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Abstract

We consider the two-dimensional shrinking target problem in beta dynamical systems (for general β > 1)
with general errors of approximation. Let f , g be two positive continuous functions. For any x0, y0 ∈ [0, 1],
define the shrinking target set

E(Tβ, f , g) :=

⎧⎪⎪⎨⎪⎪⎩(x, y) ∈ [0, 1]2 :
|Tn
βx − x0| < e−Sn f (x)

|Tn
βy − y0| < e−Sng(y) for infinitely many n ∈ N

⎫⎪⎪⎬⎪⎪⎭ ,

where Sn f (x) =
∑n−1

j=0 f (Tj
βx) is the Birkhoff sum. We calculate the Hausdorff dimension of this set and

prove that it is the solution to some pressure function. This represents the first result of this kind for the
higher-dimensional beta dynamical systems.

2020 Mathematics subject classification: primary 11K55; secondary 28A80, 11J83, 11K60, 37C45,
37A45.

Keywords and phrases: beta-expansions, shrinking target problem, Hausdorff dimension.

1. Introduction

The study of the Diophantine properties of the distribution of orbits for a
measure-preserving dynamical system has recently received much attention. Let
T : X → X be a measure-preserving transformation of the system (X,B, μ) with a
consistent metric d. If the transformation T is ergodic with respect to the measure μ,
Poincaré’s recurrence theorem implies that, for almost every x ∈ X, the orbit {Tnx}∞n=0
returns to an arbitrary but fixed neighbourhood of x infinitely often. That is, for any
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x0 ∈ X, for μ-almost all x ∈ X,

lim inf
n→∞

d(Tnx, x0) = 0.

Poincaré’s recurrence theorem is qualitative in nature but it does motivate the study
of the distribution of T-orbits of points in X quantitatively. In other words, a natural
motivation is to investigate how fast the above limit infimum tends to zero. To this end,
the spotlight is on the size of the set

D(T ,ϕ) := {x ∈ X : d(Tnx, x0) < ϕ(n) for i.m. n ∈ N},

where ϕ : N→ R≥0 is a positive function such that ϕ(n)→ 0 as n→ ∞. Here and
throughout, ‘i.m.’ is used for ‘infinitely many’. The set D(T ,ϕ) can be viewed as
the collection of points in X whose T-orbit hits a shrinking target infinitely many
times. The set D(T ,ϕ) is the dynamical analogue of the classical inhomogeneous
well-approximable set

W(ϕ) := {x ∈ [0, 1) : |x − p/q − x0| < ϕ(q) for i.m. p/q ∈ Q}.

As one would expect, the ‘size’ of both of these sets depends upon the nature of the
function ϕ, that is, how fast it approaches zero. The size of the set W(ϕ) in terms of
Lebesgue measure or Hausdorff measure and dimension has been established even
in the higher-dimensional (linear form) settings; see [1, 8, 19] for further details. In
contrast, not much is known for the higher-dimensional version of the set D(T ,ϕ) for
general T.

Following the work of Hill and Velani [6], the Hausdorff dimension of the set
D(T ,ϕ) has been determined for many dynamical systems, from the system of rational
expanding maps on their Julia sets to conformal iterated function systems [15].
We refer the reader to [3] for a comprehensive discussion regarding the Hausdorff
dimension of various dynamical systems. In this paper, we confine ourselves to the
two-dimensional shrinking target problem in beta dynamical systems with general
errors of approximation.

For a real number β > 1, define the transformation Tβ : [0, 1]→ [0, 1] by

Tβ : x �→ βx (mod 1).

This map generates the β-dynamical system ([0, 1], Tβ). It is well known that
β-expansion is a typical example of an expanding nonfinite Markov system whose
properties are reflected by the orbit of some critical point; in other words, it is not
a subshift of finite type with mixing properties. This causes difficulties in studying
metrical questions related to β-expansions. General β-expansions have been widely
studied in the literature; see for instance [7, 9, 12–14] and references therein. In
particular, the Hausdorff dimension, denoted throughout by dimH , of D(Tβ,ϕ) was
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obtained in [13] and the Lebesgue measure and Hausdorff dimension of the set

D(Tβ,ϕ1,ϕ2) :=

⎧⎪⎪⎨⎪⎪⎩(x, y) ∈ [0, 1]2 :
|Tn
βx − x0| < ϕ1(n)

|Tn
βy − y0| < ϕ2(n)

for i.m. n ∈ N
⎫⎪⎪⎬⎪⎪⎭

was calculated in [9]. Here x0, y0 ∈ [0, 1] are fixed and the approximating functions
ϕ1,ϕ2 are positive functions of n.

In 2014, Bugeaud and Wang [2] calculated the Hausdorff dimension of the set with
the error of approximation given by the ergodic sum, that is,

E(Tβ, h) := {x ∈ [0, 1] : |Tn
βx − x0| < e−Snh(x) for i.m. n ∈ N},

where h is a positive continuous function on [0, 1] and Snh(x) = h(x) + · · · + h(Tn−1
β x).

Clearly the error of approximation is exponential depending upon the orbits Tβx. Note
that it is still an open problem whether e−Snh(x) implies the arbitrary function ϕ(n)
or not. However, e−Sn f (x) reduces to β−nτ by considering h(x) = τ log|T ′(x)| for some
τ > 0. Thus, the result of [2] implies the Jarník–Besicovitch type result for the set
under consideration.

In this paper, we extend Bugeaud and Wang’s set E(Tβ, h) to the two-dimensional
setting and calculate its Hausdorff dimension. Let f , g be two positive continuous
function on [0, 1] and let x0, y0 ∈ [0, 1] be fixed. Define

E(Tβ, f , g) :=

⎧⎪⎪⎨⎪⎪⎩(x, y) ∈ [0, 1]2 :
|Tn
βx − x0| < e−Sn f (x)

|Tn
βy − y0| < e−Sng(y) for i.m. n ∈ N

⎫⎪⎪⎬⎪⎪⎭ .

The set E(Tβ, f , g) is the set of all points (x, y) in the unit square such that the pair
{(Tnx, Tny)} is in the shrinking rectangle B(x0, e−Sn f (x)) × B(y0, e−Sng(y)) for infinitely
many n. The rectangle shrinks to zero at exponential rates given by e−Sn f (x) and e−Sng(y).
We shall prove the following result.

