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Extension Theorems on Weighted Sobolev
Spaces and Some Applications

Seng-Kee Chua

Abstract. 'We extend the extension theorems to weighted Sobolev spaces Lﬁ «(D) on (g, ) domains

with doubling weight w that satisfies a Poincaré inequality and such that wV/P islocally LP " We also
make use of the main theorem to improve weighted Sobolev interpolation inequalities.

1 Introduction

By a weight w, we mean a non-negative locally integrable function that is positive
almost everywhere on R". By an abuse of notation, we will also write w for the mea-
sure induced by w. Sometimes we write dw to denote wdx. We usually assume w
is doubling, by which we mean w(2Q) < Cw(Q) = C fQ w(x) dx for every cube Q,
where 2Q denotes the cube with the same center as Q and twice the edgelength of Q.
All cubes in this paper are assumed to be closed and with edges parallel to the axes. Q
will always be a cube and I(Q) will be its edgelength. Q,(x) will be the cube with cen-
ter x and /(Q,(x)) = r. Let ;1 be another weight. By w/u € A, (1) (the Muckenhoupt
A, condition with respect to 1), we mean

(L) (L) )" <

whenl < p <oo,1/p+1/p’ =1,and

P _ )
W@ =" wQ

for almost every x in Q when p = 1 for all cubes Q in R".

When p = 1, we will just write it as A,. Note that w is doubling when it is in A,
and clearly w/w € A, (w).

Let D be an open set in R”. If « is a multi-index, & = (a1, ag,...,a,) € 71,
we will denote 3" a; by |a| and D* = (0%)&1 ...(%)“". By @ > (3, we mean
aj > Biforalll < j < n. Moreover we write « > Bifa > Band a # (5. We
denote by V the vector ( a%v a%a . %) and by V" the vector of all possible m-th
order derivatives for m € N. A locally integrable function f on D (we will write
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f € L, .(D)) has a weak derivative of order « if there is a locally integrable function

(denoted by D* f) such that

[ swrpras= 0 [ @ peas
D D

for all C* functions ¢ with compact support in D (we will write ¢ € C3°(D)).
For1 < p < 00,k € N, and any weight w, L*;k(D) and Eﬁk(D) are the spaces of
functions having weak derivatives of all orders ¢, || < k, and satisfying

1/p
_ a _ a r|p
Il = 3 10y, = 3 ([ irsran) ™ <,

0<[a|<k 0<]a| <k

and

_ v
1Flly iy = 2 107l < 00,

|| =k

respectively. Moreover, in the case when w = 1, we will denote LfV (D) and Ef,’k('D)
by Lf (D) and Ef (D), respectively. We let ck-1t (D) be the collection of all functions

loc
on D such that all their derivatives of order k — 1 are locally Lipschitz continuous

on D. In case k = 1, we will just denote it by Lip,, (D). Furthermore, by f €
CE11(D), we mean f = flz with f € CELY R,

loc loc

Definition 1.1 An open set D is an (¢,0) domain if forallx,y € D,| x — y |< 4,
there exists a rectifiable curve v connecting x to y such that y lies in D and

X —

(1.1) I(y) < |—y|,
€

Elx —z||y — 2]
x— |

Here I(7y) is the length of 7y and d(z, 0D) is the distance between z and the boundary

of D. Moreover, we will write d(Q, S) = infyeqyes | x — y |, d(Q) = d(Q,0D) and
d(z) = d({z},9D).

(1.2) d(z,0D) > Vz € 7.

In 1981, P. Jones [27] extended a famous extension theorem on Lipschitz domains
to (¢, d) domains.

Theorem 1.2 If D is a connected (g,0) domain and 1 < p < oo, then C*(R") N
Lf(D) is dense in Lf(@) and L;l:(D) has a bounded extension operator, i.e., there exists
A: LY(D) — LY(R") such that Af|n = f a.e. and ||A|| is bounded. Moreover, the
norm of the extension operator depends only on e, 4§, k, p, rad(D), and the dimension n.

Furthermore, he proved that

Theorem 1.3 If D is an (g, 00) domain in R", then E{(D) has a bounded extension
operator.
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Let D be a bounded (&, c0) domain with radius r = infycp SUp e p |x — y| =
rad(D) and let 2 be a bounded open set containing D. Let W, be the collection of
cubes in the Whitney decomposition of (D) and define

{Q€W2 Z(Q),16 L} L=2""mel,,

where L is chosen so that Q@ C (Ugey, Q) U D.

In 1992, the author [10] extended Theorems 1.2 and 1.3 to weighted Sobolev
spaces L? k(D) and E? k(D) when the weight is in A,. Moreover, in the case of (¢, c0)
domams, the author showed that:

Theorem 1.4 ([10, Theorems 1.4 and 1.5]) Letw; € A,,1 < p; < oo fori =
0,1,...,N. Let §) be an open set containing an (£, 00) domain D and let L and r be

defined as above such that Q@ C (geyw, Q) UD. Then there exists an extension operator
A on D such that

(1.3) [VEAS]

X7k .
Ll’x Q) < Cle f”Lz"(‘D) fOT’ all i

forall f € ﬂ EPi & (D). Here C; depends only on e, p;, w;, ki, n, L and max; k;.

10w

Moreover, if D is unbounded, then (1.3) holds for QQ = R".

Furthermore, in 1994, Theorems 1.2 and 1.3 were further extended by relaxing the A,,
condition on the weight w to just doubling weights that satisfy a Poincaré inequality
[12, Theorems 1.2 and 1.3]. However, the extension operator obtained there was only

on C{‘ Y1 (R™). The author also extended Theorem 1.4 to more general weights:

Theorem 1.5 ([12, Theorem 1.4]) Let1 < p; < oo fori =0,1,...,N. Let Q2 bea
bounded open set containing an (¢, 00) domain D and let L and r be as before. Let 11 be
a weight and suppose that w; are doubling weights such that (fo,, = m Jo faw

(1.4) If = faull < AlQIIVS]

. vQc D
i Li(Q) Q

forall f € Lip,,.(D) andi = 0,1,...,N. Then there exists an extension operator on
D such that Af € Ck_l’l(IR{") and

loc

IV*AS] < Gil|[V*f]

LP: (R —

LP!
foralliand f € CE-MY(D); in addition, ifwi/ i € Ap, (1) for some i, then for that i,

loc
1Ml gy <Gl

Pi
Lukl

(@) (D)

and

IV AASIL,, o < GV

i@ — (D)’

C; depends only on w;, i, €, L, p;, Ai, k and n.

https://doi.org/10.4153/CJM-2006-021-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-021-0

Extension Theorems on Weighted Sobolev Spaces and Some Applications 495

Moreover, if D is a bounded (¢, ) domain and w is a doubling weight such that
w~/P € I (R") and w is locally A, in D, then it is obtained in [15] that the ex-
tension theorem holds for L? (D) if (1.5) below holds. In this paper, we will further
study the extension problem when the weights are just doubling and satisfy a Poincaré
inequality. Note that in those previous studies, the standard approach is to extend
functions in Cﬁ;l’l(ﬁ) and then apply density theorems. However, in general, one
does not have density theorems for weighted Sobolev space when the weight is only
doubling and satisfies a Poincaré inequality. Note that even though (e, ) domains
need not be connected, one can always consider each of its connected components.
Thus we will just consider connected (¢, §) domains. Let us now state our main the-
orems and results.

Theorem 1.6  Let D be a connected (g,0) domain and let 1 < p < oo, k € N.

Suppose w is a doubling weight such that w='/? € Lf:;c (R™) and the following Poincaré
inequality holds (where fq ., = ﬁ fQ fdw):

(15) 1 = fally g < Azccz)uwnw

forall f € EP 1(D) and cubes Q C D, L d ;< Ao, Ag > 0. Then forany f € L? k(iD)
there exists an extension Af € L’ k( R™) such that

[Af]

ey < IS

15,(D)

where C depends only on A, Ay, €, 9, rad(D), w and the dimension n. Moreover, if in
addition f € CX_ "V (D), then indeed Af € CE_ "' (R™).

loc loc

Moreover, we have the following.

