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ON SOME CLASSES OF PRIMARY BANACH SPACES
P. G. CASAZZA, C. A. KOTTMAN, axp BOR-LUH LIN

Introduction. A Banach space X is called primary (respectively, prime)
if for every (bounded linear) projection P on X either PX or (I — P)X
(respectively, PX with dim PX = o) is isomorphic to X. It is well-known
that coand [,, 1 £ p < o [8; 14] are prime. However, it is unknown whether
there are other prime Banach spaces. For a discussion on prime and primary
Banach spaces, we refer the reader to [9].

If E is a Banach sequence space and {X,} is a sequence of Banach spaces,
we shall let (3°, X,)g = (X1 ® X2 ® ...)x be the Banach space of all se-
quences {x,} such thatx, € X,, n = 1,2, ...and (|jxi|, |[xz|], . ..) € E with
the norm ||{x,}|| = [|(|Jx1|, [|x2||, . . )|z It is known that C[0, 1] [10] and
L7[0, 1], 1 < p < o [2] are primary. Other known classes of primary Banach
spaces are the % ,-spaces (X, @ X, ® ...);,, L @®L® ...);, and B,, 1 <
p < o0 [2] and the spaces C[1, a] where a is a countable ordinal or the first
uncountable ordinal [1; 20]. Let X be a Banach space with symmetric basis
{x,} and let X, be the linear span of {x1, X2, ..., x,}, 7 = 1, 2, .... In this
paper, we show that the following Banach spaces are primary:

D XeXe..0)nE=10,1<p<w®o or ¢ where X is not isomorphic
to 11;

Q) Xi®oXe®..)g, E=1,1<p < 0 or cp;

3) (@1, ®..)yl<p<wm

We shall follow the standard notation and terminology in the theory of
Banach spaces [12]. In particular, for Banach spaces X and ¥ we write X ~ ¥V
if X is isomorphic to Yand d(X, ¥) = inf {]|T]| - ||T-Y|: T is an isomorphism
from X onto Y}. For a sequence of elements {x,}] in a Banach space X, we
write [x,] or [x1, X2, . . .] to denote the closed linear subspace in X spanned by
{x,}. For the notation on basis theory, we refer the reader to [19]. Through-
out this paper, if X is a Banach space with symmetric basis, we shall assume
that X is equipped with the associated symmetric norm (cf. [19]).

1. In this section, we prove that if X is a Banach space with symmetric
basis which is not isomorphic to /; then the spaces (X @ X ® .. )g, E = [,
1 < p < 0 or ¢y are primary.

ProrositioN 1. Let X be a Banach space with symmetric basis {x,} and let ¥V
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be any Banach space. If P is any projection on Y, then

YoVe®. )x~PY®PY®..)x
®((-P)YeI-P)Y®...)x

Proof. For any element (yi, ¥s, ...) in (Y ® Y @ ...)x, since |[y,] <
[Pyall + [[(I = P)yall,n = 1,2, ..., we have

|5 1l

< | S QiP1- 1ult 112 = P11 ol

< | 0PI- lonll + | 1= 211 1l

= Pl + 117 = 21D S Il
This completes the proof of the proposition.

LEMMA 2. Let {x,, x,*} be an unconditional basis of a Banach space X. Ther no
subsequence of {x,} spans a subspace isomorphic lo 1, if and only if lim, x*(T'x,)
=0,k=1,2,...,forany operator T on X.

Proof. For the necessity, see the proof of the theorem in [5]. Conversely,
if {x,} is the unit vector basis of /i, then it is easy to construct an operator 1"
on I; such that lim, x;,*(7x,) # O forsome k =1,2,....

THEOREM 3. Let X be a Banach space with symmetric basis {x,} which is not
isomorphic to ly. Then the spaces Y = (X @ X @ ... )g, E=coorl,, 1 < p <
o are primary.

Proof. Fori,j =1,2,...,lety;; = (0,0,...,0,%x;0,0,...) where x, is
in the 7th coordinate. Let {v,} be the usual Cantor ordering of {y; ;}. Then
it is easy to show that {v,} is an unconditional basis of Y.

Let P be a projection on ¥ and let P(y,) = > &x™yr = 245 @i,y
n=1,2,.... Now for any subsequence of {y,}, there exists a subsequence,
say {yn,} such that either [y, ] is isomorphic to /, (or ¢o) or {y,,} is equivalent
to a subsequence of {x,} and so [y,,] is isomorphic to X. In either case, [y,,] is
not isomorphic to /; and thus no subsequence of {y,} spans a subspace iso-
morphic to /;. By Lemma 2, we conclude that lim, ¢, = Oforallk = 1,2, ..

