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Extension Theorems on Weighted Sobolev
Spaces and Some Applications

Seng-Kee Chua

Abstract. We extend the extension theorems to weighted Sobolev spaces L
p

w,k(D) on (ε, δ) domains

with doubling weight w that satisfies a Poincaré inequality and such that w−1/p is locally Lp ′

. We also

make use of the main theorem to improve weighted Sobolev interpolation inequalities.

1 Introduction

By a weight w, we mean a non-negative locally integrable function that is positive
almost everywhere on R

n. By an abuse of notation, we will also write w for the mea-
sure induced by w. Sometimes we write dw to denote wdx. We usually assume w

is doubling, by which we mean w(2Q) ≤ Cw(Q) = C
∫

Q
w(x) dx for every cube Q,

where 2Q denotes the cube with the same center as Q and twice the edgelength of Q.
All cubes in this paper are assumed to be closed and with edges parallel to the axes. Q
will always be a cube and l(Q) will be its edgelength. Qr(x) will be the cube with cen-

ter x and l(Qr(x)) = r. Let µ be another weight. By w/µ ∈ Ap(µ) (the Muckenhoupt
Ap condition with respect to µ), we mean

1

µ(Q)

(

∫

Q

w

µ
dµ

) 1/p(
∫

Q

(

w

µ

)−1/(p−1)

dµ

)1/p ′

≤ C

when 1 < p <∞, 1/p + 1/p ′
= 1, and

µ(x)

µ(Q)
≤ C

w(x)

w(Q)

for almost every x in Q when p = 1 for all cubes Q in R
n.

When µ = 1, we will just write it as Ap. Note that w is doubling when it is in Ap

and clearly w/w ∈ Ap(w).

Let D be an open set in R
n. If α is a multi-index, α = (α1, α2, . . . , αn) ∈ Z

n
+,

we will denote
∑n

j=1 α j by |α| and Dα
= ( ∂

∂x1

)α1 · · · ( ∂
∂xn

)αn . By α ≥ β, we mean
α j ≥ β j for all 1 ≤ j ≤ n. Moreover we write α > β if α ≥ β and α 6= β. We

denote by ∇ the vector
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

)

and by ∇m the vector of all possible m-th

order derivatives for m ∈ N. A locally integrable function f on D (we will write
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f ∈ L1
loc (D)) has a weak derivative of order α if there is a locally integrable function

(denoted by Dα f ) such that

∫

D

f (Dαϕ) dx = (−1)|α|
∫

D

(Dα f )ϕ dx

for all C∞ functions ϕ with compact support in D (we will write ϕ ∈ C∞
0 (D)).

For 1 ≤ p < ∞, k ∈ N, and any weight w, L
p
w,k(D) and E

p
w,k(D) are the spaces of

functions having weak derivatives of all orders α, |α| ≤ k, and satisfying

‖ f ‖
L

p

w,k
(D)

=

∑

0≤|α|≤k

‖Da f ‖
Lp

w(D)
=

∑

0≤|α|≤k

(

∫

D

|Dα f |p dw
) 1/p

<∞,

and
‖ f ‖

E
p

w,k
(D)

=

∑

|α|=k

‖Dα f ‖
Lp

w(D)
<∞,

respectively. Moreover, in the case when w ≡ 1, we will denote L
p
w,k(D) and E

p
w,k(D)

by L
p
k (D) and E

p
k (D), respectively. We let Ck−1,1

loc
(D) be the collection of all functions

on D such that all their derivatives of order k − 1 are locally Lipschitz continuous
on D. In case k = 1, we will just denote it by Liploc (D). Furthermore, by f ∈
C

k−1,1
loc (D), we mean f = f̃ |

D
with f̃ ∈ C

k−1,1
loc (R

n).

Definition 1.1 An open set D is an (ε, δ) domain if for all x, y ∈ D, | x − y |< δ,
there exists a rectifiable curve γ connecting x to y such that γ lies in D and

l(γ) <
|x − y|
ε

,(1.1)

d(z, ∂D) >
ε|x − z||y − z|

|x − y| ∀z ∈ γ.(1.2)

Here l(γ) is the length of γ and d(z, ∂D) is the distance between z and the boundary
of D. Moreover, we will write d(Q, S) = infx∈Q,y∈S | x − y |, d(Q) = d(Q, ∂D) and
d(z) = d({z}, ∂D).

In 1981, P. Jones [27] extended a famous extension theorem on Lipschitz domains

to (ε, δ) domains.

Theorem 1.2 If D is a connected (ε, δ) domain and 1 ≤ p ≤ ∞, then C∞(R
n) ∩

L
p
k (D) is dense in L

p
k (D) and L

p
k (D) has a bounded extension operator, i.e., there exists

Λ : L
p
k (D) → L

p
k (R

n) such that Λ f |D = f a.e. and ‖Λ‖ is bounded. Moreover, the
norm of the extension operator depends only on ε, δ, k, p, rad(D), and the dimension n.

Furthermore, he proved that

Theorem 1.3 If D is an (ε,∞) domain in R
n, then En

1(D) has a bounded extension
operator.
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Let D be a bounded (ε,∞) domain with radius r = infx∈D supy∈D
|x − y| =

rad(D) and let Ω be a bounded open set containing D. Let W2 be the collection of

cubes in the Whitney decomposition of (Dc)o and define

W3 =

{

Q ∈ W2 : l(Q) ≤ εr

16nL

}

, L = 2−m,m ∈ Z+,

where L is chosen so that Ω ⊂ (
⋃

Q∈W3
Q) ∪ D.

