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Abstract

The existence of a negative solution, of a positive solution, and of a sign-changing solution to a
Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub-
and supersolution methods as well as variational techniques for nonsmooth functions.
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1. Introduction

Let � be a bounded domain in RN , N ≥ 3, with a smooth boundary ∂�, let
1 < p < +∞, and let g : � × R → R be measurable in each variable separately.
Given a real parameter λ, consider the problem{

−1pu = λ|u|
p−2u − g(x, u) in �,

u = 0 on ∂�,
(1.1)

where 1pu := div(|∇u|
p−2

∇u). If p = 2 then the existence of multiple solutions to
(1.1) has been widely investigated; see [1, 2, 18, 19] and the references therein. All
these papers treat the case where (x, t) 7→ g(x, t) does not depend on x and is suitably
regular, for example, continuously differentiable [1] or Lipschitz continuous [18, 19].
Roughly speaking, the results obtained are as follows. Let the function g exhibit a
superlinear behaviour at both zero and infinity. Under a further technical condition,
which may vary from one situation to another, problem (1.1) possesses at least three
nontrivial solutions provided λ > λ2, the second eigenvalue of the operator −1 in
H1

0 (�). Combining the method of sub- and supersolutions with variational techniques
chiefly based on the second deformation lemma, two very recent papers [4, 17]
examine a much more general situation, that is, 1 < p < +∞ and g : � × R → R
of Carathéodory’s type only.
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We next point out that Struwe’s result [19, Theorem 10.5] was extended to a wider
class of problems, the so-called elliptic hemivariational inequalities, in [11].

The same nonsmooth framework of [11] is adopted here, but the technical approach
exploited is based on that of [4]. More precisely, setting, for g merely bounded on
bounded sets,

G(x, ξ) :=

∫ ξ

0
g(x, t) dt, (x, ξ) ∈ � × R,

we shall be concerned with the problem{
−1pu ∈ λ|u|

p−2u − ∂G(x, u) in �,

u = 0 on ∂�,
(1.2)

where ∂G(x, u(x)) indicates the generalized gradient of ξ 7→ G(x, ξ) at the point
u(x). Obviously, (1.2) reduces to (1.1) if g satisfies Carathéodory’s conditions. We
say that u ∈ W 1,p

0 (�) is a solution of (1.2) if there exists an η ∈ L p/(p−1)(�) such that

η(x) ∈ ∂G(x, u(x)) almost everywhere in �, (1.3)∫
�

|∇u|
p−2

∇u · ∇ϕ dx +

∫
�

(η − λ|u|
p−2u)ϕ dx = 0 for all ϕ ∈ W 1,p

0 (�). (1.4)

The main result of this paper, Theorem 4.1 below, establishes the existence of at
least three nontrivial solutions u−, u+, u0 ∈ C1

0(�) to (1.2) such that u− < 0 < u+,
while u0 changes sign, in � provided λ > λ2, the second eigenvalue of −1p in

W 1,p
0 (�). It represents a nonsmooth version of [4, Theorem 4.1] and includes both [17,

Theorem 3.9] and [11, Corollary 3.2] as special cases. Accordingly, Theorem 4.1
also extends the results of [1, 2, 18, 19] to problem (1.2). We subsequently note
that it exhibits significant qualitative properties of the solutions obtained. For other
multiplicity results under different assumptions, see [9, 12, 15] and the references
therein.

Problems like (1.2) are sometimes called elliptic hemivariational inequalities.
They arise in the mathematical formulation of several complicated mechanical and
engineering questions, where the relevant energy functionals turn out to be neither
convex nor smooth (the so-called superpotentials). The monographs [9, 10, 14, 16] are
general works on this subject.

2. Basic assumptions and preliminary results

Let (X, ‖ · ‖) be a real Banach space. Given a set V ⊆ X , write ∂V for the boundary
of V , int(V ) for the interior of V , and V for the closure of V . If x, z ∈ X and δ > 0
then

Bδ(x) := {w ∈ X : ‖w − x‖ < δ}, [x, z] := {(1 − t)x + t z : t ∈ [0, 1]}.
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The symbol X∗ denotes the dual space of X , while 〈·, ·〉 indicates the duality pairing
between X and X∗. A function 8 : X → R is called coercive if

lim
‖x‖→+∞

8(x) = +∞.

If to every x ∈ X there correspond a neighbourhood Vx of x and a constant Lx ≥ 0
such that

|8(z) − 8(w)| ≤ Lx‖z − w‖ for all z, w ∈ Vx ,

then we say that 8 is locally Lipschitz continuous. In this case, 80(x; z), x, z ∈ X ,
denotes the generalized directional derivative of 8 at the point x along the direction z,
that is,

80(x; z) := lim sup
w→x, t→0+

8(w + t z) − 8(w)

t
.

The generalized gradient of the function 8 in x is the set

∂8(x) := {x∗
∈ X∗

: 〈x∗, z〉 ≤ 80(x; z) ∀ z ∈ X}.

Then [6, Proposition 2.1.2] ensures that ∂8(x) turns out to be nonempty, convex, in
addition to weak* compact, and that

80(x; z) = max{〈x∗, z〉 : x∗
∈ ∂8(x)}, z ∈ X.

Hence, it makes sense to write

m8(x) := min{‖x∗
‖X∗ : x∗

∈ 8(x)}.

The classical Palais–Smale condition for C1 functions here takes the following form
(see [5, Definition 2]).
(PS) Every sequence {xn} ⊆ X such that {8(xn)} is bounded and limn→+∞ m8(xn)

= 0 possesses a convergent subsequence.
We say that x ∈ X is a critical point of 8 if 0 ∈ ∂8(x), that is, 80(x; z) ≥ 0 for all
z ∈ X . Obviously, each local minimizer or maximizer of 8 turns out to be a critical
point of 8; see [5, Proposition 10]. Put

K (8) := {x ∈ X : 0 ∈ ∂8(x)}.