Now there exists ¢ > 0 (for example, ¢ = 3) such that foreachs = 1,2, ...
there exist infinitely many j with |a; ;%?| = € or |1 — a;;4*?| = €. Hence
we may assume that there exist 7; < 75 < ... and j; < j, < ... such that
|aik,,»h(ik"h)| =¢ k h=12 ....Foreachk=1,2, ..., since {x,} is sym-
metric, [¥4,;,]» is isomorphic to X. We now follow the Cantor ordering and
proceed as the proof of the theorem [5]; by taking subsequences of {i;} and
{7} if necessary, we conclude that {Py,, ; }. . is equivalent to {y, ; }i.» and
the restriction of the natural projection from Y onto [y, ;,Jx.» is an isomorphism
from [Pyy,,;,]xn onto [y4, 5]k Thus [Pyy 5 ]xn is complemented in Y and is

https://doi.org/10.4153/CJM-1977-088-7 Published online by Cambridge University Press


-lly.il*�
https://doi.org/10.4153/CJM-1977-088-7

858 P. G. CASAZZA, C. A. KOTTMAN AND B.-L. LIN

isomorphic to Y. The proof that PY is isomorphic to ¥ is completed by Propo-
sition 1 and Pelczynski's decomposition method.

Remark. For many projections P, there exists an ¢ > 0 such that both
la,™| = eand [1 — @,™| = e for infinitely many n, m. In this case, the proof
of the theorem yields that both P¥Y and (I — P)Y are isomorphic to Y.

Remark. Let Z, = (L, ® b ® ...);, 1 < p < o00.Schechtman [18] recently
showed that every infinite dimensional complemented subspace X with un-
conditional basis of Z, is isomorphic to either Iy, [,, I, ® [, or Z,. The condition
that X has unconditional basis was later removed by Odell [13]. Thus Z, is
primary. See [2] for another proof that Z, is primary.

2. In this section, we prove that if X is a Banach space with symmetric
basis {x,} and X, = [x1, ..., x,], n = 1, 2, ... then the spaces (X; ® X, @
coo)mE=1,1<p <0 or E = ¢are primary. We first prove a combina-
torial lemma which is interesting in itself. We shall let N be the set of all
natural numbers.

Lemma 4. If M = {m,} is a sequence of positive integers such that lim sup;
m; = 00 then there exist rearrangements of N and M 1into two sequences cach,
{n, no, ... nd, n’, ..} and {mi, my, ... m, my’, ...} such that

Noi1 + nad = m and mai_y + mo/ = n foralli = 1,2,....

Proof. We construct the rearrangements simultaneously and inductively.
Letn/ =1land ny = min {n € N:n # n/ and n/ +n € M}. Let v, =
min {7 € N :n/ 4 n’ = m; ¢ M} and m," = m, . Now, let

min { € N :m; € M\{m'}}

It

ai
and
Br =min {i € N:1i 5 a;,m; € M\{m/} and m; + m., € N\{n/, ns'}}.

Define m,"" = M, ms"’ = mg,, and n,"" = my"" + m,'".

Assume that n/, ny, ..., ny'; n!’, nd', ..., n)/" and m/, my, ..., m/';
my"’, mo', ..., my'" are chosen such that #s,—1" + n./ = m; and mei’ +
me’ =n',1=1,2, ...,k Let

foppt’ =minfn € N:n=#n/,i=1,2,...,2kand n # n//,
i=1,2,...,k}
and
fogyy =minf{n € N:n#n/,1=1,2,...,2k+1,n % n/,
1=1,2,..., kand nyy +n € M\{m/,...,m/;m/", ms"’, ... my'"}}.

Since lim sup; m; = ©, nyo is well-defined. Now let
Yi+1 = min {] S N : m; = n2k+], + n2k+2,, m; # mil,i = 1, 2, ey k

andm; #m/',1=1,2,...,2k}.
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Define my1y = m,, . Finally, let

arer =min {1 € N:m; € M\{m/, ..., mt;m",md, ..., m'"}}
and
Bier = min {4 € N4 # ogyr,my € M\{mi', ..., mpgd ;om0 o0, my")
and m; + M, € N\{n', ..., nup;n' o0 m/'

' , .
Define ’Wl2k+1,/ = mak”, 7712/\-+2// = ’I’I’I,g/HL1 and MNy41 I = mng” + m2k+2/ . By mn-
duction, the proof of Lemma 4 is complete .

ProPosITION 5. Let { B,} be a sequence of finite dimensional Banach spaces and
let X be a Banach space with symmetric basts. If {ni, no', . .. .. R T P
is a rearrangement of N then (By @ By @ .. .)x is 1somorphic to (B, & B,,
®..)x® (B ® B, @ ... )x.

We omit the simple proof of the proposition.

THEOREM 6. If {B,} is a sequence of finite dimensional Banach spuces siuch
that sup, » d(B, @ By, Byin) < © and if X 1s a Banach space with symmetric
basis then (By @ By @ .. .)x 15 1somorphic to (]3,,1l ® B, @ .. .)x for any se-
quence {m} in N such thatlim sup;m; = .

Proof. By Lemma 4, there exist rearrangements of N and {m,} into two
sequences each, {n,, ny, ... ;m', ny’, ...} and {m,, my', . .. ;m, my!, L)
such that ne;—) + ns = m; and ma,)"" + me/ = n/',1=1,2,.... Since
X is a Banach space with symmetric basis, by Proposition 5 and the fact that

SUppm @(B, ® By, Byyn) < 0, it follows that

(5 8) ~ (5 0) 0 (3 )

n X

~ ( Z (ani—l' @ ani')) ) ® (21 Bmzi—l”+m2i”)

~ (Z Bn2i'—1+n2i') @ (Z (Bmzi—l” @ Bm2i"))
1 X 3 X
~(2 8) @ Ber) ~ (T 5a)
i X i X 1 X

COROLLARY 7. Let { B,} be a sequence of finite dimensional Banach spaces such
that supy m A(B, ® By, Buin) < 0 and let X be a Banach space with symmetric
basis. Let Y = (3., B,)x. Then

(i) the Banach spaces Y,V @ YVand (Y ® YV ® .. .)x areisomorphic; and

(i1) for any projection P on Y, Y is isomorphicto ¥ & P(Y).

