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Abstract

Pattern matching has proved an extremely powerful and durable notion in functional

programming. This paper contributes a new programming notation for type theory which

elaborates the notion in various ways. First, as is by now quite well-known in the type

theory community, definition by pattern matching becomes a more discriminating tool in

the presence of dependent types, since it refines the explanation of types as well as values.

This becomes all the more true in the presence of the rich class of datatypes known as

inductive families (Dybjer, 1991). Secondly, as proposed by Peyton Jones (1997) for Haskell,

and independently rediscovered by us, subsidiary case analyses on the results of intermediate

computations, which commonly take place on the right-hand side of definitions by pattern

matching, should rather be handled on the left. In simply-typed languages, this subsumes the

trivial case of Boolean guards; in our setting it becomes yet more powerful. Thirdly, elementary

pattern matching decompositions have a well-defined interface given by a dependent type;

they correspond to the statement of an induction principle for the datatype. More general,

user-definable decompositions may be defined which also have types of the same general form.

Elementary pattern matching may therefore be recast in abstract form, with a semantics given

by translation. Such abstract decompositions of data generalize Wadler’s (1987) notion of

‘view’. The programmer wishing to introduce a new view of a type T , and exploit it directly in

pattern matching, may do so via a standard programming idiom. The type theorist, looking

through the Curry–Howard lens, may see this as proving a theorem, one which establishes

the validity of a new induction principle for T . We develop enough syntax and semantics to

account for this high-level style of programming in dependent type theory. We close with the

development of a typechecker for the simply-typed lambda calculus, which furnishes a view

of raw terms as either being well-typed, or containing an error. The implementation of this

view is ipso facto a proof that typechecking is decidable.

1 Introduction

This paper is a contribution to declarative programming, in that it introduces a

new high-level notation for functional programming on top of an existing low-level

dependent type theory. In particular, we offer a powerful and abstract successor to

pattern matching, as conceived by Rod Burstall (1969) and, to our knowledge, first

implemented in Fred McBride’s (1970) extension of LISP.

The key feature of pattern matching in simply-typed languages is that the structure

of an arbitrary value in a datatype is explained. Classically, pattern matching

analyses constructor patterns on the left-hand sides of functional equations, and

is defined by a subsystem of the operational semantics with hard-wired rules
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for computing substitutions from the pattern variables to values. For example,

in Standard ML (Milner et al., 1997), one might test list membership as follows:

fun elem k [] = false

| elem k (l :: ls) = if (k = l) then true else elem k ls

The clarity of the code does not hinder its efficient compilation; a key technique

here is Augustsson’s (1985) analysis in terms of hierarchical switching on the

outermost constructor symbol, coupled with the exposure of subexpressions. This

yields, for elem above, the following cascade of case expressions:

fun elem k ls = case ls

of [] => false

| l :: ls’ => case (k = l)

of true => true

| false => elem k ls’

Pattern matching has proved such a powerful and durable notion in functional

programming, that its further development has remained firmly on the research

agenda. Peyton Jones’ idea of pattern guards (Peyton Jones, 1997; Peyton Jones &

Erwig, 2000) allows definitions by pattern matching to handle on the left-hand side

of programs, subsidiary analysis of the results of intermediate computations, which

are more commonly, but “clunkily” (loc.cit.), handled on the right. For elem, we can

pull both tests to the left as follows:

elem k [] = False

elem k (l:ls) | True <- k == l = True

elem k (l:ls) | False <- k == l = elem k ls

Of course, Haskell’s Boolean guards (Peyton Jones & Hughes, 1999) can already

qualify pattern matches by tests like k == l, but pattern guards handle subcompu-

tations of more complex types. Further, the guard expression can be shared via a

where clause and the layout rule. In our notation, you can achieve the same effect

by grouping the two clauses in the scope of the call to k == l , as follows:

elem k [] �→ false

elem k (l :: ls) | k == l|| true �→ true|| false �→ elem k ls

Dependent types add a descriptive and expressive power which makes pattern

matching a more discriminating tool, refining types as well as values. Each elementary

pattern matching decomposition has a well-defined interface given by a dependent

type, corresponding to an induction principle for the datatype (Burstall, 1969;

Nordström et al., 1990). This insight flows from type theory’s interplay between

computation and reasoning – usually sloganised as the ‘Curry–Howard correspond-

ence’, or ‘propositions-as-types’. The key feature of induction is that the result type

is instantiated, and hence further explained, by the patterns.

This observation bites all the more strongly in the presence of the rich class of

datatypes known as inductive families (Dybjer, 1991). One such is So, a collection of
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types indexed by a Boolean value:

data b : Bool
So b : �

where
oh : So true

The point here is that Sotrue has one element while Sofalse has none. If p : Sob,

then ‘case’ on p tells us not only that p is oh, but also (‘for free’) that b must be

true. Inspecting p can instantiate b and hence any type which depends upon either!

We can use So to impose Boolean ‘preconditions’ on programs. For example,

a program which requires an argument p: So (test1 or test2) need only be defined

under circumstances which make one of the test expressions evaluate to true. If

such a program were to switch on the value of test1, say, we should somehow

‘know’ that p : So true in the true case and that p: So test2 otherwise, but how

might a typechecker make this connection? Our | notation is motivated not just by

convenience, but also to signal the abstraction of subcomputations from types.

Meanwhile, Wadler’s ‘views’ proposal (Wadler, 1987; Burton et al., 1996) allows

programmers to implement new schemes for decomposing values in types (abstract

datatypes, especially), extending the syntax of matching correspondingly. In our

setting, user-definable decompositions – elimination operators – may be specified by

types resembling the structural induction principles for datatypes, these now merely

the primitives from which higher-level analyses can be developed.

Our notation gives a pattern-based syntax to programming with arbitrary elim-

inators; the semantics is given by translation, rather than ‘pattern matching’ per se.

Further, we establish a standard idiom of first-order programming for equipping

a type T with a new elimination operator, by identifying a set of patterns which

cover the values in T ; such patterns may now be arbitrary expressions of type T .

The type theorist, looking through the Curry–Howard lens, may see this as proving

a new induction principle for T . A similar idea has emerged recently in Voda’s

untyped first-order ‘Clausal Language’ (Voda, 2002), which admits new forms of

case analysis via theorem-proving in Peano Arithmetic.

Although the power of dependent types is widely acknowledged, sceptics rightly

argue that expressibility is one thing and accessibility another. Programs should be

read as well as written, often on the back of an envelope. Here, we address this issue

of clarity. We claim that the existing notations of both functional languages and type

theory fall short of what dependently-typed programming demands, but also of what

it can supply – a language of derived forms, rich, intuitive and extensible. Type theory

offers the motive, the methods and the opportunity to ask anew what functional

programming can aspire to be. We barely scratch the surface in this paper –

nevertheless, we hope to engage your enthusiasm and your imagination.

1.1 Background

We start from a type theory with inductive families of datatypes (Dybjer, 1991),

essentially Luo’s UTT (1994), as implemented in Oleg – the first author’s adapta-

tion (1999) of Pollack’s proof assistant Lego (Luo & Pollack, 1992; Pollack, 1995).

This type system is strongly normalizing (Goguen, 1994) and hence typechecking is

decidable. An important and distinctive feature, which we expand upon below, is
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that inductive families embrace data structures richer than those available in other

candidate languages for dependently-typed programming such as DML (Xi, 1998),

or Cayenne (Augustsson, 1998): the former supports compile-time enforcing of

finer well-formedness constraints on data which is nonetheless only Hindley-Milner

typable; as to the latter, we explore an example not readily expressible in Cayenne –

well-typed λ-terms over simple types – in section 7.

Datatypes in UTT come with no intrinsic notion of pattern matching, by contrast

with systems like ALF (Coquand, 1992; Magnusson, 1994). Primitive computation

on datatypes is provided via ‘elimination operators’ (the ‘introduction operators’

being constructors), which behave operationally like primitive recursors, but have

types which state structural induction principles.

For example, the elimination operator for the natural numbers has the following

type – compare the Hindley–Milner type scheme for primitive recursion:

�-Elim : ∀P :� → �.

P 0 →
(∀k :�. P k → P (sk )) →
∀n :�. P n

�-PrimRec : ∀T :�.

T →
(� → T → T ) →
� → T

Observe that �-Elim delivers an inhabitant of a dependent function space, in this

case ∀n :�. P n . This allows us to specify, via an arbitrary program P , the ‘motive’,

different outcomes intended for different values of n . Learning more about n can

change the things we are able to do with it, hence we can express numerically indexed

operations such as matrix multiplication. By contrast, �-PrimRec’s type allows no

connection between the number and the purpose it serves.

The arguments of �-Elim which explain each case also have more informative

types than in the Hindley-Milner version. We call these arguments methods – where

the vernacular speaks only, somewhat weakly, of ‘base’ and ‘step’ cases, without

naming ‘the argument for such a case’ – because they describe how the motive is

to be pursued, depending on the value of n . Method types document explicitly the

values for which we use them – a possibility only when types can depend on data.

A key point of this paper is that the types of eliminators give an abstract interface

to pattern analysis, whatever the actual patterns are. For example, the trichotomy

principle can be seen as an operator eliminating two natural numbers:

�-Compare : ∀P : � → � → �.

(∀x , y :�. P x (x + sy)) →
(∀x :�. P x x ) →
(∀x , y :�. P (y + sx ) y ) →
∀m , n :�. P m n

We show in section 4 how to use such operators in general, and in Section 6 how

to construct (a variant of) �-Compare, which we may then use to define functions

which ordinarily would be computed by a combination of a comparison test and

subtraction, where the latter is only safe to perform by virtue of the test.

Elimination operators are first-class values, and their types are sufficient on

their own to document their usage in programs. Hence, they may be abstracted in

signatures which hide their representation without further ado. Moreover, as we shall
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see below, for the class of datatype families which we consider, certain distinguished

elimination operators may be defined automatically.

1.2 Outline of the paper

Section 2 describes the basic type theory in which we work, augmented with a

concrete syntax for programming. This is then explained by elaboration into an

extension of the basic type theory which uses labels in terms and types to correlate

the usage of a concrete syntax program with its elaboration.

In section 3 we focus upon the language of inductive families and their properties.

We identify a taxonomy of possible type dependency in case analyses through

consideration of a running example based on heterogeneous association lists.

In section 4 we give a technical characterization of eliminators, together with the

⇐ (‘by’) construct which supports their use, whether primitive or user-defined. We

discuss in depth the method by which we exploit elimination with equational

constraints to explain the notion of patterns, as well as arbitrary structured

decomposition, on the left-hand sides of program definitions. In particular, we

consider a useful derived form for dealing with structural recursion.

In section 5, we discuss the general situation of decomposing the results of

subcomputations. Our | (‘with’) construct supports this, generalizing pattern guards

to the dependently-typed setting. This notation retains economy of expression, but

also allows delicate type distinctions to be made during case analysis: without it, we

would need explicit helper functions with much more complex type signatures.

Although eliminators are higher-order functions, section 6 introduces a first-order

programming idiom for constructing and working with them – this is our notion of

views.

In section 7, we conclude our technical discussion with a large example: a

typechecker for simply-typed lambda calculus with explicit type labels – ‘Church-

style’ (pre-)terms in Barendregt’s terminology (Barendregt, 1992). The program takes

the form of a view of pre-terms as being either well-typed or containing an error.

The implementation of this view is a proof that typechecking is decidable.

In an epilogue, we discuss our findings and future work.

1.3 Some history; some culture

Our background is mainly in the field of interactive theorem proving in type theory,

using the Lego/Oleg system. Consequently, the original draft of this paper had a

very different emphasis: firstly, we focused on supporting an interactive method of

programming. Indeed, while Oleg does not directly support the notations described

in this paper, it does provide the tactics which inspired them – and which translate

them into raw type theory. We developed all our examples interactively this way.