Theorem 1.7 Let1 < p; < oofori=1,...,N,and k € N. Let ) be a bounded
open set containing an (¢, 00) domain D and let L and r be as in Theorem 1.4. Let 1
and w; be doubling weights such that

1(Q)u(Q)
(1.6) If - fQ’“’”L},(Q) S A QU wi(Q)V/pi

for all f € Lip,,.(D) and for all cubes Q C D such that X d(Q < Ay, Ay > 0. Then for

any f € Cﬁ)cl (D), there exists an extension Af € Clkoc1 Y(R™) such that (Af = f on
D)

11

(1.7) IV'Af]L, < GV 1<i<k

Ly (Q) i)’

Here C; depends only on w;, p, €, L, pi,Ai, k and n. Furthermore, for any doubling
weight v such that v/ € Ap(p), 1 < p < 00, we have

Here C depends only on v, i, €, L, p, k and n.
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Remark 1.8

(1) Theorem 1.7 is indeed stronger than Theorem 1.5 except when I = k in (1.7).
Note that (1.6) will imply (1.4) (see Remark 2.9). However, in case w;/ju € A, (1),
then (1.6) is indeed equivalent to (1.4). Thus in case 0 < I < k, the conclusion
of Theorem 1.7 is strictly stronger with slightly weaker conditions (since we do not
assume w; /11 € Ap, (1) here). Moreover, even though we will only prove that

ek
Lffli(g) S Cl”v f||L£,§(D)7

IVEAS]
one can indeed replace €2 by R” in the above inequality by modifying the extension
of functions outside UW3; see the proof of [12, Theorem 1.4] for the detail.

(2) Since (1.6) implies (1.4), by repeated applications of (1.4), we have for all
0<|af <1,

(19) 1D =Py ) < CHQIVD"(f =~ PL@P

< CUQTIVAIL, o

if PL(Q) f is the unique polynomial of degree < [ such that
/ D’(f —P,(Qf)du=0, forall0 <|B| <L
Q

(3) Itiseasy to check that (1.5) holds for distant-type weights w(x) = dist(M, x)4,
M C 9D. Note that clearly such weights need not be in A,. Moreover, there is a
class of domains with dist(x, D) ~/? ¢ LP,(Q), [24, Theorem 6]. Also, see [7] for
another class of non-A, weights such that (1.5) holds.

2 Preliminaries

In what follows, C denotes various positive constants, which may differ even in a
sequence of consecutive estimates. Moreover, sometimes we will use C(«, 3, ...)
instead of C to emphasize that the constant depends on «, 3, . . ..

In this section, we will collect some useful results that will be needed in the proof
of our main theorem. First of all, since we will need to project functions into spaces
of polynomials, we will state some results about polynomials.

Theorem 2.1 ([10, Lemma 2.3])  Let F, Q be cubes such that F C Q and |F| > ~|Q|.
Ifwis a doubling weight, 1 < q < oo, and p is a polynomial of degree less than k, then

w(E)

1/q
HPHU‘{/(E) < C(’Yvka mw)(ﬁ) ||p”L’jV(F)

for all measurable sets E C Q.
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Lemma 2.2 ([37, Chapter 3, Lemma 7])  Ifwisa doubling measure and k is a positive
integer, then there exists so(n, k, w) such that if s < sy, then for all cubes Q, A > 0 such
that

w({x € Q:plx)| > )\}) < sw(Q)

we have

sup |p(x)| < CA,
x€Q

where p is any polynomial of degree less than k and C is a constant independent of A, Q
and p.

It follows from Chebyshev’s inequality and this lemma that given k and a polyno-
mial p of degree less than k,

2.1) 12w < —lpl
. P~ < g 1Pl

with C independent of Q and p.
The following is now a consequence of Markov’s inequality (see [2]) and Lemma
2.2.

Theorem 2.3  Let p be a polynomial of order less than k and 1 < q < oo. Ifwisa
doubling weight, then

—1
for all cubes Q in R", where C depends only on k, w, q and n.

We now prove an interesting fact about projection of functions into polynomials.

Proposition 2.4  For any k € N, cube Q C R" and doubling weight o, there exists a
projection ™ (Q): L1(Q) — Pi_, (space of polynomials of degree < k) such that

C
k
7@ Iy < 5551 g

where C depends only on k,n and the doubling constant of o. When o = 1, we just
denote the projection by T (Q) f.

Proof This proposition can indeed be found in [17]. However, as the proof is quite
short and the reference may not be available, we will prove it here.
First note that P;_; is a finite dimensional vector space over R and f QP1p2 do
defines an inner product on Py_;. Hence there exists an orthonormal basis {1, ¢,
.y om} C Pr_y with respect to this inner product. Then ”%HLZ(Q) = land

(x) = i(x) pily)d
plx ;wx/()pywy o
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if p € Pr_1. We now define
QS0 = Y0 [ S for f € 11(Q),
i=1 Q

It is clear that 75(Q) is a projection to P;_. Next, by (2.1) and Holder’s inequality,
we have

C
1ill e ) = W”%’Hq(@ =C/o(Q"?

where C depends only on the doubling constant of o, k and the dimension n. It is
now clear that

m
C
k
HWU(Q)J[HLDC(Q) < Z ||g01||LOO(Q)||SOIHLOC(Q)||fHL(17(Q) < T@HfHL}r(Q)
=1

Consequently, we have

Lemma 2.5 Letl < p < ooandk € N. Let w be a doubling weight on R" such that
for any weakly differentiable function f and cube Q, there exists a constant a( f, Q) such

that

(2.2) 1f = alf; Qll ) < CHQIV Sy -
Then

(2.3) ID*(f = Q) ) < CUQTIVIA,
and

(2.4) ID° T QN3 < CIV fls

for|a] <I1<kandf € Efv,k(Q)‘

Proof Let f € Eﬁ_k(Q). First note that then f € Lka(Q) by repeated applications
of (2.2). Next note that by the triangle inequality, Holder’s inequality, and (2.2), we
have
(2.5)

1 = fallyq) < If = s Qlyy ) + I = alf.

T /o] 1 _
=1~ alf, Dl @] i [ (7~ s @
<2||f —a(f, Q)HLP(Q) (by Holder’s inequality)

< CUQIV Al -
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Foreach ! € N, I < k, let P! (Q) f be the polynomial of degree < I such that
/ D(f —PL(Qf)dw=0 forall0<|a| <L
Q

Then by repeated applications of (2.5), we have
argr _ pl I—|a| 1
(2.6) ID*(f = PUQ ) < CHQIVS I,

for 0 < |a| < I Also, (2.6) clearly holds if || = Ias P,(Q)f is a polynomial of
degree < . Hence if 0 < || < I <k,

ID*(f — 75 (Q )l

LI(Q)

< ID*(f = Pl 5 ) + CUQ N [THQILS = P11l
(by the triangle inequality and Theorem 2.3)

< ID*(f = PUQI NIy ) + CHQ T WQPmUQLS = PUQ 11
(by Holder’s inequality)

< ID(f = Pl g + CUQT I = Pl
(by Proposition 2.4 and Holder’s inequality)

< CHQ IV £l

by (2.6). Next, by the triangle inequality and the previous inequality,

k ok v
< C||V|“|f| 1@ m

Remark 2.6  Inequality (2.3) has been established before. However, only recently
did we realize that (2.4) is indeed just a consequence of (2.3).

Next, let us state a consequence of [16, Theorem 1.6].