The following nonsmooth version of the Ambrosetti–Rabinowitz mountain pass
theorem is essentially due to Chang [5, Theorem 3.4] and will be exploited in
Section 4.

THEOREM 2.1. Let X be reflexive and let 8 satisfy (PS). If there exist x0, x1 ∈ X,
r > 0 such that ‖x1 − x0‖ > r and max{8(x0), 8(x1)} < infx∈∂ Br (x0) 8(x) then 8

has a critical point x̂ ∈ X such that

inf
x∈∂ Br (x0)

8(x) ≤ 8(̂x) = inf
γ∈0

max
t∈[0,1]

8(γ (t)),

where 0 := {γ ∈ C0([0, 1], X) : γ (0) = x0, γ (1) = x1}.
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An operator A : X → X∗ is called coercive if

lim
‖x‖→+∞

〈A(x), x〉

‖x‖
= +∞.

We say that A is of type (S)+ if xn ⇀ x in X and lim supn→+∞〈A(xn), xn − x〉 ≤ 0
imply xn → x .

Throughout this paper, � denotes a bounded domain of the real Euclidean N -space
(RN , | · |), N ≥ 3, with a smooth boundary ∂�, p ∈ ]1, +∞[, and p′

:= p/(p − 1).
The symbol W 1,p

0 (�) indicates the closure of C∞

0 (�) in W 1,p(�). On W 1,p
0 (�) we

introduce the norm

‖u‖ :=

(∫
�

|∇u(x)|p dx

)1/p

.

Denote by p∗ the critical exponent for the Sobolev embedding W 1,p
0 (�) ↪→ Lq(�).

Recall that p∗
= N p/(N − p) if p < N and p∗

= +∞ if p ≥ N . As usual, we write

Lq(�)+ := {u ∈ Lq(�) : u(x) ≥ 0 almost everywhere in �},

C1
0(�)+ := {u ∈ C1

0(�) : u(x) ≥ 0 ∀ x ∈ �}.

It is known (see, for example, [10, Remark 6.2.10]) that

int(C1
0(�)+) =

{
u ∈ C1

0(�) : u(x) > 0,
∂u

∂n
(x) < 0 ∀ x ∈ �

}
,

with n(x) being the outward unit normal vector to ∂� at the point x ∈ ∂�.
Let −1p : W 1,p

0 (�) → (W 1,p
0 (�))∗ be defined by

〈−1pu, v〉 :=

∫
�

|∇u(x)|p−2
∇u(x) · ∇v(x) dx for all u, v ∈ W 1,p

0 (�), (2.1)

and let λ1 (λ2) its first (second) eigenvalue. One usually refers to 1p as the
p-Laplacian operator. The following properties of λ1, λ2, and −1p can be found
in [10, Section 6.2]; see also [8].
(p1) 0 < λ1 < λ2.
(p2) There exists an eigenfunction ϕ1 corresponding to λ1 such that ϕ1 ∈ int(C1

0(�)+)

as well as ‖ϕ1‖L p(�) = 1.

(p3) If S := {u ∈ W 1,p
0 (�) : ‖u‖L p(�) = 1} and

00 := {γ ∈ C0([−1, 1], S) : γ (−1) = −ϕ1, γ (1) = ϕ1},

then
λ2 = inf

γ∈00
max

u∈γ ([−1,1])
‖u‖

p.

(p4) The operator −1p is maximal monotone, coercive, and of type (S)+.

https://doi.org/10.1017/S0004972708000282 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000282


[5] Multiple solutions for a Dirichlet problem 289

Finally, for notational convenience, we define, for u, v : � → R,

�(u ≤ v) := {x ∈ � : u(x) ≤ v(x)}, u+
:= max{u, 0}, u−

:= min{u, 0},

and henceforth ‘measurable’ will always mean Lebesgue measurable. Suppose that
g : � × R → R satisfies the following conditions.
(g1) g is measurable in each variable separately.
(g2) There exist a1 > 0, q ∈ ]p, p∗

[ such that

|g(x, t)| ≤ a1(1 + |t |q−1),

for almost every x ∈ � and every t ∈ R.
Then the functions G(x, ·) : R → R and G : Lq(�) → R given by

G(x, ξ) :=

∫ ξ

0
g(x, t) dt for all ξ ∈ R,

G(u) :=

∫
�

G(x, u(x)) dx for all u ∈ Lq(�), (2.2)

respectively, are well defined and locally Lipschitz continuous. So, it makes sense to
consider their generalized gradients ∂G(x, ·) and ∂G. For every (x, t) ∈ � × R, set

g1(x, t) := lim
δ→0+

ess inf
|τ−t |<δ

g(x, τ ), g2(x, t) := lim
δ→0+

ess sup
|τ−t |<δ

g(x, τ ).

Then [14, Proposition 1.7] ensures that

∂G(x, ξ) = [g1(x, ξ), g2(x, ξ)], (2.3)

while [10, Theorem 4.5.19] leads to

∂G(u) ⊆ {w ∈ Lq ′

(�) : g1(x, u(x)) ≤ w(x) ≤ g2(x, u(x)) almost everywhere in �},

(2.4)

with q ′
:= q/(q − 1). The next result is an immediate consequence of [6,

Proposition 2.1.5], apart from the choice of q.

LEMMA 2.2. Suppose un → u in W 1,p
0 (�), wn ⇀ w in L p′

(�), and wn ∈ ∂G(un) for
all n ∈ N. Then w ∈ ∂G(u).