Secondly, and perhaps more seriously, it was motivated from the ‘logical’ per-

spective on type theory. Regardless of the merits of this viewpoint, ‘dependent types’

scarcely approached ‘practical programming’ in terms of contributing to a dialogue

between communities. This is not a new phenomenon: a good illustration lies in the
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papers by Bird and Paterson, and Altenkirch and Reus, each writing about the type

of de Bruijn λ-terms, as a nested type in Bird & Paterson (1999), and as an inductive

family in Altenkirch & Reus (1999). The two share but a single common reference –

Wadler’s “Theorems for Free!” (1989). Would that more researchers had Wadler’s

ability to speak to both communities with equal effect.

Likewise, though we were inspired by Wadler’s original proposal for views, we

had worked in ignorance of subsequent elaborations of that idea and related

developments, not least Peyton Jones’ (1997) note. Quite independently, we had

arrived at essentially the same formulation, but motivated by considerations of

typing, rather than evaluation. Rod Burstall used to say to us that “Proofs are

harder for students to understand than programs, because once you’ve obtained a

proof, it isn’t obvious what to do with it, or what it means to run one,” in spite

of what Curry–Howard might lead one to believe. Our experience teaching students

is that only by connecting patterns to the types which give rise to them, can the

computational meaning and use of pattern matching be fully grasped.

2 Dependent type theory for functional programming

This section introduces the functional core of the type theory in which we work –

Luo’s UTT (1994), extended with local definitions as in Luo & Pollack (1995)

and McBride (1999) – together with a concrete syntax for programming. The core

language of UTT is summarised in figure 1. We expect readers familiar with type

theory to find its technical content largely unremarkable. The notation we employ

here is not standard, being orientated more towards programming, but we hope it

is nonetheless clear. For functional programmers with less prior exposure to this

subject matter, we cannot expect to fill in all the blanks, but we hope that we provide

enough of an introduction to give access to the ideas in this paper.

Type theory’s key novelty for the functional programmer is the generalization

from simple function spaces S → T to dependent function spaces ∀x : S . T . Here

T may involve x , making the return type of the function depend on the value of

the argument. We may still write S → T if T does not contain x . Dependency

allows operations on ranges of types, selected by a prior input, such as C-

style printf (Augustsson, 1998), or the generic ‘fold’ for every concrete Haskell

type (Altenkirch & McBride, 2002). It also makes type theory an expressive logic.

Functions themselves are introduced by λ-terms and applications compute just

by β-reduction. As we have local definition (let x �→ s : S . t), we dispense with

substitution in the presentation. Definitions are not recursive – the s must exist

before x is bound to it. Under the let x �→ s : S binding, x has type S and reduces

to s by δ-reduction, and the binding itself will vanish when x no longer occurs in

scope: we call this γ-reduction – γ for ‘garbage’ (cf. Severi & Poll, 1994).

UTT has no implicit polymorphism, but we may ∀-quantify over types. To avoid

paradox, types are collected in a cumulative hierarchy of universes �n, individually

closed under ∀, each inhabiting and embedded in the next. These level subscripts

can be managed mechanically (Harper & Pollack, 1991) – we omit them.

https://doi.org/10.1017/S0956796803004829 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004829


The view from the left 75

syntax

vid := x || . . .

term := vid || �0
|| �1

|| . . . || �n
|| . . .

|| ∀vid : term . term || λvid : term . term || term term
|| let vid �→ term : term . term

context := · || context; vid : term || context; vid �→ term : term

validity context � valid

· � valid
Γ � S : �i

Γ; x : S � valid
Γ � s : S

Γ; x �→ s : S � valid

typing context � term : term

Γ � valid
Γ � x : S

Γ contains x : S or x �→ s : S

Γ � valid
Γ � �n : �n+1

Γ � S : �i Γ; x : S � T : �i
Γ � ∀x : S . T : �i

Γ; x : S � t : T
Γ � λx : S . t : ∀x : S . T

Γ � f : ∀x : S . T Γ � s : S
Γ � f s : let x �→ s : S . T

Γ; x �→ s : S � t : T
Γ � let x �→ s : S . t : let x �→ s : S . T

Γ � t : S Γ � S � T
Γ � t : T

reduction context � term � term conversion context � term�term

[β]
Γ � (λx : S . t) s � let x �→ s : S . t

[δ]
Γ; x �→ s : S ; Γ′ � x � s

[γ]
Γ � let x �→ s : S . t � t

x 
∈ t

plus contextual closure, and � as the equivalence closure of �

cumulativity context � term � term

Γ � S � T
Γ � S � T

Γ � R � S Γ � S � T
Γ � R � T

Γ � �n � �n+1

Γ � S1 � S2 Γ; x : S1 � T1 � T2

Γ � ∀x : S1. T1 � ∀x : S2. T2

Fig. 1. Luo’s UTT plus local definition (functional core).
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Additionally, implicit syntax, a very useful mechanism also due to Pollack (1992),

allows us to omit arguments to functions, where they may be inferred by unification.

We mark in the concrete syntax for dependent function types whether the argument

is to be supplied or omitted by default, writing ∀x :S . T to indicate the latter. We

do not demand complete mechanical inference and indeed we may override it – if

f : ∀x :S . T , we may still write fs to supply the argument s ourselves.

The core language is regulated by a system of mutually inductively defined

judgments, of which the first (typechecking) and third (conversion) contain the most

interest from a programming point of view:

Γ � t : T ‘t has type T in context Γ’: terms t are typechecked with respect to

a context which contains (at least) the declarations x : S or definitions x �→ s : S

of every variable which may occur free within t;

Γ � valid ‘Γ is valid’: only those contexts Γ make sense, whose declarations give

variables legitimate types and whose definitions are type-correct;

Γ � S�T ‘S is convertible to T in Γ’: UTT is a a computational theory: its

types may contain terms and are identified up to conversion; conversion is

the usual equivalence closure of a reduction relation Γ � s � t , generated by

congruence closure from a number of specified one-step contractions; � embraces

β-reduction, as well as other rules detailed below; we do not consider α-conversion

explicitly – treatments include McKinna & Pollack (1999);

Γ � S � T cumulativity polices embedding between universe levels.

This system has a number of very strong meta-theoretic properties: all programs

terminate, so conversion is decidable, hence so too are cumulativity, validity and

typechecking (Luo, 1990; Goguen, 1994; Pollack, 1995).

Remark on meta-notation and meta-operations

In addition to the above properties of the type theory, we also require a number

of meta-operations. For example, ⇓ t denotes the unique normal form of t . We

typically present these in ‘functional’ style, writing equations in the form

definiendum =⇒ definiens , employing ‘where’ clauses, ‘if-then-else’, etc.

Inspired by de Bruijn’s ‘telescopes’ (1991), we manipulate sequences of bindings

and of arguments, writing sequences of terms as vectors �t (empty vector ε),

and iterated applications as f �t . Contexts, denoted by Greek capital letters, may

stand for multiple bindings in ∀-, λ- and let-expressions. That is, we write ∀∆. T

for the dependent function space formed by iteratively ‘discharging’ ∆ over T :

∀ · . T =⇒ T

∀∆; x : S . T =⇒ ∀∆. ∀x : S . T

∀∆; x �→ s: S . T =⇒ ∀∆. let x �→ s : S . T

Functions λ∆. t and iterated definitions let ∆ �→ �s . t are likewise abbreviated.

Successive bindings with the same type, e.g. m :�; n :�, are abbreviated as m , n :�.

Finally, ∆ may stand for the vector of its declared variables: if Γ � f : ∀∆.T , then

Γ; ∆ � f ∆ : T , even if ∆ contains definitions.
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By the Strengthening Lemma (Luo, 1990; van Benthem Jutting et al., 1994), any

well-typed term Γ � t : T arises from a minimal subcontext of Γ, that is, there exist

contexts Γt , Γt , satisfying:

• Γt ⊆ Γ minimal such that Γt � t : T ;

• Γt ; Γt is a permutation of Γ;

• Γt ; Γt � J if and only if Γ � J , for any judgment J .

We shall make frequent use of this fact in the sequel. Indeed, such a context

splitting (Γt ,Γt ) may be computed as strengthen(Γ, t ,T ), a meta-operation defined

as follows, where fv(X ) denotes the set of variables free in X :

strengthen(·, t ,T ) =⇒ (·, ·)
strengthen(x : S ; Γ, t ,T )

where (Γt ,Γt ) ⇐= strengthen(Γ, t ,T )

=⇒ if x ∈ fv(Γt ) ∪ fv(t) ∪ fv(T )

then (x : S ; Γt ,Γt )

else (Γt , x : S ; Γt )

2.1 Concrete syntax for programs

In this section, we develop our notation for programming, summarised in figure 2.

We distinguish an extended expression language expr of this programming

notation from the low-level terms of the underlying type theory. The category

expr embraces the basic constructs of UTT, together with:

• names for datatypes did and their constructors cid ;

• a category lhs which forms the left-hand sides of programs;

• a distinguished subcategory call of the lhs , which comprises the allowable

invocations of functions;

• let notation, for local function definitions in expressions;

• view notation, which will be explained in detail in section 6.

Top-level source code consists of a sequence of datatype declarations (of which

more in section 3 below) and definitions of new function symbols fid . These are

introduced using let, which introduces a program with a specified type signature,

given in natural deduction style:

let Φ
f Φ : R

program

where the syntax for programs departs from the traditional prioritized list of pattern

matching equations. The program is a hierarchical structure, resembling those of

Augustsson (1985), which explains how calls to f should be executed – either

• ‘by’ (⇐) invoking an eliminator;

• or ‘with’ (|) an intermediate result added to the data under scrutiny;

• or returning ( �→) the value of a given expression once enough analysis has

been done. ‘Returns’ lhs �→ expr are leaves in the program structure.

https://doi.org/10.1017/S0956796803004829 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004829


78 C. McBride and J. McKinna

expr := vid || did || cid || call
|| ∀vid : expr . expr || �
|| λvid : expr . expr || expr expr
|| let sig[ fid ] program . expr
|| view expr

program := lhs �→ expr
|| lhs ⇐ expr {seq[program]}
|| lhs | expr {program}

decl := data sig[did ] where sig[cid ]∗

|| let sig[ fid ] program

source := seq[decl ]

vid := x || . . .

did := D || . . .

cid := c || . . .

fid := f || . . .

call := fid expr∗

lhs := call (| expr)∗

seq[thing] :=
|| thing (; thing)∗

sig[id ] :=
seq[vid : expr]
id vid ∗ : expr

Fig. 2. Concrete syntax for dependently-typed programs.

To aid readability in this paper, we adopt informal spacing and layout conventions

which are inevitably more sustainable in LATEX than in ASCII. For example, we tend

to show the hierarchical structure of programs by indentation rather than brackets

and semicolons. Also, from time to time (e.g. in the code for elem), we use vertical

alignment to avoid the repetition of unchanged patterns from the lhs of a program

to those of its subprograms. We shall shortly show how programs determine the

syntactic structure of their subprograms, and hence that some such convention can

be implemented; we omit any further detailed discussion of such pragmatics.

2.2 From programs to UTT

We explain the concrete syntax by elaboration into the underlying type theory, but

to do this, we will have to augment the abstract syntax of UTT (see figure 3).

The underlying functional core must be extended with the datatype and constructor

names, and to explain the distinguished calls and returns of functions, we introduce:

• labels, label := fid term∗ (| term)∗ , which elaborate the category lhs;
• labelled calls, call 〈label〉 term , which associate a term with an elaborated lhs;
• their corresponding returns, return term;
• and labelled types, 〈label : term〉.

This last construct 〈l :T 〉 is used to label a type T with a function invocation

l which, when executed, should return a value in T . We call these labelled types

programming problems: they are solved by elaborating programs.

Digression: programming problems in LEGO

To give an idea of our underlying motivation for labelled types, consider the

following trick which you can play even in implementations of raw type theory

such as Coq or Lego: suppose you want to implement the addition function

(+) : � → � → �. You might start with this type as a top-level goal, and invoking

�-elim, get back the subgoals

? : � → �
? : � → (� → �) → � → �
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term := . . .
|| did || cid
|| 〈label : term〉
|| call 〈label〉 term
|| return term

label := fid term∗ (| term)∗

Fig. 3. Abstract syntax extensions for elaborating programs.