THEOREM 1.1. Let f , g be two continuous functions on [0, 1] with f (x) ≥ g(y) for all
x, y ∈ [0, 1]. Then

dimH E(Tβ, f , g) = min{s1, s2},

where

s1 = inf{s ≥ 0 : P( f − s(log β + f )) + P(−g) ≤ 0},
s2 = inf{s ≥ 0 : P(−s(log β + g)) + log β ≤ 0}.

Here P(·) stands for the pressure function for the β-dynamical system associated
to continuous potentials f and g. To keep the introductory section short, we formally
give the definition of the pressure function in Section 2. The reason why the Hausdorff
dimension is in terms of the pressure function is because of the dynamical nature of
the set E(Tβ, f , g). For the detailed analysis of the properties of the pressure function
and ergodic sums for general dynamical systems we refer the reader to [17, Ch. 9].
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The proof of this theorem splits into two parts: establishing the upper bound and
then the lower bound. The upper bound is relatively easier to prove by using the
definition of Hausdorff dimension on the natural cover of the set. However, estab-
lishing the lower bound is challenging and the main substance of this paper. Actually,
the main obstacle in determining the metrical properties of general β-expansions lies
in the difficulty of estimating the length of a general cylinder and, since we are dealing
with two-dimensional settings, the area of the cross-product of general cylinders. As
far as the Hausdorff dimension is concerned, one does not need to take all points into
consideration; instead, one may choose a subset of points with regular properties to
approximate the set in question. This argument in turn requires some continuity of the
dimensional number, when the system is approximated by its subsystem.

The paper is organised as follows. Section 2 is devoted to recalling some elementary
properties of β-expansions. Short proofs are also given when we could not find any
reference. Definitions and some properties of the pressure function are stated in this
section as well. In Section 3 we prove the upper bound of Theorem 1.1. In Section 4
we prove the lower bound of Theorem 1.1, and since this takes up a large proportion
of the paper we subdivide this section into several subsections.

2. Preliminaries

We begin with a brief account of some basic properties of β-expansions and we fix
some notation. We then state and prove two propositions which give the covering and
packing properties.

The β-expansion of real numbers was first introduced by Rényi [11], and is given by
the following algorithm. For any β > 1, let

Tβ(0) := 0, Tβ(x) = βx − 	 βx
, x ∈ [0, 1), (2-1)

where 	ξ
 is the integer part of ξ ∈ R. By taking

εn(x, β) = 	 βTn−1
β x
 ∈ N

recursively for each n ≥ 1, every x ∈ [0, 1) can be uniquely expanded into a finite or an
infinite sequence

x =
ε1(x, β)
β

+
ε2(x, β)
β2 + · · · + εn(x, β)

βn +
Tn
βx

βn ,

which is called the β-expansion of x, and the sequence {εn(x, β)}n≥1 is called the digit
sequence of x. We also write the β-expansion of x as

ε(x, β) = (ε1(x, β), . . . , εn(x, β), . . .).

The system ([0, 1], Tβ) is called a β-dynamical system or just a β-system.

DEFINITION 2.1. A finite or an infinite sequence (w1, w2, . . .) is said to be admissible
(with respect to the base β), if there exists an x ∈ [0, 1) such that the digit sequence of
x equals (w1, w2, . . .).
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Denote by Σn
β the collection of all admissible sequences of length n and by Σβ that

of all infinite admissible sequences.
Let us now turn to the infinite β-expansion of 1, which plays an important role in the

study of β-expansions. Applying algorithm (2-1) to the number x = 1, then the number
1 can be expanded into a series, denoted by

1 =
ε1(1, β)
β

+
ε2(1, β)
β2 + · · · + εn(1, β)

βn + · · · .

If the above series is finite, that is, there exists m ≥ 1 such that εm(1, β) � 0 but
εn(1, β) = 0 for n > m, then β is called a simple Parry number. In this case, we write

ε∗(1, β) := (ε∗1( β), ε∗2( β), . . .) = (ε1(1, β), . . . , εm−1(1, β), εm(1, β) − 1)∞,

where (w)∞ denotes the periodic sequence (w, w, w, . . .). If β is not a simple Parry
number, we write

ε∗(1, β) := (ε∗1( β), ε∗2( β), . . .) = (ε1(1, β), ε2(1, β), . . .).

In both cases, the sequence (ε∗1( β), ε∗2( β), . . .) is called the infinite β-expansion of 1
and we always have that

1 =
ε∗1( β)

β
+
ε∗2( β)

β2 + · · · +
ε∗n( β)
βn + · · · .

The lexicographical order ≺ between infinite sequences is defined as

w = (w1, w2, . . . , wn, . . .) ≺ w′ = (w′1, w′2, . . . , w′n, . . .)

if there exists k ≥ 1 such that wj = w′j for 1 ≤ j < k, while wk < w′k. The notation w 

w′ means that w ≺ w′ or w = w′. This ordering can be extended to finite blocks by iden-
tifying the finite block (w1, w2, . . . , wn) with the sequence (w1, w2, . . . , wn, 0, 0, . . .).

The following result due to Parry [10] is a criterion for the admissibility of a
sequence.

LEMMA 2.2 (Parry [10]). Let β > 1 be a real number. Then a nonnegative integer
sequence ε = (ε1, ε2, . . .) is admissible if and only if, for any k ≥ 1,

(εk, εk+1, . . .) ≺ (ε∗1( β), ε∗2( β), . . .).

The following result of Rényi implies that the dynamical system ([0, 1], Tβ) admits
log β as its topological entropy.

LEMMA 2.3 (Rényi [11]). Let β > 1. For any n ≥ 1,

βn ≤ #Σn
β ≤
βn+1

β − 1
,

where # denotes the cardinality of a finite set.
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It is clear from this lemma that

lim
n→∞

log(#Σn
β)

n
= log β.

For any εn := (ε1, . . . , εn) ∈ Σn
β, call

In(εn) := {x ∈ [0, 1), εj(x, β) = εj, 1 ≤ j ≤ n}

an n th-order cylinder (with respect to the base β). It is a left-closed and right-open
interval with the left endpoint

ε1
β
+
ε2

β2 + · · · +
εn
βn

and length

|In(εn)| ≤ 1
βn .

Here and throughout the paper, we use |·| to denote the length of an interval. Note that
the unit interval can be naturally partitioned into a disjoint union of cylinders; that is,
for any n ≥ 1,

[0, 1] =
⋃
εn∈Σn

β

In(εn).

