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Abstract. Let E' be anonconstant elliptic curve, over aglobal field Kof positive, odd characterisitc.
Assuming thefiniteness of the Shafarevich-Tate group of E, we show that the order of the Shafarevich-
Tategroup of E, isgivenby O (VY216 109(2)/108(a)) \where V istheconductor of E, ¢ isthecardinality
of the finite field of constants of K, and where the constant in the bound depends only on K. The
method of proof is to work with the geometric analog of the Birch-Swinnerton Dyer conjecture for
the corresponding elliptic surface over the finite field, as formulated by Artin-Tate, and to examine
the geometry of this elliptic surface.
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1. Introduction

The class group of a number field K ‘measures’ the extent of departure of the
ring of integers of K from being a unique factorisation domain. It is known to be
finite and the class number formula of Dirichlet gives an explicit formula for the
order of the class group of K, the class number. It follows from this using partial
summation and the absolute lower bound for the regulator of number fields shown
in ([22]), that the class number of anumber field K is bounded by A%/ 2)+E, where
A isthe discriminant of K. In the case of number fields, the conductor Nx of
the Dedekind zeta function of K isequal to the discriminant of K, and so one has
that the class number is bounded by N2,

Let E be an dliptic curve defined over a global field K. The analogue of the
classgroup isthe Shafarevich-Tate group 111 ( £/ K) of E over K. For aplace v of
K, let K, denotethe completion of K at v. The Shafarevich-Tategroup Il (E/K)
is defined to be

(E/K) := Ker (Hl(K, E) - HHl(Kv,E)> :

where the cohomology groups are the Galois cohomology groups, and v runs over
the places of K. The Shafarevich-Tate group measures the extent to which the
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Hasse principle failsfor E/K. It is conjectured that 111 (£/K) isfinite and thisis
known to hold for certain classes of elliptic curves. Morever an effective bound for
(£ /K) would be useful in computing a set of generators for the Mordell-Weil
group E(K) of K-rational points of E. Our results indicate that one can indeed
obtain a bound analogous to the bound obtained for the class numbers of number
fields, for elliptic curves over global fields of positive characteristic, provided one
assumesthe finiteness of 111.

Manin ([11]) and Lang ([7]), conjectured bounds for the size of 111 based on
various arithmetical invariants associated to the elliptic curve. Inspired by these
conjectures, Mai and Murty ([8]) in 1992, predicted the growth of I1I(E/Q) as
satisfying,

1] = OV /2y,

where N is the conductor of the éliptic curve. In ([9]), they produce an infinite
family of elliptic curves E/Q such that,

NI(E)| > N&/DFe,

Since([8]) hasnever been published, | haveincluded their argument in an appendix.

Some of the conjectures used in the argument over number fields, viz., Szpiro's
conjecture and Lang's conjecture on lower bounds for the canonical heights of
rational points, are known to hold over global fields of positive characteristic ([13,
5]). It would be thus of interest to verify this conjecture for global fields of positive
characteristic.

However a fundamental problem for function fields, is that the estimate on the
rank of the Mordell-Weil group of an elliptic curveis not as sharp as expected for
number fields. Let & be afinite field of odd characteristic, with ¢ = p/ elements.
Let C' denoteanirreducible, smooth projective algebraic curve over k with function
field K, genus g, and Euler characteristic x(C') = 2 — 2g. Let K’ be the function
field of C over k. Let E be an elliptic curve defined over K with conductor N. A.
Brumer has shown ([1])

r(E) < log(N) ((Iogq(N) — 49 +4) |092(Q)>
= 2log(log,(N) — 49 + 4) Va l0g?(log,(N) —4g+4) )’

where r(E) is the rank of the Mordell-Weil group £(K). Using this and arguing
asin the case of number fields, provides an upper bound for 111, which growsfaster
than any power of IV, and will not providethe conjectured O(N (Y/2+¢) . For details
werefer to the last remark in the Appendix. Thusit does not seem to be possibleto
establish the desired boundson 111, arguing compl etely in analogy with the number
fields.

For an abelian group A, let A(1) denotethe[-primary component of A. We have
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THEOREM 1. Let E be an elliptic curve over K as above. Assume that 111(7) is
finite for some prime [ and that the j-invariant jz of E is transcendental over k.
Then

I(E)| < (16¢) X(©)/2(2124)~p™x(€)/2 \p°((3/2)+(6 log(2)/ l0g(q)

where p€ is the inseparable degree of K over k(jg).

