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ABSTRACT

Fuzzy set theory is a recently developed field of mathematics, that introduces
sets of objects whose boundaries are not sharply defined. Whereas in ordinary
Boolean algebra an element is either contained or not contained in a given set,
in fuzzy set theory the transition between membership and non-membership is
gradual. The theory aims at modelizing situations described in vague or
imprecise terms, or situations that are too complex or ill-defined to be analysed
by conventional methods. This paper aims at presenting the basic concepts of
the theory in an insurance framework. First the basic definitions of fuzzy logic
are presented, and applied to provide a flexible definition of a *‘preferred
policyholder” in life insurance. Next, fuzzy decision-making procedures are
illustrated by a reinsurance application, and the theory of fuzzy numbers is
extended to define fuzzy insurance premiums.
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l. INTRODUCTION

23

In 1965, ZADEH published a paper entitled ““ Fuzzy Sets” in a little known
journal, Information and Control, introducing for the first time sets of objects
whose boundaries are not sharply defined. This paper gave rise to an enormous
interest among researchers, and initiated the fulgurant growth of a new
discipline of mathematics, fuzzy set theory. The number of papers related to
the field exploded from 240 in 1975 (ZADEH et al.), to 760 in 1977 (GUPTA et
al.), 2500 in 1980 (CHEN et al.), and 5000 in 1987 (ZIMMERMAN). Today, there
are many more researchers in fuzzy set theory than in actuarial science, and
they form a much more international group, with important contributions
from China, Japan, and the Soviet Union. Two monthy scientific journals
publish new theoretical developments and applications, that are to be found in
linguistics, risk analysis, artificial intelligence (approximate reasoning, expert
systems), pattern analysis and classification (pattern recognition, clustering,
image processing, computer vision), information processing, and decision-
making. In this paper we will explore some possible applications of fuzzy set
theory to insurance.
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In ordinary Boolean algebra, an element is either contained or not contained
in a given set: the transition from membership to non-membership is abrupt.
Fuzzy sets, on the other hand, describe sets of elements or variables whose
limits are ill-defined or imprecise. The transition between membership and
non-membership is gradual: an element can “more or less” belong to a set.
Consider for instance the set of “young drivers”. In Boolean algebra, it is
assumed that any individual either belongs or does not belong to the set of
young drivers. This implies that the individual will move from the category of
“young drivers” to the complementary set of “not young drivers” overnight.
Fuzzy set theory allows for grades of membership. Depending on the specific
application, one might for instance decide that drivers under 20 are definitely
young, that drivers over 30 are definitely not young, and that a 23-year-old
driver is “ more or less ” young, or is young with a grade membership of 0.7, on
a scale from 0 to 1.

Fuzzy set theory thus aims at modelizing imprecise, vague, fuzzy informa-
tion, which abound in real world situations. Indeed, many practical problems
are extremely complex and ill-designed, hence difficult to modelize with
precision. To quote ZADEH, ““as the complexity of a system increases, our
ability to make precise and yet significant statements about its behaviour
diminishes until a threshold is reached beyond which precision and significance
become almost exclusive characteristics ”’. Computers cannot adequately handle
such problems, because machine intelligence still employs sequential (Boolean)
logic. The superiority of the human brain results from its capacity of handling
fuzzy statements and decisions, by adding to logic parallel and simultaneous
information sources and thinking processes, and by filtering and selecting only
those that are useful and relevant to its purposes. The human brain has many
more thinking processes available and has developed a far greater filtering
capacity than the machine. A group of individuals is able to resolve the
command “tall people in the back, short people in the front”, a machine is
not. Fuzzy set theory explicitly introduces vagueness in the reasoning, hoping
to provide decision-making procedures that are closer to the way the human
brain performs.

A clear distinction has to be made between fuzzy sets and probability theory.
Uncertainty should not be confused with imprecision. Probabilities are pri-
marily intended to represent a degree of knowledge about real entities, while
the degrees of membership defining the strength of participation of an entity in
a class are the representation of the degree by which a proposition is partially
true. Probability concepts are derived from considerations about the uncer-
tainty of propositions about the real world. Fuzzy concepts are closely related
to the multivalued logic treatments of issues of imprecision in the definition of
entities. Hence, fuzzy set theory provides a better framework than probability
theory for modelling problems that have some inherent imprecision. The
traditional approach to risk analysis, for instance, is based on the premise that
probability theory provides the necessary and sufficient tools for dealing with
the uncertainty and imprecision which underline the concept of risk in decision
analysis. The theory of fuzzy sets calls into question the validity of this
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premise. It does not equate imprecision with randomness. It suggests that much
of the uncertainty which is intrinsic in risk analysis is rooted in the fuzziness of
the information which is resident in the data base and in the imprecision of the
underlying probabilities. Classical probability theory has its effectiveness
limited when dealing with problems in which some of the principal sources of
uncertainty are non-statistical in nature.