One difficulty in studying the metric properties of β-expansions is that the length
of a cylinder is not regular. It may happen that |In(ε1, . . . , εn)| � β−n. Here a � b is
used to indicate that there exists a constant c > 0 such that a ≤ cb. We write a � b if
a � b � a. The following notation plays an important role in bypassing this difficulty.

DEFINITION 2.4 (Full cylinder). A cylinder In(εn) is called full if it has maximal
length, that is, if

|In(εn)| = 1
βn .

Correspondingly, we also call the word (ε1, . . . , εn), defining the full cylinder In(εn), a
full word.

Next, we collect some properties about the distribution of full cylinders.

PROPOSITION 2.5 (Fan and Wang [5]). An n th-order cylinder In(εn) is full if and only
if, for any admissible sequence ε′m := (ε′1, ε′2, . . . , ε′m) ∈ Σm

β with m ≥ 1,

(εn, ε′m) ∈ Σn+m
β .

Moreover.

|In+m(εn, ε′m)| = |In(εn)| · |Im(ε′m)|.

So, for any two full cylinders In(εn), Im(ε′m), the cylinder In+m(εn, ε′m) is also full.
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LEMMA 2.6 (Bugeaud and Wang [2]). For n ≥ 1, among every n + 1 consecutive
cylinders of order n, there exists at least one full cylinder.

As a consequence, one has the following relationship between balls and cylinders.

PROPOSITION 2.7 (Covering property). Let J be an interval of length β−l with l ≥ 1.
Then it can be covered by at most 2(l + 1) cylinders of order l.

PROOF. By Lemma 2.6, among any 2(l + 1) consecutive cylinders of order l, there are
at least two full cylinders. So the total length of these intervals is larger than 2β−l. Thus
J can be covered by at most 2(l + 1) cylinders of order l. �

The following result may be of independent interest.

PROPOSITION 2.8 (Packing property). Fix 0 < ε < 1. Let n0 be an integer such that
2n2β < β(n−1)ε for all n ≥ n0. Let J ⊂ [0, 1] be an interval of length r with 0 < r <
2n0β

−n0 . Then inside J there exists a full cylinder In satisfying

r ≥ |In| > r1+ε .

PROOF. Let n > n0 be the integer such that

2nβ−n ≤ r < 2(n − 1)β−n+1.

Since every cylinder of order n is of length at most β−n, the interval J contains at least
2n − 2 ≥ n + 1 consecutive cylinders of order n. Thus, by Lemma 2.6, it contains a full
cylinder of order n and we denote such a cylinder by In. By the choice of n0, we have

r ≥ |In| = β−n > (2(n − 1)( β−n+1))1+ε > r1+ε .

This completes the proof. �

We now define a sequence of numbers βN approximating β from below. For any N
with ε∗N( β) ≥ 1, define βN to be the unique real solution to the algebraic equation

1 =
ε∗1( β)

βN
+
ε∗2( β)

β2
N

+ · · · +
ε∗N( β)

βN
N

.

Then βN approximates β from below and the βN-expansion of unity is

(ε∗1( β), . . . , ε∗N−1( β), ε∗N( β) − 1)∞.

More importantly, by the admissible sequence criterion, we have, for any εn ∈ Σn
βN

and ε′m ∈ Σm
βN

, that

(εn, 0N , ε′m) ∈ Σn+N+m
βN

, (2-2)

where 0N means a zero word of length N.
From assertion (2-2), we get the following proposition.
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PROPOSITION 2.9. For any εn ∈ Σn
βN

, In+N(εn, 0N) is a full cylinder. So,

1
βn+N ≤ |In(εn)| ≤ 1

βn .

We end this section with a definition of the pressure function for a β-dynamical
system associated to some continuous potential g:

P(g, Tβ) := lim
n→∞

1
n

log
∑
εn∈Σn

β

sup
y∈In(εn)

eSng(y), (2-3)

where Sng(y) denotes the ergodic sum
∑n−1

j=0 g(Tj
βy). Since g is continuous, the limit

does not depend upon the choice of y. The existence of the limit (2-3) follows from
subadditivity:

log
∑

(εn,ε′m)∈Σn+m
β

eSn+mg(y) ≤ log
∑
εn∈Σn

β

eSng(y) + log
∑
ε′m∈Σm

β

eSmg(y).

The reader is referred to [16] for more details.

3. Proof of Theorem 1.1: the upper bound

As is typical in determining the Hausdorff dimension of a set, we split the proof of
Theorem 1.1 into two parts: the upper bound and the lower bound.

For any εn = (ε1, . . . , εn) ∈ Σn
β and ωn = (ω1, . . . ,ωn) ∈ Σn

β, we always take

x∗ =
ε1
β
+
ε2

β2 + · · · +
εn
βn

to be the left endpoint of In(εn) and

y∗ =
ω1

β
+
ω2

β2 + · · · +
ωn

βn

to be the left endpoint of In(ωn).
Instead of directly considering the set E(Tβ, f , g), we consider a closely related limit

supremum set

E(Tβ, f , g) =
∞⋂

N=1

∞⋃
n=N

⋃
εn,ωn∈Σn

β

Jn(εn) × Jn(ωn),

where

Jn(εn) = {x ∈ [0, 1] : |Tn
βx − x0| < e−Sn f (x∗)},

Jn(ωn) = {y ∈ [0, 1] : |Tn
βy − y0| < e−Sng(y∗)}.
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In the sequel it is clear that the set E(Tβ, f , g) is easier to handle. Since f and g are
continuous functions, for any δ > 0 and n large enough, we have

|Sn f (x) − Sn f (x∗)| < nδ, |Sng(y) − Sng(y∗)| < nδ.

Thus we have

E(Tβ, f + δ, g + δ) ⊂ E(Tβ, f , g) ⊂ E(Tβ, f − δ, g − δ).

Therefore, to calculate the Hausdorff dimension of the set E(Tβ, f , g), it is sufficient to
determine the Hausdorff dimension of E(Tβ, f , g).

The length of Jn(εn) satisfies

|Jn(εn)| ≤ 2β−ne−Sn f (x∗),

since, for every x ∈ Jn(εn), we have∣∣∣∣∣x −
(
ε1
β
+ · · · + εn + x0

βn

)∣∣∣∣∣ = |T
n
βx − x0|
βn < β−ne−Sn f (x∗).

Similarly,

|Jn(ωn)| ≤ 2β−ne−Sn f (y∗).