In our proof, wework with the corresponding elliptic surfacerather than directly
working with the elliptic curve, and with the analogue of the Birch-Swinnerton
Dyer conjecture for the surface. Instead of the regulator and the canonical height
pairing for the elliptic curve, we have the Neron—Severi group of the surface and
the intersection pairing on the divisors on the surface, which takes integral values.
Morever the product over the periods occuring in the Birch—-Swinnerton Dyer
formula, is ‘replaced’ by the term ¢*(X), which has an expression in terms of the
cohomology of the surface, and is thus easier to compute.

2. Conjecturesof Artin and Tate

Let X be the proper, minimal, regular model in the birational equivalence class of
surfacesfibered over C and having genericfiber isomorphicto E. Let X = X x k.
Let 7: X — C denote the projection map of X onto C. X is an elliptic surface
and 7 has anatural section associated to the zero element of E(K).

Let P(X,T) = det(1 — ¢,,T) denote the characteristic polynomial of the
endomorphism ¢, of the etale cohomology groups H3(X,Q;) induced by the
Frobenius morphism on X . Deligne has shownin ([2]), that P»>(X,T') isapolyno-
mial with rational integral coeffecients, is independent of /, and that the analogue
of the Riemann hypothesisholdsi.e., P>(X,T) = [[(1 — A\,T) with |A.| = q.

Inspired by the Birch—-Swinnerton Dyer conjecture, Tate ([19]) conjectured that
the order of zeros of the L-function should be related to geometry of the cycles
on X. In our situation the conjecture predicts that ¢~ is aroot of P»(X,T) with
mutiplicity exactly p(X), where p(X), the base number of X, is the rank of the
Néron-Severi group N.S(X) of X. NS(X) is defined to be the image of Pic(X)
in NS(X), the Néron-Severi group of X, which is the group of divisors taken
modulo algebraic equivalence. Under our hypothesis on the j-invariant of E, it is
known by Néron’s theorem of the base ([6]), that V.S(X) is afinitely generated
abelian group.

Let R(X,T) = P»(X,T)/(1 — qT)"X). By Tate's conjecture R(X,T) is a
polynomial with rational integral coeffecients which does not vanish when 7' =
gt

In our situation, atheorem of Artin ([20]) applies, and we have that

Br(X) ~ llI(E/K),

where Br(X) is the Brauer group of the surface X. Led by this result Artin and
Tate formulated a geometric analogue of the Birch—-Swinnerton Dyer conjecture,
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describing the leading coefficient of the L-function at the center of the critical
strip, where therole of the Shafarevich-Tate group I11( E) isreplaced by that of the
Brauer group Br(X) of X:

_ |Br(X)||det(D;, Dj)|
qa(X) |NS(X)tors|2

R(X,q ) (1)

where (D;)1<i<, IS a base for NS(X) modulo torsion. The symbol (D;, Dj)
denotes the total intersection multiplicity of the divisors D; and D;. The term
|det(D;, Dj)|isthe regulator for the intersection pairingon N S(X).

a(X) = x(X,0x) — 1+ dim (Pic(X)). 2

Itisknown that «(X) is non-negative.

In ([20]) it is shown that if Tate's conjecture is assumed to hold for X, then
the subgroup of elements of Br(X), of order prime to p is finite, and (1) is true
upto apower of p. In ([12]), Milne showed that the conjecture of Tate is equivalent
to assuming the finiteness of Br(X)(/) for some prime [ which can also be p.
Morever Milne showed that Tate's conjecture implies the conjecture of Artin and
Tate. Consequently we have that if 111(£)(l) or equivalently Br(X)(!) isfinite for
some prime [, then

a(x) INS(X )tors|?

(E/K)| = |Br(X)| = R(X, ¢ Y)q det(D;, D,)]

3

Thusto obtain an estimate for |Br(X)|, we estimate each of the termsin the above
expression for |Br(X)|, in terms of the conductor V.

3. Estimating the regulator

We need a description of the Néron-Severi group NS(X) ([15]). Let K’ be the
function field of C over k. It is known by the theorem of Lang-Néron ([6]), that
under our assumption on E, i.e., the j-invariant of E being transcendental over &,
that £(K') isafinitely generated abelian group. Morever the torsion of E(K') is
generated by at most two elements ¢, j eJ, |J| < 2 with orders n; respectively.
Let r, 7' denote the rank of the Mordell-Weil groups E(K), E(K') respectively.
We have r < r'. Let s;,1 < 7 < r’ be a set of generators of E(K’) modulo
torsion. Since X is proper, the group E(K') is canonically identified with the
group of sections of 7: X — C. Denote by (s) theimagein X of the section of
7 corresponding to arational element se E(K'), and by D(s) thedivisor (s) — (0)
on X.