Theorem 2.7 Let0 < p,s < 00, 1 < A < 0o. Let u be a measurable function defined
on a cube Qq and let “a” be a nonnegative set function on all cubes Q with A\Q C Qy.
Let pu be a doubling weight with doubling constant C,,. Suppose there exists a doubling
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weight o such that for any cube Q with AQ C Q, there exists a polynomial Pq of degree

< k so that
! <
(2.7) W” PQHLP o S4Q
and there exists 0 < 0 < 1 such that
(2.8) D alQru(Q)' ™ < ayu(Qy)'°

QeF

for any collection I of nonoverlapping cubes Q such that A\Q C Qo. If there exists
F C Qq such that 1(Qo\F) = 0 and for all x € F, Pq,(x(x) — u(x) asr — 0 (recall
that Q,(x) is the cube with center x and I(Q,(x)) = r), then for 0 < q < s, we have

(2.9) | —

gl = Pl < Cao

where A\Q' C Qy C \*Q’.

It follows from the preceding theorem that we have the following lemma.

Lemma 2.8 Letl < p,q < 00,Ay > 0. Let D be any open connected set. If o and w
are doubling weights such that

1 l(Q)
(P) m“f— faoll; g =€ 1/p||Vf|

Li(Q)
for all cubes Q C D such that —% Ao and weakly differentiable functions f, then
Hf - fQU' ||L£(Q) S CZ(Q) ||vf||L£(Q)

for all cubes Q C D such that d& Ay and weakly differentiable functions f.

Proof First note that since w is doubling, there exists k > 1 such that

(W(Q)) -1/ . C( Q)

m l(Q)) for all cubes Q C Q.

Also, note that for almost all x, fo (v, = 5 er fdo — f(x)asr — 0. Let
a(Q) = W(I(Q?f/p ||Vf||LP CIfd=1-—¢ and s = kp, then for any collection F of
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nonoverlapping cubes in a cube Q C D, [(Q)/d(Q) < Ay, we have

l
A Qw0 =Y Q@F s

& 2wt e
l<(§>k-§' Vil
(o)

< ’((g): HOT s

= Ca(Q'w(Q)' .

Note thatif Q C Q, then % < ;(Q Hence, fixingany A > 1,since0 < p < kp =5,

it follows from the previous theorem that

I = farolly g < CUQIV fll o whenAQ' € Q€ XQ

and
Lﬁ,(Q) S Hf - fQ"U”Lﬁ(Q) + HfQ;U - fQ,’UHLf/(Q)
(by the triangle inequality)
1
— I f_ £, 1/p —
= f = farolly g +WQ (@) //(f fao)do
SIS ool + QY [ 1f = faoldo
W a(Q)
< Hf - fQ’,U”LP +CZ(Q)||foLP(Q
by (P). The conclusion of the Lemma is now clear. [ |
Remark 2.9

(1) Theorem 2.7 and Lemma 2.8 are indeed results in “self-improving inequali-
ties”, see [21, 24] for details.

(2) If (1.6) holds and 7rL(Q)f is the polynomial in Proposition 2.4, then (1.9)
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holds and

ID°(f = T, (Q f)]

LP:

< |D(f —P,,(Q)f)ll + | D*(PL(Qf — m,(Qf)

Li(Q iQ

<ID*(f = PUQIl o + CHQ ™ Iwi( QP IWf,(Q)(Pf,,(Q) f= D=

(by Holder’s inequality and Theorem 2.3)

<D = Py g +ONQ DL B,
(by Prop051t10n 2.4)
< D = @Dl o + CUQT VS = PUQ]D ) By (1.6))

< clQ)-lo! ”VlfHL”;i( (by (1.9) when || < I).

Q)

Next, the following lemma is indeed a special case of a result in [11].

Lemma 2.10 ([11, Theorem 2.1])  Let f be a measurable function on R" and let w
be a doubling weight. Also, let 1 < p < 00, k € Nand L > 0. For each cube Q
in R", let P(f, Q) be a polynomial of degree < k associated to f on Q. Suppose that
{Ql} _o is a sequence of cubes such that Q; N Q4 contains a cube Q' with |Q'| >
Lmax{|Qi|, |Qis1|} foreachi =0,1,...,1— 1. Then

(2.10) 1f = P(f, Q0 ) < C DI =P Qg g

where C depends only on L, I, w, k, p and the dimension n.

3 Facts About (¢, ) Domains

Let D be a connected (¢, §) domain. Recall that r = rad (D) = infcp SUp,cp lx—y].
Following the terminology used in [27], we say that two cubes touch if a face of one
cube is contained in a face of the other. In particular, the union of two touching cubes
of equal size is a rectangle. A collection of cubes {S;} is called a chain if S; touches
Si+1 for all i. Also let W, be the cubes in the Whitney decomposition of D and W, be
the cubes in the Whitney decomposition of (D)?; see [36] for the definition of the
Whitney decomposition.

Next let us recall some properties of the cubes in the Whitney decomposition of
the open set D or (D)°. Since these properties are well known, we will often make
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use of them without explicitly mentioning them.

I(Q)=2"% forsomek €7,
QANQ =92 ifQ #Q,
I(Qy)
I(Q2)

(%) Vn <

1/4 < <4 fQNQ#2,

d(Q,9D)
Q)

If necessary, we will subdivide all the Whitney cubes / times so that the above hold
except that (x) will be replaced by

< 44/n.

, _ d(Q,9D) ,
Vil < Ze <avi,

where [ is a fixed given positive integer. We will call such a decomposition a Whitney
I-decomposition.

Next, let us collect some facts concerning (¢, §) domains. The reader can find the
proofs in [27]. More details can be found in [10, 12, 15].

Let D bean (g, §) domain. Recall that W, and W, are the Whitney decompositions
of D and (D¢)?, respectively. Then there exists a positive constant L’ depending only
on g,d,rad(D) and the dimension n such that if W3 = {Q € W, : [(Q) < L'}, then
the following five properties hold.

(A) There exists C > 0 such that for all Q € W;, there exists S € W, such that

1< % < 4and d(S, Q) < CI(Q). We will choose such an S and write S = Q*.

(B) There exists C > 0 such that for all Q € W3, and S, S, € W, such that S, S, =
Q*, then d(Sy, $;) < CL(Q).

(C) There exists C > 0 such that for all S € W, there are at most C cubes Q € W;
with Q* = S.

(D) There exists C > 0 such that for all Q;, Q, € W3 with Q; N Q, # & , we have
d(Q7,Q3) < Cl(Qy).

(E) There exists C > 0 such that for all Q;, Qx € W3 with Q; N Q # O, there exists
achain Fj; = {Q;‘ =80,51,82,...,Sm = Qf} of cubes in W; connecting Qi to
Q; with m < C. (Then I(S;), I(Q;) are comparable and d(S;, Qj) < ClQj).)

Remark 3.1

(1) Note that even if W; and W, are just Whitney I-decompositions, there still
exists a constant L’ such that (A)—(E) hold.

(2) The constants in (A)—(E) depend only on ¢, § and n. Moreover, when D is an
(€,00) domain, given any 0 < L < 1, we may also take W3 = {Q € W, : I(Q) <
er/(16nL)} so that properties (A)—(E) hold except that now L < I(Q*)/I(Q) < 4L
for Q € Wj. Of course, the constants now in (A)—(E) also depend on L. Again, it
remains valid even if Wy and W, are just Whitney I-decompositions.
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Finally, let us state an important property that was proved by Jones [27].

Proposition 3.2 ([27, Lemma 2.3])  If D isan (g, 0) domain, then |0D| = 0.

4 Proof of the Main Theorems

We will follow the approach by Jones [27] and our previous approach in [10, 12].
However, as Cﬁ;l’l (R") may not be dense in our weighted Sobolev spaces, we need
to consider the extension of all functions directly.

Recall that W is the Whitney decomposition of D and W, is the Whitney decom-
position of (D¢)°. Choose W3 C W, such that properties (A)—(E) hold. Note that
I(Q) < Cforall Q € W3 and I[(Q) > C(r) if Q € W,\Ws3. For each Q; € W3, choose
0<p; < X%Q]_,goj € C*°(IR"), such that

> pi=1onlUws, 0< Y <1,

Q;eW; Q;eW;

and [D%p;| < Cl(Qj)_‘“| for0 < |a| < k.
Instead of proving Theorem 1.6 directly, let us first establish a more general result
by assuming the existence of a “nice” projection of Efv_’ . functions into polynomials.