So, E(Tβ, f , g) is a limit supremum set defined by a collection of rectangles. There are
two ways to cover a single rectangle Jn(εn) × Jn(ωn), as follows.

3.1. Covering by shorter side length. Recall that f (x) ≥ g(y) for all x, y ∈ [0, 1].
This implies that Jn(εn) is shorter in length than Jn(ωn). Then the rectangle Jn(εn) ×
Jn(ωn) can be covered by

β−ne−Sng(y∗)

β−ne−Sn f (x∗) =
eSn f (x∗)

eSng(y∗)

balls of side length β−ne−Sn f (x∗).
Since, for each N,

E(Tβ, f , g) ⊆
∞⋃

n=N

⋃
εn,ωn∈Σn

β

Jn(εn) × Jn(ωn),

the s-dimensional Hausdorff measureH s of E(Tβ, f , g) can be estimated as

H s(E(Tβ, f , g)) ≤ lim inf
N→∞

∞∑
n=N

∑
εn,ωn∈Σn

β

eSn f (x∗)

eSng(y∗)

( 1
βneSn f (x∗)

)s
.

Define

s1 = inf{s ≥ 0 : P( f − s(log β + f )) + P(−g) ≤ 0}.
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Then from the definition of the pressure function (2-3), it is clear that

P( f − s(log β + f )) + P(−g) ≤ 0 ⇐⇒
∞∑

n=1

∑
εn,ωn∈Σn

β

eSn f (x∗)

eSng(y∗)

( 1
βneSn f (x∗)

)s
< ∞.

Hence, for any s > s1,

H s(E(Tβ, f , g)) = 0.

Hence, it follows that dimH(E(Tβ, f , g)) ≤ s1.

3.2. Covering by longer side length. From the previous subsection (Section 3.1),
it is clear that only one ball of side length β−ne−Sng(y∗) is needed to cover the rectangle
Jn(εn) × Jn(ωn). Hence, in this case, the s-dimensional Hausdorff measure H s of
E(Tβ, f , g) can be estimated as

H s(E(Tβ, f , g)) ≤ lim inf
N→∞

∞∑
n=N

∑
εn,ωn∈Σn

β

( 1
βneSng(y∗)

)s
.

Define

s2 = inf{s ≥ 0 : P(−s(log β + g)) + log β ≤ 0}.

Then, from the definitions of the pressure function and Hausdorff measure, it follows
that, for any s > s2,H s(E(Tβ, f , g)) = 0. Hence,

dimH(E(Tβ, f , g)) ≤ s2.

4. Theorem 1.1: the lower bound

It should be clear from the previous section that proving the upper bound requires
only a suitable covering of the set E(Tβ, f , g). In contrast, proving the lower bound is a
challenging task, requiring all possible coverings to be considered; it therefore repre-
sents the main problem in metric Diophantine approximation (in various settings). The
following principle, commonly known as the mass distribution principle [4], is used
frequently for this purpose.

PROPOSITION 4.1 (Falconer [4]). Let E be a Borel measurable set in Rd and μ be a
Borel measure with μ(E) > 0. Assume that there exist two positive constants c, δ such
that, for any set U with diameter |U| less than δ, μ(U) ≤ c|U|s. Then dimH E ≥ s.

Specifically, the mass distribution principle replaces the consideration of all
coverings by the construction of a particular measure μ and it is typically deployed
in two steps:

• construct a suitable Cantor subset F∞ of E(Tβ, f , g) and a probability measure μ
supported on F∞;

• show that, for any fixed c > 0, μ satisfies the condition that, for any measurable set
U of sufficiently small diameter, μ(U) ≤ c|U|s.

https://doi.org/10.1017/S1446788722000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000076


[11] Higher-dimensional shrinking target problem 299

If this can be done, then by the mass distribution principle, it follows that

dimH(E(Tβ, f , g)) ≥ dimH(F∞) ≥ s.

The substantive, intricate part of this entire process is the construction of a suitable
Cantor type subset F∞ which supports a probability measure μ. In the remainder of this
paper, we construct a suitable Cantor type subset of the set E(Tβ, f , g) and demonstrate
that it satisfies the mass distribution principle.

4.1. Construction of the Cantor subset. We construct the Cantor subset F∞
iteratively. Start by fixing an ε > 0 and assume that f (x) ≥ (1 + ε)g(y) ≥ g(y) for all
x, y ∈ [0, 1]. We construct a Cantor subset level by level and note that each level
depends on its predecessor. Choose a rapidly increasing subsequence {mk}k≥1 of
positive integers with m1 large enough.

4.1.1. Level 1 of the Cantor set. Let n1 = m1. For any U1, W1 ∈ Σn1
βN

ending with the
zero word of order N (that is, 0N), let x∗1 ∈ In1 (U1), y∗1 ∈ In1 (W1). From Proposition 2.8,
it follows that there are two full cylinders Ik1 (K1), Il1 (L1) such that

Ik1 (K1) ⊂ B(x0, e−Sn1 f (x∗1)),

Il1 (L1) ⊂ B(y0, e−Sn1 g(y∗1)),

and

e−Sn1 f (x∗1) > β−k1 > (e−Sn1 f (x∗1))1+ε ,

e−Sn1 g(y∗1) > β−l1 > (e−Sn1 g(y∗1))1+ε = e−Sn1 (1+ε)g(y∗1).

So, we get a subset In1+k1 (U1, K1) × In1+l1 (W1, L1) of Jn1 (U1) × Jn1 (W1). Since f (x) ≥
(1 + ε)g(y) for all x, y ∈ [0, 1], it follows that k1 ≥ l1. It should be noted that K1 and L1
depend on U1 and W1, respectively. Consequently, for different U1 and W1, the choice
of K1 and L1 may be different.

The first level of the Cantor set is defined as

F1 = {In1+k1 (U1, K1) × In1+l1 (W1, L1) : U1, W1 ∈ Σn1
βN

ending with 0N},

which is composed of a collection of rectangles. Next, we cut each rectangle into balls
with the radius as the shorter side length of the rectangle:

In1+k1 (U1, K1) × In1+l1 (W1, L1)

→ {In1+k1 (U1, K1) × In1+k1 (W1, L1, H1) : H1 ∈ Σk1−l1
βN
}.