(the precise form of the interaction is not at issue here). Which instance of � is

which? If you are unsure, it is rather easy to finish the job with a well-typed term

which does not quite add up! Suppose instead that you rephrase the goal, as follows,

via a defined function Plus which is vacuous in its arguments:

Plus �→ λx , y : �. � : � → � → �

? : ∀x , y : �. Plus x y

If you normalize the goal, you can see it is just as before. With the unreduced

goal, invoking �-elim now yields two subgoals

? : ∀y : �. Plus 0 y

? : ∀x : �. (∀z :�. Plus x z ) → ∀y :�. Plus (sx ) y

Again, the normal forms of these subgoals are as before, but unreduced, they tell

you exactly which � is which. Each subgoal shows you the ‘pattern’ to which it

corresponds: in the base case, you are asked to solve the problem “what is 0 + y?”,

and in the step case, “what is (sx ) + y?”, the inductive hypothesis shows you which

are the allowable recursive calls, in this case x + z for any z .

The vacuous arguments of Plus echo the use of phantom types in Haskell (Leijen &

Meijer, 1999). These arguments enrich the descriptive power of the type, giving

a more discriminating account of the purpose of its values – not just their

representation. In much the same way, we distinguish 〈l :T 〉 and T , and use this to

manage the process of typechecking and elaborating programs by stratifying their

return types, labelling them with the function calls to which they correspond.

The elaboration process relies on computation within labels, so the terms they

contain must be well-typed – this is enforced by a label well-formedness judg-

ment, Γ � l label . We give a very simple, and intuitively appealing, operational

semantics to abstract call and return, by extending the reduction relation with

ρ-reductions (ρ for ‘return’). The new rules are shown in figure 4.

Each program construct in our notation either refines problems into subproblems

or solves them outright. For nontrivial problems, solving at a leaf is achieved by

‘filling in the right-hand side’ with the term whose value is to be returned. If every

leaf is solved outright, then the program successfully elaborates. Such a model

of successful elaboration lends itself to a fully-fledged account of type-directed

interactive program development – with all the armoury of techniques currently

employed in implementations of type theory at our disposal. We will return to this

point later.
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context � label label

Γ � valid
Γ � f label

Γ � l label Γ � t : T
Γ � l t label

Γ � l label Γ � t : T
Γ � l | t label

context � term : term

Γ � l label Γ � T : �n
Γ � 〈l : T 〉 : �n

Γ � l label Γ � t : T
Γ � return t : 〈l : T 〉

Γ � t : 〈l : T 〉
Γ � call 〈l〉 t : T

context � term � term

[ρ]
Γ � call 〈l〉 (return t) � t

Fig. 4. Typing and conversion extensions.

We explain which high-level programs and expressions successfully elaborate with

these new judgment forms:

Γ � 
 � l ‘left-hand side 
 elaborates to label l ’;

Γ � e � t : T ‘expression e elaborates to well-typed term t of type T ’;

Γ|∆ � p � t : 〈l :T 〉 ‘in global context Γ, and local context ∆ of pattern bin-

dings, program p elaborates to well-typed term t of labelled type 〈l :T 〉’;
Γ � d � ∆ ‘in context Γ, declaration d elaborates to new context bindings ∆’.

Interpretation We intend the judgments for elaboration of high-level programs and

those of the type theory to be connected by the following soundness properties,

which we conjecture follow by simple induction on the rules, together with the

analysis we provide below of the elaboration rules for the various constructs:

soundness for elaboration judgment yields underlying judgment

labels Γ � 
 � l ⇒ Γ � l label

expressions Γ � e � t : T ⇒ Γ � t : T

declarations Γ � d � ∆ ⇒ Γ; ∆ � valid

programs Γ|∆ � p � t : 〈l :T 〉 ⇒ Γ; ∆ � t : 〈l :T 〉

We hope to expand on such meta-theoretical treatment in future work; for now

it suffices to observe that we obtain a näıve operational semantics for programs,

simply by taking normal forms of elaborated terms.

The basic structural rules for left-hand sides and expressions are summarised in

figure 5; we only give selected instances of the rules for expressions, noting that

we may incorporate into both forms the use of such notational conveniences as

infix operators, Pollack-style implicit syntax and universe level inference, and the

omission of domain types from binders where they can be inferred from usage. Of

course, the real work is done by the remaining rules which explain the elaboration

of the main programming constructs.
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context � lhs � label

Γ � f � f
Γ � 
 � l Γ � e � t : T

Γ � 
 e � l t
Γ � 
 � l Γ � e � t : T

Γ � 
 | e � l | t

context � expr � term : term

Γ � valid
Γ � � � �n : �n+1

. . . Γ � e � t : S Γ � S � T
Γ � e � t : T

[call]
Γ � c � l lookup(l ,Γ) =⇒ (t : 〈l :T 〉)

Γ � c � call 〈l〉 t : T

[view] See section 6

Fig. 5. Elaboration of left-hand sides and expressions (edited highlights).

context |context � expr � term : 〈label : term〉

Γ|∆ � p � t : 〈l : S 〉 Γ; ∆ � S � T
Γ|∆ � p � t : 〈l :T 〉

[return]
Γ; ∆ � 
 � l Γ; ∆ � e � t : T
Γ|∆ � 
 �→ e � return t : 〈l :T 〉

[by] See section 4 [with] See section 5

Fig. 6. Elaboration of programs.

context � decl � context

[data] See section 3.2

[let]
Γ � ∀Φ. R � ∀∆. T : � Γ|∆ � p � t : 〈f ∆:T 〉

Γ � let Φ
f Φ : R

p � f �→ λ∆. t : ∀∆. 〈f ∆:T 〉

Fig. 7. Elaboration of declarations.

We explain how the elaboration of a datatype declaration extends the context with

new bindings, in section 3. Likewise, we defer the discussion of ‘by’ until section 4, as

it requires some considerable analysis – this is the heart of our account of ‘structured

decomposition on the left’. The elaboration rule for ‘with’ is explained in section 5;

in effect it constructs a ‘helper function’ with an extended label.

Return from a call is straightforward to explain – rule [return], figure 6; the

elaborated right-hand side is returned, packaged with the label which elaborates the

left-hand side. Given t : T , the problem 〈l :T 〉 is solved outright.

The rule for declaring a function (see figure 7) whose type ∀Φ. R and body p

successfully elaborate, binds a new definition into the context: a λ-abstracted term

whose type offers solutions to a class of programming problems – those whose

labels represent calls to the function. For example, we may define snoc in terms of
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++ (‘append’) as follows:

let xs : List X x : X
snoc xs x : List X

snoc xs x �→ xs ++ (x :: [])

Here, the [return] rule demands that xs ++ (x :: []) : List X , to ensure that the

equation solves the top-level problem 〈snoc xs x :List X 〉. We could write all our

programs this way by applying elimination operators in gory detail ‘on the right’.

However, our notation exists to hide this detail, treating elimination ‘on the left’.

Meanwhile, the [call] rule uses the partial (but terminating) meta-operation

lookup, to search the context for a variable which can be applied to deliver a

solution to a programming problem with a given label – as delivered by definition.

Similarly, whilst elaborating a recursive program via an induction principle, the local

context will contain inductive hypotheses which ‘advertise’ the recursive calls they

enable via labelled types, just as in our Plus example above.

The lookup mechanism thus corresponds to a simple proof tactic – like Immed

in Lego. We defer its definition until section 4.1, by which time the structure of

inductive hypotheses will have been made precise. For now, we can say that if Γ

contains an elaborated definition, f �→ · · · : ∀∆. 〈f ∆:T 〉 and�t : ∆, then certainly

lookup(f�t ,Γ) =⇒ (f �t : 〈f�t :⇓ let ∆ �→�t . T 〉)
Strictly speaking, this permits the elaboration of function calls only at the arity

in their signature. However, given that this arity has been specified, it is simple for

the elaborator to handle a call at any arity: long calls become applications of calls;

short calls get η-expanded, λ-abstracting any extra arguments required.

3 Datatype families, eliminators and computation

We declare families of datatypes in our language by giving type signatures for the

type constructor symbol and for its data constructors, in the format

data type-constructor-signature where data-constructor-signatures

Simple monomorphic datatypes fit this pattern. For example, Unit and Bool:

data
Unit : �

where
() : Unit

data
Bool : �

where
true : Bool false : Bool

Note that we write both type and data constructors sans serif. Signatures usually

take the form of natural deduction rules: for each new symbol, we give the context

which types its arguments above the line, and the type of the symbol applied to

those arguments below. Examples include Cartesian products and lists:

data
A,B : �

A × B : �
where a : A b : B

(a ,b) : A × B

data X : �
List X : �

where
[] : List X

x : X xs : List X
x :: xs : List X

List X is defined uniformly for any X and makes recursive references only to

List X . Such a parametric declaration introduces a collection of datatypes each

actual instance of which could, more tediously, be declared by itself. Families of

datatypes (Dybjer, 1991) generalize parametric datatypes in two ways. First, they

are non-uniform: each data constructor targets a subset of the type constructor’s
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possible arguments – Dybjer calls these arguments indices when they are used in

this non-uniform way. The So family mentioned earlier is a simple example:

data b : Bool
So b : �

where
oh : So true

Secondly, datatype families are mutually declared: a constructor for one subset

of the indices may refer recursively to other such subsets. A suitable example is

the family of heterogeneous association lists (‘a-lists’) with a specified domain of

Labels:

data ls : List Label
HAL ls : �

where
hnil : HAL []

l : Label x : X h : HAL ls
hconsX l x h : HAL (l :: ls)

Here, hnil represents the empty a-list, with empty domain, and hcons adds a new

association, of the value x , of type X , with label l to an existing a-list h with domain

ls , yielding an a-list with domain l :: ls . Incidentally, we could easily require distinct

labels by giving hcons an extra argument in So (not (elem l ls)).

More generally, we permit datatype family declarations of this general form:

data Φ
D Φ : �

where Φ1

c1 Φ1 : D�e1
. . . Φn

cn Φn : D�en
(†)

The �ei may differ from Φ and each other, hence a Haskell/Cayenne-style

data D x y z ... = C1 ... | ... | Cn ...

will not serve. It is also why datatype families are so powerful. Correspondingly,

case analysis on datatype families is rather more subtle than on simple datatypes.

As with function type signatures, if ∀Φ. � � ∀Θ. � and ∀Φi. D�ei � ∀∆i. D�si, then we

obtain D : ∀Θ. � and ci : ∀∆i. D�si.

Remark

For readability, we adopt the typographical convention that arguments with in-

ferrable types need not be declared explicitly in a type signature’s premises, e.g.

X : � and ls : List Label in the declaration of hcons. The missing declarations are

inserted (with Pollack-style implicit quantification) among the elaborated context of

arguments – we may subscript such an argument in the conclusion to determine

where it goes. The signature for hcons elaborates to

hcons : ∀X : � . ∀ls:List Label. ∀l : Label. X → HAL ls → HAL (l :: ls)

This convention is implementable, by augmenting Pollack’s techniques, but the

details are beyond the scope of this paper.

Dependency in type families allows us to specify operations which enforce

additional safety constraints by typing alone. For example, we can ensure that

projections from an a-list apply only to labels in its domain:

let
k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : �
· · ·

let
k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p
· · ·
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We develop these operations as a running example: in section 3.1, we explore

the impact of dependent case analysis on the types which arise, and in section 5.1,

the necessary coupling between intermediate computations and types. It is worth

noting that there are other presentations of heterogeneous a-lists: we could index

them by signatures in List (Label ×�), or we could index signatures by domain, then

a-lists by signatures. Indeed, this example takes its cue from problems encountered

in Pollack’s (2000) codings of records in which later field types depend on earlier

field values. In each variation, we find the same problems – and the same solutions.