Proposition 4.1  Let w be a doubling weight, 1 < p < oo, k € N, and let D be
a connected (¢, 6) domain. Suppose for each | € N, | < k and cube Q C D such
that % < Ap, Ay > 0, there exists a projection P{(Q): Efv'l(Q) — P11 (space of
polynomials of degree < 1 — 1) such that for all0 < |a| <1,

(4.1) ID*(PUQS = Nl < CUQ|IV'S]

Q"

Iffor f € L‘Z’k(D), we define P; = Pk(Q}‘)f (see (B) for Q*) and

) B
A —
f(X) {EQJ'EW3 Pj(x)<,0j(x) 1fx c (DC)U’

thern [Af ]
Af e Lb (R").

) = CHfHLP,k(D)' Moreover, if in addition w='/? € Lﬁ);(]R{”), then

Before we begin, we will first establish some inequalities regarding chains of touch-
ing cubes. Recall that two cubes touch if a face of one cube is contained in a face of
the other.

Lemma 4.2 Let w be a doubling weight and 1 < p < oo, k € N. Let PX(Q) be as in
the previous proposition and satisfy (4.1). If {Qo, Q1, ..., Qu} is a chain of touching
Whitney cubes or touching cubes of same size such that ;((%i)) < Ay, Ay > 0, for all i,
then for all 0 < |a| <k,

(42) ||ID*(PX(Qo) f — P(Qum)f)|

) < Clm, p,w, K)I(Qo)E 1ol V* |

L{L ( QO L{L ( Ui Qz ) ’

https://doi.org/10.4153/CJM-2006-021-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-021-0

Extension Theorems on Weighted Sobolev Spaces and Some Applications 505

Proof First, let {Sy, S1,...,Si}, I = 2m, be a chain of cubes that satisfies the condi-
tion of Lemma 2.10 and

1

forall j, E X5 <2ae
]
j=0

I(S;)

US] = UQiu SO = Q0> Sl = Qm7 d(s ) =~

Then by the triangle inequality and Lemma 2.10, we have
ID*(PK(Qo) f — Pk(Qm)f)IILp(Q
= [|[D*(P"(So) f = PA(SH A

LE (S

< CI(Sp) 1| PK(So) f — PK(S) fHLP 5 (by Lemma 2.3)

< CUS) I (ILF = PSDF )+ 1 = PO fll )

(by the triangle inequality)

1
< CUS) TN (DI = PSSy, + 11 = PGS0 f )

j=0

(by Lemma 2.10)
< CI(Qp)*1e! Z IV f U, (by (4.1))

< CUQy)* ‘“‘HV"fH

Lh(US))

= CIQ) IV fll Ly - n

Proof of Proposition 4.1 First recall that |0D| = 0 by Proposition 3.2. To simplify
the proof, we will just consider the case Ay > 1. Note that in case Ay < 1, we will just
consider Whitney /-decomposition (instead of Whitney decomposition) where / € N
is such that A > 2.

Claim1 1If Qo S W3 then

(4.3)  |D*Af| < C|D*f| +CLIQy)K 1| V¥ £

Li(Qo) — LI(Q7) LE(UF(Qo))’
where 0 < |a| < k and F(Qq) is the collection of cubes that belong to any of the

chains Fy j (guaranteed by (E)) for which Q; N Qo # @. And if Q) € W,\W3, then

. o - K .
(4.4) ID*A Sl p gy =€) > [”V Pl * 1)
QiNQ#LY
Q;EW;
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Proof of Claim1 The following is just a modification of what we have done in [10,

(7.1), (7.2)]. While proof of (4.3) is about the same, the proof of (4.4) required a few
more steps. First, let Qy € W3. Then

10 (3 Pies) o

S HDU{( E P]SOJ — E POSO])HLP + HDU{(P() E (pj)HLP
3 (Qo) w(Qo)
(by the triangle inequality)

(since Y ;= 10on Q)
a—/3 G et
<CY_ 1D D@ = P)D g, o+ CID Pl
pla
(by the triangle inequality, (A), and Theorem 2.1)

<Cy Y UQ)DIP; =Pl + CID P
B<a QiNQAD !

LA(Q7)

(by the triangle inequality)

<CY Y UQ) TP P = o)y ey + CID B0 = Nl e,

B<a QiNQu#LY

+C||D° fHLp(Q*) (by Theorem 2.1 and the triangle inequality)
<C Z Z Z(QO)i‘gll(QO)ki‘aiﬂlHkaHLP(UFo )

B<a QiNQu#LY ' '

k—|a| k =
+ Cl(Qo) ||V f”L{:(QS‘) +C||D fHLf,(QS)
(by (E), Lemma 4.2 and (4.1))
k—‘a‘ k QU

< CUQ VA £y gy * CID Fll e

Next, if Qy € W,\W3, recall that I(Q,) > C(r), and observe that

—|B —[f3
||DQ(ZPJ'5"J') lpn €2 2 UQTID"Pil,

BLa QiNQu#L
QEW;

(by the triangle inequality)

<cy, > HQu) D 7Pyl o,

BLa QiNQu#L
QEW;

(by (A), (D) and Theorem 2.1)
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<CY. Y HQ Q)P

ﬂ<a Q]nQ(]#g
QjeW;

L3(Q7)

(by Theorem 2.3)

QiNQ#2
Q;eEWs

(since [(Q}) = CI(Qy) = C(r) by (A))
< C(r) Z (”Pf - f”L{’V(Q}*) + ”f”L{]/(Qj))

QiNQ#LY
Q;ewW;

(by the triangle inequality)
<0 3 (19l *+ 1y

QiNQ#2
Q;EW;

by (4.1). This completes the proof of Claim 1.
Next, observe that

(45) > > _=¢
QjEW,\W; QzEWS
I Q]?ég
(4.6) H Z XUF(@Q)) SC'

QjeW;

Combining these facts with (4.3), (4.4) and using [(Q;) < C(r) if Q; € W3, we obtain
that for 0 < |a| <k,

ID S e = S IDATIE, o+ D2 DAL,

QjEW; QjEWz\W3
k P
S Z ||Daf||L[’ +||v f||L1’ UF(Q )) +
QjEW;

S (X Ol g Mlyg])

QiEW\W;  QEW;
iNQ#D

< 3 CUD I o+ IV

QjEW;

>y C(r)(||ka||lL’€v( ||f||Lp(Q ))

QEW\W;  QEW;
QNQ#2

<colfle, |
‘wk

L (UF(Q )))
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Hence
1870y e < COIF Ly

We now show that indeed Af € L? | (R") if f € L? (D) and wl/r e Lf:c(]R{”).
We will show that for any h € C§°(R") and 0 < |a| < k, we have

/(D“’Af)h dx = (—1)l /(Af)D“h dx
where
D*f(x) ifxeD,
D (Sg,ew, Pilo)p;(x)  ifx € (D).

To this end, it suffices to show that for any bounded set €2 and any n > 0, we can find
C* function f;, such that

D*Af(x) = {

/Q IVI(Af — £,)]dx < Cn

for 0 < I < k with C independent of 7. We will first choose an open bounded set
Do C D such that

(4.7) {xeD:dx,2ND) < 1} C Dy;

(4.8) UF(Qy) C Dy fOI'al’lYQ() € Wg,QomQ#g
(see (4.3) for the definition of F(Qy));

(4.9) {xe€D:dx, QN D) <1} C Dy.
We then choose a compact set K C D such that

(4.10) ||Vlf||L,,(DO\K) <n and hence HVlfHL1 <Cnfor0<I<k

(Do\K)

Next, we choose 0 < s < 1 such that
K*={x+y:x€K,y e R"|y| <3s} C D,

and then choose a function ¥ € C§°(R") such that (since D* f € LllOc (D))

Xge SV <X, and ID*W| < ¢s 1%l for all .