Then we get a collection of balls

G1 = {In1+k1 (U1, K1) × In1+k1 (W1, L1, H1) : U1, W1 ∈ Σn1
βN

ending with 0N , H1 ∈ Σk1−l1
βN
}.

4.1.2. Level 2 of the Cantor set. Fix a J1 = In1+k1 (Γ1) × In1+k1 (Υ1) in G1. We define
the local sublevel F2(J1) as follows.
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Choose a large integer m2 such that
ε

1 + ε
· m2 log β ≥ (n1 + sup{k1 : In1+k1 (Γ1)})‖ f ‖,

where ‖ f ‖ = sup{| f (x)| : x ∈ [0, 1]}.
Write n2 = n1 + k1 + m2. Just like the first level of the Cantor set, for any U2, W2 ∈

Σ
m2
βN

ending with 0N , applying Proposition 2.8 to Jn2 (Γ1, U2) × Jn2 (Υ1, W2), we can get
two full cylinders Ik2 (K2), Il2 (L2) such that

Ik2 (K2) ⊂ B(x0, e−Sn2 f (x∗2)), Il2 (L2) ⊂ B(y0, e−Sn2 g(y∗2))

and

e−Sn2 f (x∗2) > β−k2 > (e−Sn2 f (x∗2))1+ε ,

e−Sn2 g(y∗2) > β−l2 > (e−Sn2 g(y∗2))1+ε = e−Sn2 (1+ε)g(y∗2),

where x∗2 ∈ In2 (Γ1, U2), y∗2 ∈ In2 (Υ1, W2).
Obviously, we get a subset In2+k2 (Γ1, U2, K2) × In2+l2 (Υ1, W2, L2) of Jn2 (Γ1, U2) ×

Jn2 (Υ1, W2) and k2 ≥ l2. Then, the second level of the Cantor set is defined as

F2(J1) = {In2+k2 (Γ1, U2, K2)×In2+l2 (Υ1, W2, L2) : U2, W2 ∈ Σm2
βN

ending with 0N},

which is composed of a collection of rectangles.
Next, we cut each rectangle into balls with the radius as the shorter side length of

the rectangle:

In2+k2 (Γ1, U2, K2) × In2+l2 (Υ1, W2, L2)→ {In2+k2 (Γ1, U2, K2)

× In2+k2 (Υ1, W2, L2, H2) : H2 ∈ Σk2−l2
βN
} := G2(J1).

Therefore, the second level is defined as

F2 =
⋃
J∈G1

F2(J), G2 =
⋃
J∈G1

G2(J).

4.1.3. From level i − 1 to level i. Assume that the (i − 1) th level of the Cantor set
Gi−1 has been defined. Let Ji−1 = Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1) be a generic element
in Gi−1. We define the local sublevel Fi(Ji−1) as follows.

Choose a large integer mi such that
ε

1 + ε
· mi log β ≥ (ni−1 + sup{ki−1 : Ini−1+ki−1 (Γi−1)})‖ f ‖. (4-1)

Write ni = ni−1 + ki−1 + mi. For each Ui, Wi ∈ Σmi
βN

ending with 0N , apply Proposition
2.8 to

Jni (Γni−1+ki−1 , Ui) × Jni (Υni−1+ki−1 , Wi).

We can get two full cylinders Iki (Ki), Ili (Li) such that

Iki (Ki) ⊂ B(x0, e−Sni f (x∗i )), Ili (Li) ⊂ B(y0, e−Sni g(y∗i ))

https://doi.org/10.1017/S1446788722000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000076


[13] Higher-dimensional shrinking target problem 301

and

e−Sni f (x∗i ) > β−ki > (e−Sni f (x∗i ))1+ε ,

e−Sni g(y∗i ) > β−li > (e−Sni g(y∗i ))1+ε = e−Sni (1+ε)g(y∗i ),

where x∗i ∈ Ini (Γi−1, Ui), y∗i ∈ Ini (Υi−1, Wi).
Obviously, we get a subset Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li) of Jni (Γi−1, Ui) ×

Jni (Υi−1, Wi) and ki ≥ li. Then, the i th level of the Cantor set is defined as

Fi(Ji−1) = {Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li) : Ui, Wi ∈ Σmi
βN

ending with 0N},

which is composed of a collection of rectangles. As before, we cut each rectangle into
balls with the radius as the shorter side length of the rectangle:

Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li)→ {Ini+ki (Γi−1, Ui, Ki)

× Ini+ki (Υi−1, Wi, Li, Hi) : Hi ∈ Σki−li
βN
} := Gi(Ji−1).

Therefore, the i th level is defined as

Fi =
⋃

J∈Gi−1

Fi(J), Gi =
⋃

J∈Gi−1

Gi(J).

Finally, the Cantor set is defined as

F∞ =
∞⋂

i=1

⋃
J∈Fi

J =
∞⋂

i=1

⋃
I∈Gi

I.

It is straightforward to see that F∞ ⊂ E(Tβ, f , g).

REMARK 4.2. It should be noted that the integer ki depends upon Γi−1 and Ui. Assume
that f is strictly positive, otherwise replace f by f + ε. Since mi can be chosen as
mi � ni−1 for all ni−1, we have

β−ki � e−Sni f (x∗i ) = (e−Smi f (Tni−1+ki−1
β x∗i ))1+ε ,

where x∗i ∈ Ini−1+ki−1+mi (Γi−1, Ui). In other words, ki is almost dependent only on Ui and

β−ki � e−Smi f (x′i ), x′i ∈ Imi (Ui). (4-2)

The same is true for li:

β−li � e−Smi f (y′i ), y′i ∈ Imi (Wi). (4-3)

4.2. Supporting measure. We now construct a probability measure μ supported
on F∞, which is defined by distributing masses among the cylinders with nonempty
intersection with F∞. The process splits into two cases: when s0 > 1 and 0 ≤ s0 ≤ 1.
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4.2.1. Case I: s0 > 1. In this case, for any 1 < s < s0, notice that

eSn f (x′)

eSng(y′)

( 1
βneSn f (x′)

)s
≤
( 1
βneSng(y′)

)s
.

This means that the covering of the rectangle Jn(U) × Jn(W) by balls of shorter side
length is preferable and therefore, it reasonable to define the probability measure on
smaller balls. To this end, let si be the solution to the equation

∑
U,W∈Σmi

βN

eSmi f (x′i )

eSmi g(y′i )

( 1
βmi eSmi f (x′i )

)s
= 1,

where x′i ∈ Imi (Ui), y′i ∈ Imi (Wi).
By the continuity of the pressure function P(Tβ, f ) with respect to β [14, Theorem

4.1], it can be shown that si → s0 when mi → ∞. Thus, without loss of generality, we
choose all mi large enough such that si > 1 for all i and |si − s0| = o(1).

