodic
orbit of F of period n by P . Since F is triangular we know that pr (P) is a periodic
orbit of / of period / and / divides n.

Assume that / is not a power of two. Then, clearly, n ^ , /. Therefore, by
Remark 5.1 and Proposition 5.3 we get

h(F) ^ h.(f) ^ log TI ^ log r n .

Assume now that / is a power of two and let x 6 p r ( P ) . Then, Ix is .F'-invariant
and Fl\ix has a periodic orbit of period s = n/l. Therefore, by Proposition 5.3 and
Lemma 5.2 we get

h(F) = 1 h(Fl) > y h(Fl\Ia) > y logr, = logr,. - logrn .

Now we prove the converse. We define Fn € C A ( / 2 , / 2 ) by Fn(x,y) = (fn(x),y),

where / „ is the interval map from the statement of Proposition 5.3. It is not difficult
to show that hfn(Fn) — 0. Therefore we get

Furthermore, by the definition of Fn we have Per (Fn) = Pe r ( / n ) and so Fn is of type
D

REMARK 5.4. From the proof of the above theorem we see that if the periodic orbit of
F of period n under consideration projects on a periodic orbit of / with period / such
that / is not a power of two then, in fact, we have h(F) ^ logTj.

In view of Remark 5.1, if / ^ n , this lower bound of the topological entropy is
strictly larger than the one given by Theorem D. Moreover, if n — 2mq with m > 0
and q > 1 odd then there exists a triangular map of the form F(x,y) — (f(x),g(y))
having a periodic orbit of period n whose projection is a periodic orbit of / of period
q and such that h(F) = logT, > logr n . The construction of this map is as follows.
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We take as / the map / , from Proposition 5.3 and as g the map fvn also from
Proposition 5.3. Let Q be the periodic orbit of period q of / and let R be the periodic
orbit of period 2m of g. Since q and 2m are relatively prime we have that Q x R is a
periodic orbit of F of period n. Since

0 = log T2m = h(g) = h(g, I) = lim lim sup - log an(e, I, g)
«-*0 n—oo n

we obtain that h{F,Ix) - 0 for all x e I. Therefore, hf(F) = 0 and, hence,

h(F) = h(f)=\ogrg. •
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