We shall further make the following assumptions.
(g3) limt→0(g(x, t)/|t |p−2t) = 0 uniformly for almost all x ∈ �.
(g4) lim|t |→+∞(g(x, t)/|t |p−2t) = +∞ uniformly for almost all x ∈ �.

REMARK 2.3. For p = 2 and if (x, t) 7→ g(x, t) does not depend on x and is
continuous, hypotheses (g3)–(g4) have previously been introduced in [1, 18]. The
very recent paper [11] deals with possibly discontinuous nonlinearities.
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REMARK 2.4. Assumption (g3) forces g1(x, 0) ≤ 0 ≤ g2(x, 0) for almost all x ∈ �.
Hence, in view of (2.3), problem (1.2) always possesses the trivial solution.

A function u ∈ W 1,p(�) is called a subsolution to (1.2) if u|∂� ≤ 0 and there exists
an η ∈ L p′

(�) such that

η(x) ∈ ∂G(x, u(x)) for almost every x ∈ �, (2.5)∫
�

|∇u|
p−2

∇u · ∇ϕ dx +

∫
�

(η − λ|u|
p−2u)ϕ dx ≤ 0

for all ϕ ∈ W 1,p(�) ∩ L p(�)+. (2.6)

Likewise, we say that u ∈ W 1,p(�) is a supersolution of problem (1.2) if u|∂� ≥ 0 and
there exists an η ∈ L p′

(�) fulfilling

η(x) ∈ ∂G(x, u(x)) for almost every x ∈ �, (2.7)∫
�

|∇u|
p−2

∇u · ∇ϕ dx +

∫
�

(η − λ|u|
p−2u)ϕ dx ≥ 0

for all ϕ ∈ W 1,p
0 (�) ∩ L p(�)+. (2.8)

As a result of (p4) the operator −1p turns out to be surjective; see, for instance, [10,

Corollary 3.2.21]. Thus, we can find a function e ∈ W 1,p
0 (�) such that −1p e = 1.

Gathering [9, Theorems 1.5.6 and 1.5.7] together yields e ∈ int (C1
0(�)+).

We are now in a position to establish the existence of sub- and supersolutions to
problem (1.2).

THEOREM 2.5. Let (g1)–(g4) be satisfied. Then, for every λ > λ1, there exists
a constant aλ > 0 such that −aλe (aλe) is a subsolution (supersolution) of (1.2).
Moreover, εϕ1 (−εϕ1) is a subsolution (supersolution) to (1.2) and εϕ1 < aλe in �

for any sufficiently small ε > 0.

PROOF. Pick λ > λ1. Hypothesis (g4) produces a tλ > 0 such that

g(x, t)

|t |p−2t
> λ provided |t | > tλ. (2.9)

Through (g2) we can find a cλ > 0 fulfilling

|g(x, t) − λ|t |p−2t | ≤ cλ for all |t | ≤ tλ. (2.10)

Both inequalities above hold almost everywhere in �. Moreover, combining (2.9) with
(2.10), we achieve

− 1p(−c1/(p−1)
λ e) + λcλep−1

+ g2(x, −c1/(p−1)
λ e) ≤ 0 (2.11)

as well as
− 1p(c

1/(p−1)
λ e) − λcλep−1

+ g1(x, c1/(p−1)
λ e) ≥ 0. (2.12)

Therefore, on account of (2.3), the first conclusion is true once we put aλ := c1/(p−1)
λ .
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Next, since λ > λ1, assumption (g3) yields a δλ > 0 such that

|g(x, t)|

|t |p−1 < λ − λ1 provided 0 < |t | ≤ δλ. (2.13)

Fix a positive number ε ≤ δλ/‖ϕ1‖L∞(�). From (p2) and (2.13), which holds almost
everywhere in �, it easily follows that

−1p(εϕ1) − λε p−1ϕ
p−1
1 + g2(x, εϕ1) < 0.

Likewise,
−1p(−εϕ1) + λε p−1ϕ

p−1
1 + g1(x, −εϕ1) > 0.

Hence, the function εϕ1 (−εϕ1) turns out to be a subsolution (supersolution) of (1.2).
Finally, as e ∈ int (C1

0(�)+), for any sufficiently small ε > 0,

e −
ε

aλ

ϕ1 ∈ int(C1
0(�)+),

that is, εϕ1 < aλe in �. This completes the proof. 2

3. Constant-sign solutions

Two nonzero, constant-sign, extremal solutions to problem (1.2) can be achieved
when λ > λ1, the first eigenvalue of −1p in W 1,p

0 (�). The next result represents a
preliminary step in this direction.

THEOREM 3.1. If (g1)–(g4) hold true, while λ > λ1, then for every ε > 0 small
enough (1.2) has a minimal positive solution u+ ∈ int(C1

0(�)+) ∩ [εϕ1, aλe] and a
maximal negative solution u− ∈ −int(C1

0(�)+) ∩ [−aλe, −εϕ1], with aλ > 0 given by
Theorem 2.5.

PROOF. Since similar reasoning is used for u− and u+, we shall confine ourselves to
the case of u+. Let

u := εϕ1, u := aλe.

Theorem 2.5 ensures that u (u) turns out to be a subsolution (supersolution) of (1.2)
lying in int(C1

0(�)+) and that u < u provided ε > 0 is sufficiently small. Put

U := {u ∈ W 1,p
0 (�) : u(x) ≤ u(x) ≤ u(x) for almost every x ∈ �}.