We systematically define the measure μ on the Cantor set by defining it on the basic
cylinders first. Recall that for level 1 of the Cantor set construction, we assumed that
n1 = m1. For sublevels of the Cantor set, say Fk, the role of mk is to denote the number
of positions where the digits can be chosen (almost) freely, while nk denotes the length
of a word in Fk before shrinking.

Let In1+k1 (U1, K1) × In1+k1 (W1, L1, H1) be a generic cylinder in G1. Then define

μ(In1+k1 (U1, K1) × In1+k1 (W1, L1, H1)) =
( 1
βm1 eSm1 f (x′1)

)s1

,

where x′1 ∈ Im1 (U1). Assume that the measure on the cylinders of order i − 1 has
been well defined. To define a measure on the i th cylinder, let Ini+ki (Γi−1, Ui, Ki) ×
Ini+ki (Υi−1, Wi, Li, Hi) be a generic i th cylinder in Gi. Define the probability measure μ
as

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi))

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
( 1
βmi eSmi f (x′i )

)si

,

where x′i ∈ Imi (Ui). The measure of a rectangle in Fi is then given as

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li))

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × #Σki−li
β ×

( 1
βmi eSmi f (x′i )

)si

� μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × eSmi f (x′i )

eSmi g(y′i )
×
( 1
βmi eSmi f (x′i )

)si

,

where the last inequality follows from estimates (4-2) and (4-3).
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4.2.2. Estimation of the μ-measure of cylinders. For any i ≥ 1 consider the generic
cylinder,

I := Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi).

We would like to show by induction that, for any 1 < s < s0,

μ(I) ≤ |I|s/(1+ε).

When i = 1, the length of I is given as

|I| = β−m1−k1 ≥ β−m1 · (e−Sn1 f (x∗1))1+ε = β−m1 · (e−Sm1 f (x∗1))1+ε .

But, by the definition of the measure μ, it is clear that

μ(I) ≤ |I|s1 ≤ |I|s/(1+ε).

Now we consider the inductive process. Assume that

μ(Ini−1+ki−1 (Γi−1)×Ini−1+ki−1 (Υi−1)) ≤ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)|s/(1+ε).

Let

I = Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi)

be a generic cylinder in Gi. One one hand, its length satisfies

|I| = β−ni−ki = |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)| × β−mi × β−ki

≥ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)| × β−mi (e−Sni f (x∗i ))1+ε ,

where x∗i ∈ Ini (Γi, Ui).
We compare Sni f (x∗i ) and Smi f (x′i). By (4-1) we have

|Sni f (x∗i ) − Smi f (x′i)| = |Sni−1+ki−1 f (x∗i )|
≤ (ni−1 + ki−1)‖ f ‖

≤ ε

1 + ε
mi log β,

where x′i ∈ Imi (Ui). So we get

|I| ≥ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)| × ( β−mi e−Smi f (x′i ))1+ε . (4-4)

On the other hand, by the definition of the measure μ and induction, we have that

μ(I) = μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × ( β−mi e−Smi f (x′i ))si

≤ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)|s/(1+ε)(( β−mi e−Smi f (x′i ))1+ε)s/(1+ε)

≤ |I|s/(1+ε).

In the following steps, for any (x, y) ∈ F∞, we estimate the measure of In(x) × In(y)
compared with its length β−n. By the construction of F∞, there exists {ki, li}i≥1 such
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that for all i ≥ 1,

(x, y) ∈ Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li).

For any n ≥ 1, let i ≥ 1 be the integer such that

ni−1 + ki−1 < n ≤ ni + ki = ni−1 + ki−1 + mi + ki.

Step 1: ni−1 + ki−1 + mi + li ≤ n ≤ ni + ki = ni−1 + ki−1 + mi + ki.
The cylinder In(x) × In(y) contains βni+ki−n cylinders in Gi with order ni + ki. Note

that by the definition of {kj, lj}1≤j≤i, the first i pairs {kj, lj}1≤j≤i depend only on the first
ni digits of (x, y). So the measures of the subcylinders of order ni + ki are the same. So,
the measure of In(x) × In(y) can be estimated as

μ(In(x) × In(y)) = μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1))

× ( β−mi e−Smi f (x′i ))si × βni+ki−n.

Thus by the measure estimation of cylinders of order ni−1 + ki−1 and the choice of ki,
one has that

μ(In(x) × In(y)) ≤ ( β−ni−1−ki−1 )s/(1+ε)( β−mi−ki )s/(1+ε) × βni+ki−n

= ( β−ni−ki )s/(1+ε) × βni+ki−n

≤ ( β−n)s/(1+ε),

by noting that n ≤ ni + ki and s/(1 + ε) > 1.

Step 2: ni−1 + ki−1 + mi ≤ n ≤ ni + li = ni−1 + ki−1 + mi + li.
Recalling the definition of ni + ki, the first i pairs {kj, lj}1≤j≤i depend only on the first

ni digits of (x, y). So the measures of the subcylinders in Gi with order ni + ki are the
same. It is clear that the cylinder In(x) × In(y) contains βki−li cylinders of order ni + ki.
So, the measure of In(x) × In(y) can be estimated as

μ(In(x) × In(y)) = μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1))

× ( β−mi e−Smi f (x′∗i ))si × βki−li .

Thus by the measure estimation of cylinders of order ni−1 + ki−1 and the choice of ki,
one has that

μ(In(x) × In(y)) ≤ ( β−ni−1−ki−1 )s/(1+ε)( β−mi−ki )s/(1+ε) × βki−li

= ( β−ni−ki )s/(1+ε) × βki−li

≤ ( β−ni−li )s/(1+ε)

≤ ( β−n)s/(1+ε),

by noting that n ≤ ni + li and s/(1 + ε) > 1.
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Step 3: ni−1 + ki−1 ≤ n ≤ ni−1 + ki−1 + mi.
Assume that Ui = (ε1, ε2, . . . , εmi ), Wi = (ω1,ω2, . . . ,ωmi ). We start off by denoting

l = n − (ni−1 + ki−1) and h = mi − l. Then

μ(In(x) × In(y))

=
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi)) × βki−li

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

( β−mi e−Smi f (x′i ))si × βki−li

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

eSmi f (x′i )

eSmi g(y′i )
( β−mi e−Smi f (x′i ))si .