3.1 Working with datatype families

In this section, we examine the interaction between case analysis and types – clearly

nontrivial where a function’s return type depends on its argument, but still more

interesting once datatype families become involved. Although not yet defined, we

use our high-level notation to facilitate the discussion of our examples. Our purpose

here is to examine the phenomena which arise in these programs, and which must

be addressed in the design of any notation for them.

For many simple programs, there is no interaction between case analysis and types,

just as in standard functional programming. The familiar elem function contains

two case-splits (on a List Label and on a Bool) neither of which affects types:

let k : Label ls : List Label
elem k ls : Bool

elem k [] �→ false

elem k (l :: ls) | k == l|| true �→ true|| false �→ elem k ls

Examining a value from an indexed datatype family is just as straightforward if

its indices may vary freely. In a function with type ∀Θ. ∀x : D Θ. T , x could come

from any constructor. If T does not depend on Θ or x , it will be unaffected. For

example, we may compute a signature from a heterogeneous a-list:

let h : HAL ls
hSig h : List (Label × �)

hSig hnil �→ []

hSig (hconsX l x h ′) �→ (l ,X ) :: (hSig h ′)

Once a function space depends even on a simply-typed argument, case analysis

can change the return type – a phenomenon new to functional programming. For

example, given a value and a list of labels, we can compute the a-list binding each

label to the value:

let x : X ls : List Label
repeat x ls : HAL ls

repeat x [] �→ hnil

repeat x (l :: ls) �→ hcons l x (repeat x ls)

The return type is indexed by the list, so the more we learn about the list, the

more we know about what to return. In the [] case, the right-hand side must have

type HAL [] – hnil is the only candidate; in the step case, we need a HAL (l :: ls),

which suggests applying hcons l . No constructor makes a HAL ls for unknown ls ,

but the more of ls we can see on the left, the more we can do on the right.
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Θ

∆1

c1 ∆1 : D�s1

�s1

∆2

c2 ∆2 : D�s2

�s2

∆3

c3 ∆3 : D�s3

�s3

∆4

c4 ∆4 : D�s4

�s4

∆

x : D�t

�t

Fig. 8. Constrained case analysis on a datatype family.

When analysing values from a datatype family, constraining the choice of indices

can rule out some cases. For example, we may shorten a nonempty a-list:

let
h : HAL (l :: ls)
hTail h : HAL ls

hTail (hcons l x h ′) �→ h ′

Why is there no case for hnil? Because there is no way hnil can make an

inhabitant of HAL (l :: ls)! The type discipline ensures that we need only return

values for constructors delivering elements whose indices lie in the subset under

scrutiny. Further, a constructor may deliver suitable elements only from a portion

of its domain. More generally, suppose we are writing a function f whose type is

f : ∀∆. ∀x:D�t . T

by case analysis on x , where family D Θ : � has constructors ci ∆i : D�si. As

Coquand (1992) observes, we need consider not the whole of D Θ, nor even of D�t ,

but the intersections between D�t and each D�si in turn, as illustrated in figure 8.

In this hypothetical example, constructor c4 is ruled out, just as hnil was for

hTail, whilst every value returned by c2 lies within D�t , as was the case with hcons.

However, we need only consider c1 ∆1 for a subset of its possible arguments – those

∆1 which make �s1 coincide with �t – and similarly for c3. Moreover, for each ci, we

need only consider instances of ∆ – f ’s arguments – which make�t coincide with�si.

This is a real departure for functional programming. Analysing one input x

can not only deliver a restricted set of constructor patterns with some of their
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arguments already determined; it can also have a non-local impact, determining

the values of other inputs on which the type of x depends. These instantiations

may in turn change the types of still other inputs, and possibly even the return

type of the function. Examples of these phenomena are found in our definition

of typeProj:

let
k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : �

typeProj k hnil p ⇐ So-case p

typeProj k (hconsX l x h ′) p | k == l|| true �→ X|| false �→ typeProj k h ′ p

Analysing the h : HAL ls argument gives two cases. In the case where h is hnil, we

also learn – by typing, not testing – that ls is []. Hence p’s type in this case is really

So false. The notation ⇐ So-case p, introduced formally in section 4, then invokes

case analysis of p revealing no possible constructor – k cannot occur in [], so there

is no projection to define!

The hcons case is still more interesting: the ‘information for free’ here is that the

domain must be l :: ls ′, and the tail h ′ : HAL ls ′. Moreover, p : So (elem k (l :: ls ′)).

Now, elem k (l :: ls ′) is computed by testing the result of an intermediate call to

k == l . Hence, when typeProj analyses k == l , it learns, again for free, yet more

about the type of p. In the true case, this does not matter as label k has been found;

in the false case, p’s type becomes So (elem k ls ′) – exactly the prerequisite for the

recursive call, typeProj k h ′ p.

As you can see, some careful choreography is required to keep the testing

performed by typeProj in step with the testing performed by its type. The ‘| k == l ’

clause not only makes the result of the test available for analysis, it abstracts that

result from the type of p. We give the exact details of its elaboration in section 5.

The valProj function carries out exactly the same analyses as typeProj:

let
k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p

valProj k hnil p ⇐ So-case p

valProj k (hcons l x h ′) p | k == l|| true �→ x|| false �→ valProj k h ′ p

This is no idle coincidence. Each case-split in valProj also instantiates the return

type computed by typeProj. This is unremarkable in the hnil case: p’s type is empty

anyway, just as before. For the hcons case, the subsequent analysis of k == l now

delivers the value not only of the same test in the type of p, but also in the typeProj

call, by which the return type is computed. Correspondingly, where x is returned

in the true case, the return type really is X . In the false case, we must return an

element of typeProj k h ′ p, which is exactly the type of valProj k h ′ p.
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We may summarize the interactions between case-splits and types observed in this

section, by means of the following table. We categorize the examples, first by the

type of the argument being analysed and secondly by the degree of dependency in

the function space where the analysis occurs. In each meaningful category, we name

an example with the stated dependency and give the argument type.

arg’s type simple D free D Φ constrained D�t

dependency

none [elem] List Label [hSig] HAL ls [typeProj] So false

on indices not applicable [typeProj] HAL ls [hTail] HAL (l :: ls)

on arg itself [repeat] List Label [valProj] HAL ls [valProj] So false

Programming in Hindley–Milner systems never strays beyond the top left corner

of this table. Recent experiments with polymorphic recursion on nested types (Bird &

Meertens, 1998) begin to stray into the second row, although the indices affected

are always type parameters rather than actual data arguments. Further, the uniform

‘data D Θ = . . .’ style of family means that constructors can never be ruled out by

analysing a constrained D�t , nor can a particular choice of constructor tell us more

about the indices�t , as the intersection of the whole set Θ with�t is just�t itself.

As we work towards the more powerful techniques and programs inhabiting the

bottom right corner, we must handle a number of new issues:

• the effects of analysing one argument on other arguments and on types;

• the potential complexity of the intersections between nontrivial argument types

D�t and nontrivial constructor ranges D�si;

• the impact on types of analysing an intermediate result.

The notation we introduce in this paper is a step towards addressing these ques-

tions. However, before we present the elaboration of the programming constructs, let

us be precise about the presentation of datatype families in the underlying type

theory.

3.2 Elaborating data declarations

These ‘data’ declarations (†) of section 3 elaborate to context extensions by the rules

in figure 9; the new bindings declare the type- and data-constructors, together

with the elimination operator D-elim, specifying which recursive computations

are permitted over instances of D Θ. The meta-operation hyps(P ,∆) computes

the appropriate contexts of inductive hypotheses. Elimination operators acquire

computational behaviour by extending the conversion judgment of the type theory

with the ‘ι-reduction’ scheme.

As observed by Callaghan & Luo (2000), ι-reduction need not be implemented

by näıve pattern matching (as it is in Lego (Pollack, 1994)). A simple switch on the

constructor ci, in the style of Augustsson (1985), suffices for the safe execution of

well-typed programs.
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context � decl � context

[data]

Γ � ∀Φ.� � ∀Θ.� : �

Γ; D : ∀Θ.� � ∀Φi. D�ei � ∀∆i. D�si : � (1 � i � n)

for each x : T in each ∆i, if D ∈ T then for some�u , T is D�u

Γ � data Φ
D Φ : �

where Φ1

c1 Φ1 : D�e1
. . . Φn

cn Φn : D�en

� D : ∀Θ. �; c1 : ∀∆1. D�s1; . . . ; cn : ∀∆n. D�sn;

D-elim : ∀Θ; x : D Θ. targets

∀P : ∀Θ. D Θ → �. motive

∀m1 : ∀∆1; hyps(P ,∆1). P (c1�s1).
...

∀mn : ∀∆n; hyps(P ,∆n). P (cn�sn).




methods

P x

where hyps(P , ·) =⇒ ·
hyps(P , r : D�u; ∆) =⇒ r ′ : P r; hyps(P ,∆)

hyps(P , a : A; ∆) =⇒ hyps(P ,∆) otherwise

context � term � term

[ι]
Γ; D-elim : . . . ; Γ′ � D-elim (ci ∆i) P �m � mi ∆i recs(P , �m ,∆i)

where recs(P , �m ,∆i) : hyps(P ,∆i)

recs(P , �m , ·) =⇒ ε

recs(P , �m , r : D�u; ∆) =⇒ (D-elim r P �m); recs(P , �m ,∆)

recs(P , �m , a : A; ∆) =⇒ recs(P , �m ,∆) otherwise

Fig. 9. Elaboration of datatype declarations.

For �, declared by data
� : �

where
0 : �

n : �
sn : �

, we obtain

� : �; 0 : �; s : � → �;

�-elim : ∀x : �. ∀P : � → �. P 0 → (∀n : �. P n → P (sn)) → P x

�-elim 0 P m0 ms � m0

�-elim (sn) P m0 ms � ms n (�-elim n P m0 ms)

For all the examples in this paper, it is sufficient to ignore the possibility of

higher-order recursive constructors and presume that all constructor argument types

mentioning D have form D�u . Looser recursion regimes are now standard, as are

mutual definitions, but we prefer not to complicate the presentation beyond what is

needed to support the present paper. Moreover it suffices to treat datatype parameters

(like the X in List X ) the same way we treat indices: a possible optimization is to

abstract them once at the outside, rather than repeatedly in the motive and methods.

4 The ‘by’ construct: generalized elimination

In this section, we develop the tools we need to deploy not merely the machine-

generated elimination operators for datatype families, but any function whose type

has a suitable shape. We say that a term e is a Γ|∆-eliminator and we call its type a
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Γ|∆-eliminator type if, for any Θ,∆i,�si,�t ,

Γ; ∆ � e : ∀P : (∀Θ. �). (∀∆1. P�s1) → · · · → (∀∆n. P�sn) → P�t

and Γ; Θ � valid

and Γ; P : (∀Θ. �) ; ∆i � P si : � (1 � i � n)

It is this central definition, and its abstract characterization of the type-shape

which drives the generalization of the primitive elimination operators in type theory.

We call an eliminator’s first argument its motive – it shows what is to be gained

by the elimination; the remaining arguments, we call methods – they show how the

motive is to be achieved in each case.

An elimination operator is a function f : ∀∆. E in Γ, such that E is a Γ|∆-eliminator

type. We say that the ∆ are f ’s targets – they explain what is to be eliminated. Our

definition thus includes, but is not restricted to the basic D-elim operators which

come with datatype families.

Note that the traditional presentation of induction principles (as in section 1.1)

orders the arguments: motive, methods, targets. We put the targets first, so that

an elimination operator is a function from targets to eliminators. The ⇐-construct

splits a programming problem into subproblems given an arbitrary eliminator. Of

course, if Γ; ∆ � x : D�t , then D-elim x is a Γ|∆-eliminator.

The [by] rule explains how this splitting proceeds, directed by the elimin-

ator’s type. It is shown, with other associated definitions, in figure 10. The main

work is done by the meta-operation split, computing the combinator g with

which to recombine the elaborated subprograms. Here, we give a simplification of

the first author’s accounts (1999; 2002), adequate for all the examples in this

paper. Extensions covering more complex rules or more complex combinations

of recursion are routine, but require more careful bookkeeping than is justified

here.