In the sequel we will present the basic principles of fuzzy logic, fuzzy
decision-making, and fuzzy arithmetics, while developing three insurance
examples. We will show that fuzzy set theory could provide decision procedures
that are much more flexible than those originating from conventional set
theory. Indeed, insurance executives and actuaries, much better trained to deal
with uncertainty than with vagueness, have often transformed imprecise
statements into *‘all-or-nothing” rules. For instance, Belgian insurers have
used the fuzzy statistical evidence ““ Young drivers provoke more automobile
accidents” to set up the a posteriori rating rule * Drivers under 23 years of age
will pay a $ 150 deductible if they provoke an accident”. Hence ““ young” was
equated with “under 237, a definite distorsion of the initial statement. As
another example, Belgian regulatory authorities define, for statistical purposes,
a ‘“severely wounded person” as ““any person, wounded in an automobile
accident, whose condition requires a hospital stay longer than 24 hours™, a
very arguable * de-fuzzification” of a fuzzy health condition.

In Section 2 we will present the basic definitions of fuzzy logic and apply
them to provide a more flexible definition of a ““ preferred policyholder” than
the one currently used by some American life insurers. Section 3 introduces the
main concepts of fuzzy decision-making, and uses them to select an optimal
Excess of Loss retention. Fuzzy arithmetics are presented in Section 4, and
applied to compute the fuzzy premium of a pure endowment policy.

First, let us introduce our three examples.

Problem 1: Definition of a preferred policyholder in life insurance

Heavy competition between American life insurers has resulted in a greater
subdivison of policyholders than in Europe. U.S. insurers first began, in the
mid 1960s, to award substantial discounts to nonsmokers purchasing a term or
a whole life insurance. Then the “ preferred policyholder” category was further
refined, and more discounts were granted to applicants who met very stringent
health requirements, such as a cholesterol level not exceeding 200, a blood
pressure not exceeding 130/80, ... For instance, one company offers a non-
smoker bonus of 65 % more insurance coverage with no increase in premium if
the applicant has not smoked for 12 months prior to application. A bonus of
100% is offered if the applicant:

— has not smoked for the past 12 months, and

— has a resting pulse of 72 or below, and

— has a blood pressure that does not exceed 134/80, and
— has a total cholesterol reading not exceeding 200, and
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— does not engage in hazardous sports, and

— rigorously follows a 3-times-a-week exercise program of at least 20 minutes,
and

— is within specified height and weight limits, and

— has no more than one death in immediate family prior to 60 years of age
due to kidney or heart disease, stroke or diabetes.

Again this is a distorsion, or a least a very strict interpretation, of the medical
statement * People who exercise, who do not smoke, who have a low level of
cholesterol, low blood pressure, who are neither overweight nor severely
underweight, ... have a higher life expectancy ”. Insurers demand all conditions
to be strictly met; the slightest infringement leads to automatic rejection of the
preferred category. For instance, a cholesterol level of 201 implies that the
preferred rates won’t apply, even if the applicant meets all other requirements.
A cholesterol level of 200 is accepted, a level of 201 is not! We will show that
fuzzy set theory can be used to provide a more flexible definition of a preferred
policyholder, that allows for some form of compensation between the selected
criteria.

Problem 2: Selection of an optimal excess of loss retention

Imprecise statements seem to be pervasive in reinsurance practive, where vague
recommendations and rules abound. ““As a rule of thumb, an excess of loss
(XL) retention should approximatively equal 1% of the premium income”,
“Our long-term relationship with our present reinsurer should in principle be
maintained ”, “We could accept those conditions providing substantial retro-
cessions are offered”, ““A ball-park figure for the cost of this reinsurance
program is $ 10 million”, are fuzzy sentences frequently heard in practice. To
illustrate fuzzy decision-making procedures, we shall consider the problem of
the selection of the optimal retention of a pure XL treaty, given the four
following fuzzy goals and constraints.

Goal 1: The ruin probability should be substantially decreased, ideally down
to be neighbourhood of 107>,

Goal 2: The coefficient of variation of the retained portfolio should be
reduced; if possible it should not exceed 3.

Constraint 1: The reinsurance premium should not exceed 2.5% of the line’s
premium income by much.

Constraint 2: As a rule of thumb, the retention should approximatively be
equal to 1% of the line’s premium income.

Problem 3: Computation of the fuzzy premium of a pure endowment policy

Forecasting interest rates is undoubtedly one of the most complex modelling
problems. Money market interest rates seem to fluctuate according to monthly
U.S. unemployment and trade deficit figures, vague statements made by
Mr Kohl or Mr Greenspan, the markets’ perception of Mr Bush’s willingness
to tackle the deficit problem, the mood of the participants to an OPEC
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meeting, etc. To compute insurance premiums over a 40-year span with a fixed
interest rate of 4.75% then seems to be an exercise in futility. We will show
that the introduction of fuzzy interest rates (and fuzzy survival probabilities) at
least allows us to obtain a partial measure of our ignorance.

As illustrated by our examples, fuzzy set theory attempts to modelize
imprecise expressions like ‘“more or less young™, ‘ neither overweight nor
underweight”, “in the neighbourhood of”, “in principle”. In retreating from
precision in the face of overpowering complexity, the theory explores the use of
what might be called linguistic variables, that is, variables whose values are not
numbers but words or sentences. In summary, fuzzy set theory endorses
Bertrand Russell’s opinion that

“All traditional logic habitually assumes that precise symbols are being
employed. It is therefore not applicable to this terrestrial life but only to an
imagined celestial existence ™

and rejects Yves Le Dantec’s aphorism

“That only is science which deals with the measurable”.