In 1992, the author [10] extended Theorems 1.2 and 1.3 to weighted Sobolev
spaces L

p
w,k(D) and E

p
w,k(D) when the weight is in Ap. Moreover, in the case of (ε,∞)

domains, the author showed that:

Theorem 1.4 ([10, Theorems 1.4 and 1.5]) Let wi ∈ Api
, 1 ≤ pi < ∞ for i =

0, 1, . . . ,N. Let Ω be an open set containing an (ε,∞) domain D and let L and r be

defined as above such that Ω ⊂ (
⋃

Q∈W3
Q)∪D. Then there exists an extension operator

Λ on D such that

(1.3) ‖∇ki Λ f ‖
L

pi
wi

(Ω)
≤ Ci‖∇ki f ‖

L
pi
wi

(D)
for all i

for all f ∈
⋂N

i=0 E
pi

wi ,ki
(D). Here Ci depends only on ε, pi ,wi, ki, n, L and maxi ki .

Moreover, if D is unbounded, then (1.3) holds for Ω = R
n.

Furthermore, in 1994, Theorems 1.2 and 1.3 were further extended by relaxing the Ap

condition on the weight w to just doubling weights that satisfy a Poincaré inequality
[12, Theorems 1.2 and 1.3]. However, the extension operator obtained there was only

on C
k−1,1
loc

(R
n). The author also extended Theorem 1.4 to more general weights:

Theorem 1.5 ([12, Theorem 1.4]) Let 1 ≤ pi < ∞ for i = 0, 1, . . . ,N. Let Ω be a
bounded open set containing an (ε,∞) domain D and let L and r be as before. Let µ be

a weight and suppose that wi are doubling weights such that ( fQ,µ =
1

µ(Q)

∫

Q
f dµ)

(1.4) ‖ f − fQ,µ‖
L

pi
wi

(Q)
≤ Ai l(Q)‖∇ f ‖

L
pi
wi

(Q)
∀Q ⊂ D

for all f ∈ Liploc (D) and i = 0, 1, . . . ,N. Then there exists an extension operator on

D such that Λ f ∈ Ck−1,1
loc

(R
n) and

‖∇k
Λ f ‖

L
pi
wi

(R
n)
≤ Ci‖∇k f ‖

L
pi
wi

(D)

for all i and f ∈ C
k−1,1
loc (D); in addition, if wi/µ ∈ Api

(µ) for some i, then for that i,

‖Λ f ‖
L

pi
wi ,k−1

(Ω)
≤ Ci‖ f ‖

L
pi
wi ,k−1

(D)

and
‖∇k−1

Λ f ‖
L

pi
wi

(Ω)
≤ Ci‖∇k−1 f ‖

L
pi
wi

(D)
.

Ci depends only on wi, µ, ε, L, pi,Ai, k and n.
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Moreover, if D is a bounded (ε, δ) domain and w is a doubling weight such that
w−1/p ∈ L

p ′

loc
(R

n) and w is locally Ap in D, then it is obtained in [15] that the ex-

tension theorem holds for L
p
w,k(D) if (1.5) below holds. In this paper, we will further

study the extension problem when the weights are just doubling and satisfy a Poincaré
inequality. Note that in those previous studies, the standard approach is to extend

functions in Ck−1,1
loc

(D) and then apply density theorems. However, in general, one

does not have density theorems for weighted Sobolev space when the weight is only
doubling and satisfies a Poincaré inequality. Note that even though (ε, δ) domains
need not be connected, one can always consider each of its connected components.
Thus we will just consider connected (ε, δ) domains. Let us now state our main the-

orems and results.

Theorem 1.6 Let D be a connected (ε, δ) domain and let 1 ≤ p < ∞, k ∈ N.

Suppose w is a doubling weight such that w−1/p ∈ L
p ′

loc (R
n) and the following Poincaré

inequality holds (where fQ,w =
1

w(Q)

∫

Q
f dw):

(1.5) ‖ f − fQ,w‖Lp
w(Q)

≤ Al(Q)‖∇ f ‖
Lp

w(Q)
,

for all f ∈ E
p
w,1(D) and cubes Q ⊂ D, l(Q)

d(Q)
≤ A0, A0 > 0. Then for any f ∈ L

p
w,k(D),

there exists an extension Λ f ∈ L
p
w,k(R

n) such that

‖Λ f ‖
L

p

w,k(R
n)
≤ C‖ f ‖

L
p

w,k(D)

where C depends only on A,A0, ε, δ, rad(D),w and the dimension n. Moreover, if in

addition f ∈ C
k−1,1
loc (D), then indeed Λ f ∈ C

k−1,1
loc (R

n).

Moreover, we have the following.

Theorem 1.7 Let 1 ≤ pi < ∞ for i = 1, . . . ,N, and k ∈ N. Let Ω be a bounded

open set containing an (ε,∞) domain D and let L and r be as in Theorem 1.4. Let µ
and wi be doubling weights such that

(1.6) ‖ f − fQ,µ‖
L1

µ(Q)
≤ Ai

l(Q)µ(Q)

wi(Q)1/pi
‖∇ f ‖

L
pi
wi

(Q)

for all f ∈ Liploc (D) and for all cubes Q ⊂ D such that l(Q)

d(Q)
≤ A0,A0 > 0. Then for

any f ∈ C
k−1,1
loc

(D), there exists an extension Λ f ∈ C
k−1,1
loc

(R
n) such that (Λ f = f on

D)

(1.7) ‖∇l
Λ f ‖

L
pi
wi

(Ω)
≤ Ci‖∇l f ‖

L
pi
wi

(D)
, 1 ≤ l ≤ k.

Here Ci depends only on wi, µ, ε, L, pi,Ai , k and n. Furthermore, for any doubling
weight v such that v/µ ∈ Ap(µ), 1 ≤ p <∞, we have

(1.8) ‖Λ f ‖
Lp

v (Ω)
≤ C‖ f ‖

Lp
v (D)

.