Let us fix a function £ € C°({x € R" : |x| < 1}) such that [{ = 1. Let
& (x) = t7"¢(x/t) for t > 0. We now note that there exists 0 < ¢ < s such that

(@11 [D°(f = f &)y oy = 1D f = (D )&l o) <1817, 0 < o] <k,

KZs
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Let o = 27", m € Z,. Recall that W, is the Whitney decomposition of D. Define
R’ = {dyadic cubes R with edgelength o, R C D},
R={ReR :RCSforsomeS e Wy,IS)>32n’g/c}

(we may assume € < 1). Moreover, for each R € R let R, R be cubes concentric with
R with sides parallel to the axes and I(R) = 1300n*p/c? and I(R) = 2562n%p/e?.
First, let us make the following three observations:

I D% ={x+y:xeD,yeR" |yl <100} C Ugrex R provided g is small
enough.

() For all Ry, R; € R with ﬁo N ﬁj # @ and Ry N (D\K¥) # &, there exists a
chain Gy j = {Ry = $1,5,,...,Sum = R;} in R’ connecting Ry, R; with m < C
that depends only on €, and n, and UG, ; C D\K, d(UGy ;) > o, provided
o is small enough. Moreover, if in addition that Ry N (D N Q\K*¥) # &, then
indeed UGO’]‘ C ‘Do\K

(II1) Cubes in W,\W3 will not intersect UR,» R R i when g is small enough. More-
over, if Qy € W3 intersects UR], R }?j and (2, we may assume that UF(Qg) C
D()\K

A similar conclusion to (I) was first stated in [27] (with D C URem R) without
proof. Nevertheless, the reader can refer to the proof of Theorem 6.1 in [10] (with

D C URE% R). A similar conclusion to (II) can be found in [27, Lemma 4.1] or [15].

Next let Ry, R; € R, Ry, R; be as in (IT). Suppose that Gy ; is the chain connecting

Ry, R; guaranteed by (II). Similar to the proof of Lemma 4.2, by the Poincaré in-

equality, if 7(Ro) f, 7X(R;) f are the polynomials as in Proposition 2.4, we can show

that

(412) D" Ro) f = T RN, ) < CETNVHF g, VO < ol <k

L' (UG,

where C is independent of f, Ry, R; and o.
For each R; € R, let us choose 1; € C°(R") with

<Y; < y.
0<¢;< XR]-
such that ZR]@R% =1lon URJE%R]-,O < ZR,EER: ¥; < 1and |DY;| < Co~ 1ol for

all . We nowlet q; = 5 (R i) f be the polynomial as in Proposition 2.4. Also, we will
need a function ® € C*°(IR") such that

0<P< X, P=10nQifQ € W2, Q ¢ URjeij-

Next, since D' C [y o R)> we may assume [D*®| < co~lol,
We define

fr=(F &)U+ D qihj(1—T —®)+ > Py,

R;eR QieW;

https://doi.org/10.4153/CJM-2006-021-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-021-0

510 S.-K. Chua
Claim 2  1If p is small enough, then for0 <1 <k,
(4.13) IV'AS = Il

(4.14) IV'ASf = £l

LY(DNAO) <Cn,

LY(DNQ) <Cn,

where C is independent of 7).

Proof of Claim 2
The proof of (4.13) is indeed just a slight modification of the proof of density of
Clkozl"l(]R{”) (or C*(R")) in the Sobolev space on the domain D in [10, 27]. First,

recall that
F=f=U=*&U+(f= D qupl -V —2)+(f— Y Pip)®
R;eR QeEW;
=(f =&+ (f =) g1 -1
RjER

on D N Qsince ® = 0on D. Hence forany 0 < || < k,

(63
1D°CF = )l

<D U = 5 €)1 gy + [PV = ) =D a07)]

(DAQ)

To show the above is less than C1), we now follow the technique we have used to show
the density of Ck-11 (RN Lﬁ’k(ﬂ) in Lf;k(ﬂ)) in [10, 15]. It is easy to see that

loc

[D*[C)(f = f &,

{(DNQ)

—H S CopD*PUD(f — f 1)

(since U = 0 outside K*)

0<f<a LY(K*)

<C Z sT= DO (f — f « &)”LI(I(“) (by the triangle inequality)
0<p<a

<C Z 5—\cr—ﬂ\n5k—|/5\ <Cn (by (4.11)).
0<p<a

Next, since (1 — ¥) = 0 on K*, we need only to prove that

D[ =0)(f =D q)]] <Cn.

LY(DNO\KY)

To this end, first note that if Ry € R such that Ry N (D N Q\K®) # &, then
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4.15) Y [ID((q0 — 4|

L'(Ro)
R;eR

<C Z Z |‘D71ijﬂ—’Y(qo — qj)HLl(Ro) (by the triangle inequality)
RieR~<p

<C Y e MIDTg —apl, g,

RoNR;j#2 7<0

<C Z Z oMD" (qo — qj)||L1(RO) (by Theorem 2.1)

RorR, 20 1<

k=181 7k
<C Y VIV

RoNR;#2

by (4.12). Also, note that on D we have

(4.16) ID°(f = > qwp)| < IDP(f —q0)| + D7 > (q0 — q;)l-

RJ'E% RjE?R
We now consider two cases:

Casel (3 < a. Then D*#(1 — ¥) = 0 outside K* and note that K*\K* C
Uk, e Ro if @ is small enough, hence

|00 = WD(f = Y g,
j

DNN\K)

el S D =D a4l
i

RoeR
RyN(K*NQ\K*)#&
(by the triangle inequality)
~la—g 3 i}
<Gl YT (D = a0l g, + 1P D o = ap il )
RoeR RjE?R
RoN(K*NQ\K*) £

(by the triangle inequality and the fact that 3 ; = 1 on Ry)

—la=p| k=181 %7k
<Cs S FIVH L,

RoER
RyN(K*NOQ\K®)#£D
—la—p| k—1|6] vk
D S S
DR L1 P
RyeR RoNR; @

RyN(K*NO\K*) £

https://doi.org/10.4153/CJM-2006-021-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-021-0

512 S.-K. Chua

by (4.16) and (4.15). Next note that || > 5 -5 Eﬁjﬂﬁo#ﬁ XUGy, [,c < C whereC is

independent of o. Moreover by (II), if Ry N (K* N Q\K*) # &, and ﬁj N ﬁo #+ o,
then UGy ; C Dy\K, and in particular Ry C Do\K. Hence if « > 3 then |3| < k,
and

a—3r1 _ Brr s —|a—p| k—|3] k
DA =D (=D a7 s gy < C5 T TNV s gy < O
J

Case2 [3 = q. First observe that for each Ry € R such that Ry N (D NQ\K¥) # &,
we have

D" quwj”mo)
<100l g, * 107 S5 — a0l
by the triangle inequality and the fact that jj=1on Ry
< ClDqoll sy + € Do STV g

RJ'E%
RyNR;#2

by Theorem 2.1 and (4.15)
< CID a0 = Dl +CID g, +C D0 A

RieR
RyNR;j#@

< CO NIV Al )+ CID g, + €O S 94y

RJ'E%
RyNR;#2

Next, note that again by (II), if Ry N (D N Q\K*) # & and ﬁo N ﬁj #+ o, then
UGo,j C Do\K, and in particular Ry C Dy\K. Hence by the triangle inequality and
the previous estimate,
10 =)D (f = D aiw)l
<|Ip*(f=3 qjv;
<|[|p*(f Z‘]J‘/’J) HLI(DOQ\KS)

S ID*Fll s gy * >, b, %%’HLI(RU)-

RoeR RieR
RoN(DNO\K*)#L
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However,
1D ) apill |
i R;R R%% " L' (Ro)
RyN(DNO\K?)£2

e X [AEIe,

RyER
RoN(DNOQ\K*)#£L
D gy 67 S 19 ) |
RjE?R g
RoNR;#2
(el k—|af k
<CID" flly e, +CE TS
since || > g e Zﬁjméﬁéz XUGy, [« <C. Thus
1—wv)D* <C
||( )D(f — Z%@[}J ||L ——— n

and hence
HD (f = fn)” (D) <Cn.

This completes the proof of (4.13).