2. FUZZY LOGIC AND FUZZY PREFERRED POLICYHOLDERS

2.1. Basic definitions

A fuzzy set is a class of objects in which there is no sharp boundary between
those objects that belong to the class and those that do not. More precisely, let
X = {x} denote a collection of objects denoted generically by x. A fuzzy set 4
in X is a set of ordered pairs

A=1{x, Us(x), xeX

where U ,(x) is termed the grade of membership of xin A, and U, : X > Misa
function from X to a space M, called the membership space. Hence a fuzzy set
A on a referential set X can be viewed as a mapping U, from X to M.
(Examples of membership functions are presented in all figures).

For our purposes it is sufficient to assume that M is the interval [0, 1], with
0 and 1 representing, respectively, the lowest and highest grade of membership.
The degree of membership of x in A4 corresponds to a “truth value™ of the
statement ““ x is a member of 4. When M only contains the two points 0 and
1, A is nonfuzzy.

Problem 1

Let X be a set of prospective policyholders, x =x(#,, t,, t3, t4). For simplicity,
assume that the requirements for the status of * preferred policyholder” will be
based on the values taken by 4 variables

t;, the total level of cholesterol in the blood, in mg/dl,
t,, the systolic blood pressure, in mm of Hg
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t3, the ratio (in %) of the effective weight to the recommended weight, as a
function of height and build
t4, the average consumption of cigarettes per day.

Using a classical approach, an insurance company would for instance define a
preferred policyholder as a nonsmoker with a cholesterol level that does not
exceed 200, and a blood pressure that does not exceed 130, and a weight that is
comprised between 85% and 110% of his recommended weight.

If a fuzzy set approach is to be used, membership functions have to be
defined for all criteria.

National Institutes of Health nowadays recommend a level of less than
200 mg of cholesterol per deciliter of blood. Levels between 200 and 240 mg/dl
are considered to be borderline high. The fuzzy set 4 of the people with a low
level of cholesterol can then be defined by the membership function

Us(x; ty)

(1 1, < 200
11_200 2

1-2 200 < ¢, < 220

40
Ug(x; 1)) = ,
240 —¢

2 ! 220 < ¢, < 240
40

0 240 < ¢

The normal systolic blood pressure is about 130 mm of mercury. People with a
blood pressure greater than 170 are five times more likely to suffer from
coronary heart disease than individuals with normal blood pressures. Hence the
fuzzy set B of the people with an acceptable blood pressure can be defined by
the membership function Ug(x; t,)

(1 1, < 130
1,—130 \2

1-2 |2 130 < £, £ 150

40
Up(x; 1)) = 9
1701, \?

2 2 150 < t, < 170
40

) 170 < 1,

Overweight and underweight people have a shorter life expectancy, skinniness
being less primordial than obesity. This is reflected in the asymmetric member-
ship function U (x; t;) that characterizes the fuzzy set C of the people with
adequate weight.
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0 L 60
t3'_60 2
2 60 <= 725
25
85_t3 2
1-2 725 <t £ 85
25
Uc(x; t3) = J 1 85 < 1,110
t;— 110 \?
1-2 110 < ¢, 2120
20
130_t3 2
2 120 < 1;, 2130
20
0 130 <14

Even light smokers are more prone to suffer from cancer and cardiovascular
diseases than nonsmokers. Hence they cannot be considered as “preferred”
and the set D of the nonsmokers is nonfuzzy

ty =0
t, > 0.

1
Up(x;ty) = { 0

The four selected membership functions are represented in Figure 1. Admit-
tedly, there is some arbitrariness in the definiton of these membership
functions, but fuzzy set theory contends that this is better than membership
functions that abruptly jump from 1 to 0, in the classical approach.

A fuzzy set is said to be normal iff Sup, U,(x) = 1. Subnormal fuzzy sets
can be normalized by dividing each U ,(x) by the factor Sup, U,(x).

A is said to be the complement of 4 iff Uz(x) = 1-U,(x) Vx.

A fuzzy set is contained in or is a subset of a fuzzy set B (4 < B) iff
Uslx) = Up(x) V.

The union of 4 and B, denoted 4 U B, is defined as the smallest fuzzy set
containing both 4 and B. Its membership function is given by

Uy yp(x) = max [U,(x), Ug(x)] xeX

The intersection of 4 and B, denoted 4 N B, is defined as the largest fuzzy set
contained in both 4 and B. Its membership function is given by

Ugnp(x) = min [U,(x), Ug(x)] xeX

The notion of intersection bears a close relation to the notion of the connective
“and”, just as the union of 4 and B bears a close relation to the connective
“or”, It can be shown that these definitions of fuzzy union and intersection are
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the only ones that naturally extend the corresponding standard set theory
notions, by satisfying all the usual requirements of associativity, commutativ-
ity, idempotency and distributivity.