For aplacev of C, let X,, denotethefiber over v. Let S bethefinite set of places
on C, theramification locus of themap =: X — C, wherethefiber X, issingular.
For veS, let m,, be the number of irreducible components of the fiber X,, counted
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without multiplicity. Denoteby ©,,;, (0 < 7 < m, — 1) theirreducible components
of the fiber X, with the convention that the (0) divisor meets ©,, 0. Let ug be a
point on C outside S. If Dy, D, are two divisors on X, denote by (D1, D) the
intersection multiplicity, which isarational integer.

By decomposing divisors into ‘horizontal’ sections and ‘vertical’ fibers, it is
shownin ([15]), that the Néron—Severi group N S(X) is generated by D(s,), (1 <
a<r'),D(t),j € J,(0), Xug, Opi» (v € 5,1 < i < my — 1), with the following
relationsfor j € J:

n;D(t;) = nj(D(t;), (0)Xu + > _1j(Ov1, ... Opm, 1)

8

XA;:L((D(t]‘)? 611,1)7 R (D(tj)v Gv,mufl))tv (4)

where ~ denotes algebraic equivalence. A, is the intersection matrix defined by
thefiber X, i.e, (Ay)ij = (04,i0y5), (1 < 4,j < my — 1). Itisknownthat 4, is
invertible and negative definite.

Consequently it follows that the rank 5 = p(X) of NS(X) is given by

p(X)=r"+2+ (my—1). (5)
veS
In order to estimate the regulator, we need the following result due to Shioda ([ 16,
Theorem 3.1)).

PROPOSITION 2. Suppose X isanon-isotrivial liptic surface asabove. Then
numerically equivalent divisors are algebraically equivalent. Hence the Néron—
Severi group NS(X) istorsion-free.

Proof. Since this fact is of basic importance to us, we give a brief outline of
the proof, following Shioda ([16]). Given adivisor D on X numerically equivalent
to 0, by Grothendieck—Riemann—Roch, we have x(X,O(D)) = x(X,0Ox). By
the formulas (11) and (12), and by our assumption that the j-invariant jz of E
is non-constant, we see that x (X, O(D)) > 0. Hence either h°(O(D)) > 0 or
h?(O(D)) > 0.

If K9(O(D)) > 0, then D is linearly equivalent to an effective divisor and
numerically equivalent to 0, which impliesthat D is algebraically equivalent to O.

If h2(O(D)) > 0, then by duality K — D islinearly equivalent to an effective
divisor D', where K isthe canonical divisor of X. Sinceon an elliptic surface K is
fibral, by our assumptionon D, we have (D', ©) = 0, for any vertical divisor © on
X. Thisforces D' and hence D to be algebraically equivalent to a vertical divisor.
Morever, it iseasy to see from our assumption on D, and the non-degeneracy of the
intersection pairing of the divisors on any fiber, that D is algebraically equivalent
toOon X.

Sincetheintersection pairing is non-degenerate on the group of divisorsmodulo
numerical equivalence, thisgivesusthat the Néron—Severi group N S(X) istorsion-
free.
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This allows us to estimate | N S(X )iors|?/|det(D; D;)|. Since NS(X) is asub-
groupof NS(X) itistorsionfree. Theintersection numbersbeing rational integers,
the determinant of the intersection matrix isan integer and we know it is non-zero.
Hence we have

INS(X )irsf?
det(D;D;) S ©

4. Estimating R(X,q71)

Let B;(1 < ¢ < 4) denote the Betti numbers of the surface X, the dimension of
HL(X,Q,) over Q,. Thedegreeof the polynomial P»(X, T) is Bz. By theresultsof
Artin and Ogg—Shafarevich—Grothendieck ([14]), one has aformulafor the Picard
number B, — p, the dimension of the space of ‘transcendental cycles on X, in
terms of the exponents of the conductor.

Let M be a l-torsion abelian group which is ‘cofinite’, i.e., is of the form
(Q;/2Z;)% x Mo, My afinite group. Then s iscalled asthe corank of M. It isshown
in ([4]), under our hypothesison themap =: X — C, that B, — p is the corank
ro(l) of the-torsion of Br(X) ~ H%(X, G,,).