We shall explain what happens, with the help of a worked example – defining

htail

let
h : HAL (l :: ls)
hTail h : HAL ls

hTail h ⇐ HAL-elim h

hTail (hcons l x h ′) �→ h ′

where (showing the indices, but omitting other inferrable information to save

space):

HAL-elim(l ::ls) h : ∀P : ∀ls . HAL ls → �.

P[] hnil →
(∀X ,ls ′ . ∀l , x , h ′. Pls ′ h ′ → P(l ::ls ′) (hcons l x h ′)) →
P(l ::ls) h

For P , we need a motive such that P(l ::ls)h delivers an element of 〈hTail h :HAL ls〉.
The problem is that although P is applied here to a nonempty environment, it must

still abstract over every environment, empty or not. This is an old problem for

inductive theorem proving (for example in proving ‘generation lemmas’ (Barendregt,
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Heterogeneous Equality

a : A b : B
a A=B b : � refl a : a = a

q : a A=A a ′

P : ∀a ′:A. a = a ′ → � m : Pa (refl a)

= -elim q P m : Pa ′ q

context � term � term

[κ]
Γ � = -elim (refl a) P m � m

let
q : a A=A a ′ P : A → �

subst q P : P a → P a ′ subst q P �→ = -elim q (λx :A. λ :a = x . P x )

let
q : a A=A a ′

sym q : a ′
A=A a

sym q �→ subst q (λx : A. x = a) (refl a)

Simplification for a method

�m : ∀∆. t = t → M �
=⇒ �m ′ : ∀∆. M �;

m �→ λ∆. λq . m ′ ∆

�m : ∀∆. chalk�s = chalk�t → M �
=⇒ �m ′ : ∀∆.�s =�t → M �;

m �→ λ∆. λq . inject q (m ′ ∆)

�m : ∀∆. chalk�s = cheese�t → M � where chalk 
= cheese

=⇒ m �→ λ∆. λq . conflict q M

�m : ∀∆. x = s → M � where x ∈ dom ∆, s 
∈ dom ∆

=⇒ �m ′ : ∀∆. s = x → M �;
m �→ λ∆. λq . m ′ ∆ (sym q)

�m : ∀∆. c�t = x → M � where x ≺ c�t

=⇒ m �→ λ∆. λq . cyclic q M

�m : ∀∆. t =T x → M � where (∆t , ∆x
t ; x : T ; ∆x ) ⇐= strengthen(∆, t ,T )

=⇒ �m : ⇓∀∆t ; ∆x
t ; x �→ t : T ; ∆x . M �

m �→ λ∆. λq . subst q (λx . ∀∆x . M ) (m ′ ∆t ∆x
t ) ∆x

�m : M � =⇒ m

Simplification for a context of methods

�·� =⇒ ·
�Ψ;m : M� =⇒ �Ψ�; �m : M�

Splitting a problem

split(∆, 〈l :T 〉 ,E as ∀P : (∀Θ. �). ∀Ψ. P�t)

=⇒ let P �→ λΘ. ∀∆. Θ =�t → 〈l :T 〉 .
(λ�Ψ�. λ∆. λe :E . e P Ψ ∆ (refl�t)

: ∀�Ψ�. ∀∆. E → 〈l :T 〉)

context |context � expr � term : 〈label : term〉

[by]

Γ; ∆ � 
 � l Γ; ∆ � e � t : E for E a Γ|∆-eliminator type

split(∆, 〈l :T 〉 ,E ) =⇒ g : (∀∆1. 〈l1 :S1〉) → · · · → (∀∆k. 〈lk :Sk〉)
→ ∀∆. E → 〈l :T 〉

Γ|∆i � pi � si : 〈li :Si〉 (1 � i � k)

Γ|∆ � 
 ⇐ e {p1; . . . ; pk} � g (λ∆1. s1) . . . (λ∆k. sk) ∆ t : 〈l :T 〉

Fig. 10. The [by] rule and related definitions.
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1992; McKinna & Pollack, 1993, 1999)) and for logic program transformation

(Clark, 1978; Tamaki & Sato, 1984). How do we apply an induction principle

(or an unfolding) to a constrained instance of a relation? Fortunately, there is

also an old solution which has been exploited in these settings, either by hand or

mechanically: transform ‘this constrained instance’ to ‘any instance which satisfies

these constraints’, where the constraints are expressed by equations:

If we could take P �→ λks . λh
′ :HAL ks . ks = l :: ls → 〈hTail h :HAL ls〉

then we would have P(l ::ls) h � l :: ls = l :: ls → 〈hTail h :HAL ls〉

This is what we need, at the cost of supplying a trivial proof. Meanwhile, the

methods required would have types

m1 : [] = l :: ls → 〈hTail h :HAL ls〉
m2 : ∀X ,ls ′ . ∀l ′, x . ∀h ′ :HAL ls ′.

(ls ′ = l :: ls → 〈hTail h :HAL ls〉) →
l ′ :: ls ′ = l :: ls → 〈hTail h :HAL ls〉

For the hnil case, m1, we have a false equation, hence the method should be

supplied vacuously. For m2, we have an equation which implies that ls ′ = ls , and

hence that, ‘morally’, the exposed tail h ′ is an acceptable return.

We can mechanize this idea in type theory, yielding the key technique for expressing

high-level programs via elimination operators, hence we reprise it here. To do so, our

type theory needs a suitable notion of equality – the heterogeneous equality shown

in figure 10. This presentation (McBride, 1999) is not yet standard in type theory: it

allows the formation of heterogeneous equations between elements of any two types,

and hence equations between vectors in a given context. We expand �a = �b as a

context of equational constraints q1 : a1 = b1; . . . ; qk : ak = bk , and correspondingly,

refl�t as the vector refl t1; . . . ; refl tk . Crucially, however, the elimination operator

(with κ-reduction1), which gives us that equality is a congruence, only applies to

homogeneous equations: we may only substitute elements of the same type. It is not

the operator which a data declaration would generate for =, but it still covers all

canonical proofs of equations.

Now, in the general case, we have a programming problem ∀∆. 〈l :T 〉 and an

eliminator with type ∀P : (∀Θ. �). ∀Ψ. P�t . The split meta-operation chooses

P �→ λΘ. ∀∆. Θ =�t → 〈l :T 〉

Now (in scope of this definition) if we can find methods Ψ where

Ψ is m1 : ∀∆1; ∆; �s1 =�t . 〈l :T 〉 ;
...

mn : ∀∆n; ∆; �sn =�t . 〈l :T 〉

we will have λ∆. λe : E . e P Ψ ∆ (refl�t) : ∀∆. E → 〈l :T 〉

1 κ being a nod to those whose extension of the usual inductively defined equality with the ‘K’ axiom
yields power equivalent to our notion (Streicher, 1993; Hofmann & Streicher, 1994).
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This is the general form of the technique we used in the hTail example, turning

a particular �t into equational constraints on a freely chosen Θ. The instantiated

equations give the intersections�si =�t containing the relevant indices. Further, in any

inductive hypotheses given by expanding P in ∆i, the equations give the conditions

for making a recursive call. Quantifying over ∆ within the motive P makes such

inductive hypotheses as liberal as possible. For hTail, the motive and the method

types – now a little less tidy – are as follows:

P �→ λks . λh
′ : HAL ks . ∀l ,ls . ∀h : HAL (l :: ls).

ks = l :: ls → h ′ = h → 〈hTail h : HAL ls〉
m1 : ∀l ,ls . ∀h : HAL (l :: ls).

[] = l :: ls → hnil = h → 〈hTail h : HAL ls〉
m2 : ∀X ,ls ′ . ∀l ′, x . ∀h ′ : HAL ls ′.

(∀l ,ls . ∀h : HAL (l :: ls).ls ′ = l :: ls → h ′ = h → 〈hTail h : HAL ls〉) →
∀l ,ls . ∀h : HAL (l :: ls).

l ′ :: ls ′ = l :: ls → hcons l ′ x h ′ = h → 〈hTail h : HAL ls〉

These methods mi will ultimately give rise to the subproblems solved by the

subprograms, but first they are simplified by first-order unification, as in McBride

(1998, 1999, 2002), and once again here.

We present unification in figure 10 as a meta-operation on a method binding,

�m : M �, returning a context in which m still has type M , but may now be defined,

either in terms of a simplified method m ′ : M ′ (with the equations reduced), or

without further assumption (if the equations are demonstrably absurd). Each clause

of the definition explains how to simplify a homogeneous equational hypothesis and

thus takes the form �m : ∀∆. s = t → M � =⇒ · · ·. In order to resolve ambiguity,

we prioritize the rules from top to bottom and shorter candidates for ∆ over longer.

For reasons of brevity, we omit the explicit enforcement of homogeneity and the

repetition of the input method’s type.

The meta-operations inject and conflict deploy proofs that a datatype family

has the ‘no confusion’ property. Meanwhile, cyclic exploits the relevant family’s

‘no cycles’ property: the condition x ≺ c�t , (x is constructor-guarded in c�t), holds if

either x � ti or x ≺ ti for some i. These properties are derived automatically when

each datatype family is declared: we do not repeat the construction here, but refer

the interested reader to McBride (1999).

In the penultimate clause, strengthen is used to ensure that t is a suitable

candidate to instantiate x , whose binding must fall amongst those not needed to

typecheck t – this subsumes the traditional occur-check. Moreover, computing out

the new definition instantiates x with t in the method’s label.

What can we say about this unification algorithm? Our prioritization ensures that

it is deterministic. Further, for methods �m : ∀∆. 〈l :T 〉�, the usual induction (first on

the number of non-equational hypotheses in ∆, then on the number of constructor

symbols in the equations) shows that the algorithm terminates.

We can readily iterate this process across a context of methods, �Ψ�. For hTail,

we get something of the following form, with the hnil case solved outright, and the
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patterns in the hcons case reduced to those the subprogram requires:

�Ψ� =⇒
m1 �→ λl ,ls . λh . λq : [] = l :: ls .

conflict q (hnil = h → 〈hTail h :HAL ls〉);
m ′

2 : ∀X ,ls ′ . ∀l , x . ∀h ′ :HAL ls .

(∀l ,ls . ∀h :HAL (l :: ls). ls ′ = l :: ls → h ′ = h → 〈hTail h :HAL ls〉) →〈
hTail (hcons l x h ′) :HAL ls ′〉 ;

m3
2 �→ .. subst .. m ′

2; m2
2 �→ .. subst .. m3

2 ; m1
2 �→ .. subst .. m2

2 ;

m2 �→ .. inject .. m1
2

Crucially, �Ψ� still binds every method in Ψ, so the split operation used in the

[by]-rule is well-defined: the combinator, g, which it computes just abstracts over

the simplified problems, but passes the terms derived for the k � n unsimplified

methods to the eliminator, solving the original problem. The [by] rule checks that

these simplified problems are solved by the subprograms.

4.1 Derived eliminators

As has often been observed, many ‘obviously’ terminating functions do not directly

fit the pattern of computation supported by D-elim operators – one step of case

analysis, with recursion on the immediately exposed subterms. Some, such as the

Fibonacci function, require access more than one step back down the course of

values. Others, such as McBride’s (2001) dependently-typed implementation of first-

order unification, perform case analysis on a datatype family (the terms), but

recursion on an index of that family (the number of unsolved variables).

One remedy, certainly adequate for these two examples, is to follow Coquand’s

suggestion and separate case analysis from recursion. Giménez (1994; 1998) achieves

this in Coq by equipping the type theory with primitive Case and Fix constructs.

The latter permits recursion on any constructor-guarded subterm (cf. the previous

section) of the argument it addresses.

One does not need the full machinery of an extension by fixpoint constructs,

however; the first author’s version of the same idea is to derive separate case analysis

and recursion operators automatically, given the primitive elimination operator. The

type of the case analysis operator is computed simply by discarding the inductive

hypotheses from the primitive elimination operator:

D-case : ∀Θ; x : D Θ. ∀P : (∀Θ. D Θ → �).