Problem 1

The fuzzy set E of the nonsmoking individuals with low cholesterol, acceptable
blood pressure and adequate weight is the intersection of the 3 fuzzy sets 4, B,
C, and the nonfuzzy set D. Its membership function is given by

Ug(x;ty, by, t3, t) = min [Uy(x; 1)), Up(x; 1), Uc(x; t3), Up(x; )]

So an individual can only be a full member of E if he doesn’t smoke, has a
cholesterol level not exceeding 200, a blood pressure not above 130, and a
weight no less than 85% and no more than 110 % of his recommended or ideal
weight. This corresponds to the classical approach.

A nonsmoker x = x(210, 145, 112, 0) with a cholesterol level of 210, a blood
pressure of 145, and who is overweight by 12 % is a member of E with a grade
of membership

Ug(x; 210, 145,112, 0) = min (0.875,0.71875,0.98, 1) = 0.71875.

In other words, the “{1” operation assigns a grade of membership that
corresponds to the most severe of the infringements to ‘“perfection”, in this
case blood pressure. Cumulative effects and interactions between the criteria
are ignored, which is not realistic. Obviously, the health consequences of high
blood pressure are worse when there is also an excess of weight and cholesterol.
Also, since only the most severe condition is considered, it is impossible to
introduce compensations or trade-offs in decision rules. A mild excess of
weight cannot be compensated by ideal cholesterol and blood pressure.

2.2. Other definitions of the intersection

The minimum operator that characterizes the intersection corresponds to the
“logical and . Other definitions of the intersection have been suggested; they
correspond to *‘softer”, more flexible interpretations of the connective “and ™.
They all amount to exactly the same in the conventional case of degrees of
membership restricted to 0 and 1. The selection of a specific operator will
depend on its possibilities to allow for cumulative effects, interactions, and
compensations between the criteria. We wish the following properties to be
satisfied.

Property 1 (cumulative effects): Two infringements are worse than one.
Usap(x) <min[U,(x), Ug(x)] if Uy(x) <1 and Up(x)<1.

Property 2 (interactions between criteria): Assume U, (x) < Ug(x) < 1. Then
the effect of a decrease of U,(x) on U,pnp(x) may depend on Up(x).

https://doi.org/10.2143/AST.20.1.2005482 Published online by Cambridge University Press


https://doi.org/10.2143/AST.20.1.2005482

42 JEAN LEMAIRE

Property 3 (compensations between criteria): If U,(x) and Ug(x) < 1, the
effect of a decrease of U,(x) on U,pn,(x) can be erased by an increase of
Uz (x) (unless, of course, Up(x) reaches 1).

The algebraic product F of 4 and B is denoted 4B and is defined by
Ugp(x) = Uy(x)- Up(x)
The bounded difference G of A and B is denoted 4 © B and is defined by
Ujsgp(x) = max [0, Uy (x)+ Up(x)—1]
The Hamacher operator H defines the intersection of two fuzzy sets A and B by

U -U
Uh () = 4(x) Up(x) N
pt(I=p)[Us(x)+ Up(x)— Uy(x) Up(x)]
The Yager operator Y defines the intersection of two fuzzy sets 4 and B by

Uh(x) = 1—min {1, [(1- U x)Y+ (1= Upg(x)¥1'""y  p21

Problem 1

The generalized operators provide a more realistic way of modelling this
specific problem because they explicitly allow for compensations and interac-
tions between the selected criteria. First consider the algebraic product. The
grade of membership of individual x(210, 145,112,0) in the fuzzy set
F = ABCD is

Ug(x; 210, 145, 112, 0) = (0.875) (0.71875) (0.98) (1) = 0.6163.

The effect of high blood pressure is here amplified by the presence of a slight
obesity and a cholesterol level mildly above normal. This operator satisfies all
three properties.

The grade of membership of the same individual in the fuzzy set
G = A6 BS C S D corresponding to the bounded difference operation is

Ugs(x; 210, 145, 112, 0) = max [0, 0.875+0.71875+0.98 + 1 — 3] = 0.57375.

Hence the effects of the criteria are additive; no interactions are introduced,
since the consequences of cholesterol are the same whatever the blood pressure
and the weight. This operator satisfies properties 1 and 3, but not
property 2.

The minimum and algebraic product operators model two extreme situa-
tions. The minimum operator does not satisfy any property. Compensations
and interactions cannot be introduced. The algebraic product allows for
compensation and maximum interaction, since the effect of one criterion fully
impacts the others. The Hamacher and Yager operators model intermediate
situations, with flexibility provided by the parameter p.

The Hamacher operator reduces to the algebraic product when p = 1. For
p <1, the denominator is less than 1 and Ugz(x) > Ur(x): the product
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operator is ““softened ”’; this operator models weaker interactions. It reduces
the effect of combined infringements. The reduction effect is greater for severe
infringements. Also, the lower the selected p, the greater the reduction effect.
Hence this operator can be used if it is considered that the combined effect of
high cholesterol and high blood pressure is somewhat less than multiplicative.
Selecting p = 0.5 for our example, we obtain successively

12 (0.875) (0.71875)
UiA(x; 210, 145) = — 0.6402
0.5+(1—0.5)[0.875+0.71875—(0.875) (0.71875)]
Ui (x; 210,145, 112,0) = U} (x; 210, 145, 112)
(0.6402) (0.98)

" 0.5+ (1—0.5) [0.6402 + 0,98 — (0.6402) (0.98)]

= 0.6296

This operator satisfies all three properties.