Here C depends only on v, µ, ε, L, p, k and n.
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Remark 1.8

(1) Theorem 1.7 is indeed stronger than Theorem 1.5 except when l = k in (1.7).
Note that (1.6) will imply (1.4) (see Remark 2.9). However, in case wi/µ ∈ Api

(µ),
then (1.6) is indeed equivalent to (1.4). Thus in case 0 < l < k, the conclusion

of Theorem 1.7 is strictly stronger with slightly weaker conditions (since we do not
assume wi/µ ∈ Api

(µ) here). Moreover, even though we will only prove that

‖∇k
Λ f ‖

L
pi
wi

(Ω)
≤ Ci‖∇k f ‖

L
pi
wi

(D)
,

one can indeed replace Ω by R
n in the above inequality by modifying the extension

of functions outside ∪W3; see the proof of [12, Theorem 1.4] for the detail.

(2) Since (1.6) implies (1.4), by repeated applications of (1.4), we have for all
0 ≤ |α| < l,

(1.9) ‖Dα( f − Pl
µ(Q) f )‖

L
pi
wi

(Q)
≤ Cl(Q)‖∇Dα( f − Pl

µ(Q) f )‖
L

pi
wi

(Q)

≤ Cl(Q)l−|α|‖∇l f ‖
L

pi
wi

(Q)

if Pl
µ(Q) f is the unique polynomial of degree< l such that

∫

Q

Dβ( f − Pl
µ(Q) f ) dµ = 0, for all 0 ≤ |β| < l.

(3) It is easy to check that (1.5) holds for distant-type weights w(x) = dist(M, x)a,
M ⊂ ∂D. Note that clearly such weights need not be in Ap. Moreover, there is a

class of domains with dist(x, ∂D)−1/p ∈ Lp ′

(D), [24, Theorem 6]. Also, see [7] for
another class of non-Ap weights such that (1.5) holds.

2 Preliminaries

In what follows, C denotes various positive constants, which may differ even in a
sequence of consecutive estimates. Moreover, sometimes we will use C(α, β, . . . )
instead of C to emphasize that the constant depends on α, β, . . . .

In this section, we will collect some useful results that will be needed in the proof
of our main theorem. First of all, since we will need to project functions into spaces
of polynomials, we will state some results about polynomials.

Theorem 2.1 ([10, Lemma 2.3]) Let F,Q be cubes such that F ⊂ Q and |F| > γ|Q|.
If w is a doubling weight, 1 ≤ q <∞, and p is a polynomial of degree less than k, then

‖p‖
Lq

w(E)
≤ C(γ, k, n,w)

( w(E)

w(F)

) 1/q

‖p‖
Lq

w(F)

for all measurable sets E ⊂ Q.
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Lemma 2.2 ([37, Chapter 3, Lemma 7]) If w is a doubling measure and k is a positive
integer, then there exists s0(n, k,w) such that if s < s0, then for all cubes Q, λ > 0 such

that

w
(

{x ∈ Q : |p(x)| > λ}
)

≤ sw(Q)

we have

sup
x∈Q

|p(x)| ≤ Cλ,

where p is any polynomial of degree less than k and C is a constant independent of λ,Q
and p.

It follows from Chebyshev’s inequality and this lemma that given k and a polyno-
mial p of degree less than k,

(2.1) ‖p‖
L∞(Q)

≤ C

w(Q)
‖p‖

L1

w(Q)
,

with C independent of Q and p.

The following is now a consequence of Markov’s inequality (see [2]) and Lemma
2.2.

Theorem 2.3 Let p be a polynomial of order less than k and 1 ≤ q ≤ ∞. If w is a
doubling weight, then

‖∇p‖
Lq

w(Q)
≤ Cl(Q)−1‖p‖

Lq
w(Q)

for all cubes Q in R
n, where C depends only on k,w, q and n.

We now prove an interesting fact about projection of functions into polynomials.

Proposition 2.4 For any k ∈ N, cube Q ⊂ R
n and doubling weight σ, there exists a

projection πk
σ(Q) : L1

σ(Q) → Pk−1 (space of polynomials of degree < k) such that

‖πk
σ(Q) f ‖

L∞(Q)
≤ C

σ(Q)
‖ f ‖

L1

σ(Q)

where C depends only on k, n and the doubling constant of σ. When σ = 1, we just

denote the projection by πk(Q) f .

Proof This proposition can indeed be found in [17]. However, as the proof is quite
short and the reference may not be available, we will prove it here.

First note that Pk−1 is a finite dimensional vector space over R and
∫

Q
p1 p2 dσ

defines an inner product on Pk−1. Hence there exists an orthonormal basis {ϕ1, ϕ2,
. . . , ϕm} ⊂ Pk−1 with respect to this inner product. Then ‖ϕi‖

L2

σ(Q)
= 1 and

p(x) =

m
∑

i=1

ϕi(x)

∫

Q

p(y)ϕi(y) dσ
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if p ∈ Pk−1. We now define

πk
σ(Q) f (x) =

m
∑

i=1

ϕi(x)

∫

Q

f (y)ϕi(y)dσ for f ∈ L1
σ(Q).

It is clear that πk
σ(Q) is a projection to Pk−1. Next, by (2.1) and Hölder’s inequality,

we have

‖ϕi‖L∞(Q)
≤ C

σ(Q)1/2
‖ϕi‖

L2

σ(Q)
= C/σ(Q)1/2

where C depends only on the doubling constant of σ, k and the dimension n. It is
now clear that

‖πk
σ(Q) f ‖

L∞(Q)
≤

m
∑

i=1

‖ϕi‖L∞(Q)
‖ϕi‖L∞(Q)

‖ f ‖
L1

σ(Q)
≤ C

σ(Q)
‖ f ‖

L1

σ(Q)
.