To prove (4.14), first note that

D" = AN s gy
P [Sa-9+ s o1
L'QNDe)
- HDQKZLB% B ZR‘%‘) - @)} HL’(QmD‘)

IN

> H {Z(Dﬂ%’)%‘ - Z(DﬂPi)w,} D1 —

0<pB<a LY(DNO)
( Z D“/quﬂ—“/wj

-3 pppt )D“ 51— @)

0<B<La 0<y

L(DNQ)
=:T+II.

We nowlet W, = {Qy € W, : Qy C UR,@% R;,QNQy # @}. Note that if Qy € W,,
then Q) € W3, [(Qy) < Coand ), p; = Zj 1j = 1 on Qp. Also recall that ® =1
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onQy € W, if Qy ¢ W,. Hence

r<c Y oS Y 0w - Z (D'P)e;

0<p8<a QEW, R;jeR L'(Qo)
—C > oS S Das - P — DA - P
0<p<a QEW, L'(Qo)

(since Y ; = ) tp; = lonany Qyin W,)

cc Y g-a-ﬁ'(z S D% - Rl

0<p<a OGWL)R on#@

LDIEDY ||D3<Pi—Po>|LI(QO))

QEW, QNQ#Y
=C > ol Aup 1.
0<p<a
Next, note that by Holder’s inequality and Lemma 4.2,

- ]
F< > D0 WL DR = Polly g,

QEW, QNQ#L
QEW;

<c > ST uQy ey OO A P

QEW, QiNQ#LY

QIGWS
<C Y HQIW T IV
QEW, "
1/p
—1/p vk e
<Clw el (O I )
We QEW,
(by Holder’s inequality and since 1(Qp) < C )
k
<C|V f||Lfv(,D0\K) (by (4.6) and (4.3)).

On the other hand, note that if R iNQo # P with Qy € W, thenssince [(Qy) < Cop,
I(Qg) < Cl(Qp) and d(Qqo, Qf) < Co, there exists ¢ > 0 (independent of p) such that
Qo, Qf C cR;. Let us choose ¢ sufficiently large such that Ry C cRy and let

R, ={RjeR:cRjND NQ # 2}

Note that unlike C, the constant c is fixed. If RJ- N Qy # @ with Q) € W, then
R;j € R, since Qy N # & and Qy C cRj. Moreover, recall that if R; € R,
there exists Q;; € W, such that R; C Qj-. If in addition that R; € R,, then since
d(Qj/) < d(R;j) < Co, we have [(Q;s) < Cp. Furthermore since

d(Q;, Q2N D) < d(Rj, 2N D) < cv/np,
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we may assume that C’'Q;j» C Do\K (in particular, R; C Q;» C Dy\K) for any fixed
constant C’ if p is small enough by (4.9) and (III).

Next, by the triangle inequality,

B Y Y 0GPl

R;j€ER, QF CcR;
QieW,

<> (1P = PN,

R;j€R, QF CcR;
QiEW,

+IDAPHQf =Pl g, ) = Ta+ T

The estimate of I4 is quite straightforward,

Ih=C Z Z ID%(q; — Pk(Qj/)f)HLl(Q*) (by Theorem 2.1)
RjG?RQ Qi*CCRj !
QEW,
<C Y ID" g = PNy,
RjEéRg !

(since there are only a bounded number (independent of p) of Q; with the same Q})

<C Z ID%(q; — Pk(Qj/)f)HLI(R‘) (by Theorem 2.1)
RjG?RH !

<C Y (D@5 = Pl + 1D = PQINy )
RjG?RH

(by the triangle inequality)
<C Y D= D), 10T = PQN )

RieR,
<C 3 D= Nl + Il DY = PPy )
RieR,

(by Holder’s inequality)

< k18] 1ok ~1/p k=161 ||k
<C 3 @IV g + W0 Ty g )

RjG?RQ Qj/)

(by Lemma 2.5)

1/p
+Clw ) (> v, )
L' (Do\K) ' ren, &) RJ%:%Q LE(Q;r)

< C|VHfll

(since there are only a bounded number (independent of p) of R; inside each Q;/)

< C|[V¥f +ClIVH

LY (Do\K) LE(Do\K)
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However, the estimate of Iz is much more complicated. We will use an idea used
in the estimate of weighted inequalities on Boman chains; see [11, Proof of Theo-
rem 1.5].

Next, let

WLQ = {Qj/ e W, IR]‘ C Qj/, for someRj S %g}

Note that for each Q;» € W, ,, by choosing g sufficiently small, as d(Q;/) < Cp,
we can make sure that d(Q;/, Q') < J whenever Q] C cQ;/, Qf € W;. Recall that
0 < 1l(Q;r) < Co. Let x;, x;s be the center of Q} and Q;/, respectively. Since D is an
(¢,0) domain, there exists a rectifiable curve +y that connects x; and x;, such that

elxjr — z||x; — 2| |xi — xj|

d(z) > forallz € yand I(y) <

\x,- — Xj/ |
However, if z ¢ Qj/, then |xj» — z| > I(Qjs)/2. On the other hand, recall that
|xj» — x| < Cl(Qj) since Qf C cQjs. Thus d(z) > Cl|x; — z| when z € 7 and
z ¢ Qjs. Hence,ifz € 7,z ¢ Qjr,and z € Q, Q € Wy, then d(Q) > C|x; — z| since
d(Q) > d(z)/(1+ +/n). In particular, Q C NQ for some constant N independent of
0, since I(QF) < 2|x; — z| as we may assume z ¢ Q;. Also, since

|xi — xj/|

d(Q,Qj) < d(z,xj:) <I(vy) < < ClQ;")

and

Q) <d(Q) <d(Q,Qj) +d(Qjr) +/nl(Qj:) < CLQ;),
we have Q C C’'Qj+ with C’ independent of 9. We can now choose ¢ small enough
such that C'Qj» C Dy\K. Hence if Qjs € W;, and Q C cQj, we can find an
appropriate chain {Qj» = $,S,...,S» = Q;} of touching cubes in W, which
intercept y and connect Q;: to Q. Now, similar to the proof of Lemma 4.2, we can
find a chain of cubes {SO, ey §2m} that satisfies the condition of Lemma 2.10 and

lzzlogl = UiLSi, So="50, Som = Sm.
Indeed, we will choose them such that Szi =S, §2i+1 C S; U S;41, and
S2i+1| = min{|Si|, [Six1|} = 2[Si N Sain1| = 2[Six1 N Spisa| fori=0,1,...,m— 1.
It is then clear that there exists a constant N independent of g, Q;» and Q} such that
NISN S| > $USy| and S, = QF C NS, S C C'Qj foralll

We now let W, be the collection of all cubes in W, together with above mentioned
types of cubes (Si+1). Then

(4.17)

IDY Qi f = Dl g,

2m—1

< Y IDPPENS = PNl o, + I PRS- D

; LNQ)
1=0

(by the triangle inequality)
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<o LU Dk f - PRI
1

ﬂ51| L($iNSk1)

+ D7 P Sam) f = DIy, (by Theorem 2.1)

<y A (I wsyr - pl,
I

1($iNSk1)

ﬂ51|

+||DA(f — Pk(§l+1)f)‘|L‘(§,ms ) + DY (PHSam) f = 1) ”L (Som

(by the triangle 1nequa11ty)

Q7|

< C A A
1S N S|

(I P SDf = D15, + 1D = PG fll

LY(S) L' (811 )

1D P an) f = Pl g

2m * A
<cy %lDﬂw"(Sﬂf A
1=0

We now note that

@18) > > IDPHQIf = Dy,

RjER, QF CcR;
QeEW,

3 pk
=Y 2 [ IQ0r = Pl v BT

RiER, QFCcR;
QYEWQ

But by (4.17) and recall that W, , = {Q;» € W, : Rj C Qj, for some R; € R,},
for any Q; € W, we have