The Yager operator reduces to the bounded difference operator when p = 1,
and to the minimum operator when p — . U%(x) is an increasing function of
p. Hence all intermediate situations can be modelled, from the strongest to the
weakest “and”. Selecting p = 2, we obtain

U%(x) = 1—min {1, [(1 —0.875)>+ (1 —0.71875)% + (1 — 0.98)*]'*} = 0.69157.

This operator satisfies all three properties, except in the case p = co.

2.3. Selection of a decision rule

If 4 is a fuzzy subset of X, its a-cut 4, is defined as the nonfuzzy subset such
that

A, = {x|Uy(x) 2 a} for 0<azgl

An a-cut can be interpreted as an error interval whose truth value is a.

Problem 1

The notion of a-cut provides a flexible way of defining preferred policyholders.
The “classical” approach corresponds to l-cuts such as E, or F,. Lower
values of a provide generalizations of this definition. For instance preferrred
customers could be defined as the members of E 75 or Fy . Eg s is the set of
policyholders for which the grade of membership attains at least 0.75 for each
of the selected criteria (for our specific membership functions, ¢ < 214,
1, £ 144,76.2 < t; < 117.1, t, = 0). Hence this amounts to relaxing all criteria
in a uniform way.

Fy g is the set of policyholders for which the product of the four grades of
membership attains at least 0.60. The latter definition is more realistic because
it allows for interactions and compensations. An excess of blood pressure can
for instance be compensated by normal or near-normal weight and cholesterol

https://doi.org/10.2143/AST.20.1.2005482 Published online by Cambridge University Press


https://doi.org/10.2143/AST.20.1.2005482

44 JEAN LEMAIRE

levels. Policyholder x (210, 145, 112, 0) is accepted as preferred using the second
criterion. He is not accepted if the first criterion is used.

Similar decision rules can be constructed using the other operators, if
medical considerations hint that they provide a better model of the problem.

2.4. Fuzzy operations

The concept of grades of membership allows to define the following operations
that have no counterpart in ordinary set theory; they are uniquely fuzzy.

Concentration: A fuzzy set is concentrated by reducing the grade of member-
ship of all elements that are only partly in the set, in such a way that the less an
element is in the set, the more its grade of membership is reduced. The
concentration of a fuzzy set 4 is denoted CON (A4) and defined by

Ucon)(x) = Ug(x) a>1

Dilation: Dilation is the opposite of concentration. A fuzzy set is dilated or
stretched by increasing the grade of membership of all elements that are partly
in the set. The dilation of a fuzzy set 4 is denoted DIL (4) and defined by

UpiLa (x) = Ug(x) a<1

a is called the power of the operation.

Intensification: A fuzzy set can be intensified by increasing the grade of
membership of all the elements that are at least half in the set and decreasing
the grade of membership of the elements that are less than half in the set. The
intensification of a fuzzy set is denoted INT (4) and is defined by

2U3%(x) 0 <UXx)<05

UINT(A)(X) = { )

1-2[1-U,(x)] 0.5<UMx)s1
Fuzzification: A fuzzy set can be fuzzified or de-intensifed by increasing the
extent of its fuzziness. There are several ways of achieving this.

Problem 1

The operations of concentration and dilation roughly approximate the effect of
the linguistic modifiers ““ very” and “more or less”. They are used whenever
the different criteria have to be weighted. The presentation of problem 1 so far
implicitly assumes that each criterion has the same importance. If for medical
reasons this is not desirable, fuzzy operations can be used. Suppose that
cholesterol level is the better predictor of future heart problems, while the
importance of blood pressure has to be downgraded. This can be reflected by
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assigning powers of 2 and 0.5 to the two criteria. The modified fuzzy set £
corresponding to the minimum operator, is characterized by

Ug(x; 11, 1, 13, 1) = min [Ui (x; ty), U§/2(x; ), Uc(x; 13), Up(x; ty)]

The modified fuzzy set F, corresponding to the algebraic product, has the
membership function

Up(x; ty, 1y, 13, 1) = Uj(x; 1) U (x; 1) Ue(x; 13) Up (x5 tg)
Prospective policyholder x (210, 145, 112, 0) has a grade of membership of
min [(0.875)%, (0.71875)"%,0.98, 1] = 0.7656
in E, and of
(0.875)%-(0.71875)'2-(0.98) - (1) = 0.6361

in F. He is now accepted as a preferred customer under each of the two criteria
of Section 2.3, since x(210, 145, 112, 0} is included in both Ey ;5 and F 4.