Proof. (i) Obvious.
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(ii) We use the same argument as the proof of Corollary 5 [5].

YN(YG') Y@"-)X
~PY)®PV)®..)x® ((—-P) YOI -P)Y®..)x
~PY)® (P(Y) P(Y)® ... )x

@{I-P)YO(I-P)Y®..)x
~PYV)® (YOY®..)xy~PY)® Y.
Remarks. (1) If B, = [e1, €3, ..., e,), n =1,2, ..., where {e,} is a sym-
metric basis, then it is clear that sup,, d(B, ® By, B,n) < . However,
the converse is not true. For example, let {e,} be the unit vector basis of the

James' quasi-reflexive Banach space J.
(2) When X = 1,, 1 < p < 00, a similar result was stated in [7, Lemma 5].

The following lemma is a consequence of Ramsey’s combinatorial lemma;
for a proof see [17, p. 45].

LemMA 8. Let m be an arbitrary positive integer. Then every (0, 1)-matrix A
of o sufficiently large order n contains a principal submatrix of order m of one of
the following four types:

— — — — — — — —_

* 0 * 0 * 1 * 1

O

0 L 1 " L0 .*, 1 e

- - . A7 — L "

The asterisks on the main diagonal denote 0’s and 1’s, but the entries above
the main diagonal and the entries below the main diagonal are all 0’s or all 1's
as illustrated in (!).

COROLLARY 9. Let k and m be arbitrary positive integers. Then there exists an
integer N (k, m) such that for every n = N and for every (0, 1)-matrix A = (aqy)

oforder nwithay;; =1,1=1,2,...,nand Y iiay <m,j=12 ...,n,
there 1s a principal submatrix (ap.p;) or order k such that a,.,; = 84 for all
1,7 =1,2,..., kwhered,;is the Kronecker delta.

THEOREM 10. Let {x,} be a symmetric basis of a Banach space X and let B,,
n=1,2, ... be the linear span of x1, X2, ..., x, in X. Then the spaces ¥ =
CaB)m E =cyorl, 1 < p < o0 are primary.

Proof. Lety* = (0,...,0,x4,40,...),2=1,2,...,n;n=1,2,... where
x; is in the nth coordinate of v/ It is easy to see that {y/"}ici2.....m=1.2....
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is an unconditional basis of Y. Let P be a projection on ¥ and let

© l
P@ﬁ=§:(2aﬂmﬁﬂ),i=LZ“”mn=LZ .....

=1 \j=1

Fix k. Let § = ¢ > 0 and let
1) 0<eg<e/k2, E=1,2,...

be such that for any scalars Ay, Ag, ..., A,

k
Z )\1301 .
i=1

Case I. X is not isomorphic to /;.
Let K = max {||P||, || — P||}. Since X is not isomorphic to /;, there exists
an integer m; such that

k
(2) Gkk ; I)\tl é %

mk

Z X4
=1

Let N (k, m;) be an integer determined by Corollary 9 and fixn = 2N (k, m,).

: Mtk
(3) <%

For each ¢ =1, 2, ..., n, either |a/(n, 1)| = 3 or |1 — a/*(n, )| = 3. Since
{x,} is symmetric, by taking a subsequence and considering I — P if necessary,
we may assume that |a/*(n, 1) = 2 fori=1,2,...,n/2 (or (n — 1)/2 if
n is odd).

Define

. 1 iflai"(n,i)lgek < i<
Bu = {O if Ja; (n, 1) < &' L =4,j=n/2

We claim that (8;,) is an (0, 1)-matrix of order #/2 such that 315 B4y < my

forallj =1,2,..., n/2. Suppose for some j, > Bi; = my. Hence By = 1
for some I = 1,2, ..., m. Let ¢;, = sgn a*(n, 4,), 1 =1, 2, ..., my. Then

mk mk mk

; e,-ly,l"' 1Pl 2 Z,l 61,P<yz,n)H 2 lE_:l Giﬂj"(",ix) = Myey.
Hence

mk mk mk

Myex My€x
x| = x "= >
; l ; €4,%X1, ; €Y1, | = HPH =K

which contradicts (3).
By Corollary 9, there is a & X k submatrix (8p.p,) = (8+;) of (84). Thus

@) e, p)| < &1 £i#j =<k and
lap(n, p)| = %,i=1,2,..., k.
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For any scalars A\j, Ne, .. ., A,
1P| A = 1P| 3 Aon/| 2
k k
= Zl Z:l )\iapjn(nvp1)xpj
=1 i=

k
= 00" (1, P )% — Z (Z Aiapj"(n,[)1)>xpjl‘
G
k
z 3 Xy Z Z N, " (n, )
A
k k k
>% Zlkixi —Ekz Z l)\il
= =g
k k
> 3 2:1 Nyl — ke Z‘i |>\z| > 3 X4 Xy
k
=l4‘ Zl Naxs -

Hence we have proved that for every k there exists an integer N (k) such that
forallw = N(k), therearel < p, < po < ... < p; < mso that

®)

X

k
Zl NPy, | = (1P X
pn
for any scalars \;, N2, ..., M. Notice that the norm of this isomorphism is
independent of %.