HD/B(Pk(Q]’)f - f)HLl(Q,-*)XQ,* (x)/|Q;k|
<C D Y IDPES S = Dl xys /18-

QjrE€Wi,SCC’'Q;/
§€W1

As there are only a bounded number of Q; with the same Qj, we have

| ¥ x| _<c
RjER, QF CcR; L=
QiEW,
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and hence,

3¢ pk
> 2 IPPPHQINS = Al X W/IQ]
RjER, QF CcR;

Qiew,

<C D D IDMEESS = Nl X/ IS
Qs €Wie ScC’Q;
Sew,
Thus,

Bpkco. _
> > IPPPQIS = Ny,
R;ER, Qf CcR;

QieW,

G A X
SIS Sl ORI

. $
QjrEWie SCC'Q;
§€W1

=C Y. Y IO =Dl
Qs €W SCC’Q;
Sew,

<C D> 2 WL, (DTS = Dl
Qj/€W1.g§CC'Q]-/
Sew,

(x)
dx

(by Holder’s inequality)
—1/p k=181 ||x7k
<Y W KSIH

. (by (4.1))
Qjr W, §CC’Q]./ "
SGW]

< Co

1/p
E : 2 : Vk P )
(U$CC’Qj/,$eW’1~Qj/ EWI.QS) ( H fH )

. (s
Qs €W, §cC'Q)y
Sew,

(by Holder’s inequality and since {C'Qj» : Qj» € W1, 1(Qj) > o}

has bounded overlap)
S Cgk_lm ||ka||L5(DO\K) :

Recall that we have chosen g small enough such that C’Qj» C Dy\K.
We can now estimate Ip.

E<C Y > IDPHQf - P

LYQ})
RjER, QF CcR;
Qiew,
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<C > > [IPU=PAQINN g + IS =P )]

R;j€ER, QF CcR;
QEW,
k—18] ||k k=B, ~1/p vk
< CO VNl #C€ 2 D2 T 9y
RjER, QF CcR;
Q;EWU
(by the previous estimate, Holder’s inequality and (4.1))
k—18] ||k
<oV 1y

by similar argument as in the previous estimate. Finally, let us look at the estimate
of I1. First, by the triangle inequality,

n< >y <HZD%1]D3 Yo D1 - @ )H

0<A<a 0<~y<p L(DNQ)
HZD P.D’ 1D (1 — )
{(DENQ)
SN +11p).
0<B<La 0<y<3
Next recall that ® = 1 outside Jy 5 Ro- Thus

Iy < Co 1 3 HZDVq D ‘ .

ReeR L' (RyND M)

Moreover, since Ry C cRy, if Ry € R\R,, then RyN DN QL C cRyND*NQ = 2.
Hence,

I, < Cp~lo—7l Z HZqu .DP- Yo

RyER, ] L' (RynDNQ)
<Co Y HZDW%DB W%H
RoER, j

Note that by choosing ¢ small enough, similar to property (II), we may assume
that if Ry € R,, then Ry C Dy\K* and UGy ; C Dy\K whenever Ry N R; # & and
R; € R. Thus,

1y < Co" ™ 3 || 37Dy — D"

RoER, L'(Ro)

(since > D*~7p; = D7 > ipj=00nRyas3>1)
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<Co Y T o Y T D@ = q)l

Ro€R, RNRy#o
—la—p| k—18] |7k
<Co Z 0 1A fHLl(uGO,j) (by Theorem 2.1 and (4.12))
RoeR,
k—lal || ok
< CENTH

Also, recall that ® = 1 outside UQUE% Qq, hence

1 < Co7lo= 3 [ S prep

QeW, i LY(Qo)
= Cp 7 Z H ZD"’(Pi — Po)D? ) (since Y~ D=4, = 0)
QEW, i L'(Qo)

<Col YT Y QY TTIDY (P - Py)|
QEW, QNQy#LY

<Co NN HQ) DR - Py

QEW, QNQy#L

< Co—le=0l —18=)|,y—1/P (P, —
<Cp Z Z 1(Qo) [[w ||Lp/(Q(,;) 1D (P; PO)HU;(Q(;)
QEW, QNQ#Z

L1(Qo)

L (by Theorem 2.1)

(by Holder’s inequality)

<Co "l 3T 3T Q)W R I

QEW, QNQ#LY

(by Lemma 4.2)
k— | k
< CH T

by similar argument as before. The proof of (4.14) is now completed by (4.10), and
this concludes the proof of Proposition 4.1. ]

Next, we will show that under one additional condition, then indeed the extension
k—1,1 . . . k—1,1 .
ofaC . functionisstillaC) " function.

Lemma 4.3  Under the assumption of Proposition 4.1, if in addition

o pk k—|af k
(4.19) 1D°(f = PQ N g < CUQF [T fl o
forall f € Clkozl"l('D) and cubes Q C D such that % < Ao, Ao > 0, then D*Af is
locally Lipschitz for all o, 0 < |a| < kif f € Clkozl’l(ﬁ).
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Proof Again, we will just consider the case A; > 1. We can proceed as in the proof
of (4.4) and (4.3) to obtain

k
(1200 Al < CUT lmrign + 30 Iflmigr) VQ € Wa
QjEW;
QiNQ#L

(If Q ¢ W3, we take UF(Q) = ). To prove (4.20), we only need to replace p by oo

in (4.4) and (4.3) since if 2 is a bounded set in (D)?, then there exists G C W, such
that ) C UG and UG is bounded. Thus

where K is a compact set containing | J F(Q) YQ € G and containing Q;f VQ; € W3
with Q; N Q # @,Q € G. We now show that D*Af is continuous for all o, 0 <
|| < k. To this end, one only need to show that

lim D*Af(x) = D f(xo) ¥xo € D, 0 < |a] < k.

X— X0

x€(D)°

Nevertheless, it suffices to show that if Q; € W3 and d(Q;, 0D) — 0 then
DA S — — / D" f 0
_ . 0.
|Q}k| Q =@

However, the proof is again quite standard. For the details, see [27, 10]. This con-
cludes the proof of Lemma 4.3. ]

We can now prove our main theorems.

Proof of Theorem 1.6 First, by repeated applications of (1.5), we know (4.1) in
Proposition 4.1 holds with P/(Q) f = PﬁV(Q) f which is the polynomial of degree
< I'such that

/ D(f —PL(Q)f)dw=0for0 < |a| < L
Q
Moreover, it is obvious that

Hf - fQ,WHLOC(Q) < CZ(Q)”foLOO(Q)

and hence

ID*(PL(Q)f = Pl gy < CUQ ™ NIVH 1l e -

The theorem now follows from Proposition 4.1 and Lemma 4.3. ]
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Proof of Theorem 1.7 First recall that

wi={Qew, (@ < =}, L=2"mez,

_16L

where L is chosen so that Q) C (UQE% Q) UD.
We will now prove the following lemma.

Lemma 4.4  Under the assumption of Proposition 4.1, if P*(Q) f = Wﬁ(Q)f and

(4.21) If = faully g, < AUQRQWQT IV Sy
for all cubes Q C D such that 1(Q)/d(Q) < A¢, Ay > 0, then forany 1 < |a| < kand
QO S WS;

(4.22) ID"AS]] <C|vf]

LP(Qy) — LE(U F(Qo))

where F(Qq) is the collection of cubes which belong to any of the chains F ; (guaranteed
by (E)) for which Q; N Qy # @. Here the constant C depends only on A, e, w, p, k, L
and the dimension n.

Proof LetQ;NQy # I, Q;,Qy € W3 and o > 0. Then similar to the argument
of the proof of Lemma 4.2, there exists a chain of cubes {Sy, S1, . . ., Sy } that satisfies
the condition of Lemma 2.10 and such that

. )
Us; =UFoj, So=Q, Su=0Q}, a5y S and Y xg <2ae.