Let n be the generic point of C. Arguing using the Leray spectral sequnece for
the map =, Artin remarks that the map H*(C, . X,) — H?*(X,G,,) has finite
kernel and cokernel and hencethe coranksare same. For almost all /, then the corank
of HY(C, 7. X,) is given by the formula of Ogg—Shafarevich-Grothendieck as

ro(l) =4g —4—1"+ 3 fu,

where g is the genus of the curve C and f, is the exponent of the conductor N of
the dliptic curve E at v. Hence

Bo—p=4g—4—1"+> fo. (7
veS

Let A, denotethe minimal discriminant of £ at v, and let ord, (A, ) denote the
exponent of the minimal discriminant A, at v. We have the following important
formuladueto Ogg([18]), relating the exponents of the discriminant, the conductor
and the number m,, of irreducible components, counted without multiplicity of the
singular fibers

ord, (Ay) = fy +my — 1. (8
Hence by (5) and (7), we have

By =4g—2+ > ord,(A,). 9)
veS
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On the assumption that Br(X)([) is finite for some prime [, we have by the
results of Deligne and Milne, that R(X,T') = [[5(1 — AgT') where |A,| = ¢ and
Ao # q. Hence R(X,q 1) = [15(1 — wg) with jwg| = 1,wsz # 1. Morever the
degreeof R(X,T) is By — p, whichislessthan B, — r — 2, where r is the rank of
E(K), the Mordell-WEeil group of E over K. Hence

deg R(X,T) <4g—4—r+ > ord,(A,)
vES

Hence

IR(X,q )| = []1(1—wp)l
8

< 0—70Ag—4 Ve, ordv(Av)‘ (10)

5. Estimating ¢®(X)

Let Ox denote the structure sheaf of X. It is known for an elliptic surface, the
irregularity ¢ = dim (Pic(X)) of X isthegenusg of the curve C. By Weil’stheory
of Jacobians one has that B; = 2q = 2¢. By duaity Bz = 2¢g. Hence from (9),
it follows that the topological Euler characteristic y;o,(X) = >°;(—1)'B; isgiven
by the following interesting formula

Xtop(X) = > ordy(A,). (11)
vES

By semicontinuity we have x(X, Ox) = x(X, Og). Morever it is known that
canonical divisor is fibral, and is of the form 7*(7T'), where T is a divisor on
C. This gives us K? = 0, where K is the canonical bundle of X. Hence by
Grothendieck—Riemann—Roch formula, we have

X(X)top = 12x(X, Ox) (12
We have
a(X) = x(X,0x) — 1+ dim (Pic(X))

_ 1_12 (Z ordUA,,> tg—1 (13)

veES
by (2), (11) and (12).

Remark. It is expected that a decomposition as above for a(X), as a sum of
local contributionsfrom the ramified primes, should holdin general for any motive.
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However it is interesting to note that even though «(X) is an integer, the terms
corresponding to the individual ramified places need not be integral. A different
formulafor a(X') has been obtained by Milne ([12]).

We would also like to recall a conjecture of Szpiro’s, and which is known to
hold over function fields of arbitrary characteristic ([13]),

Z ord,(A,) < 6p° {Z fo+29— 2} , (14
where p°¢ is the inseparable degree of K over k(jr). Hence we get by (13) and
(14), an estimate for the *period’,

a(X) _ (quif)l/Zq(peH)(y—l)
< g HDX(©)/2 Nt /2 (15)

We can also express the estimate we obtained for |R(X,q~1)| in terms of the
conductor as

IR(X,q 1)) < 2772% 2% (2, f, + 29 — 2)

Now N =[], ¢/* > ¢®/v, where ¢, is the cardinality of the residue field at veS
and we have ¢, > ¢. S0 10g(N)/log(g) > X ,c fy and 25/» < 209(N)/log(e) —
N'09(2)/109(9)  Thus

|R(X,q™Y)| < 277 (4~ X(€)2-6°X(C)y Ny Bpe(log(2)/ Tog(q) (16)

6.

Under the assumption that Br(X)(/) is finite for some prime [, and that the j-
invariant of F istranscendental over k, we get from (3), (6), (15) and (16),

NI(E/K)|
= [Br(X)]
< 277(16q) X /2(212g) P XC/ZNT" ((1/2) + (Blog(2)/ 10g(q)).-

Remark. It is interesting to notice the terms which contribute to N%/2 in the
function field and the number field. Over number fields it is the infinite period
Too Which satisfies the relation |r.| > H/12, where H is the height of the
elliptic curve which seems to be contributing to the N¥/2 term. In the function
fieldsit is the term ¢®*) which contributes. One has an ‘analogous’ relationship
X(X)op = 12x(X, Ox). Thisisin agreement with the belief that the archimedean
placesareto beconsidered as‘ ramified’ placesfor anelliptic curve, and theformula
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(13), expressing «(X') as a sum of contributions over the ramified primes of the
eliptic curve.