∀m1 :∀∆1. P (c1�s1). . . . ∀mn :∀∆n. P (cn�sn).

P x

The intrinsic action of ι-reduction on constructor-headed arguments is harnessed

to account for constructor-guarded recursion, via a memoization technique:

D-rec : ∀Θ; x : D Θ. ∀P : (∀Θ. D Θ → �).

(∀Θ; y : D Θ. D-memo P y → P y) →
P x

The predicate transformer D-memo computes a ‘course-of-values’ data structure

storing a value in P z for every z structurally smaller than the given y . This
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structure is just a big tuple, computed by primitive recursion over y . We write

D-memo informally in pattern matching style – these laws hold as conversions – but

the eliminator translation is straightforward.

D-memo P (ci ∆i) � ×(hyps(D-memo P ,∆i); hyps(P ,∆i))

where ×(x1 :T1; . . . ; xn :Tn) denotes the Cartesian product T1 × . . .× Tn. We take ×·
to be Unit. For �, this gives

�-memo P 0 �∗ Unit

�-memo P (sn) �∗ ( ⇓�-memo P n) × P n

The term justifying D-case is trivial to construct; that for D-rec is a little more

complex – we refer the interested reader to (McBride, 1999). We may use D-case y

repeatedly, or other means, to instantiate D-memo P y with constructor-prefixed

terms, allowing it to unfold and reveal hypotheses for the guarded subterms. The

meta-operation lookup must therefore be able to search these tuples in order to

project out the solutions to the programming problems corresponding to recursive

calls. Consider, for example, the Fibonacci function:

let x : �
fib x : �

fib x ⇐ �-rec x

fib x ⇐ �-case x

fib 0 �→ 0

fib (sx ′) ⇐ �-case x ′

fib (s0) �→ s0

fib (s(sx ′′)) �→ fib x ′′ + fib (sx ′′)

Here, the initial ⇐ �-rec x will select the following motive and add the

corresponding memo-structure to the context:

P �→ λn . ∀x . n = x → 〈fib x :�〉
memox : �-memo P x

In the recursive case, x has been instantiated, and the memo-structure becomes

memox : �-memo P (s(sx ′′)) �∗ (( ⇓�-memo P x ′′) ×
(∀x . x ′′ = x → 〈fib x :�〉)) ×

(∀x . sx ′′ = x → 〈fib x :�〉)
So, lookup must handle more than just the bindings, f �→ · · · : ∀∆. 〈f ∆:T 〉,

yielded by the [let] rule; it must extract solutions from hypotheses tupled or

constrained by equations. We define it in figure 11, giving only the patterns which

lead to progress – if the match fails, so does the operation.

For each binding in Γ, lookup inspects the normal form of its type to check if it

can match the required label l . The real work is done by the auxiliary meta-operation

unpack(∆, (�s ,�t), x ,X ), which builds a candidate solution x , whilst accumulating a

context ∆ which must be instantiated, and a pair of vectors (�s ,�t) which must be equal,

for the candidate to succeed with type X . This X determines the search strategy: if

it is ∀-quantified, try application; if it demands an equation, try a reflexive proof; if

it is a pair, try each projection in turn. Eventually, if unpack reaches a candidate for

a programming problem 〈l ′ :T 〉, it checks that l ′ subsumes l by unifying the labels
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lookup(l , Γ; x �→ s : S ) =⇒ try unpack(·, (ε, ε), x , ⇓S )

before lookup(l ,Γ)

lookup(l , Γ; x : S ) =⇒ try unpack(·, (ε, ε), x , ⇓S )

before lookup(l ,Γ)

where

unpack(∆, (�s ,�t), x , 〈l ′ :T 〉) where (∆ �→�u) unifies l ′ with l and �s with�t

Γ; ∆ �→�u � x : 〈l :T 〉
=⇒ ( ⇓ let ∆ �→�u . x : ⇓ let ∆ �→�u . 〈l :T 〉)

unpack(∆, (�s ,�t), f , ∀x :S . T ) where x ∈ T

=⇒ unpack(∆; x : S , (�s ,�t), f x ,T )

unpack(∆, (�s ,�t), qf , s = t → T ) =⇒ unpack(∆, (�s;s ,�t;t), qf (refl s),T )

unpack(∆, (�s ,�t), xy ,X × Y ) =⇒ try unpack(∆, (�s ,�t), snd xy ,Y )

before unpack(∆, (�s ,�t), fst xy ,X )

Fig. 11. The lookup meta-operation.

and the accumulated constraints, then typechecking the instantiated candidate: we

use ordinary first-order unification on normalized terms.

For the fib example, lookup does indeed find that

snd (fst memox ) x ′′ (refl x ′′) : 〈fib x ′′ :�〉
snd memox (sx ′′) (refl (sx ′′)) : 〈fib (sx ′′) :�〉

This definition of lookup is certainly adequate to unpack the solutions to

programming problems exposed by D-case in the memo-structures installed by D-rec.

However, the latter are just particular instances of the general notion of elimination

operator, defined in section 4, and could have been defined by a programmer

using D-elim; but since they may be generated automatically, we may take them

as given. They capture an important class of allowable recursions; user-defined

elimination operators which capture other interesting recursive call patterns have

been considered elsewhere (McKinna, 2002), and remain the subject of ongoing

study.

Of course, htail and fib, as presented in full above, have rather more bulky code

than functional programmers normally expect to write. Especially annoying is the

fact that the calls we eventually write on either side already carry the evidence of

the case analysis and structural recursion which explain them – constructor symbols.

We can alleviate this problem somewhat by taking a combination of outer D-rec

and inner D-case applications to be the default explanation of a non-empty block of

programs wherever a single program is expected. The constructor patterns in these

programs bound the depth of the splitting which can possibly produce them, and

there are only finitely many ways to combine recursions lexicographically, hence

there is at least a clumsy elaboration method. More sophisticated approaches may

be found elsewhere (Cornes, 1997; Abel & Altenkirch, 2000).

As a consequence of this defaulting strategy, we may suppress the ⇐-clause in

htail, recovering our earlier statement of the program

let
h : HAL (l :: ls)
hTail h : HAL ls

hTail (hcons l x h ′) �→ h ′

https://doi.org/10.1017/S0956796803004829 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004829


96 C. McBride and J. McKinna

We may also remove all but the three equations from the program for fib, yielding

the more familiar

let n : �
fib n : �

fib 0 �→ 0

fib (s0) �→ s0

fib (s(sn ′′)) �→ fib n ′′ + fib (sn ′′)

Indeed, in the general case, the only -case-splits which we must retain are those

which yield no cases! The undecidability of type inhabitation obliges us to be explicit

in such situations. In the absence of evidence in the form of a constructor pattern,

which points to a particular argument type being empty, there is no basis on which

to reconstruct the correct -case-term. Examples of this arise with the occurrence of

So false in the hnil branches of typeProj and valProj.

With the derived case analysis and recursion operators, and using this convention,

our type theory can support – by elaboration into large and unreadable terms –

every program admitted by Coquand’s (1992) proposed pattern matching language,

as partially implemented in ALF (Magnusson, 1994). Such is the principal result

of the first author’s PhD thesis (1999), in which the original objective had been to

dispense with eliminators in favour of pattern matching. With hindsight, we would

recommend exactly the opposite. In our terms, Coquand’s system hard-wires splitting

as if by D-case (with intersections computed by a unification oracle) and presents

recursion only as if by D-rec.

We conclude this section with a simple example using a non-standard eliminator –

the ‘target-first’ variant of �-Compare from the Introduction, of type

�-compare : ∀m , n : �. ∀P : � → � → �.

(∀x , y : �. P x (x + sy)) →
(∀x : �. P x x ) →
(∀x , y : �. P (y + sx ) y ) →

P m n

With it, we may define the ‘absolute difference’ function for �:

let
m , n : �

absDiff m n : �
absDiff m n ⇐ �-compare m n

absDiff x (x + sy) �→ sy

absDiff x x �→ 0

absDiff (y + sx ) y �→ sx

In the original spirit of pattern matching, a testing operation, comparison, has

been safely and clearly combined with a selection operation, subtraction. We shall

present more sophisticated examples in section 6, where we develop an idiom for

constructing non-standard eliminators by first-order programming.

5 Abstracting intermediate computations

In this section, we introduce our analogue to the proposed pattern guard notation

in Haskell (Peyton Jones, 1997; Peyton Jones & Erwig, 2000) – the with construct,
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lhs |expr {program}. Pattern guards allow an intermediate computation to be matched

against a single acceptable pattern – if the subsidiary match fails, control passes to

the next line of the program. For example, pattern guards provide a convenient way

to unpack a recursively computed tuple:

unzip [] = ([], [])

unzip ((x,y):xys) | (xs,ys) <- unzip xys = (x:xs,y:ys)

Basically, our ‘| e’ achieves a similar effect by adding the result of e to the values

under scrutiny on the left. Subsequent ‘matching’ comes from the ⇐ construct

(implicitly, for standard -case) as usual. Elaboration introduces a helper function

over the existing ‘pattern variables’ along with the extra value – the concrete syntax

is much more compact. With our layout convention, the above becomes:

let
xys : List (A × B )

unzip xys : List A × List B

unzip [] �→ ([], [])

unzip ((x , y) :: xys) | unzip xys|| (xs , ys) �→ (x :: xs , y :: ys)

Once we have an intermediate value, we can consider more than one case of it,

as in our version of elem – to do this in Haskell requires a where clause.

Programs which mix analyses of arguments and of intermediate values tend

to degenerate into clunky right-hand-side cascades of if and case: counting the

number of times a given tree occurs within another, shows but the tip of the iceberg:

count s t = if s == t then 1

else case t of

Leaf -> 0

t1 :^: t2 -> count s t1 + count s t2

To connect count’s arguments with the analysis on the right, we must observe

the repeated occurrence of t. Deeper nesting on the right certainly makes it harder

to tell at a glance what a program does. Haskell’s guards reconnect such programs,

moving the analysis clearly and concisely to the left:

count s t | s == t = 1

count s Leaf = 0

count s (t1 :^: t2) = count s t1 + count s t2

Even without special sugar for booleans or ‘fall-through’, our notation tabulates

exactly the analysis performed: its ‘laws’ are as clear as its mechanism.

let
s , t : tree

count s t : �
count s t | s == t|| true �→ s0

leaf
|| false �→ 0

(t1 node t2)
|| false �→ count s t1 + count s t2
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context |context � expr � term : 〈label : term〉

[with]

Γ; ∆ � 
 � ls Γ; ∆ � e � s : S

(∆s ,∆s ) ⇐= strengthen(∆, s ,S )

lx ⇐= abst(s ,x , ls ) ∆x ⇐= abst(s , x ,∆s )

Γ; ∆s ; x : S ; ∆x � 〈lx | x :T 〉 : �

Γ|∆s ; x : S ; ∆x � p � t : 〈lx | x :T 〉
Γ|∆ � 
 | e {p} � let x �→ s : S . return (call 〈lx | x〉 t) : 〈ls : let x �→ s : S .T 〉

Fig. 12. Elaboration of ‘with’ notation.

5.1 Abstracting from types

Clarity notwithstanding, type dependency provides a second motivation for treating

subcomputations on the left – their impact on types. We have already observed this

informally with the elem, typeProj, valProj example. To connect the intermediate

label tests in typeProj and valProj with the elem computations at the type level, we

must abstract the tests from types as well as in the patterns.

Our ‘with’ notation corresponds directly to an established technique in theorem

proving – generalizing a goal by abstracting a subexpression, perhaps to strengthen

an induction – as implemented by the Pattern tactic in Coq (Coq, 2001). Its

elaboration rule is shown in figure 12.