Thanks to (g1), (g2) the functional Eλ : W 1,p
0 (�) → R given by

Eλ(u) :=
1
p
‖u‖

p
−

λ

p
‖u‖

p
L p(�) + G(u) for all u ∈ W 1,p

0 (�),

with G as in (2.2), is well defined, locally Lipschitz continuous, weakly sequentially
lower semicontinuous, and coercive in U . Hence, there exists a uλ ∈ U fulfilling

Eλ(uλ) = inf
u∈U

Eλ(u). (3.1)
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We claim that uλ solves problem (1.2). Indeed, pick v ∈ W 1,p
0 (�), α > 0, and set

w(x) :=

u(x) if x ∈ �(uλ + αv ≤ u),

uλ(x) + αv(x) if x ∈ �(u ≤ uλ + αv) ∩ �(uλ + αv ≤ u),

u(x) if x ∈ �(u ≤ uλ + αv).

Obviously, w ∈ U . Consequently, tw + (1 − t)uλ ∈ U for all t ∈ [0, 1]. If I[0,1]

denotes the indicator function of [0, 1] ⊆ R,

f (t) := Eλ(tw + (1 − t)uλ) and f̃ (t) := f (t) + I[0,1](t), t ∈ R,

then, due to (3.1), the function f̃ attains its minimum at t = 0. Accordingly, by [16,
Proposition 2.1],

f 0(0; t − 0) + I[0,1](t) − I[0,1](0) ≥ 0 for all t ∈ R,

which means, in particular, that f 0(0; 1) ≥ 0. Since f 0(0; 1) = max{z : z ∈ ∂ f (0)},
we can find a z ∈ ∂ f (0) ∩ [0, +∞[. Using the chain rule [6, Theorem 2.3.10] yields

∂ f (0) ⊆ ∂ Eλ(uλ) · (w − uλ). (3.2)

On account of (3.2) and (2.4) there thus exists a wλ ∈ Lq ′

(�) such that

wλ(x) ∈ ∂G(x, uλ(x)) almost everywhere in �, (3.3)

〈−1p uλ, w − uλ〉 − λ

∫
�

u p−1
λ (w − uλ) dx +

∫
�

wλ(w − uλ) dx = z ≥ 0. (3.4)

We explicitly note that w − uλ ∈ Lq(�) because q ≤ p∗. If η (η) belongs to L p′

(�)

and satisfies (2.6) ((2.8)) then, by the choice of w, inequality (3.4) becomes

0 ≤ α

∫
�

|∇uλ|
p−2

∇uλ · ∇v dx − α

∫
�

(λu p−1
λ − wλ)v dx

−

∫
�(u≤uλ+αv)

|∇u|
p−2

∇u · ∇(uλ + αv − u) dx

+

∫
�(u≤uλ+αv)

(λu p−1
− η) (uλ + αv − u) dx

+

∫
�(uλ+αv≤u)

|∇u|
p−2

∇u · ∇(u − uλ − αv) dx

−

∫
�(uλ+αv≤u)

(λu p−1
− η) (u − uλ − αv) dx

+

∫
�(u≤uλ+αv)

(λu p−1
− η − λu p−1

λ + wλ) (u − uλ − αv) dx

+

∫
�(uλ+αv≤u)

(λu p−1
− η − λu p−1

λ + wλ) (u − uλ − αv) dx
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−

∫
�(uλ+αv≤u)

(|∇uλ|
p−2

∇uλ − |∇u|
p−2

∇u) · ∇(uλ − u) dx

− α

∫
�(uλ+αv≤u)

(|∇uλ|
p−2

∇uλ − |∇u|
p−2

∇u) · ∇v dx

+

∫
�(u≤uλ+αv)

(|∇u|
p−2

∇u − |∇uλ|
p−2

∇uλ) · ∇(uλ − u) dx

+ α

∫
�(u≤uλ+αv)

(|∇u|
p−2

∇u − |∇uλ|
p−2

∇uλ) · ∇v dx . (3.5)

Now, putting ϕ := (uλ + αv − u)+ in (2.8) leads to

−

∫
�(u≤uλ+αv)

|∇u|
p−2

∇u · ∇(uλ + αv − u) dx

+

∫
�(u≤uλ+αv)

(λu p−1
− η) (uλ + αv − u) dx ≤ 0, (3.6)

while (2.6) written for ϕ := (u − uλ − αv)+ gives∫
�(uλ+αv≤u)

|∇u|
p−2

∇u · ∇(u − uλ − αv) dx

+

∫
�(uλ+αv≤u)

(η − λu p−1) (u − uλ − αv) dx ≤ 0. (3.7)

Since u ≤ uλ ≤ u in �, the result is∫
�(uλ+αv≤u)

(u p−1
− u p−1

λ ) (u − uλ − αv) dx ≤ 0, (3.8)∫
�(u≤uλ+αv)

(u p−1
− u p−1

λ ) (u − uλ − αv) dx ≤ 0. (3.9)

Next, assumption (g2), (2.3), and the continuity of u, u on � ensure that both
∂G(x, u(x)) and ∂G(x, u(x)) are uniformly bounded with respect to x ∈ �. So, in
view of (2.5), (2.7), and (3.3), there exists a constant a2 > 0 fulfilling∫

�(uλ+αv≤u)

(−η + wλ) (u − uλ − αv) dx

≤ a2

∫
�(uλ+αv≤u<uλ)

(u − uλ) dx − α

∫
�(uλ+αv≤u)(−η+wλ)

v dx (3.10)

as well as∫
�(u≤uλ+αv)

(−η + wλ) (u − uλ − αv) dx

≤ a2

∫
�(uλ<u≤uλ+αv)

(uλ − u) dx + α

∫
�(u≤uλ+αv)(η−wλ)

v dx . (3.11)
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Finally, by virtue of (p4) we obtain

−

∫
�(uλ+αv≤u)

(|∇uλ|
p−2

∇uλ − |∇u|
p−2

∇u) · ∇(uλ − u) dx ≤ 0 (3.12)

and ∫
�(u≤uλ+αv)

(|∇u|
p−2

∇u − |∇uλ|
p−2

∇uλ) · ∇(uλ − u) dx ≤ 0. (3.13)