Appendix*

Let E be an elliptic curve over Q of conductor N and minimal discriminant A.
Let 11 denote the Shafarevich-Tate group of E. Manin ([11]) and Lang ([7]) have
suggested that the Birch—Swinnerton Dyer conjecture can be used to give upper
bounds for 111. Using methods of analytic number theory Mai and Murty ([8]),
conjectured the following

CONJECTURE 1. For any € > 0,
1] = O(NY/2)+),
where the implicit constant depends only on e.
In fact they make the stronger
CONJECTURE 2. Thereis an absolute constant ¢ such that

log N
— (1/12 et S
|III|_O<H exp<cI i >>,

wheretheimplied constant is absolute and where H is a naive height of £ defined
asfollows
Let 2 = 2° + az + b be an equation for E over Q. Define

H = max([a|?, [b]?).
Let Lg(s) bethe L-series associated to E. Define
Sp(l+it) =agLg(1l+it),

where the argument is obtained by continuous variation along the straight lines
joining 2, 2 + it, % + it starting with value zero, provided ¢ is not the ordinate of a
zero. Define Sg(t) = lim_,0SE(t + €), if ¢ isthe ordinate of a zero of Lg(s). In
analogy with a conjecture of Montgomery, we make

CONJECTURE 3. For [t| > 2

log Nt Y2
Sp(t) =0 <9—>
loglog Nt
* 1 would like to thank Ram Murty for allowing me to include the results of ([8]) here. R. Murty

informs methat these conjectures were presented at the Newton Institutein May 1993, but were never
published.
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By arguments as in ([21], page 354) and by using the Phragmen-Lindelof
theorem asin ([10]), it can be seen that
THEOREM. Assuming Conjecture 3, we have
_ log Nt \Y?
|Lg(1+dt)| < exp (A <W> (17)
for some absolute constant A.
COROLLARY. If r = ord;—1Lg(s) and Conjecture 3 is true, then

B log N \Y?
T_O(<IoglogN> ’ (18)
where the implied constant is absolute

Proof. Let C beacircleof radius1/loglog N centredat 1. By Jensen’stheorem,
we have

r < logmax,, | LEg(2)]

_ 0 ( log N >1/2
loglog N
by the above theorem.

We recall now a conjecture of Lang on lower bounds for the canonical height
of rational pointson E. Let h denote the canonical Neron-Tate height on E.

CONJECTURE (Lang). For any non-torsion rational point P € E(Q),
h(P) > log a|A|
for some positive constant «;, which does not depend on E.

This conjecture has been proved by Silverman in the case that £ has integral
j-invariant.

We also recall a conjecture of Szpiro and Hall relating the height and the
conductor of the elliptic curve E.

CONJECTURE (Szpiro, Hall).
H < N6+E,
where the constant dependson e.

THEOREM. Let E be a modular dlliptic curve over Q satisfying the Birch—
Swinnerton Dyer conjecture, Conjecture 3, and the conjecture of Lang stated
above. Then there exists an absolute constant A such that

log N >

1/12
| < H*“exp (Aloglog N
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Proof. Let r be the order of the zero of L (s) at s = 1. Birch and Swinnerton—
Dyer conjecture that

L@ IR
7l 2T|E tors|27-rool_[7rp7

where ,, are certain integers, R is the regulator of £ and 7, isasuitably chosen
infinite period of £. Applying Cauchy’stheoremto acircle of radius1/loglog N
centred at 1, and by the estimate (17), we have

L) g\ V2 "

where c is an absolute constant. Mazur has shown that | E(Q)tors| < 16. Then, are
integers. For the real period Lang has shown that

Moo > H™ Y12,

From Lang’s conjecture stated above, it follows using Hermite's theorem (see[7]),
that

R>> (V3/2)"(log|A]).

This lower bound for the volume of a lattice is sharp, and neither /3/2 nor the
power 2 can be improved upon. Thus we have

log N \Y?
1/12
1 < HY“exp <C<Ioglog N)
x(2 loglog N)"*2(2/v/3)" (log|A[)~"
Asr = O((log N/loglog N)¥?), we have

log N )

1/12
1| < HY2exp <Aloglog 5

for some absolute constant A.
COROLLARY. If we further assume Szpiro’s conjecture, then
|| I | < N(l/2)+e

Conversely, we remark that if the above upper bound for 111 fails to hold, then our
arguments indicate that there should exist elliptic curves of large rank.
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Remark. In view of the fact that (2/\/5)’“2 occurs in the estimate for 111, and
2/v/3 > 1, itisof extremeimportance to have the square root in the estimate (18)
for the rank . An upper bound for r of the form O(log N/ loglog N), will give
an upper bound for I11, which grows faster than any power of N.
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