Then by the estimation of the measure of cylinders of order ni−1 + ki−1 and letting
(x̃′i , ỹ′i) = (Tl

βx
′
i , Tl
βy
′
i), we get

μ(In(x) × In(y)) ≤ ( β−ni−1−ki−1 )s/(1+ε) · eSl f (x′i )

eSlg(y′i )
· ( β−le−Sl f (x′i ))si

×
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

eSh f (x̃′i )

eShg(ỹ′i )
· ( β−he−Sh f (x̃′i ))si .

The first part can be estimated as

( β−ni−1−ki−1 )s/(1+ε) · eSl f (x′i )

eSlg(y′i )
· ( β−le−Sl f (x′i ))si ≤ ( β−(ni−1+ki−1+l))s/(1+ε)

= ( β−n)s/(1+ε),

since

eSl f (x′i )

eSlg(y′i )
· (e−Sl f (x′i ))si ≤ 1, for si ≥ 1.

To estimate the second part, we first recall that we defined si to be the solution of
the equation

∑
U,W∈Σmi

βN

eSn f (x′i )

eSng(y′i )

( 1
βneSn f (x′i )

)s
= 1.
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Therefore,

1 =
∑

U1,W1∈Σl
βN

eSl f (x′i )

eSlg(y′i )

( 1
βleSl f (x′i )

)si

×
∑

U2,W2∈Σh
βN

eSh f (x̃′i )

eShg(ỹ′i )

( 1

βleSh f (x̃′i )

)si

.

So, by arguments similar to [14, pages 2095–2097] and [18, pages 1331–1332], we
derive that

∑
U2,W2∈Σh

βN

eSh f (x̃′i )

eShg(ỹ′i )

( 1

βleSh f (x̃′i )

)si

≤ βlε .

Therefore,

μ(In(x) × In(y)) ≤ β−n·s/(1+ε) · βlε ≤ ( β−n)s/(1+ε)−ε .

As far as the measure of a general ball B(x, r) with β−n−1 ≤ r < β−n is concerned,
we notice that it can intersect at most three cylinders of order n. Thus,

μ(B(x, r)) ≤ 3( β−n)s/(1+ε)−ε ≤ 3βsrs/(1+ε)−ε ≤ 3β2rs/(1+ε)−ε .

So, finally, an application of the mass distribution principle (Proposition 4.1) yields
that

dimH E(Tβ, f , g) ≥ s0.

4.2.3. Case II: 0 ≤ s0 ≤ 1. The arguments are similar to Case I but the calculations
are different. In this case, for any s < s0 ≤ 1, it is trivial that

eSn f (x′)

eSng(y′)

( 1
βneSn f (x′)

)s
≥
( 1
βneSng(y′)

)s
.

This means that the covering of the rectangle Jn(U) × Jn(W) by balls of larger side
length is more preferable and therefore, it reasonable to define the probability measure
of the rectangle to be the same measure as for the cylinder of order ni + li.

Just as in Case I, let si be the solution to the equation
∑

U,W∈Σmi
βN

ending with 0N

( 1
βmi eSmi g(y′i )

)s
= 1,

where y′i ∈ Imi (Wi). By the continuity of the pressure function P(Tβ, f ) with respect to
β we can assume that for all mi large enough we have that si < 1 for all i and |si − s0| =
o(1).

We first define the measure μ on the basic cylinders. Let In1+k1 (U1, K1) ×
In1+l1 (W1, L1) be a generic cylinder in F1. Then define

μ(In1+k1 (U1, K1) × In1+l1 (W1, L1)) =
( 1
βm1 eSm1 g(y′1)

)s1

,
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where y′1 ∈ Im1 (W1). Then the measure is evenly distributed on its subcylinders in G1.
So, for a generic cylinder In1+k1 (U1, K1) × In1+k1 (W1, L1, H1) in G1, define

μ(In1+k1 (U1, K1) × In1+k1 (W1, L1, H1)) =
1

#Σk1−l1
β

( 1
βm1 eSm1 g(y′1)

)s1

� 1
βk1−l1

( 1
βm1 eSm1 g(y′1)

)s1

.

Assume that the measure on the cylinders of order (i − 1) has been well
defined. Then to define the measure on the i th cylinder we proceed as follows. Let
Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li) be a generic cylinder in Fi. Then define

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li))

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
( 1
βmi eSmi g(y′i )

)si

,

where y′i ∈ Imi (Wi). By the definition of ki, li, the measure of a cylinder in Gi is then
given as

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi))

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × 1

#Σki−li
β

×
( 1
βmi eSmi g(y′i )

)si

� μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × eSmi g(y′i )

eSmi f (x′i )
×
( 1
βmi eSmi g(y′i )

)si

.

4.2.4. Estimation of the μ-measure of cylinders. We first show by induction that, for
any i ≥ 1 and a generic cylinder

I := Ini−1+ki−1+mi+ki (Γi−1, Ui, Ki) × Ini−1+ki−1+mi+ki (Υi−1, Wi, Li, Hi),

we have

μ(I) ≤ |I|s/(1+ε).

When i = 1, on the one hand, the length of I is given as

|I| = β−m1−k1 ≥ β−m1 · (e−Sn1 f (x′1))1+ε = β−m1 · (e−Sm1 f (x′1))1+ε .

But on the other hand, by the definition of the measure μ, it is clear that

μ(I) ≤ eSm1 g(y′1)

eSm1 f (x′1)
·
( 1
βm1 eSm1 g(y′1)

)s1

≤ ( β−m1 e−Sm1 f (x′1))s1

≤ |I|s/(1+ε),

by noting that s1 < 1.
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Just as in Case I, we consider the inductive process. Assume that

μ(Ini−1+ki−1 (Γi−1)×Ini−1+ki−1 (Υi−1)) ≤ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)|s/(1+ε).

Let

I = Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li, Hi)

be a generic cylinder in Gi. By (4-4) we get

|I| ≥ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)| × ( β−mi e−Smi f (x′i ))1+ε .

From the definition of the measure μ, induction and the fact that si < 1, it follows
that

μ(I) = μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) × eSmi g(y′i )

eSmi f (x′i )
×
( 1
βmi eSmi g(y′i )

)si

≤ |Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)|s/(1+ε)(( β−mi e−Smi f (x′i ))1+ε)s/(1+ε)

≤ |I|s/(1+ε)

= ( β−ni−ki )s/(1+ε)

� ( β−mi−ki )s/(1+ε).