Consequently, we have

Lemma 2.5 Let 1 ≤ p ≤ ∞ and k ∈ N. Let w be a doubling weight on R
n such that

for any weakly differentiable function f and cube Q, there exists a constant a( f ,Q) such

that

(2.2) ‖ f − a( f ,Q)‖
Lp

w(Q)
≤ Cl(Q)‖∇ f ‖

Lp
w(Q)

.

Then

(2.3) ‖Dα( f − πk
w(Q) f )‖

Lp
w(Q)

≤ Cl(Q)l−|α|‖∇l f ‖
Lp

w(Q)

and

(2.4) ‖Dαπk
w(Q) f ‖

Lp
w(Q)

≤ C‖∇|α| f ‖
Lp

w(Q)

for |α| ≤ l ≤ k and f ∈ E
p
w,k(Q).

Proof Let f ∈ E
p
w,k(Q). First note that then f ∈ L

p
w,k(Q) by repeated applications

of (2.2). Next note that by the triangle inequality, Hölder’s inequality, and (2.2), we
have
(2.5)

‖ f − fQ,w‖Lp
w(Q)

≤ ‖ f − a( f ,Q)‖
Lp

w(Q)
+ ‖ fQ,w − a( f ,Q)‖

Lp
w(Q)

= ‖ f − a( f ,Q)‖
Lp

w(Q)
+ w(Q)1/p

∣

∣

∣

1

w(Q)

∫

Q

( f − a( f ,Q)) dw
∣

∣

∣

≤ 2‖ f − a( f ,Q)‖
Lp

w(Q)
(by Hölder’s inequality)

≤ Cl(Q)‖∇ f ‖
Lp

w(Q)
.
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For each l ∈ N, l ≤ k, let Pl
w(Q) f be the polynomial of degree< l such that

∫

Q

Dα( f − Pl
w(Q) f ) dw = 0 for all 0 ≤ |α| < l.

Then by repeated applications of (2.5), we have

(2.6) ‖Dα( f − Pl
w(Q) f )‖

Lp
w(Q)

≤ Cl(Q)l−|α|‖∇l f ‖
Lp

w(Q)

for 0 ≤ |α| < l. Also, (2.6) clearly holds if |α| = l as Pl
w(Q) f is a polynomial of

degree< l. Hence if 0 ≤ |α| ≤ l ≤ k,

‖Dα( f − πk
w(Q) f )‖

Lp
w(Q)

≤ ‖Dα( f − Pl
w(Q) f )‖

Lp
w(Q)

+ Cl(Q)−|α|‖πk
w(Q)[ f − Pl

w(Q) f ]‖
Lp

w(Q)

(by the triangle inequality and Theorem 2.3)

≤ ‖Dα( f − Pl
w(Q) f )‖

Lp
w(Q)

+ Cl(Q)−|α|w(Q)1/p‖πk
w(Q)[ f − Pl

w(Q) f ]‖
L∞(Q)

(by Hölder’s inequality)

≤ ‖Dα( f − Pl
w(Q) f )‖

Lp
w(Q)

+ Cl(Q)−|α|‖ f − Pl
w(Q) f ‖

Lp
w(Q)

(by Proposition 2.4 and Hölder’s inequality)

≤ Cl(Q)l−|α|‖∇l f ‖
Lp

w(Q)

by (2.6). Next, by the triangle inequality and the previous inequality,

‖Dαπk
w(Q) f ‖

Lp
w(Q)

≤ ‖Dα(πk
w(Q) f − f )‖

Lp
w(Q)

+ ‖Dα f ‖
Lp

w(Q)

≤ C‖∇|α| f ‖
Lp

w(Q)
+ ‖Dα f ‖

Lp
w(Q)

≤ C‖∇|α| f ‖
Lp

w(Q)
.

Remark 2.6 Inequality (2.3) has been established before. However, only recently
did we realize that (2.4) is indeed just a consequence of (2.3).

Next, let us state a consequence of [16, Theorem 1.6].

Theorem 2.7 Let 0 < p, s <∞, 1 < λ <∞. Let u be a measurable function defined
on a cube Q0 and let “ a ” be a nonnegative set function on all cubes Q with λQ ⊂ Q0.
Let µ be a doubling weight with doubling constant Cµ. Suppose there exists a doubling
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weight σ such that for any cube Q with λQ ⊂ Q0, there exists a polynomial PQ of degree
< k so that

(2.7)
1

σ(Q)1/p
‖u − PQ‖Lp

σ(Q)
≤ a(Q)

and there exists 0 < δ < 1 such that

(2.8)
∑

Q∈F

a(Q)sµ(Q)1−δ ≤ as
0µ(Q0)1−δ

for any collection F of nonoverlapping cubes Q such that λQ ⊂ Q0. If there exists
F ⊂ Q0 such that µ(Q0\F) = 0 and for all x ∈ F, PQr (x)(x) → u(x) as r → 0 (recall
that Qr(x) is the cube with center x and l(Qr(x)) = r), then for 0 < q < s, we have

(2.9)
1

µ(Q0)1/q
‖u − PQ ′‖

Lq
µ(Q0)

≤ Ca0

where λQ ′ ⊂ Q0 ⊂ λ2Q ′.

It follows from the preceding theorem that we have the following lemma.

Lemma 2.8 Let 1 ≤ p, q <∞, A0 > 0. Let D be any open connected set. If σ and w
are doubling weights such that

(P)
1

σ(Q)
‖ f − fQ,σ‖

L1

σ(Q)
≤ C

l(Q)

w(Q)1/p
‖∇ f ‖

Lp
w(Q)

for all cubes Q ⊂ D such that l(Q)
d(Q)

≤ A0 and weakly differentiable functions f , then

‖ f − fQ,σ‖Lp
w(Q)

≤ Cl(Q)‖∇ f ‖
Lp

w(Q)

for all cubes Q ⊂ D such that l(Q)

d(Q)
≤ A0 and weakly differentiable functions f .