Now, since p # 1, no subsequencg of {y ”} spans a subspace isomorphic to /y,
by Lemma 2, for all j = VUl =

oy

(6) lima;'(n,7) = 0.

N300

By (5), (6), and the standard ‘‘gliding hump’’ process, given ¢ > 0, we can
construct inductively a sequence

"Nz, = Z Zaj(m, DY =12, .. kk=1,2...

I=qr’ j=1
where ¢i/ < 1 < 1 < @ << 2 < -+ < ¢ < mp < @ < -+ such
that
(i) foreach & = 1,2, ..., {P(¥,")} iz1.2,.... i satisfies (5);
(i) || Z, — P(yp/“f)ll =< e/k22’”, 1= 1, v, kR =1,2.. .,
(Hence 3 Z};=1 ||Zmnk - P<ypznk>|| < e and so {Z,"}iz1,..., Kik=1,2,... 18
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equivalent to { P (¥,,"%)} 1=1,2,... kx=1,2,... for sufficiently small ¢).

‘(Z yw (when E = I,
7

nk nk
i Zpi

1<p<o0)

(i) g
sup || 2. A2, (when E = ¢)
k =1

k
; 2p i

2
for any scalars X\,

By (5), foreach k =1, 2, ..., {P(¥,")}(=1.2.... i1s uniformly equivalent to
{x1,...,x;}. Therefore, by (ii) and (iii), we conclude that {z,,"*} =1.2.... xk=1.2....
spans a subspace isomorphic to V.

Case II. X is isomorphic to /;. Then X is not isomorphic to ¢ and so there
exists an integer m such that

m
Z X1
1=1

We now proceed as in Case [. Construct the (0, 1)-matrix (p4;) of order /2 and
using (8) instead of (3) to prove that %4 pyy < mforall i =1,2,...,n/2
(instead of 314 pyy < m,j=1,2, ..., n/2). The rest of the proof is like
Case I. Thus in both cases, we obtain a sequence {z,,"¥} ;—12.... yx=1.2,... satis-
fying conditions (i), (ii), and (iii).

By Pelczynski's decomposition method and by Corollary 7, it remains to
show that, by taking a suitable subsequence if necessary, {2,"} s=12.... x=1.2,...
spans a complemented subspace in Y.

Fori=1,2,...,k;k=1,2,...,define

®) >§.

9) z% ]Z: a;' (m, p0)y;' + ; a (ne p)y .
I#nk SEPLr e Di— 1 Ditleees 23
Then
3 13
oo™ — wp™ || = | 22 @/ (my 3™ £ 25 o)™ (i 2)]
o i

< (k= e < 55+
@ n 2 @ €

Z ; llzp™ — wp || = Z=:—k:

and so by choosing e sufficiently small, {z,,*} is equivalent to {w,,"*}, and

[2,,"%] is complemented if and only if [w,,*] is complemented in Y. Define
Q: Y- [w,™] by

Q(i i Bi"yf) D S S TRy

= Ao (”mpi)
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Since |oy ™ (ny, po)| = 2 foralli =1,2,...,k k=1,2,...{y" isan un-
conditional basis and by the construction {w,,"} & {z,,*} & {y,,"*}, it is easy
to show that Q is a bounded projection from Y onto [w,;”*]. This completes
the proof of the theorem.

By combining Theorems 3 and 10, we obtain

CororrAaryY 11. Let {x,} be a symmetric basis of a Banach space X and for
eachn =1,2,...,let B, = X or the linear span of x1, xs, . .., x, 1n X. Then
the Banach spaces (3 B,)g, E = coorl,, 1 < p < 00, are primary.

Remarks. (1) Since {y} is an unconditional basis of ¥, letting P, be the
natural projection from Y onto [¥,,*];-1,2,... k;=1.2,..., it can be proved that
the restriction of Py is an isomorphism from [z,,"*] onto [y,,"*]. Hence [z,,"¥] is
complemented in Y.

(2) We don’t know whether the theorem is true when p = 1 or 0. The first
half of the proof includes the cases p = 1 or 0. Namely, if T is an operator on
Y= (3B, 1 £p =0, then for every &, there exists an integer N (k) such
that for any n = N, there are 1 £ p; < p2 <:--< pr = n such that
{T(¥p:")} i=1.2.....r spans a subspace isomorphic to B;.

3. In this section, we show that if X is a Banach space with symmetric
basis which is isomorphic to a complemented subspace of a Banach space E,
then for any operator T on E, either TE or (I — T')E contains a complemented
subspace which is isomorphic to X. The technique is similar to the one used by
Bessaga and Pelczynski [4] in generalizing some results of R. C. James. This
technique also enables us to generalize some of the results in Sections 1 and 2.
We first prove a stronger result when X is¢jor/,, 1 < p < 0.