Again similar to the proof of Lemma 4.2, we have

1D~ x5 Q) f = QDD
< D (wh(So) f — WZ(SM)f)”Lg(sO) (by (A) and Theorem 2.1)
< CUSo) 1|7k (So) f — h (Su) [ (by Theorem 2.3)

< ClS) T NImuSo) f = fll i,y + 1 = mu (i Fl 5]

(by the triangle inequality)

M
< CUS) AN f = 7w (SN, 5 (by Lemma 2.10)

i=0
M

< CHQY) ™Y LI = PuS)flp s, + IS = Pu(Sfl )]
=0

(by the triangle inequality)
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(where PL(SI-) f is the unique polynomial of degree < || such that
fSi DV(f — PL(Si)f) dp=0forall0 < |v[ < 1)

w(S;)V/P
1(S;)

M
< Cl(Qo)_la_ﬂ‘ Z[Hf - Pﬁt(si)fHLf/(S,) +

i=0

If = PL(Si)fIILL(S,.)]
(by Proposition 2.4)
M
< CUQY ™Y [ USHIV S = Po(sd Nl
i=0

HSHIV(f = PL(SHf )} (by Lemma 2.8 and (4.21))

)HLIVJV(SI

—la—p| el e
< CI(Qy) ™I+ Z (S IV flly s,
181yl _ 81|l
< CUQ)IIVIUf Ny sy = CHQITINV Ny gy -
Next, again let PL“I (Q%) f be the unique polynomial of degree < || such that

/ D(f — Pel(@p) f) dp = Ofor all 0 < || < |al.
o

0

Then

Li(Qg L2(QF)

< CUQ) ™l (@5) f = PENQD g
< CIQ0) 1w @)@ I = PEIQ) S o,

< IV flly g

by (4.21) and repeated applications of Lemma 2.8.
Let us now look at the proof of (4.3) again. Recall that

Ib* (ZPJ‘OO iz

<cy > l<Q0)_W|HD@_ﬂ(PJ’_P")”Lf;(czo)+”DQP°HL£(Q§>
B<La QiNQu#2

<CY X M@ PR = Pl g +CIV
B<a QiNQuAD '
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(by Theorem 2.1 and the previous estimate)
<C Y IV A Foy)
QNQ#® "

= CHVMVHL&(U F(Q)

This completes the proof of Lemma 4.4. ]

We now return to the proof of Theorem 1.7. We will let Pk(Q)f = wﬁ(Q)f. For
any 0 < I < k, since (1.6) holds, by the previous lemma, we have

V80 gy € 3 I9'ASl
QEW;
<C V!
S 1V
QuEW;
<C|V'fll

Lh(D)

by (4.6). We now note that, similar to Lemma 4.3, we can show that A f € Clk(;l’l (R™)
when f € C k—1,1 (D). Thus, we have

loc

IVAS Ly ) < IVASN g, + VAL <C|V'f]

L) Li(QnDe) LD

Finally, if v is any doubling weight such that v/u € A,(u), we have by Proposi-
tion 2.4,

V(Q)1
u(Q)
Again, let us look at the proof of (4.3). For any Qy € W3,

HZP;‘%‘ <c| > Pill pa)

L2 (Qo) QiNQ#2

[P

< UQP [P Q= g < 1513 < CWllyq

LI(Q

<C Z HPjHLf(Qf) (by Theorem 2.1)
QNQ#2 !

<C Z £l 2@ (by the previous estimate)
QiNQ#Y

<C .
- ”f”L{?(UF(QU))

Thus, just as before, we have
1A 0y < €l i

This concludes the proof of Theorem 1.7. ]
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Remark 4.5 ,

(i) If for some i, we have w; Vei ¢ Lfo"c(]R{"), then the conclusion of Theorem 1.7
also holds for all functions f € ﬂEﬁ'i_ki(iD), 1 <k; <kforalli.

(ii) In case D is an unbounded (&, c0) domain, Theorem 1.7 will hold for 2 = R”
with the same extension operator. Note that now rad(D) = oo and hence R" C
DU (UQGW3 Q) with any choice of L > 0.

5 Applications

We will now use our main result to extend some weighted interpolation inequalities.
First, let us recall a weighted interpolation inequality in [17].

h—
Theorem 5.1 ([17, Theorem 1.7]) Let1 < p,r,g< oo, r< g h>1, é < 7‘+ﬁ,

0<i<kikeZ Leto,v,vy, wbe doubling weights such that vy /o € A,(c). Suppose

(5.1) If = fow
(5.2) If = faolls o < CoQQTPHQIIVS I 5,

L1(Q < CW(Q)l/qV(Q)_l/Pl(Q)||VfHL5(Q);

forall f € Lip,,.(R") and cube Q in R". If
(5.3)

QY M\ T Q)N I\ UVt Q)N K w(Q)N 1k
(e = (@) ™ G [+ e )™
for all cubes Q C Q in R", then
(5.4)

i

Hf L;0(3Q) l(Q)kHka| L€(3Q)) l/h

: s Af
<@ (ST ) (St e

forall f € CE-M (R,

loc

With the help of extension theorem, we can replace 3Q by Q in (5.4).

Theorem 5.2  Under the assumption of the previous theorem, (5.3) holds for all cubes
Q C QinR" ifand only if
(5.5)

i 1/ —if & v L)(Q
v f”L?V(Q) < Cw(Q)'1(Q) < V()(Q)l/r) < vo(Q)V/r + v(Q)/p )

forall f € CE- V(R

loc

Proof First, let us observe that (5.5) implies (5.3). For any cubes Q C Q, we can let
f= XQP where P is a polynomial of degree at least k such that D*P = 0 on 9Q for
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0 < |a| < k — 1. Note that then f € Ck_l’l(]R{”). It then follows from Lemma 2.2,

loc
Theorem 2.3 and the nonweighted Poincaré inequality that for any doubling weight
w, there exist constant C;, C, > 0 such that

Cil|Pll e g < WQ™PUQV VP, ) < CallPl e -

LE(Q)

It is now clear that (since v, vy and w are doubling weights)

VO(Q)) (VO(Q)W Z(Q)kv(Q)l/P)l/h'

1/ i 1/ i
MQVIQ) < C@"IQ T (T (@7 (QFAQT?

It is now easy to see that (5.3) holds.
Next, if (5.3) holds, then by the previous theorem we know that for any function
f e Cﬁ;l’l(IR{") (5.4) holds. We will then apply Theorem 1.7 with Q = 3Q and

D = Q. Note that the constant L will be independent of the cube Q. Hence, there
exists Af € Ck_l’l(lR{”) (with PK(Q) f = W(];(Q)f), such that

loc

Af=fonQ, |[V*Af]|

Lb (3Q) < CHka”Lf(Q) and HAf

5,60 < clif L, (Q

since vo/o € A,(c) and (5.2) holds. Finally, note that since Af € CE_"'(R"), (5.4)

loc

holds for A f. It is now easy to see that (5.5) holds. ]
Next, it is easy to extend the weighted interpolation inequality to (&, c0) domains.

Theorem 5.3  Under the assumption of the Theorem 5.1, (5.3) holds for all cubes Q C
Qin R" if and only if

h—1

1 » If L(D)y\ *
(5.6) V' fll g () < Cw(D) " rad (D)™ ( (Q)1/7>

If I (D) rad(CD)kHkaHLPD) 1/h
( vO(D)l/f v(D)V/r )

forall f € CEVY (R and bounded (¢, 00) domains D.

loc

We now look at the extension of weighted Sobolev interpolation inequality to un-
bounded (e, 00) domains. The following theorem is indeed an extension of [17, The-
orem 1.5]

Theorem 5.4  Let p,1,q, h, i, k, and doubling weights v, vy, o, w be as in Theorem 5.1.
IFY(Q)"?%(Q " 1(Q) ™ — 0 as (Q) — oo, then

o VAl

(57) ||v f”LVI D) LP(D
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forall f € CE- "N (R") such that HkaHLP(D) # 0 and any unbounded (e, 00) domain

loc

D if and only if

(5.8)

w(Q)V1 < Cvp(Q)F UQ) ™ (Q) 7

for all cubes Q in R".

Proof Instead of using Theorem 1.7, we will use the extension theorem for un-
bounded (g, 00) domains; see Remark 4.5(ii). The theorem will then follow from
[17, Theorem 1.5]. [ |
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