Proof First note that since w is doubling, there exists k > 1 such that

( w(Q)

w(Q̃)

) 1−1/k2

≥ C
( l(Q)

l(Q̃)

) p

for all cubes Q ⊂ Q̃.

Also, note that for almost all x, fQr (x),σ =
1

σ(Qr (x))

∫

Qr (x)
f dσ → f (x) as r → 0. Let

a(Q) =
l(Q)

w(Q)1/p ‖∇ f ‖
Lp

w(Q)
. If δ = 1 − 1

k
and s = kp, then for any collection F of
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nonoverlapping cubes in a cube Q̃ ⊂ D, l(Q̃)/d(Q̃) ≤ A0, we have

∑

Q∈F

a(Q)sw(Q)1−δ
=

∑

Q∈F

l(Q)kp

w(Q)k− 1

k

‖∇ f ‖kp

Lp
w(Q)

≤ C
l(Q̃)kp

w(Q̃)k− 1

k

∑

Q∈F

‖∇ f ‖kp

Lp
w(Q)

≤ C
l(Q̃)kp

w(Q̃)k− 1

k

(

∑

Q∈F

‖∇ f ‖p

Lp
w(Q)

) k

≤ C
l(Q̃)kp

w(Q̃)k− 1

k

‖∇ f ‖kp

Lp
w(Q̃)

= Ca(Q̃)sw(Q̃)1−δ.

Note that if Q ⊂ Q̃, then l(Q)

d(Q)
≤ l(Q̃)

d(Q̃)
. Hence, fixing any λ > 1, since 0 < p < kp = s,

it follows from the previous theorem that

‖ f − fQ ′,σ‖Lp
w(Q)

≤ Cl(Q)‖∇ f ‖
Lp

w(Q)
when λQ ′ ⊂ Q ⊂ λ2Q ′

and

‖ f − fQ,σ‖Lp
w(Q)

≤ ‖ f − fQ ′,σ‖Lp
w(Q)

+ ‖ fQ,σ − fQ ′,σ‖Lp
w(Q)

(by the triangle inequality)

= ‖ f − fQ ′,σ‖Lp
w(Q)

+ w(Q)1/p

∣

∣

∣

∣

1

σ(Q ′)

∫

Q ′

( f − fQ,σ) dσ

∣

∣

∣

∣

≤ ‖ f − fQ ′,σ‖Lp
w(Q)

+ Cw(Q)1/p 1

σ(Q)

∫

Q

| f − fQ,σ| dσ

≤ ‖ f − fQ ′,σ‖Lp
w(Q)

+ Cl(Q)‖∇ f ‖
Lp

w(Q)

by (P). The conclusion of the Lemma is now clear.

Remark 2.9

(1) Theorem 2.7 and Lemma 2.8 are indeed results in “self-improving inequali-
ties”, see [21, 24] for details.

(2) If (1.6) holds and πl
µ(Q) f is the polynomial in Proposition 2.4, then (1.9)
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holds and

‖Dα( f − πl
µ(Q) f )‖

L
pi
wi

(Q)

≤ ‖Dα( f − Pl
µ(Q) f )‖

L
pi
wi

(Q)
+ ‖Dα(Pl

µ(Q) f − πl
µ(Q) f )‖

L
pi
wi

(Q)

≤ ‖Dα( f − Pl
µ(Q) f )‖

L
pi
wi

(Q)
+ Cl(Q)−|α|wi(Q)1/pi‖πl

µ(Q)(Pl
µ(Q) f − f )‖

L∞(Q)

(by Hölder’s inequality and Theorem 2.3)

≤ ‖Dα( f − Pl
µ(Q) f )‖

L
pi
wi

(Q)
+ Cl(Q)−|α| wi(Q)1/pi

µ(Q)
‖ f − Pl

µ(Q) f ‖
L1

µ(Q)

(by Proposition 2.4)

≤ ‖Dα( f − Pl
µ(Q) f )‖

L
pi
wi

(Q)
+ Cl(Q)−|α|+1‖∇( f − Pl

µ(Q) f )‖
L

pi
wi

(Q)
(by (1.6))

≤ Cl(Q)l−|α|‖∇l f ‖
L

pi
wi

(Q)
(by (1.9) when |α| < l).

Next, the following lemma is indeed a special case of a result in [11].

Lemma 2.10 ([11, Theorem 2.1]) Let f be a measurable function on R
n and let w

be a doubling weight. Also, let 1 ≤ p ≤ ∞, k ∈ N and L > 0. For each cube Q
in R

n, let P( f ,Q) be a polynomial of degree < k associated to f on Q. Suppose that
{Qi}l

i=0 is a sequence of cubes such that Qi ∩ Qi+1 contains a cube Qi with |Qi| ≥
L max{|Qi |, |Qi+1|} for each i = 0, 1, . . . , l − 1. Then

(2.10) ‖ f − P( f ,Q0)‖
Lp

w(Ql)
≤ C

∑

i

‖ f − P( f ,Qi)‖Lp
w(Qi )

,

where C depends only on L, l,w, k, p and the dimension n.

3 Facts About (ε, δ) Domains

Let D be a connected (ε, δ) domain. Recall that r = rad(D) = infx∈D supy∈D
|x−y|.

Following the terminology used in [27], we say that two cubes touch if a face of one
cube is contained in a face of the other. In particular, the union of two touching cubes

of equal size is a rectangle. A collection of cubes {Si}m
i=0 is called a chain if Si touches

Si+1 for all i. Also let W1 be the cubes in the Whitney decomposition of D and W2 be
the cubes in the Whitney decomposition of (Dc)o; see [36] for the definition of the
Whitney decomposition.