THEOREM 12. Let E be a Banach space which contains « subspace X isomorphic
tocgorl, 1 < p < o0. Then for any operator T : E — E, either TEor (I — T)E
contains a subspace isomorphic to coor l,, 1 = p < 0.

Proof. If X is isomorphic to /;, then the theorem follows immediately from
the beautiful result of Rosenthal [16] that a Banach space contains a subspace
isomorphic to /; if and only if it contains a bounded sequence with no weak
Cauchy subsequence.

Now, suppose that X is not isomorphic to I;. Let {x,} be a symmetric basis

of X.

Case I. There is a subsequence {x,,} of {«x,} such that lim; ||Tx,;|| = O or
lim; [|(I — T)x,|| = 0.

If lim; ||7x,;|| = 0, by choosing a subsequence if necessary, we have
2 el e = (I = Dyxas || = 2 lle |- [|Twnil] <1 where {x*} is the

coefficient functionals of {x;}. Hence { (I — T')x,,} is equivalent to {x,,;}. That
is, (I — T)E contains a subspace isomorphic to X.
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Similarly, if lim; ||(I — T)x,,]|| = 0 then TE contains a subspace isomorphic
to X.

Case II. Both inf, ||Tx,|| > 0 and inf |[(I — T)x,|| > 0. Since X is not
isomorphic to /;, hence {x,} is weakly convergent to 0 and so is {7x,}. In this
case, we have assumed that inf ||7x,|| > 0, hence there exists a basic subse-
quence {7x,,} of {Tx,}. Since {x,;} dominates { Tx,,;} and every basic sequence
dominates the unit vector basis of ¢q, we conclude that [Tx,;] is isomorphic to
¢o when X is isomorphic to ¢,.

Suppose 1 < p < ® and no subsequence of {Tx,} is equivalent to {x,}.
Then there exists a sequence {«;} such that > ; a;T%,, convergesand >_;|a,? =
00. Choose p1 < pg < -+ such that

Pn+l

1< Y Jaff =2

i:Pn+1
and let

Dn+1
Vo = E aikn, n=1,2....
i=pnt+1
Then since Y. aT%,, converges, we conclude that lim, ||7y,|| = 0. Further-
more, {y,} is a bounded block basic sequence of {x,;}, hence is equivalent to
{x,}. By Case I, we obtain that (I — 7")E contains a subspace isomorphic to /,.

COROLLARY 13. Let E be a Banach space with unconditional basis which 1s not
weakly complete. Then for any operator T : E — E either TE or (I — T)E 1s
not weakly complete.

Proof. This follows immediately from the theorem and a result of Bessaga
and Pelczynski [3] that if X is a subspace of a Banach space with unconditional
basis then X is weakly complete if and only if ¥ contains no subspace which
is isomorphic to co.

We don’t know whether Theorem 12 is true or not when X is an arbitrary
Banach space with symmetric basis. However, we have the following:

THEOREM 14. Let {x,} be a symmelric basic sequence in « Banach space E.
If {x,} spans a complemented subspace X in E, then for any operator T : E — E
either TE or (I — T)E contains a subspace F which is complemenied in E and
15 1somorphic to X.

Proof. Let P : E — X be a projection. Then PT|y : X — X. By [5] when X
is not isomorphic to /; and Rosenthal’s result [16] when X is isomorphic to /i,
we may assume that there exists a subsequence {x,;} of {x,} such that { PT (x,;)}
is equivalent to {x;}. Since {x;} > {x,,} > {Tx,} > {PTx,;} = {x.}, we con-
clude that {Tx,,} is equivalent to {x;} and P maps [7x,;] isomorphically onto
[PTx,,]. Since [PTx,;] is complemented in X and X is complemented in E,
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hence [P1x,,] is complemented in E and thus [Tx,,] is complemented in £ and
is isomorphic to X.

Remark. 1t is known that if £ is a Banach space with unconditional basis and
Y is a subspace of E which is isomorphic to /; then there exists a subspace I
in ¥V which is isomorphic to /; and is complemented in E. However, ¢, is not
complemented in [/, and there exist reflexive Orlicz sequence spaces which
contain subspaces isomorphic to /,, 1 < p < 00 but no complemented sub-
spaces which are isomorphic to/,, 1 < p < oo [11].

Using the same technique and the results in Sections 1 and 2, we have:

THEOREM 15. Let V= X @ X @ - )(qor X ®OX ®--+),, 1 <p < ©
(respectively (3 B,)y,, 1 < p < 0 or (3 B,)y) where X 1s a Banach
space with symmetric basis which 1is mnot isomorphic to [y (respectively,
B, = [x1,...,%.0,n = 1,2,...and {x,} is a symmelric basis of a Banach space).
If E 1s a Banach space which contains a complemented subspace isomorphic to YV
then for every operator T : E — E, either TE or (I — T)E contains a comple-
mented subspace isomorphicto V.