So, for a rectangle

J = Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li)

in Fi, we have that

μ(J) = μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
( 1
βmi eSmi g(y′i )

)si

≤ ( β−ni−1−ki−1 )s/(1+ε)( β−miβ−li )si

≤ ( β−ni−li )s/(1+ε).

For any (x, y) ∈ F∞, we estimate the measure of In(x) × In(y) compared with its
length β−n. By the construction of F∞, there exists {ki, li}i≥1 such that for all i ≥ 1,

(x, y) ∈ Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li, ).

For any n ≥ 1, let i ≥ 1 be the integer such that

ni−1 + ki−1 < n ≤ ni + ki = ni−1 + ki−1 + mi + ki.

Step I: ni−1 + ki−1 + mi + li ≤ n ≤ ni + ki = ni−1 + ki−1 + mi + ki.
In this case, the cylinder can intersect only one rectangle in Fi, so

μ(In(x) × In(y)) = μ(Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li))

≤ ( β−ni−li )s/(1+ε)

≤ ( β−n)s/(1+ε).
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Step II: ni−1 + ki−1 + mi ≤ n ≤ ni + li = ni−1 + ki−1 + mi + li.
Now the cylinder In(x) × In(y) contains βni+li−n cylinders in Fi with order ni + li.

Note that by the definition of {kj, lj}1≤j≤i, the first i pairs {kj, lj}1≤j≤i depend only on the
first ni digits of (x, y). So the measures of the subcylinders of order ni + ki are the same.
So, the measure of In(x) × In(y) can be estimated as

μ(In(x) × In(y)) = μ(Ini+ki (Γi−1, Ui, Ki) × Ini+ki (Υi−1, Wi, Li)) ×
1

βn−ni−li

≤ ( β−ni−li )s/(1+ε) × 1
βn−ni−li

≤ ( β−n)s/(1+ε).

Step III: ni−1 + ki−1 ≤ n ≤ ni−1 + ki−1 + mi.
Assume Ui = (ε1, ε2, . . . , εmi ), Wi = (ω1,ω2, . . . ,ωmi ). Write l = n − (ni−1 + ki−1)

and h = mi − l. Then

μ(In(x) × In(y))

=
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

μ(Ini+ki (Γi−1, Ui, Ki) × Ini+li (Υi−1, Wi, Li))

= μ(Ini−1+ki−1 (Γi−1) × Ini−1+ki−1 (Υi−1)) ×
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

( β−mi e−Smi g(y′i ))si .

Then by the estimate of the measure of cylinders of order ni−1 + ki−1 and letting ỹ′i =
Tl
βy
′
i , we get

μ(In(x) × In(y))

≤ ( β−ni−1−ki−1 )s/(1+ε) · ( β−le−Slg(y′i ))si ×
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

( β−he−Shg(ỹ′i ))si

≤ ( β−n)s/(1+ε) ·
∑

(εl+1,...,εmi )∈Σ
l
β

(ωl+1,...,ωmi )∈Σ
h
β

( β−he−Shg(ỹ′i ))si .

Recall the definition of si: ∑
U,W∈Σmi

βN

( 1
βmi eSmi g(y′i )

)s
= 1.

Then

1 =
∑

U1,W1∈Σl
βN

( 1
βleSlg(y′1)

)si

·
∑

U2,W2∈Σh
βN

( 1

βleShg(ỹ′1)

)si

,

where y′∗1 ∈ Il(U1), ỹ′1 ∈ Ih(W2).
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So, with a similar argument to the previous section, we have that
∑

U2,W2∈Σl
βN

( 1

βheShg(ỹ′h)

)si

≤ βlε .

Therefore,

μ(In(x) × In(y)) ≤ ( β−n)s/(1+ε) · βlε ≤ ( β−n)s/(1+ε)−ε .

Notice that a general ball B(x, r) with β−n−1 ≤ r < β−n can intersect at most three
cylinders of order n. Therefore, the measure of the general ball can be estimated as

μ(B(x, r)) ≤ 3( β−n)s/(1+ε)−ε ≤ 3βsrs/(1+ε)−ε ≤ 3β2rs/(1+ε)−ε .

So, finally, by using the mass distribution principle we have the lower bound of the
Hausdorff dimension of this case,

dimH E(Tβ, f , g) ≥ s0.

Hence, combining both cases, we have the desired conclusion.
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[15] M. Urbański, ‘Diophantine analysis of conformal iterated function systems’, Monatsh. Math.

137(4) (2002), 325–340.
[16] P. Walters, ‘Equilibrium states for β-transformations and related transformations’, Math. Z. 159(1)

(1978), 65–88.
[17] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79

(Springer-Verlag, New York, 1982).
[18] B. Wang and J. Wu, ‘Hausdorff dimension of certain sets arising in continued fraction expansions’,

Adv. Math. 218(5) (2008), 1319–1339.
[19] B. Wang, J. Wu and J. Xu, ‘Mass transference principle for limsup sets generated by rectangles’,

Math. Proc. Cambridge Philos. Soc. 158(3) (2015), 419–437.

MUMTAZ HUSSAIN, Department of Mathematical and Physical Sciences,
La Trobe University, Bendigo 3552, Victoria, Australia
e-mail: m.hussain@latrobe.edu.au

WEILIANG WANG, Department of Mathematics, West Anhui University,
Liu’an, Anhui 237012, China
e-mail: weiliang_wang@hust.edu.cn

https://doi.org/10.1017/S1446788722000076 Published online by Cambridge University Press

mailto:m.hussain@latrobe.edu.au
mailto:
mailto:weiliang_wang@hust.edu.cn
https://doi.org/10.1017/S1446788722000076

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1: the upper bound
	3.1 Covering by shorter side length
	3.2 Covering by longer side length

	4 Theorem 1.1: the lower bound
	4.1 Construction of the Cantor subset
	4.1.1 Level 1 of the Cantor set
	4.1.2 Level 2 of the Cantor set
	4.1.3 From level i-1 to level i

	4.2 Supporting measure
	4.2.1 Case I: s0>1
	4.2.2 Estimation of the μ-measure of cylinders
	4.2.3 Case II: 0s01
	4.2.4 Estimation of the μ-measure of cylinders