At this point, gathering (3.5)–(3.13) together and dividing by α > 0 yields

0 ≤

∫
�

|∇uλ|
p−2

∇uλ · ∇v dx −

∫
�

(λu p−1
λ − wλ)v dx

− a2

∫
�(uλ+αv≤u<uλ)

v dx + a2

∫
�(uλ<u≤uλ+αv)

v dx

+

∫
�(uλ+αv≤u)

(η − wλ)v dx +

∫
�(u≤uλ+αv)

(η − wλ)v dx

−

∫
�(uλ+αv≤u)

(|∇uλ|
p−2

∇uλ − |∇u|
p−2

∇u) · ∇v dx

+

∫
�(u≤uλ+αv)

(|∇u|
p−2

∇u − |∇uλ|
p−2

∇uλ) · ∇v dx . (3.14)

For α → 0+, inequality (3.14) becomes

0 ≤

∫
�

|∇uλ|
p−2

∇uλ · ∇v dx −

∫
�

(λu p−1
λ − wλ)v dx,

because uλ lies in U and we have η ≥ wλ on �(u = uλ), η ≤ wλ on �(u = uλ)

(see (2.12)). As v ∈ W 1,p
0 (�) was arbitrary, it results in

− 1puλ = λu p−1
λ − wλ, (3.15)

that is, uλ is a positive solution of (1.2). From uλ, wλ ∈ L∞(�) it follows that
1pu ∈ L∞(�). Then [10, Theorem 6.2.7] forces uλ ∈ C1

0(�). Due to (2.13) and
(g2) we can find a constant c̃λ > 0 satisfying

|g(x, t)| ≤ c̃λt p−1, for all t ∈ [0, ‖u‖L∞(�)] (3.16)

Hence, by (3.15), (3.3), and (3.16),

1puλ ≤ (λ + c̃λ)u
p−1
λ . (3.17)

The Vázquez maximum principle [9, Theorem 1.5.7] thus provides uλ ∈ int (C1
0(�)+).

Denote by U the set of all solutions u ∈ int (C1
0(�)+) to problem (1.2) such

that u ≤ u ≤ u in �. U is nonempty since uλ ∈ U . Arguing as in the proofs of
[3, Lemma 4.23] and [3, Corollary 4.24], and using [9, Theorem 1.5.7] once more,
we then see that U possesses a minimal element, say u+, with respect to the pointwise
usual order. 2
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Two extremal solutions of (1.2) having opposite constant sign can now be obtained
via Theorem 3.1.

THEOREM 3.2. Let (g1)–(g4) be fulfilled. Then for every λ > λ1 there exist a minimal
positive solution u+ ∈ int (C1

0(�)+) ∩ [0, aλe] and a maximal negative solution u−

∈ −int (C1
0(�)+) ∩ [−aλe, 0] to problem (1.2), where aλ > 0 is given by Theorem 2.5.

PROOF. Fix λ > λ1. Since similar reasoning is used for u− and u+, we shall confine
ourselves to the case of u+. Retain the notation introduced in the proof of Theorem 3.1.
By that result, for every positive integer n sufficiently large there is a minimal solution
un ∈ int (C1

0(�)+) ∩ [
1
n ϕ1, u] to (1.2). The minimality property of un gives

un ↓ u+ pointwise in � (3.18)

for some u+ : � → R satisfying 0 ≤ u+ ≤ u. We claim that

the function u+ turns out to be a solution of problem (1.2). (3.19)

In fact, from (1.4), with u := un , it follows that

〈−1pun, ϕ〉 =

∫
�

(λ|un|
p−2un − ηn)ϕ dx for all ϕ ∈ W 1,p

0 (�), (3.20)

where ηn ∈ L p′

(�) and ηn(x) ∈ ∂G(x, un(x)) for almost all x ∈ �. If ϕ := un then

‖un‖
p

=

∫
�

(λu p
n − ηn)un dx, n ∈ N. (3.21)

Due to (g2), besides the inequality 0 ≤ un ≤ u, the sets ∂G(x, un(x)), x ∈ �, n ∈ N,
are uniformly bounded. Hence, there exists an a3 > 0 such that

|ηn(x)| ≤ a3, almost everywhere in �, for all n ∈ N. (3.22)

Thus, by (3.21), the sequence {un} ⊆ W 1,p
0 (�) is bounded too. Taking a subsequence

when necessary, we may suppose that

un ⇀ u+ in W 1,p
0 (�), un → u+ in L p(�). (3.23)

On account of (3.20) with ϕ := un − u+,

〈−1pun, un − u+〉 = λ

∫
�

(|un|
p

− |un|
p−2unu+) dx

−

∫
�

ηn(un − u+) dx for all n ∈ N.

Now, by virtue of (3.23), (3.18), and the Lebesgue dominated convergence theorem,
this forces limn→∞〈−1pun, un − u+〉 = 0. Thanks to (p4), we then obtain

un → u+ in W 1,p
0 (�). (3.24)
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Using (3.22) yields a function η+ ∈ L p′

(�) such that ηn ⇀ η+ in L p′

(�). By (3.24),
Lemma 2.2 can be applied to obtain η+(x) ∈ ∂G(x, u+(x)) for almost every x ∈ �.
From (3.20) it finally follows that

〈−1pu+, ϕ〉 =

∫
�

(λ|u+|
p−2u+ − η+)ϕ dx for all ϕ ∈ W 1,p

0 (�),

that is to say,

−1pu+ = λ|u+|
p−2u+ − η+,

and (3.19) is proved.
Next, since u+ ∈ L∞(�), assumption (g2) produces 1pu+ ∈ L∞(�). Owing to

(3.16) we achieve, as before,

1pu+ ≤ (λ + c̃λ)u
p−1
+ .