4. In this section, we show that the spaces (/,, ® I, ® .. .);,, 1 < p <00 are
primary. The proof is similar to the one used by Lindenstrauss (8] in proving
that /,, is prime. Throughout this section, we shalllet ¥ = (I, ® [, @ -+ +),

1 <p <o,

LEMMA 16. Let vy, = (%", x2", ..., x" ), n =1,2,..., be elements in ¥
where x " = (x/(1), x(2), ..., x/ k), ...). If sup, || > 1=1 e;3,l| < 0 for all
le;| = 1,7 =1,2, ..., then for any ¢ > 0, there exists an integer I such that

2 i) = e

forallt =2 ITand everyk = 1,2,. ...

Proof. Suppose there exist ¢ > 0,4, < i, < ---and k;, 7 = 1,2, ... such
that

Z_:l [ "(R)| > e, 7=1,2,....

Choose m; such that > ud; |x;,"(k1)| > €/2 and Y pnis1 4" (R1)| < €o/S.
This can be done since for some {¢,} with |¢,| = 1,

Z_:l e/ (B)| = ; exq (k) = sup ; €95 <.
Note that foreach# = 1,2, ..., lim; |[x|| = 0. Hence for sufficiently large 1,
we have

m1 " mi n €

S kimls Y ki<

n=1 n=1
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forall 2 = 1,2,.... Thus by taking a subsequence of {¢,} ,_1s.... if necessary,
we may assume that
Z !xiz (kZ)l < Q
Now, choose ms > m; such that
Zl s (k)| > 529 and 30 ey, (ko)| < 589
By induction and by choosing a subsequence of {7,},_1¢,... if necessary, there

exist 0 = my < my; < my < ... such that for all j = 1, 2, ,
o n €
() 3 ey ) > S,

@ > k) <F
n=mji+1

J

(i) 25 b "(kpn)| < -

n=1

3

Choose |¢,| = 1such that e,x;"(k;) = |x;"(kj)|,mjms < n S mj;j=1,2,....
Then for everyj =1,2,...,

n;l €Ynl| = ;
J mj J mj
= 721 Z anm Z Z €2 4, (kh)
J mh " mj 14
= Z I: Z X s (Bn) o (kn) E € 3" (kn) t :I
h=1 n=mh—1+1 n=mh+1

z [mz " (k) | — mZ ()| — ———fg]"

sy -
—\9g 781 ~\%)7I

which is a contradiction to the hypothesis that sup,, ||> =1 e¥al| < oo for all
leo) = 1, m=1,2,....

\Y
M- I

Lemma 17. Let x, = (x,(1), ..., x,(kR),...),n = 1,2, ... be elements in l.
If sup || 211 ex,]| < o for all |e1| =1,i=12,. thenfor any ¢ > 0 and
{ky} there exist an integer n and a subsequence {k;} of{ o} such that |x, (k)| < e
forallj =1,2,....

Proof. Suppose there exists ¢y > 0 such that for each n = 1, 2, . .., |x, (k)]
> ¢, for all except finitely many <. Let # be an integer such that ney > sup,
[|>%=1 €;x,]|. Then for eachj = 1,2, ..., n, since |x;(k;)| < € for only finitely
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many 7, hence there exists 7, such that |x;(ky)| = e forallj=1,2,..., n
Let e, = sgn x;(ks), 7 = 1,2,...,n Then

n

Z ijf(kio)

=1

Xl =

= > Jx;(ks)| = nes > sup
=1

n

which is a contradiction.

The following lemma is proved by Lindenstrauss (see the proof of 8, Lemma
5).

LemMma 18, Let {x, = (x,(1), ..., x,(k), .. .)} be a sequence of elements in [,
such that for some constant B > 0, ||2i=1 Nax4|| < K sup [N for all N, € R,
1=1,2,...,%0 If ||x,)| > 2 for all n = 1,2, ..., then for any 1/3 > ¢ > 0
there exists subsequences {m;} and {1} of N such that for all k =1, 2,

60 ()] Z 5/3 and 31 [, ()] < e

LemMma 19. Let {y;; = (x4 .o, %0/ -« )} be elements in YV for which

there 1s a constant K > 0 such that for each 1 = 1, 2,

n
2 A
j=1

foralln; € R,j=1,2,..., % If|lx; ;Y| > 2 foralld,j =1,2,..., then for
any 1/3 > € > 0 there exists a subsequence {i(1)} -1 2.... of N and double se-
quences of integers {7(1(1), ¢)}1.0=1.2.... and {k(Z(1), @)} 1 4=1.2.... such that for all
lhg=1,2,...,

é K sup I)\]!
J

) 18 .0 (R GQ), )] =

@) 2 el sw.e REE), )] < 5

(h,)#(1,q)

Proof. Given 1/3 > ¢ > 0, applying Lemma 18 to {x; ;},;=1,2... for cach
fixed7 = 1,2, ..., there exist subsequences {j (7, ¢)} ,=1.2....and {k(Z, ¢)} ;=1.2....
such that

(1) ot i (B@ @) 2 3

and
2 Z Ix;]—(i,s) (k(z, 9))| = 2'62? .
s7#q

Notice that (1) implies (z) forall/, ¢ = 1, 2, ... . We shall choose a subse-
quence {7(!)} of {z},_1 2,... which satisfies (ii).

Let7(1) = 1 and apply Lemma 16 to {y;qa,,};=1.2.... there exists 7(2) > (1)
such that

forall g

il

I [

®3) Z KB B < S, E=1,2,....