3. DECISION-MAKING WITH FUZZY GOALS AND CONSTRAINTS
AND FUZZY REINSURANCE

In the classical approach to decision-making, the principal ingredients of a
decision problem are (@) a set of alternatives, (b) a set of constraints on the
choice between different alternatives, and (¢) an objective function which
associates with each alternative its evaluation. There is however an intrinsic
similarity between objective functions and constraints, a similarity that
becomes apparent when for instance Lagrangian multipliers are introduced.

This similarity is made explicit in the formulation of a decision problem in a
fuzzy environment. Let X = {x} be a given set of alternatives. A fuzzy goal G in
X, or simply a goal G, is expressed and identified with a given fuzzy set G in X.
In other words, a fuzzy goal is an objective which can be characterized as a
fuzzy set in the space of alternatives. In the classical approach, the objective
function serves to define a linear ordering on the set of alternatives. Clearly the
membership function Ug(x) of a fuzzy goal serves the same purpose, and may
even be derived from a given objective function by normalization, which leaves
the linear ordering unaltered. Such normalization provides a common denom-
inator for the various goals and constraints and makes it possible to treat them
alike. A fuzzy constraint C in X, or simply a constraint C, is similarly defined
to be a fuzzy set C in X. An important aspect of those definitions is thus that
the notions of goal and constraint both are defined as fuzzy sets in the space of
alternatives. Hence they can be treated identically in the decision process. Since
we want to satisfy (optimize) the objective function as well as the constraints, a
decision in a fuzzy environment is defined as the selection of activities which
simultaneously satisfy objective functions and constraints. A decision can
therefore be viewed as the intersection of fuzzy constraints and fuzzy objective
function(s). The relationship between constraints and objective functions in a
fuzzy environment is therefore fully symmetric.
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Assume we are given a finite set of alternatives X = {x|, x,, ..., X,,}, a set of
goals Gy,...,G,, characterized by their respective membership functions
Ug (x), ..., Us, (x), and a set of constraints C,, ..., C,, characterized by their
respective membership functions U¢ (x), ..., Ue, (x). Finiteness is assumed for
expository purposes only and can be easily relaxed.

A decision is a choice or a set of choices drawn from the available
alternatives, satisfying the constraints and the goals. The constraints and goals
combine to form a decision D, which is naturally defined as the intersection of
the fuzzy sets G’s and C’s.

D=G NGN..NGNCNCN...NC,

Consequently a decision D is a fuzzy set in the space of alternatives whose
membership function is

UD (x) - min[UGI(x), iy UG,’(X), UC](X), cees UC"(X)]

This decision membership function can be interpreted as the degree to which
each of the alternatives satisfies the goals and constraints. As in example 1,
concentrations and dilations can be performed to reflect unequal importances
of the goals and constraints, and other intersection operators can be used.

Let K be the (nonfuzzy) set consisting of all the alternatives for which Uj(x)
reaches its maximal value. K is called the optimizing set, and any alternative in
K is an optimal decision. The decision-maker simply selects as best alternative
the one that has the maximum value of membership in D.

This decision-making procedure is essentially a maximin technique, similar
to the selection of an optimal strategy in noncooperative game theory. For
each alternative the minimum possible grade of membership of all the goals
and constraints is computed to obtain D. Then the maximum value over the
alternatives in D is selected.

Problem 2

Given the formulation of the problem, a reinsurance program is characterized
by its XL deductible, and evaluated by means of 4 different variables

probability of ruin (x 10%)

i

t, = coefficient of variation of the retained portfolio
reinsurance premium i
I = - S (in %)
cedent’s premium income
deductible .
ty = — - (in %)

cedent’s premium income

Assume the reinsurer offers 10 different XL deductibles, arranged in increasing
order (x = 1,2,...,10). The values taken by the selected variables are pro-
vided in Table 1.
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TABLE 1
CHARACTERISTICS OF THE 10 XL REINSURANCE PROGRAMS

47

Program 1 2 3 4 5 6 7 8 9 10
Gy 339 .280 .200 .200 313 339 .360 388 419 465
G, 1 2.98 3.00 3.03 3.07 3.12 3.19 3.28 3.52 3.80 4.20
C, 4 3.20 3.00 2.85 2.73 2.64 2.57 2.52 2.48 2.45 2.43
C, 4 4 .6 .8 9 1.0 1.1 1.2 1.4 1.6 1.8

The following membership functions have been chosen. They are represented

in Figure 2.

Goal 1 (probability of ruin)
(

1 4
1, —.00002 \?
-2 —— .00002 < r,
.00008
Ug, (x5 1) = 9
0001 -1, \?
2 00006 < ¢,
.00008
\0 0001 < gy
Goal 2 (coefficient of variation)
1 5
U(;z(x; t2)= 41_t2 31 < tz
0 41 <t
Constraint | (reinsurance premium)
e
1 RS
t,—2.5\2
1-2(2 =7 25 <
0.6
Ue (x5 t3) = 1
RIS
2 [0 28 <
0.6
\0 31 < t3
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Constant 2 (deductible)

14+0.1 0 <2209
1 09<y =101
Vel =4, s 150, L1 <14 < 1.7667
0 17667 < 1,

Given those membership functions, the grades of membership for all alterna-
tives are easily computed. They are presented in Table 2.