The Vázquez maximum principle [9, Theorem 1.5.7] ensures that either u+ ≡ 0 or
u+ ∈ int (C1

0(�)+). If the assertion

u+ ∈ int (C1
0(�)+) (3.25)

were false then u+ ≡ 0. Accordingly, in view of (3.18),

un(x) ↓ 0 for all x ∈ � . (3.26)

Setting

ũn =
un

‖un‖
, n ∈ N,

we may suppose that (along a relabelled subsequence, when necessary)

ũn ⇀ ũ in W 1,p
0 (�), ũn → ũ in L p(�), (3.27)

as well as

|̃un(x)| ≤ w(x) for all n ∈ N, ũn(x) → ũ(x) for almost all x ∈ �, (3.28)

with w ∈ L p(�)+. By virtue of (3.20) this leads to

〈−1pũn, ϕ〉 = λ

∫
�

ũ p−1
n ϕ dx −

∫
�

ηn

u p−1
n

ũ p−1
n ϕ dx for all ϕ ∈ W 1,p

0 (�). (3.29)

If ϕ := ũn − ũ then

〈−1pũn, ũn − ũ〉 = λ

∫
�

ũ p−1
n (̃un − ũ) dx −

∫
�

ηn

u p−1
n

ũ p−1
n (̃un − ũ) dx . (3.30)

By (3.16), (3.28) there exists a constant cλ > 0 fulfilling

|ηn(x)|

un(x)p−1 ũn(x)p−1
|̃un(x) − ũ(x)| ≤ cλw(x)p−1

|̃un(x) − ũ(x)| ≤ 2cλw(x)p
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almost everywhere in �. Due to (3.28), besides the Lebesgue dominated convergence
theorem, we obtain

lim
n→∞

∫
�

ηn

u p−1
n

ũ p−1
n (̃un − ũ) dx = 0.

Hence, from (3.30) and (3.28) it again follows that limn→∞〈−1pũn, ũn − ũ〉 = 0,
which, on account of (p4), forces

ũn → ũ in W 1,p
0 (�). (3.31)

So, in particular, ‖ũ‖ = 1. Gathering (3.29), (3.31), (3.26), and (g3) together gives

〈−1pũ, ϕ〉 = λ

∫
�

ũ p−1ϕ dx for all ϕ ∈ W 1,p
0 (�),

that is, ũ is an eigenfunction of −1p in W 1,p
0 (�) corresponding to the eigenvalue

λ > λ1. By [10, Proposition 6.2.15], the function ũ must change sign in �, whereas
(3.28) and (3.26) imply that ũ(x) ≥ 0 for almost all x ∈ �. Therefore, (3.25) holds.

Let us finally verify that

u+ is a minimal positive solution of (1.2) within [0, u]. (3.32)

If u ∈ W 1,p
0 (�) ∩ [0, u], 0 < u ≤ u+ in �, and u satisfies (1.2) then, by [10,

Theorem 6.2.7], u ∈ C1
0(�). The same argument as employed before regarding uλ and

u+ now yields u ∈ int (C1
0(�)+). Consequently, u ∈ [(1/n)ϕ1, u] for any sufficiently

large n. Since un is a minimal solution of (1.2) in [(1/n)ϕ1, u], it turns out that un ≤ u.
As n was arbitrary, (3.18) leads to u+ ≤ u, and the conclusion follows. 2

4. Sign-changing solutions

A third nonzero, sign-changing solution to (1.2) can be obtained when λ > λ2, the
second eigenvalue of −1p in W 1,p

0 (�), as the next result shows.

THEOREM 4.1. Under assumptions (g1)–(g4), for every λ > λ2, problem (1.2) pos-
sesses a positive solution u+ ∈ int (C1

0(�)+), a negative solution u−

∈ −int (C1
0(�)+), and a nontrivial sign-changing solution u0 ∈ C1

0(�).

PROOF. Fix λ > λ2. If u+ and u− are given by Theorem 3.2 then there exist
η+, η− ∈ L p′

(�) such that

−1pu+(x) = λu+(x)p−1
− η+(x), −1pu−(x) = λ|u−(x)|p−2u−(x) − η−(x),

as well as
η+(x) ∈ ∂G(x, u+(x)), η−(x) ∈ ∂G(x, u−(x)),
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for almost every x ∈ �. Define, whenever (x, t) ∈ � × R,

τ+(x, t) :=

0 if t < 0,

t if 0 ≤ t ≤ u+(x),

u+(x) if t > u+(x),

τ−(x, t) :=

u−(x) if t < u−(x),

t if u−(x) ≤ t ≤ 0,

0 if t > 0,

τ0(x, t) :=

u−(x) if t < u−(x),

t if u−(x) ≤ t ≤ u+(x),

u+(x) if t > u+(x),

and

g+(x, t) :=

0 if t < 0,

g(x, t) if 0 ≤ t ≤ u+(x),

η+(x) if t > u+(x),

g−(x, t) :=

η−(x) if t < u−(x),

g(x, t) if u−(x) ≤ t ≤ 0,

0 if t > 0,

g0(x, t) :=

η−(x) if t < u−(x),

g(x, t) if u−(x) ≤ t ≤ u+(x),

η+(x) if t > u+(x).

Moreover, provided that u ∈ W 1,p
0 (�), set

E+(u) :=
1
p

‖u‖
p

−

∫
�

(∫ u(x)

0
(λτ+(x, t)p−1

− g+(x, t)) dt

)
dx,

E−(u) :=
1
p

‖u‖
p

−

∫
�

(∫ u(x)

0
(λ|τ−(x, t)|p−2τ−(x, t) − g−(x, t)) dt

)
dx,

E0(u) :=
1
p

‖u‖
p

−

∫
�

(∫ u(x)

0
(λ|τ0(x, t)|p−2τ0(x, t) − g0(x, t)) dt

)
dx .