Using the meta-operation abst (whose obvious definition as an inverse to substi-

tution is omitted), the elaborator computes abstractions (lx , on labels, and ∆x on

contexts): these abstractions must be typechecked again, to ensure that replacing

the elaborated term s by a variable has not compromised validity. The elaborator

then constructs a helper function t from subprogram p, with an extended label –

the main program calls the helper. The normalization of elem k (l :: ls), goes thus:

call 〈elem k (l :: ls)〉 List-rec . . .

�∗ call 〈elem k (l :: ls)〉 return (call 〈elem k (l :: ls) | (call 〈k == l〉 . . .)〉 . . .)

� call 〈elem k (l :: ls) | (call 〈k == l〉 . . .)〉 . . .

Correspondingly, when checking typeProjk (hconsX l x h)p | k == l {. . .}, we start

in the context

k , l : Label; . . . ; p : So (call 〈elem k (l :: ls) | (call 〈k == l〉 . . .)〉 . . .)

The term being abstracted, k == l , elaborates to the same (call 〈k == l〉 . . .) as is

found in the type of p, so the subprogram is checked in the context

k , l : Label; b : Bool; . . . ; p : So (call 〈elem k (l :: ls) | b〉 . . .)

Of course, the 〈k == l〉 call is abstracted from the term implementing the 〈elem . . .〉
call, not just from the label. The subsequent analysis of b then allows the type of p

to reduce further. The [with] rule gives the correct behaviour for valProj too, with

abstraction from types working even harder to our benefit.

6 Views: a programming idiom

We have shown how abstracting an intermediate computation can have useful

effects on types which depend on it. Case analysis on an intermediate value can
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also instantiate other patterns, if that value comes from a dependent family. In this

section, we will illustrate this possibility, and show how it leads to an account of

views, as proposed by Wadler (1987).

It is a commonplace to equip a datatype with an ordering via an operator returning

an element of the enumeration Ordering, {lt, eq, gt}. For �, we might write

let
m , n : �

cmp m n : Ordering
cmp 0 0 �→ eq

cmp 0 (sn) �→ lt

cmp (sm) 0 �→ gt

cmp (sm) (sn) �→ cmp m n

We might then write absDiff via an intermediate comparison:

let . . . absDiff m n | cmp m n|| lt �→ n − m|| eq �→ 0|| gt �→ m − n

A minor problem with this approach is that x − y must return bogus answers

when y is the larger, in order to be a total function. More annoying is the fact

that cmp has basically done the subtraction, but thrown the answer away. We could

get around this by extending Ordering with difference information, but datatype

families offer a more subtle approach – we can define a binary relation on �, with

three canonical ways to show that two given numbers are comparable:

data
x , y : �

Compare x y
where

lt x y : Compare x (x + sy)

eq x : Compare x x

gt x y : Compare (y + sx ) y

Of course, every two numbers are comparable in one of these three ways. We can

prove this by writing a program not much more complex than cmp above:

let
compare x y : Compare x y

compare 0 0 �→ eq 0

compare 0 (sn) �→ lt 0 n

compare (sm) 0 �→ gt m 0

compare (sm) (sn) | compare m n

compare (sx ) (s(x + sy))
|| lt x y �→ lt (sx ) y

compare (sx ) (sx )
|| eq x �→ eq (sx )

compare (s(y + sx )) (sy)
|| gt x y �→ gt x (sy)

What has happened here? For the base cases, it is easy to choose the appropriate

constructor and its arguments. To compare sm with sn , however, we must ‘update’

the result of comparing m with n , hence we abstract it. But when we analyse a

value in the datatype Compare m n , the arguments m and n become instantiated

via the more informative constructor types. Inspecting an intermediate value has

simultaneously told us more about the arguments from which it was computed.
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Analysing the value of compare m n now does the job of comparison, subtraction,

max and min. We can now write

let . . . absDiff m n | compare m n

absDiff x (x + sy)
|| lt x y �→ sy

absDiff x x
|| eq x �→ 0

absDiff (y + sx ) y
|| gt x y �→ sx

The instantiated patterns now make quite clear the relationship between the inputs

and the outputs in each case. We emphasize again that the nonlinear and ‘+’ patterns

do not require any ingenious operational behaviour: this is just a clearer way to

write programs with basically the same operation as cmp.

One can perhaps imagine other suites of related testing and selection functions

being combined into more general analysis methods which deliver informative

patterns: Haskell’s takeWhile, dropWhile, exists, all, . . . each extract different

functionality from the common process of applying a test successively to the elements

of a list until it succeeds (or fails). By giving that process a type which shows whether

and how the list is split at a particular point, all of these functions, together with

particular instances like elem, can be combined. We leave this as an exercise.

The curious thing about compare m n is that once we have seen the patterns

it yields for m and n , we no longer care about its actual value! The column of

patterns with lt, and so on, in absDiff is unnecessary noise. We can tidy up this

idiom of testing and selection by examining case analysis over an inductively defined

relation.

6.1 From relations to views

Wadler’s original views proposal (1987) fits well with the notion of user-defined

elimination operators. He suggests that any (possibly abstract) datatype T may

be equipped with a notion of pattern matching by defining an isomorphism

between T and a datatype D: elements of T may be matched against or built by D’s

constructors d1, . . . , dn, with the compiler inserting either component of the

isomorphism, out : T → D or in : D → T , as required. Of course, there is

no guarantee that in and out are either total or mutually inverse. In our setting, such

a view may be expressed by replacing out with an elimination operator,

T -view : ∀t :T . ∀P : T → �.

(∀�x1 :�X1. P (d1 �x1)) →
...

(∀�xn :�Xn. P (dn �xn)) →
P t

where di is the defined operation by which in interprets di. Moreover, this type makes

it clear that the t we put in is exactly the (di �xi) we get out.
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context � expr � term : term

[view]

Γ � e � t : D�t

Γ � D-case t : ∀P ′ : (∀Φ. D Φ → �). . . . (∀Φi. P
′
�si

(ci ∆i)) → . . . → P ′ t

Γ � view e � λP : ∀Φ.� . D-case t (λΦ. λ :D Φ. P Φ)

: ∀P : ∀Φ.� . . . . (∀∆i. P�si) → . . . → P�t

Fig. 13. Elaboration of view.

It is easy to extract these eliminators from programs like compare above. To see

how, examine the following two typed terms:

�-compare m n :

∀P : � → � → �.

(∀x , y . P x (x + sy)) →
(∀x . P x x ) →
(∀x , y . P (y + sx ) y ) →

P m n

Compare-case (compare m n) :

∀P ′ : ∀m . ∀n .Compare m n → �.

(∀x , y . P ′
x (x+sy) (lt x y) ) →

(∀x . P ′
x x (eq x ) ) →

(∀x , y . P ′
(y+sx ) y (gt x y) ) →

P ′
m n (compare m n)

These are almost the same, except that P ′ (on the right) takes an extra argument –

the actual value from the Compare family. However, given a candidate motive P

for �-compare, we can choose to instantiate P ′ with

P ′ �→ λm ,n . λ :Compare m n . P m n

This motive ignores its Compare argument and applies P to just the indices – the

patterns we wish to keep. Observe then that the following judgment holds:

λP : ∀m , n :�. � .

Compare-case (compare m n)

(λm ,n . λc :Compare m n . P m n)

: ∀P : � → � → �.

(∀x , y . P x (x + sy)) →
(∀x . P x x ) →
(∀x , y . P (y + sx ) y ) →

P m n

We have just built �-compare! This construction is just what we mean by the

concrete syntax view compare m n . Figure 13 shows the elaboration rule.

There is a general recipe for establishing that a type T can be viewed via patterns

p1 (over ∆1) to pn (over ∆n) – it readily extends to views of vectors of values. First,

declare the relation

data t : T
View−T t : �

where ∆1

c1 ∆1 : View−T p1
· · · ∆n

cn ∆n : View−T pn

Secondly, write the covering function which shows that the view applies to all of

T :

let
view-T t : View−T t

. . .

The view may be invoked in a function using the ‘by’ construct,

lhs ⇐ view view-T t {programs}
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let
compare m n : Compare m n

compare 0 0 �→ eq 0

compare 0 (sn) �→ lt 0 n

compare (sm) 0 �→ gt m 0

compare (sm) (sn) ⇐ view compare m n

compare (sx ) (s(x + sy)) �→ lt (sx ) y

compare (sx ) (sx ) �→ eq (sx )

compare (s(y + sx )) (sy) �→ gt x (sy)

Fig. 14. Comparison of natural numbers.

Indeed, as view t is meaningful for any t which belongs to a datatype, we can, in

particular, use view to show the effect on patterns of the covering function’s own

recursive calls. The actual code for compare in figure 14 demonstrates this.

What we have done is to explain non-standard ‘pattern matching’ via the

refinement of index information which naturally accompanies standard case analysis

for datatype families, whilst hiding their actual constructors. We hope that the

intermediate data structures concealed when a view is invoked can vanish from

compiled code by deforestation, a technique for which we also have Wadler (1990)

to thank.

Wadler conceived his view notation as syntactic sugar for the insertion of mutually

inverse coercions between datatypes, one of which admits pattern matching, the

other potentially abstract. The idea that a signature for an abstract data structure

might hide its actual representation, but nonetheless export a notion of ‘pattern

decomposition’, overcomes a genuine problem in the engineering of modular code.

Programming with such programmer-definable patterns is exactly what the ⇐
construct permits, with the bonus that the interface is given by a type which can

be required of an exported method in the usual way. Moreover, this type precisely

witnesses the ‘no junk’ direction of the bijection: Wadler is forced by an inexpressive

type system to trust the programmer.

The presentation of views through datatype families also makes it easy to state

a ‘no confusion’ property, by stipulating that the covering function view-T delivers

the only possible value in each case. We describe views with this property as

unambiguous. To establish this property, we write a program with signature:

let x : View−T t
view-T -unique x : view-T t = x

· · ·

7 An extended example: typechecking

This section shows views in action. We develop a typechecker for Church-style pre-

terms in simply-typed λ-calculus. Our language of simple type expressions has a base

type and function spaces:

data
TExp : �

where
o : TExp

S ,T : TExp
S ⇒ T : TExp
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Contexts are represented (back-to-front) by lists Γ : List TExp of such. We use a

de Bruijn index (1972) representation of variables, rendered in type theory as usual

by the datatype family Fin : � → �, where Fin n has n elements.

data n : �
Fin n : �

where • : Fin sn
i : Fin n

↑ i : Fin sn

Our source language, Expr n , is the datatype of well-scoped but untyped expres-

sions with n free variables, the pre-terms. This is quite close to the representation of

untyped terms in Bird & Paterson (1999).

data n : �
Expr n : �

where i : Fin n
eVar i : Expr n

f , s : Expr n
eApp f s : Expr n

S : TExp t : Expr (sn)
eLam S t : Expr n

Our aim is to write a typechecker for pre-terms, relative to a given context Γ, of

length |Γ|; we check expressions in Expr |Γ|, by defining three views, respectively:

• for looking up variables in the context;

• for testing equality of simple types;

• for typechecking pre-terms.

Each of these views has a similar flavour: they capture the extraction of structured

data (like well-typed terms or error diagnostics) from less structured data (like pre-

terms) by showing that the latter can be viewed as the forgetful image of the former.

Let us warm up by considering variables.

7.1 The find view

We may define the membership relation of a list inductively as follows:

data xs : List X x : X
In xs x : �

where • : In (x :: xs) x
i : In xs y

↑ i : In (x :: xs) y

An element of In xs x encodes a reference to a particular x in a list xs . We think

of such a reference as a de Bruijn index into a list, labelled by the x to which it

points, which is why we have overloaded the constructors. We shall use In Γ S to

represent variables of type S over contexts Γ in our definition of well-typed terms.