TABLE 2
GRADES OF MEMBERSHIP OF THE 10 DIFFERENT PROGRAMS

Program 1 2 3 4 5 6 7 8 9 10
Gy 94 .98 1 1 .96 94 .92 .89 .85 .78
G, 1 | 1 1 1 91 .82 .58 .30 0
C, 0 0 .06 35 A .89 .97 .998 1 1
C, .5 7 9 1 1 1 .85 .55 .25 0

The membership function Up(x) of the decision D is obtained by simply
taking the minimum of the U’s, for each alternative, as shown in Table 3.

TABLE 3
MEMBERSHIP FUNCTION OF D

Program 1 2 3 4 5 6 7 8 9 10

Up(x) 0 0 06 35 A .89 82 .55 25 0

Note that no alternative has full membership in D: fuzzy set D is subnormal.
This of course reflects the fact that the specified goals and constraints conflict
with one another, ruling out the existence of an alternative which fully satisfies
all of them.

In our case, when all goals and constraints are considered to be of equal
importance, the ruin probability criterion is inoperative; it does not influence
the decision. The membership function of D is based on the first constraint for
alternatives 1 to 6, on the second goal for alternative 7, and on the second
constraint for alternatives 8 to 10.

The optimal decision is program 6, corresponding to a retention of 1.1 % of
the cedent’s premium income. This alternative fully satisfies the second
constraint, given our selection of membership functions. The other constraint
and the two goals are conflicting and cannot be fully satisfied. The worst
infringement is the reinsurance premium, considered to be too high.

Assume now that, after reviewing the preceding analysis, the manager of the
reinsurance department decides that the first constraint C, is of paramount
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importance, and accordingly assigns it a higher weight. A concentration of the
fuzzy set C,, with a = 2, is then performed: the values of U (x; t3) are simply
squared. This has the effect of decreasing the membership function of that
important constraint and making it more influential in the determination of D.
It is easily seen that the optimal decision becomes program 7. This illustrates
an inherent weakness of fuzzy decision-making: the sensitivity of the optimal
solution to the particular selection of membership functions. And it is difficult
to avoid an important element of subjectivity in the determination of those
functions (see, however, CIvANLAR and TRUSSEL (1986) and DiSHKANT (1981)
for attempts to construct membership functions using statistical data).

The preceding analysis used the “hard” definition of the connective “and”,
since the minimum operator was used as intersection. As illustrated in
Example 1, this excludes all forms of compensations and interactions between
the goals and constraints. In some managerial problemes the decision maker
might wish to be less restrictive. For instance, he might not really want to
actually maximize the objective function, but rather reach some aspiration
level, which might not even be definable crisply (his objective might be to
“improve the present cost situation considerably ”, for instance). Or the “ <7
sign in a constraint might not be meant in the strict mathematical sense, but
small violations might be acceptable, especially if an important improvement in
the objective function results (effective expenditures might slightly exceed a
budget constraint, for instance). Hence in many cases it is more appropriate to
use a ‘‘softer” aggregation operator than the minimum, like the bounded
difference or the Yager operator. A decision is then defined as the confluence
of goals and constraints.

Up(x) = Ug,(x) * ... * Ucﬂ(x) * Ue (x) ... * UCq(X) )

where * is the selected operator.

It is easily checked, for instance, that if the algebraic product is used instead
of the minimum operator, program 6 is the optimal solution of problem 2, with
program 5 a close second.

4. FUZZY ARITHMETICS AND FUZZY INSURANCE PREMIUMS

DEFINITIONS. A fuzzy number is a fuzzy subset of the real line whose highest
membership values are clustered around a given real number. The membership
function is monotonic on both sides of this real number. More precisely, a
fuzzy number A is a fuzzy subset of the real line R whose membership function
Uy(x) = Uy(x;ay,a,,a;3,a4) 1s:

(i) a continuous mapping from R to the closed interval [0, 1]
(ii) zero on the interval (— o0, ay]

(iii) strictly increasing on the interval [a;, a,]

(iv) one on the interval [a,, as]

(v) strictly decreasing on the interval [a;, a4]

(vi) zero on the interval {a,;, o©),
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where a, < a, < a; < a,. (Examples of membership functions of fuzzy num-
bers are presented in Figure 3). The increasing part of U,(x), on interval
[a,, a,], is denoted U 4 (x); the decreasing part of U,(x), on interval [a;, a4],
is denoted U ,,(x). Alternatively, the inverse functions of U, (x) and U 4 (x),
Us'(y) and Up' () can be used; they are denoted V4, (») and V().

If a, = a, = a3 = a4, A is an ordinary real number.

A fuzzy number A is said to be positive if a; > 0. It is negative if a, < 0.

Let 4 and B be two fuzzy numbers with membership functions
Uyx) = Ug(x;ay,a,,ay,a,) and Ug(x) = Ug(x; by, by, b5, by). The mem-
bership function of the sum C of 4 and B, denoted 4 @ B, is defined as

Uc(z) = max min[U,(x), Ug(»)] (x,y,z)e R’

x+ty =1z

I

max min [U,(x), Ug(z—x)] .