[\
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X w0, )] 2 5|2 v
7

for suitable |e;| = 1. Hence there exists # such that for all j = #

4)  |xiw k1, 1)] < /24

Applying Lemma 17 to {xi{}} ;} 5., thereis an integer, denoted by j(i(2), 1)
again, such that for some subsequence of {k(i(1), ¢)},>1 (which we will denote
again by {k(¢(1), q¢)},>1), we have

() |xigég.:‘(i(2>,1> (R(i(1), )| £ €/24, ¢=2,3,....

We continue our induction along the usual Cantor’s ordering of {7, 7} ; j=1.2,....
Forl=1,q = 2,3, letj(i(l), ¢) = j((1), 2) and j(i(1), 3), respectively. We
choose j(1(2), 2) as follows. By hypothesis,

5 06,0 £ | T e
Hence there exists # such that for all j = »

(6) | s (R(1(1), )] £ €/25, ¢ =1,2,3.

Now, applying Lemma 19 to {xi{}} ;} ;5. there exists an integer, denoted
by 7(2(2), 2) again, such that for some subsequence of {k(i(1), q)},>3, denoted
by {k(2(1), ¢)},>3 again, we have

(M) % ame kE1), )] = /25 ¢
By (6) and (7), we conclude
(8) |y .o REA), ) £ /2, g=1,2,....

To find the next term, by applying Lemma 16 to both {y,q ;},; and {y@) .},
there exists 1(3) > 7(2) such that

©) XGRS g2, 1=1,2k=1,2,....

Now,

i(1)
*i(2),4

<K

<K, ¢=123.

4,5,....

By hypothesis,

=K

Zj lngzl;,j(k(i(l)yg))[ = ” 2}: €Yi(3),5

forl=1,¢g=1,2,3and ! = 2,¢ = 1, 2, respectively. Hence there exists »
such that for all j = »

1,¢g =1,2,3and
= 2,q = 1, 2, respectively

o~ o~

(10) |l (RGA), )] = gov

Applying Lemma 17 to {xi} ;};5. and {xi3 ;} ;5. simultaneously, there
is an integer, denoted by j(¢(3), 1) again such that for some subsequences of
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{k(i(1), ¢)}s>aand {k(¢(2), ¢} ;>3 which we again denote the same way, we have

(- . <. ¢ l=1g¢=4%and
(11) lx1(3);](1(3),1)(k(1’(3)! Q)f = oy g 2, ¢ = 3, respectively

By (10) and (11), we conclude
(12) x5 w0 (REB), )| S /24, 1=1,2;¢=1,2,....

Continuing by induction, we get {¢(1)}i=12,..., {7(Z(1), @)} i ¢=1,2...., and
{k(l(l)v Q)} 1,¢=1,2,... SUCh that

(13) |2 ¥8 sam.o RGA), )| < e/2WM s L hys,q =1,2,...and [  h.

(Equation (9) yields the case # > [ and (12) yields the case 2 < [.) Now, for
alll,¢q=1,2,...,

) s, scam 0 (R G (R), 0))]

(h,)#(1q
= 2 2 Iwitbam.e REW, ) + 2 il s kGO, 9))]
s §7q
=< _§e_§ —resy < T L
= nZ':z Z: i + 5w }; o T om =5

This shows that (ii) is satisfied and the proof is completed.

COROLLARY 20. Let {vy; ;}:,; be elements in ¥V which satisfy the condition in
Lemma 19. Then there exist sequences of integers {¢(1)}, and {j(¢(1), q}1,, such
that for all sequences {\; ;}; ;with Y ;sup; |N; ;|)? < 00, it is true that

@ p)1l/p
{Z (sgp ]k,,q)) } = IIZZ 2 M 1.0
q

=1

Proof. Choose sequences of integers {i(1)},, {7(¢(1), ¢} 1., and {E(G(1), q)} ..,
satisfying Lemma 19 with ¢ > 0 and €{> %1 (1/2")?}1”? < 1/3.

Let {X;;} be any sequence such that ||X,, N\i.oViw.se.0ll = 1. For each
I =1,2,...,choose q;such that |\, | = (4/5) sup, |\ ¢|. Then

-1z I

hX: )\h,snglg'j(i(h).s) (k (/L(h)r gl))

1=

; A sY i) 501 s)
=55
!
10 : o

= Zl INeg X in,scun.ep (BEWE), ¢))I°

-1

(1)
D Mk im. i
h,s

p}l/p

Mgk iim i (R G, 42))

(ry9)#(lqy)

p}l/p

5 7)1/ e \? 1/p
243 213 (&
5 4 1
> 2 Pt — =
=3{E, (552" p‘“')} 3
4 p)1/p 1
S O UM
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p)1/p
HZ ALY, .ol 2 {Zz (SUP I)\l,q]) } .
q

ProrosiTioN 21. Let {v,; ,;}: ;-1.2.... be a sequence of elements in YV such that

forall n; ;in R,
n p\1/p
§K(Z (SUP p‘ml) )

i=1 1< /sn

Z NV
1,7=1

for some constant K and for all n. Then for all {N;;}:; € YV, 24 N py4.; CON-
verges in the w*-topology of Y lo some element in ¥V with norm less than or equal
to K(2 4« (sup; [Ne4[)7)1 7.