Next let us recall some properties of the cubes in the Whitney decomposition of
the open set D or (Dc)o. Since these properties are well known, we will often make
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use of them without explicitly mentioning them.

l(Q) = 2−k for some k ∈ Z,

Qo
1 ∩ Qo

2 = ∅ if Q1 6= Q2,

1/4 ≤ l(Q1)

l(Q2)
≤ 4 if Q1 ∩ Q2 6= ∅,

√
n ≤ d(Q, ∂D)

l(Q)
≤ 4

√
n.(∗)

If necessary, we will subdivide all the Whitney cubes l times so that the above hold
except that (∗) will be replaced by

√
n2l ≤ d(Q, ∂D)

l(Q)
≤ 4

√
n2l,

where l is a fixed given positive integer. We will call such a decomposition a Whitney

l-decomposition.
Next, let us collect some facts concerning (ε, δ) domains. The reader can find the

proofs in [27]. More details can be found in [10, 12, 15].
Let D be an (ε, δ) domain. Recall that W1 and W2 are the Whitney decompositions

of D and (Dc)o, respectively. Then there exists a positive constant L ′ depending only
on ε, δ, rad(D) and the dimension n such that if W3 = {Q ∈ W2 : l(Q) ≤ L ′}, then
the following five properties hold.

(A) There exists C > 0 such that for all Q ∈ W3, there exists S ∈ W1 such that

1 ≤ l(S)

l(Q)
≤ 4 and d(S,Q) ≤ Cl(Q). We will choose such an S and write S = Q∗.

(B) There exists C > 0 such that for all Q ∈ W3, and S1, S2 ∈ W1 such that S1, S2 =

Q∗, then d(S1, S2) ≤ Cl(Q).

(C) There exists C > 0 such that for all S ∈ W1, there are at most C cubes Q ∈ W3

with Q∗
= S.

(D) There exists C > 0 such that for all Q1,Q2 ∈ W3 with Q1 ∩ Q2 6= ∅ , we have
d(Q∗

1 ,Q
∗
2 ) ≤ Cl(Q1).

(E) There exists C > 0 such that for all Q j ,Qk ∈ W3 with Q j ∩ Qk 6= ∅, there exists

a chain F j,k = {Q∗
j = S0, S1, S2, . . . , Sm = Q∗

k} of cubes in W1 connecting Q∗
j to

Q∗
k with m ≤ C . (Then l(Si), l(Q j) are comparable and d(Si ,Q

∗
j ) ≤ Cl(Q j).)

Remark 3.1

(1) Note that even if W1 and W2 are just Whitney l-decompositions, there still
exists a constant L ′ such that (A)–(E) hold.

(2) The constants in (A)–(E) depend only on ε, δ and n. Moreover, when D is an
(ε,∞) domain, given any 0 < L ≤ 1, we may also take W3 = {Q ∈ W2 : l(Q) ≤
εr/(16nL)} so that properties (A)–(E) hold except that now L ≤ l(Q∗)/l(Q) ≤ 4L
for Q ∈ W3. Of course, the constants now in (A)–(E) also depend on L. Again, it
remains valid even if W1 and W2 are just Whitney l-decompositions.
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Finally, let us state an important property that was proved by Jones [27].

Proposition 3.2 ([27, Lemma 2.3]) If D is an (ε, δ) domain, then |∂D| = 0.

4 Proof of the Main Theorems

We will follow the approach by Jones [27] and our previous approach in [10, 12].

However, as C
k−1,1
loc

(R
n) may not be dense in our weighted Sobolev spaces, we need

to consider the extension of all functions directly.

Recall that W1 is the Whitney decomposition of D and W2 is the Whitney decom-
position of (Dc)o. Choose W3 ⊂ W2 such that properties (A)–(E) hold. Note that
l(Q) ≤ C for all Q ∈ W3 and l(Q) ≥ C(r) if Q ∈ W2\W3. For each Q j ∈ W3, choose
0 ≤ ϕ j ≤ χ

17

16
Q j

, ϕ j ∈ C∞(R
n), such that

∑

Q j∈W3

ϕ j ≡ 1 on
⋃

W3, 0 ≤
∑

Q j∈W3

ϕ j ≤ 1,

and |Dαϕ j | ≤ Cl(Q j)
−|α| for 0 ≤ |α| ≤ k.

Instead of proving Theorem 1.6 directly, let us first establish a more general result

by assuming the existence of a “nice” projection of E
p
w,k functions into polynomials.

Proposition 4.1 Let w be a doubling weight, 1 ≤ p < ∞, k ∈ N, and let D be
a connected (ε, δ) domain. Suppose for each l ∈ N, l ≤ k and cube Q ⊂ D such
that l(Q)

d(Q)
≤ A0,A0 > 0, there exists a projection Pl(Q) : E

p
w,l(Q) → Pl−1 (space of

polynomials of degree ≤ l − 1) such that for all 0 ≤ |α| < l,

(4.1) ‖Dα(Pl(Q) f − f )‖
Lp

w(Q)
≤ Cl(Q)l−|α|‖∇l f ‖

Lp
w(Q)

.

If for f ∈ L
p
w,k(D), we define P j = Pk(Q∗

j ) f (see (B) for Q∗) and

Λ f (x) =

{

f (x) if x ∈ D,
∑

Q j∈W3
P j(x)ϕ j (x) if x ∈ (Dc)o,

then ‖Λ f ‖
L

p

w,k
(Dc)

≤ C‖ f ‖
L

p

w,k
(D)

. Moreover, if in addition w−1/p ∈ L
p ′

loc
(R

n), then

Λ f ∈ L
p
w,k(R

n).

Before we begin, we will first establish some inequalities regarding chains of touch-

ing cubes. Recall that two cubes touch if a face of one cube is contained in a face of
the other.