Due to (g2), besides the regularity properties of u+ and u−, the functionals
E+, E−, E0 : W 1,p

0 (�) → R are locally Lipschitz continuous. We claim that

each critical point of E+ belongs to [0, u+]. (4.1)

In fact, if u ∈ W 1,p
0 (�) fulfils 0 ∈ ∂ E+(u) then −1pu = λτ+(x, u)p−1

− w for some
w ∈ L p′

(�) such that w(x) ∈ ∂G+(x, u(x)) almost everywhere in �, with

G+(x, ξ) :=

∫ ξ

0
g+(x, t) dt, (x, ξ) ∈ � × R.
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Choosing the test function ϕ := (u − u+)+ gives

〈−1pu + 1pu+, (u − u+)+〉

=

∫
�

[λτ+(x, u)p−1
− w − λu p−1

+ + η+] (u − u+)+ dx = 0.

On account of (p4), this implies that u ≤ u+. Similarly, from

〈−1pu, −u−
〉 = −

∫
�

[λτ+(x, u)p−1
− w]u− dx = 0,

it follows that u ≥ 0. Hence, assertion (4.1) holds.
An easy verification ensures that the functional E+ is bounded below, weakly

sequentially lower semicontinuous, and coercive. So there exists a v+ ∈ W 1,p
0 (�)

satisfying
E+(v+) = inf

u∈W 1,p
0 (�)

E+(u), (4.2)

which forces both v+ ∈ [0, u+], on account of (4.1), and −1pv+ ∈ λv
p−1
+

− ∂G+(x, v+). Since ∂G+(x, v+(x)) ⊆ ∂G(x, v+(x)), x ∈ �, the function v+ turns
out to be a solution of (1.2). Moreover, v+ 6= 0. Indeed, by virtue of (3.25) we obtain

tϕ1 ≤ u+, t‖ϕ1‖L∞(�) ≤ δλ,

with δλ as in (2.13), provided that t > 0 is sufficiently small. Consequently, by (4.2),
(p2), and (2.13),

E+(v+) ≤ E+(tϕ1) =
λ1

p
t p

−

∫
�

(∫ tϕ1(x)

0
(λs p−1

− g(x, s)) ds

)
dx < 0, (4.3)

that is to say, v+ 6= 0. At this point, the same argument as exploited in the proof of
Theorem 3.2 to achieve (3.25) shows here that

v+ ∈ int (C1
0(�)+). (4.4)

Gathering (4.4), the inequality v+ ≤ u+, and Theorem 3.2 together gives v+ = u+.
Thus, due to (4.2), besides (4.4), the function u+ is a local minimizer of E0 in C1

0(�).
Then [9, Proposition 4.6.10] guarantees that u+ enjoys the same property in the space
W 1,p

0 (�). Likewise, replacing the functional E+ with E− one realizes that u− is a

local minimizer of E0 in W 1,p
0 (�).

Since E0 is bounded below, weakly sequentially lower semicontinuous,
and coercive, there exists a v0 ∈ W 1,p

0 (�) fulfilling E0(v0) = inf
u∈W 1,p

0 (�)
E0(u).

Moreover, as before, it results in v0 6= 0 as well as

each critical point of E0 belongs to [u−, u+]. (4.5)
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Therefore, v0 ∈ [u−, u+] and v0 is a nontrivial solution of (1.2). Without loss of
generality we may suppose that v0 = u+ or v0 = u−, because otherwise the extremality
of u+ and u− established in Theorem 3.2 would force a change of sign for v0, which
completes the proof. So, let v0 = u+ (similar reasoning applies when v0 = u−). We
may assume also that u− is a strict local minimizer of E0. In fact, if this were false
then infinitely many sign-changing solutions to (1.2) might be found via (4.5), besides
the extremality of u+, u−, and the conclusion follows. Pick a ρ ∈ ]0, ‖u+ − u−‖[

such that
E0(u+) ≤ E0(u−) < inf

u∈∂ Bρ(u−)
E0(u). (4.6)

The functional E0 satisfies condition (PS) because it is bounded below, locally
Lipschitz continuous, and coercive; see, for example, [13, Corollary 2.4]. Bearing
in mind (4.6), Theorem 2.1 can be applied. Hence, there is a u0 ∈ W 1,p

0 (�) complying
with 0 ∈ ∂ E0(u0) and

inf
u∈∂ Bρ(u−)

E0(u) ≤ E0(u0) = inf
γ∈0

max
t∈[−1,1]

E0(γ (t)), (4.7)

where
0 := {γ ∈ C0([−1, 1], W 1,p

0 (�)) : γ (−1) = u−, γ (1) = u+}.

By (4.5), ∂G0(x, u0(x)) ⊆ ∂G(x, u0(x)), x ∈ �, that is, u0 solves (1.2). Moreover,
thanks to (4.6) and (4.7), u0 6= u− and u0 6= u+. The proof is thus complete once we
show that u0 ∈ C1

0(�) \ {0}. Let us start with u0 6= 0. This immediately comes out
from the inequality

E0(u0) < 0, (4.8)

which, in view of (4.7), holds if we construct a γ̂ ∈ 0 such that

E0(γ̂ (t)) < 0 for all t ∈ [−1, 1]. (4.9)

Set S := {u ∈ W 1,p
0 (�) : ‖u‖L p(�) = 1} and fix µ ∈ ]0, λ − λ2[. Assumption (g3)

yields a δµ > 0 such that

|g(x, t)|

|t |p−1 ≤ µ provided 0 < |t | ≤ δµ. (4.10)

If ρ0 ∈ ]0, λ − λ2 − µ[ then, due to (p3), there exists a γ ∈ 00 satisfying

max
t∈[−1,1]

‖γ (t)‖p < λ2 +
ρ0

2
.