Proof. Suppose for some f € X = (3 l)g, E=coorl, (1/p+ 1/g=1)
such that {f(3°7 ;=1 Nijvi;)}a diverges. Then >7,1 [N ;f(345)] = ©. Let

er; = L such that e; A ;f(y4,;) = [Ne;f(vi)l, 4,7 =1,2,.... Then
n © r\ 1/p
1;161‘,17\1,1%,]' = K( 12:1 (S‘%P ])\wi) ) <.
Vi= = j

But lim, f(3"7%, ;1 €170, ;¥4:,;) = 00, which is impossible.

Let {f:;}; be the natural basis of /; which is in the ith coordinate of X.
Then { fi ;}+; with the usual Cantor ordering, is an unconditional basis for X.
Let oy, = lim, fi (7=t Nevis), By L =1,2, ... and let y = (%1, 3, . . .)
where x; = (a1, @49, -+, 055 ...),% = 1,2,....Since {f; ;} is a basis of X,
hence the bounded sequence {37 ;-1 \: ;¥4,;}» converges in the w*-topology
to y. It is well-known (cf. Banach, p. 123) that

n p)1/p
1217\1.13’1,1 = K{E (SUP |)\m|) .
1 J= 1 J

Remark. The proof of the proposition yields that if {x,, f,} is an uncondi-
tional basis of a Banach space X, then for any sequence {y,} in [f,] such that
for some constant & > 0, ||X =1 Nyall = K||2i=1 Nofil| for all scalars {\},
then for any >, Mfa € [fal, 2i=1 A¥: converges in the w*-topology to some
element in X* with norm less than or equal to K|[>_71 N.f,ll-

[ly[| < lim sup

TuEOREM 22. For any operator T on Y either TY or (I — 1)V contains a
subspace isomorphic to Y which is complemented in V.

Proof. Let {e; ;}; be the natural basis of ¢, in its # natural embedding of the

ith coordinateof Y. Lety; ; = Te,; = (x;;V, ..., x:,™,...),25,7=1,2,....
By Theorem 12, and by taking a subsequence if necessary, we may assume that
Hoei Pl = 5,4, =1,2,.... Since
n n p\ 1/p
Z NiYigf S HTH(Z (SUP lkf.fl) )
{,7=1 =1 \1<j=n
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for all \; ;in R, let K = 4||T|| and apply Corollary 20 to {4y, ;},; We obtain
sequences {1(1)},; and {j(¢(1), ¢)} . such that

P\ 1l/p
Zz E MY iusun,of = (Zl: (SUD lxz,ql)
q q

for all {N\;,} such that 3>, , A 61, € Y. Hence, by Proposition 21, the sub-
space of ¥ which consists of all w*-limits of >, M. ¥an.ici(n,9 Where 2 Ny €1,
€ Y is isomorphic to Y. We now mimic the proof of the theorem in [8] to
obtain a subspace in T'Y which is isomorphic to Y. Let {N,},¢cr be an un-
countable collection of infinite subsets of N such that N, A Ny is finite for all
a % B. For each v € T, let X, be all w*limits of >.; > jeny MgV i 50,0
where >~ N, ,,, € Y. Then X, is isomorphic to ¥ for all v € T. Suppose for
cach v € T there exists ||x,]| = 1 in X,\TV. Let x, = 3¢ Seeny A7
V... By the same reasoning as in (8], we conclude that for each I =
1,2,...,

n

- (1)
Z &I —T) Z )\Z,(;yi(l).j(i(l).q)

k=1 gENY,

= =T - [I71]

for all |¢| = 1 and all finite vy, . . ., v, Since ¥ has a countable total subset
{fil in Y* ||fill = 1,k = 1,2, ..., hence there existsa v € T such that

fk[(I - T) Z )\(Z?Iyi(l),j(i(l),q):l =0, l, k= L2000

gENY
Now
N [€2] ?
L SUp I)\ ZQ < 0 y
1 \geny
and given ¢ > 0, there exists an # such that
e o1 1/p
> sup £\ <e
l=n+1 ¢€NY

Hence

il = T)xy| =

fel — T)(xv -2 2 )\(lnzyi(l).j(i(l),a))

=1 g¢€eNY

fill = 1) Z Z ASTzzyt(z).j(t(z)‘a)

l=n+1 ¢ENYy

© »\ 1/»
< il 1= 7y (55 (s nil)')
= 1ENY

<Al 11 =TI T - e

Thus f({ — T)x, = 0 for all & = 1, 2, ..., which is a contradiction since
{ fi} is total and «x, ¢ Tx,. Thus we have proved that T'Y contains a subspace
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X, which is isomorphic to Y. Since Y~ ¥V @ ¥, to show that TV ~ ¥, it
remains to observe that X, is complemented in Y. This follows immediately
since the restriction of the natural projection P from Y to the subspace E =
lewn . 501 .0) 1.eeny 18 an isomorphism from X, onto E.

CoOROLLARY 24. The Banach spaces (lo @l ® ... )y, 1 £ p < 0 are
primary.
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