It can be shown (see for instance DuBois and PRADE (1978) and (1980)) that
the sum of fuzzy numbers is associative and commutative, and that

(1) Ue(z)=0 ze(—oo,a;+b] Ulas+by, o]

(i1) Uc(z2) is strictly increasing in {a, +b,, a,+ b,], and strictly decreasing in
fas+b3, a,+b4]

(111) UC(Z) =1 ze[a2+b2,a3+b3]
(iv) Ui (2) = [UA]](Z)"'UB_ll(Z)rI or Vei(z) = Vau(@)+Ve(z)
Uey(z) = [Up' @)+ Ug' @™ or V(@) = Vo) + V().
The product D of 4 and B, denoted 4 © B, is defined by
Up(z) = max min [U,(x), Ug(y)] (assuming a,, b, > 0)
xy=z
It can be shown that D is a fuzzy number, with d, = a\b;, d, = a»b,,
d3 = a3b3, d4 = a4b4,
Upi(z) = [UA_ll(Z)' Ul;ll(z')]_l or Vpi(z) = Vyu(z) Vi (2)
Up(2) = [Ug' () Up' (@] or Viy(z) = Vial2) Vi (2).

The product is associative and commutative, and distributive on @. The n™
power of A is naturally recursively defined as

A"=A40 4"}

The only reference dealing with finance applications of fuzzy arithmetics seems
to be BuckLEY (1987), who defined the fuzzy extensions of the notions of
present and accumulated value, and annuities, and showed how to compare
fuzzy cash flows by means of extended net present value and internal rate of
return methods. Problem 3 is a straightforward generalization of that paper to
an insurance problem.
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Problem 3

Let us compute the net single premium of a $1000, 10-year pure endowment
policy, on a life aged (55), where p = jypss is 0.87. The interest rate i is fuzzy
and assumed to be approximately equal to 6%, as modelized by

0 x £ 1.03
Uy(x) = 50x—51.5 1.03 < x < 1.05

Ux) =< 1 1.05 < x < 1.07
Un(x) = 54.5-50x 1.07 < x < 1.09
0 1.09 < x

(see Figure 3, upper left). As shown by the definitions of @ and ©, it is easier
to use the inverse functions

Vy(y) = 1.0340.02y and V,(y) = 1.09-0.02y.

The present value PV (S, n) of a positive fuzzy amount S, »n periods in the
future, if the fuzzy interest rate is i per period, can be defined as

PV(S,n)=SO0@®i)"

This definition makes sense given the associativity and the distributivity
properties of ©. Note however that, generally, PV (S, n) © (1 @ )" will not be
equal to S. Since the face value and the survival probability are nonfuzzy, the
single fuzzy premium A of the policy,

A =1000-087-(1@® i),

is defined by the membership function

(0 x £ 367.50
Ugu(x) or V() 367.50 < x < 442.26
Usx)= <1 44226 < x < 534.10
Up(x) or V() 534.10 < x £ 647.36
0 647.36 < x
where
Va(y) = 870(1.09-0.02y)" 1
and

V(y) =870(1.03+0.02)"°  (0<y<)

This function is represented in Figure 3, upper right.
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Next assume that p = |, pss is also fuzzy, with membership function

0 (x£077H U > 097)
U,(x) = 10x—17.7 0.77 < x £0.87
9.7-10x 087 < x£097

and inverse functions ¥, (y) = 0.77+0.01y and V,,(y) = 0.97—0.01y (see
Figure 3, lower left).
The membership function of the premium 4 now becomes

(0 x < 325.26
Uy (x) or Vy(p) 32526 < x £ 442.26
Usux) =<1 44226 < x < 534.10
Upx) or V() 53410 < x £ 721.77
L0 721.77 < x
where
Vi () = 1000-V,,(»)- 1+ Vs, (017° j=1,2

V4 (y) = 1000(0.77+0.1y) (1.09—0.02y)~'°
V4 (¥) = 1000(0.97—0.1y) (1.03+0.02y)'°

This membership function, represented in the lower right part of Figure 3,
reflects the increased fuzziness.
It is also possible (see BUCKLEY (1987)) to fuzzify the number of periods n.

5. FUZzY SETS LITERATURE

The literature about fuzzy sets is abundant and highly specialized. A good
introductory textbook is ZIMMERMANN (1987), despite the important number
of misprints. More specialized textbooks are KAUFMANN (1975) and Dusois
and PRADE (1980). The seminal papers about fuzzy decision-making are
BELLMAN and ZADEH (1970) and YAGER and BEssoN (1976). Fuzzy graph
theory, fuzzy linear and dynamic programming and extensions of other
operations research methods are surveyed in ZIMMERMANN (1985) and (1987).
Reference papers for applications of fuzzy set theory to statistics are HESH-
MATY and KANDER (1985), BUCkLEY (1985) and Jasuga (1986). Topics of
interest for actuaries where fuzzy applications have been developed include
game theory (AuBIN (1981), Butnariu (1978, 1980)), economics
(CHaNG (1977), CHEN et al. (1980)), and utility theory (MATHIEU-
Nicort (1986)).
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