Lemma 4.2 Let w be a doubling weight and 1 ≤ p < ∞, k ∈ N. Let Pk(Q) be as in
the previous proposition and satisfy (4.1). If {Q0,Q1, . . . ,Qm} is a chain of touching
Whitney cubes or touching cubes of same size such that l(Qi )

d(Qi )
≤ A0,A0 > 0, for all i,

then for all 0 ≤ |α| ≤ k,

(4.2) ‖Dα(Pk(Q0) f − Pk(Qm) f )‖
Lp

w(Q0)
≤ C(m, p,w, k)l(Q0)k−|α|‖∇k f ‖

Lp
w(∪i Qi )

.
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Proof First, let {S0, S1, . . . , Sl}, l = 2m, be a chain of cubes that satisfies the condi-
tion of Lemma 2.10 and

⋃

S j =
⋃

Qi, S0 = Q0, Sl = Qm,
l(S j)

d(S j)
≤ A0 for all j,

l
∑

j=0

χ
S j
≤ 2 a.e.

Then by the triangle inequality and Lemma 2.10, we have

‖Dα(Pk(Q0) f − Pk(Qm) f )‖
Lp

w(Q0)

= ‖Dα(Pk(S0) f − Pk(Sl) f )‖
Lp

w(S0)

≤ Cl(S0)−|α|‖Pk(S0) f − Pk(Sl) f ‖
Lp

w(S0)
(by Lemma 2.3)

≤ Cl(S0)−|α|
(

‖ f − Pk(Sl) f ‖
Lp

w(S0)
+ ‖ f − Pk(S0) f ‖

Lp
w(S0)

)

(by the triangle inequality)

≤ Cl(S0)−|α|
(

l
∑

j=0

‖ f − Pk(S j ) f ‖
Lp

w(S j )
+ ‖ f − Pk(S0) f ‖

Lp
w(S0)

)

(by Lemma 2.10)

≤ Cl(Q0)k−|α|
∑

j

‖∇k f ‖
Lp

w(S j )
(by (4.1))

≤ Cl(Q0)k−|α|‖∇k f ‖
Lp

w(∪S j )

= Cl(Q0)k−|α|‖∇k f ‖
Lp

w(∪Qi )
.

Proof of Proposition 4.1 First recall that |∂D| = 0 by Proposition 3.2. To simplify

the proof, we will just consider the case A0 ≥ 1. Note that in case A0 < 1, we will just
consider Whitney l-decomposition (instead of Whitney decomposition) where l ∈ N

is such that A0 ≥ 2−l.

Claim 1 If Q0 ∈ W3 then

(4.3) ‖Dα
Λ f ‖

Lp
w(Q0)

≤ C‖Dα f ‖
Lp

w(Q∗
0

)
+ Cl(Q0)k−|α|‖∇k f ‖

Lp
w(∪F(Q0))

,

where 0 ≤ |α| ≤ k and F(Q0) is the collection of cubes that belong to any of the
chains F0, j (guaranteed by (E)) for which Q j ∩ Q0 6= ∅. And if Q0 ∈ W2\W3, then

(4.4) ‖Dα
Λ f ‖

Lp
w(Q0)

≤ C(r)
∑

Q j∩Q0 6=∅

Q j∈W3

[

‖∇k f ‖
Lp

w(Q∗
j )

+ ‖ f ‖
Lp

w(Q∗
j )

]

.
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Proof of Claim 1 The following is just a modification of what we have done in [10,
(7.1), (7.2)]. While proof of (4.3) is about the same, the proof of (4.4) required a few

more steps. First, let Q0 ∈ W3. Then

‖Dα
(

∑

P jϕ j

)

‖
Lp

w(Q0)

≤ ‖Dα(
∑

P jϕ j −
∑

P0ϕ j)‖Lp
w(Q0)

+ ‖Dα(P0

∑

ϕ j)‖Lp
w(Q0)

(by the triangle inequality)

= ‖Dα(
∑

P jϕ j −
∑

P0ϕ j)‖Lp
w(Q0)

+ ‖DαP0‖Lp
w(Q0)

(since
∑

ϕ j = 1 on Q0)

≤ C
∑

β≤α

‖
∑

j

Dα−β(P j − P0)Dβϕ j‖Lp
w(Q0)

+ C‖DαP0‖Lp
w(Q∗

0
)

(by the triangle inequality, (A), and Theorem 2.1)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

l(Q0)−|β|‖Dα−β(P j − P0)‖
Lp

w(Q0)
+ C‖DαP0‖Lp

w(Q∗
0

)

(by the triangle inequality)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

l(Q0)−|β|‖Dα−β(P j − P0)‖
Lp

w(Q∗
0

)
+ C‖Dα(P0 − f )‖

Lp
w(Q∗

0
)

+ C‖Dα f ‖
Lp

w(Q∗
0

)
(by Theorem 2.1 and the triangle inequality)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

l(Q0)−|β|l(Q0)k−|α−β|‖∇k f ‖
Lp

w(∪F0, j )

+ Cl(Q0)k−|α|‖∇k f ‖
Lp

w(Q∗
0

)
+ C‖Dα f ‖

Lp
w(Q∗

0
)

(by (E), Lemma 4.2 and (4.1))

≤ Cl(Q0)k−|α|‖∇k f ‖
Lp

w(∪F(Q0)
+ C‖Dα f ‖

Lp
w(Q∗

0
)
.