Now, define SC := S ∩ C1
0(�) and consider on SC the topology induced by that of

C1
0(�). Clearly, SC is a dense subset of S. So, given r > 0, with

r ≤ (λ2 + ρ0)
1/p

−

(
λ2 +

ρ0

2

)1/p

,
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we can find a γ0 ∈ C0([−1, 1], SC ) such that γ0(−1) = −ϕ1, γ0(1) = ϕ1, and

max
t∈[−1,1]

‖γ (t) − γ0(t)‖ < r.

This obviously forces
max

t∈[−1,1]

‖γ0(t)‖
p < λ2 + ρ0. (4.11)

Let ε1 > 0 fulfil

ε1 max
x∈�

|u(x)| ≤ δµ, for all u ∈ γ0([−1, 1]). (4.12)

Since u+, −u− ∈ int(C1
0(�)+), to every u ∈ γ0([−1, 1]) and every bounded

neighbourhood Vu of u in C1
0(�) there corresponds a ν > 0 such that

u+ −
1
m

v ∈ int(C1
0(�)+), −u− +

1
n
v ∈ int(C1

0(�)+)

whenever m, n ≥ ν, v ∈ Vu .

Through the compactness of γ0([−1, 1]) in C1
0(�) we thus obtain an ε0 > 0 satisfying

u−(x) ≤ εu(x) ≤ u+(x) for all x ∈ �, u ∈ γ0([−1, 1]), ε ∈ ]0, ε0[. (4.13)

The function t 7→ εγ0(t), t ∈ [0, 1], is a continuous path in SC joining −εϕ1 and εϕ1.
Moreover, if 0 < ε < min{ε0, ε1} then (4.11), (4.13), (4.12), and (4.10) yield

E0(εγ0(t)) =
ε p

p
‖γ0(t)‖

p
−

ε p

p
λ +

∫
�

(∫ εγ0(t) (x)

0
g(x, τ0(x, s)) ds

)
dx

≤
ε p

p
(λ2 + ρ0 − λ) +

∫
�

(∫ εγ0(t) (x)

0
g(x, s) ds

)
dx

≤
ε p

p
(λ2 + ρ0 − λ + µ) < 0 for all t ∈ [−1, 1]. (4.14)

Next, write

a4 := E+(u+), U+ := {u ∈ W 1,p
0 (�) : E+(u) < 0}.

Then clearly a4 < 0, because u+ = v+ and E+(v+) < 0 by (4.3). Hence, U+ turns out
to be nonempty. Moreover, a4 = inf

u∈W 1,p
0 (�)

E+(u) on account of (4.2). Gathering

(4.1) and Theorem 3.2 together ensures that E+ has no critical point u with a4
< E+(u) < 0 and that K (E+) ∩ E−1

+ (a4) = {u+}. Finally, since E+ is bounded below,
locally Lipschitz continuous, and coercive, it satisfies condition (PS). So, thanks to
[7, Theorem 2.10], there exists a continuous function h : [0, 1] × U+ → U+ fulfilling

h(0, ·) = id|U+
, h(1, U+) = {u+},

E+(h(t, u)) ≤ E+(u) for all (t, u) ∈ [0, 1] × U+.
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Let γ+ : [0, 1] → U+ defined by γ+(t) := h(t, εϕ1)
+ for every t ∈ [0, 1]. Then

γ+(0) = εϕ1, γ+(1) = u+, as well as

E0(γ+(t)) = E+(γ+(t)) ≤ E+(h(t, εϕ1)) ≤ E+(εϕ1) < 0, t ∈ [0, 1]. (4.15)

In a similar way, but with E− in place of E+, we can construct a continuous function
γ− : [0, 1] → W 1,p

0 (�) such that γ−(0) = −εϕ1, γ−(1) = u− and

E0(γ−(t)) < 0 for all t ∈ [0, 1]. (4.16)

Concatenating γ−, γ0, and γ+ produces a path γ̂ ∈ 0 which, in view of (4.14)–(4.16),
satisfies (4.9). This shows (4.8) and, consequently, u0 6= 0. To complete the proof we
simply note that the same argument, based on [10, Theorem 6.2.7], as exploited before
leads to u0 ∈ C1

0(�). 2

REMARK 4.2. The preceding proof is patterned after that of [4, Theorem 4.1];
see also [17, Theorem 3.9]. If the function t 7→ g(x, t) is continuous on R then
∂G(x, ξ) = {g(x, ξ)}, and problem (1.2) reduces to (1.1). However, even in this
setting the result above is more general than [17, Theorem 3.9], because we do not
assume that g(x, t)t ≥ 0 for all t ∈ R.

REMARK 4.3. Theorem 4.1 improves [11, Corollary 3.2]. In fact, let p = 2, let
u ∈ W 1,2

0 (�) be a solution of (1.2) with g(x, t) ≡ g(t), (x, t) ∈ � × R, and let

η ∈ L p′

(�) fulfil (1.3)–(1.4). By the definition of ∂G(u(x)), for any ϕ ∈ W 1,2
0 (�),

η(x)ϕ(x) ≤ G0(u(x); ϕ(x)) almost everywhere in �.

Hence, due to (1.4),

−

∫
�

∇u · ∇ϕ dx + λ

∫
�

uϕ dx =

∫
�

ηϕ dx ≤

∫
�

G0(u(x); ϕ(x)) dx

for all ϕ ∈ W 1,2
0 (�),

that is, u turns out to be a solution of the hemivariational inequality studied in [11].
Since the hypotheses of [11, Corollary 3.2] imply (g1)–(g4), the assertion follows.
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