There is an obvious forgetful map |i |x from In to Fin, which strips the label. We

usually overload such forgetful maps as |−|, superscripting what the map forgets, if

we ourselves wish to remember it.

let i : In xs x
|i |x : Fin |xs | |•|x �→ •

|↑ i |x �→ ↑ |i |x

If we have an unlabelled index in Fin |xs |, we can look it up in xs by ‘unforgetting’

the label. That is, we explain how every unlabelled index arises as the forgetful image

of a labelled index, by means of the following view :

data
xs : List X i : Fin |xs |

Find xs i : �
where i : In xs x

found x i : Find xs |i |x

let
find xs i : Find xs i

find (x :: xs) • �→ found x •
find (x :: xs) (↑ i ) ⇐ view find xs i

(↑ |i |x ) �→ found x (↑ i )
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This program fragment shows how we use this view:

check Γ (eVar i ) ⇐ view find Γ i

(eVar |i |S ) �→ · · ·

7.2 The type of well-typed terms

Now that we can represent typed variables, let us define the well-typed terms, in a

similar fashion to Altenkirch & Reus (1999):

data
Γ : List TExp T : TExp

Term Γ T : �

where i : In Γ S
var i : Term Γ S

t : Term (S :: Γ) T
lam S t : Term Γ (S ⇒ T )

f : Term Γ (S ⇒ T ) s : Term Γ S
appS f s : Term Γ T

These constructors just give the typing rules in syntax-directed form. There is an

obvious forgetful map from Term to Expr:

let t : Term Γ T
|t |T : Expr |Γ|

|var i |S �→ eVar |i |S

|lam S t |S ⇒T �→ eLam S |t |T

|appS f s |T �→ eApp |f |S ⇒T |s |S

7.3 The eq? view

Imagine we are in the process of typechecking an application. On one hand, we have

a function, which we have checked has an ⇒-type: that is, we have some |f |S ⇒T .

On the other, we have an argument, which is some well-typed term |s |A. What we

do not yet know is whether S and A are the same. How will we find out?

We could compute the value of S == A, the usual Boolean equality test. If false,

the application is ill-typed, so we can reject it. But if true, whilst we may know

that == tests equality, the typechecker just knows that S ,A : TExp; true : Bool. A

successful == test does not tell the typechecker that S and A are the same, hence

we cannot yet build app f s . The trouble is that a Bool is a bit uninformative. We

can remedy this by presenting equality via a view. As usual, we declare a relation

data
S ,T : TExp
Eq? S T : �

where
same : Eq? S S

T : Isnt S
diff T : Eq? S (T\S )

The first constructor is clear enough, but what is this Isnt S , and what is (S\T )?

The former is a type representing evidence of difference from S , and the latter is its

forgetful map back to TExp (which binds more tightly than ⇒). We do not write

|T |S , to avoid clashing with the forgetful map for Term. There are many ways to

define Isnt, for example, using existential quantification (dependent pairs):

Isnt S �→ ∃T : TExp. S = T → ⊥ (T , p)\S �→ T

Another possibility is to define Isnt by recursion on S . We, however, use a datatype

family, but we defer its declaration until we have tried to write the covering function,

eq?. The top part of figure 15 shows how far we get.
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The positive cases of eq?

let
eq? S T : Eq? S T

eq? o o �→ same

eq? o (S2 ⇒ T2) �→ diff ?1

eq? (S1 ⇒ T1) o �→ diff ?2

eq? (S1 ⇒ T1) (S2 ⇒ T2) ⇐ view eq? S1 S2

eq? (S ⇒ T1) (S ⇒ T2) ⇐ view eq? T1 T2

eq? (S ⇒ T ) (S ⇒ T ) �→ same

eq? (S ⇒ T ) (S ⇒ T ′\T ) �→ diff ?3

eq? (S ⇒ T1) (S ′\S ⇒ T2) �→ diff ?4

Filling in the negative cases

data
S : TExp
Isnt S : �

where let T : Isnt S
T\S : TExp

[?1] isnto S2 T2 : Isnt o
isnto S2 T2 \ o �→ S2 ⇒ T2

[?2] isnt⇒ S1 T1 : Isnt (S1 ⇒ T1)
isnt⇒ S1 T1 \ (S1 ⇒ T1) �→ o

[?3]
T ′ : Isnt T

isntR T ′ : Isnt (S ⇒ T )
isntR T ′ \ (S ⇒ T ) �→ S ⇒ T ′\T

[?4]
S ′ : Isnt S T2 : TExp
isntL S ′ T2 : Isnt (S ⇒ T1)

isntL S ′ T2 \ (S ⇒ T1) �→ S ′\S ⇒ T2

Fig. 15. The equality view.

Now, we need elements of Isnt types in four places – two for ‘different constructors’,

and two for differences left or right of ⇒. The easiest way to define Isnt is just

to give it constructors for these cases, packing up exactly the information available

where they are used. The constructor forms declared at the bottom of figure 15 go in

the ‘holes in the program’ as indicated. Or rather, the constructor forms come from

the holes in the program as indicated. The forgetful map is generated accordingly.

We see no reason why, in an interactive setting, we cannot extract the ‘remainder’

family from the unsolved programming problems.

7.4 The check view

We define typechecking as a view Check Γ e on contexts and pre-terms, expressing

any e : Expr |Γ| as the forgetful image either of a Term, or of an Error. Again, we

shall defer giving the constructors of Error until we have identified the holes in the

program check Γ e which establishes the view. At the top of figure 16, we develop

the algorithm as usual, by case analysis on e, followed by recursive calls to check:

• in the eVar case, there is nothing further to do, as variables are well-scoped;

it suffices to look up the type from the context, using the find view;

• in the eLam case, we typecheck the body in an extended context;
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The positive cases of check

data
Γ : List TExp e : Expr |Γ|

Check Γ e : �

where t : Term Γ T
term T t : Check Γ |t |T

err : Error Γ
error err : Check Γ |err |

let
check Γ e : Check Γ e

check Γ (eVar i ) ⇐ view find Γ i

check Γ (eVar |i |S ) �→ term S (var i )

check Γ (eLam S t ) ⇐ view check (S :: Γ) t

check Γ (eLam S |t |T ) �→ term (S ⇒ T ) (lam S t)

check Γ (eLam S |err |) �→ error ?1

check Γ (eApp f s ) ⇐ view check Γ f

check Γ (eApp |f |o s ) �→ error ?2

check Γ (eApp |f |S⇒T
s ) ⇐ view check Γ s

check Γ (eApp |f |S⇒T |s |A ) ⇐ view eq? S A

check Γ (eApp |f |S⇒T |s |S ) �→ term T (app f s)

check Γ (eApp |f |S⇒T |s |A\S
) �→ error ?3

check Γ (eApp |f |S⇒T |err | ) �→ error ?4

check Γ (eApp |err | s ) �→ error ?5

Filling in the negative cases

data
Γ : List TExp
Error Γ : �

where let e : Error Γ
|e| : Expr |Γ|

[?1]
err : Error (S :: Γ)

bodyE S err : Error Γ
|bodyE S err | �→

eLam S |err |

[?2]
f : Term Γ o s : Expr |Γ|

notFunE f s : Error Γ
|notFunE f s | �→

eApp |f |o s

[?3]
f : Term Γ (S ⇒ T ) s : Term Γ (A\S )

mismatchE f s : Error Γ

|mismatchE f s | �→
eApp |f |S⇒T |s |A\S

[?4]
f : Term Γ (S ⇒ T ) err : Error Γ

argE f err : Error Γ

|argE f err | �→
eApp |f |S⇒T |err |

[?5]
err : Error Γ s : Expr |Γ|

funE err s : Error Γ
|funE err s | �→

eApp |err | s

Fig. 16. The typechecking view.

• in the eApp case, we successively check first the function, then the argument,

and finally match the computed types using the eq? view.

The view of each recursive call on check, yields two cases, according as typecheck-

ing succeeds or fails; in the case of success, the pattern lays bare precisely the data

required for the next call. As with the equality view, we now choose constructors and

define a forgetful map for Error with which we can fill in the five remaining holes,

packing up the information exposed by each of the possible sources of typechecking

failure – see the bottom of figure 16.
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The function check is not just a program: it is a proof that typechecking is

decidable for the pre-terms. It does not merely say ‘yes’ or ‘no’, but rather explains

each pre-term as deriving, by a forgetful map, either from a well-typed term or an

error term. Its type guarantees that the term being checked really is the term it is

given. Its analysis is concisely stated and imposes the conditions for well-typedness

(and its complement) just as they are expressed by the typing rules.

Moreover, as its recursive calls show, it represents these two possibilities in a

‘pattern matching’ style, visibly delivering either a well-typed term which may be

passed to an exception-free interpreter in the style of Augustsson & Carlsson (1999),

or a useful error diagnostic. The latter locates the leftmost type error in a pre-term.

It could easily be adapted to find every application of a well-typed non-function

or mismatched application between two well-typed terms—useful information not

only for error reporting, but also for type debugging and repair, as investigated by

McAdam (1999).

Epilogue

The main discovery we have made in the light of this research is how little is known,

not least by ourselves, about functional programming with dependent types. It is no

longer credible to conceive of dependently-typed programming merely as a means to

rehabilitate programs which were lost to us when we moved from untyped languages

to the Hindley-Milner system. We take its inherent complexity as an opportunity,

rather than a problem, and in so doing, we see emerging a very different possibility

for declarative programming, which we have barely begun to explore.

This paper has introduced a specific programming notation on top of an existing

type theory. Through detailed examples and a skeletal formal definition which

explains how the main constructs are translated, we hope to have shown some of the

power, as well as weight, to be found in this new world. We have extended the notion

of ‘pattern matching’ to embrace any user-definable structured decomposition of data

on the left, including the use of, and interplay with, intermediate computations and

result types. We have further related our work specifically to two proposals in the

functional programming community for extensions to the classical notion of pattern

matching, Peyton Jones’ (1997) pattern guards and Wadler’s (1987) views.

The former remarks that the potential uses of pattern guards are, can, and should

be ubiquitous, as they allow “a useful class of programs to be written much more

elegantly”. We would certainly argue that this is all the more surely the case in our

setting – with the greater expressivity available using dependent types, that class of

programs becomes much more interesting. And in our notation, we would argue,

without any loss of that elegance. Neither we, nor anyone else for that matter, have

even begun to exhaust the possibilities of programming in such a style.

As to the latter, we have given a thorough analysis of how views may be

presented using dependent types, as well as variety of examples of views, and uses

of views not previously considered in the literature. Our general picture allows us to

consider partial and ambiguous views, to explore trade-offs between recursive and
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non-recursive views, as well as looking at termination proofs and varieties of

recursion induction (Bove & Capretta, 2001).

More generally, we take the explosion of power which dependent types bring

to programming, as delineated in section 3 as a cue to re-evaluate design choices

about the language within which we express programs, the tools with which we

construct programs, and the programs we choose to write in the first place. This

includes reassessing the interfaces and implementations of standard data structures

and algorithms, no less than any other programs.

We believe that such new languages, tools and libraries as emerge in the future

will also profit considerably from the experience gained in the wider domain of

interactive problem-solving with dependent types. While we have downplayed that

aspect of our research in this paper, our new analysis of the left-hand sides of

functional programs is strongly rooted in logical considerations and the techniques

which are supported by existing interactive proof assistants based on type theory.

We intend in future work to elaborate on these aspects, and the contribution our

notation may make to declarative proof.

There is much work to do here in building such a future – in Durham, we have

dubbed our programme of research Epigram, embracing language, meta-theory,

implementation and applications. The first author’s experimental extensions to

Lego (1999; 2002) provided tactics for inductive proof supporting the constructions

which underpin the [by] and [with] elaboration rules. These tactics are sufficient

to develop the examples in this paper, but do not support a concrete syntax for

programs as such.

This paper lays the groundwork for a formal language definition for Epigram;

we are now working on a new prototype implementation based on this definition.

Clearly many interesting issues remain to be explored, not least at the run-time level,

studying the operational behaviour of elaborated programs.

In closing, we return to Wadler, crediting him with the insight that, by constructing

views, we can and should choose to adapt our perceptions of data to match our

conceptions of data. We are able to reify his views directly, by using dependent

types, and by our treatment of the left. So hurrah for Wadler! Welcome to the new

programming.
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