Next, if Q0 ∈ W2\W3, recall that l(Q0) ≥ C(r), and observe that

‖Dα
(

∑

P jϕ j

)

‖
Lp

w(Q0)
≤ C

∑

β≤α

∑

Q j∩Q0 6=∅

Q j∈W3

l(Q0)−|β|‖Dα−βP j‖Lp
w(Q0)

(by the triangle inequality)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

Q j∈W3

l(Q0)−|β|‖Dα−βP j‖Lp
w(Q∗

j )

(by (A), (D) and Theorem 2.1)
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≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

Q j∈W3

l(Q0)−|β|l(Q∗
j )−|α−β|‖P j‖Lp

w(Q∗
j )

(by Theorem 2.3)

≤ C(r)
∑

Q j∩Q0 6=∅

Q j∈W3

‖P j‖Lp
w(Q∗

j )

(since l(Q∗
j ) ≥ Cl(Q0) ≥ C(r) by (A))

≤ C(r)
∑

Q j∩Q0 6=∅

Q j∈W3

(

‖P j − f ‖
Lp

w(Q∗
j )

+ ‖ f ‖
Lp

w(Q∗
j )

)

(by the triangle inequality)

≤ C(r)
∑

Q j∩Q0 6=∅

Q j∈W3

[

‖∇k f ‖
Lp

w(Q∗
j )

+ ‖ f ‖
Lp

w(Q∗
j )

]

by (4.1). This completes the proof of Claim 1.

Next, observe that
∥

∥

∥

∑

Q j∈W2\W3

∑

Ql∈W3

Ql∩Q j 6=∅

χ
Q∗

l

∥

∥

∥

L∞

≤ C,(4.5)

∥

∥

∥

∑

Q j∈W3

χ
∪F(Q j )

∥

∥

∥

L∞

≤ C.(4.6)

Combining these facts with (4.3), (4.4) and using l(Q j) ≤ C(r) if Q j ∈ W3,we obtain
that for 0 ≤ |α| ≤ k,

‖Dα
Λ f ‖p

Lp
w((Dc)o)

=

∑

Q j∈W3

‖Dα
Λ f ‖p

Lp
w(Q j )

+
∑

Q j∈W2\W3

‖Dα
Λ f ‖p

Lp
w(Q j )

≤
∑

Q j∈W3

C
(

‖Dα f ‖
Lp

w(Q∗
j )

+ ‖∇k f ‖
Lp

w(∪F(Q j ))

) p
+

∑

Q j∈W2\W3

(

∑

Ql∈W3

Q j∩Ql 6=∅

C(r)
[

‖∇k f ‖
Lp

w(Q∗
l )

+ ‖ f ‖
Lp

w(Q∗
l )

]

) p

≤
∑

Q j∈W3

C
(

‖Dα f ‖p

Lp
w(Q∗

j )
+ ‖∇k f ‖p

Lp
w(∪F(Q j ))

)

+

∑

Q j∈W2\W3

∑

Ql∈W3

Q j∩Ql 6=∅

C(r)
(

‖∇k f ‖p

Lp
w(Q∗

l )
+ ‖ f ‖p

Lp
w(Q∗

l )

)

≤ C(r)‖ f ‖p

L
p

w,k(D)
.
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Hence
‖Λ f ‖

L
p

w,k(Dc)o ≤ C(r)‖ f ‖
L

p

w,k(D)
.

We now show that indeed Λ f ∈ L
p
w,k(R

n) if f ∈ L
p
w,k(D) and w−1/p ∈ L

p ′

loc
(R

n).
We will show that for any h ∈ C∞

0 (R
n) and 0 ≤ |α| ≤ k, we have

∫

(Dα
Λ f )h dx = (−1)|α|

∫

(Λ f )Dαh dx

where

Dα
Λ f (x) =

{

Dα f (x) if x ∈ D,

Dα
(
∑

Q j∈W3
P j(x)ϕ j (x)

)

if x ∈ (Dc)o.

To this end, it suffices to show that for any bounded set Ω and any η > 0, we can find
C∞ function fη such that

∫

Ω

|∇l(Λ f − fη)| dx < Cη

for 0 ≤ l ≤ k with C independent of η. We will first choose an open bounded set
D0 ⊂ D such that

(4.7) {x ∈ D : d(x,Ω ∩ D) < 1} ⊂ D0;

(4.8) ∪ F(Q0) ⊂ D0 for any Q0 ∈ W3,Q0 ∩ Ω 6= ∅

(see (4.3) for the definition of F(Q0));

(4.9) {x ∈ D : d(x,Ω ∩ D
c) < 1} ⊂ D0.

We then choose a compact set K ⊂ D such that

(4.10) ‖∇l f ‖
Lp

w(D0\K)
< η and hence ‖∇l f ‖

L1(D0\K)
< Cη for 0 ≤ l ≤ k.

Next, we choose 0 < s < 1 such that

K3s
= {x + y : x ∈ K, y ∈ R

n, |y| ≤ 3s} ⊂ D,

and then choose a function Ψ ∈ C∞
0 (R

n) such that (since Dα f ∈ L1
loc (D))

χ
Ks ≤ Ψ ≤ χ

K2s and |Dα
Ψ| ≤ cs−|α| for all α.

Let us fix a function ξ ∈ C∞
0

(

{x ∈ R
n : |x| ≤ 1}

)

such that
∫

ξ = 1. Let
ξt (x) = t−nξ(x/t) for t > 0. We now note that there exists 0 < t < s such that

(4.11) ‖Dα( f − f ∗ ξt )‖
L1(K2s)

= ‖Dα f − (Dα f )∗ ξt‖
L1(K2s)

≤ ηsk−|α|, 0 ≤ |α| ≤ k.
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Let ̺ = 2−m,m ∈ Z+. Recall that W1 is the Whitney decomposition of D. Define

ℜ ′
= {dyadic cubes R with edgelength ̺,R ⊂ D},

ℜ = {R ∈ ℜ ′ : R ⊂ S for some S ∈ W1, l(S) ≥ 32n3̺/ε}

(we may assume ε ≤ 1). Moreover, for each R ∈ ℜ let R̃, ˜̃R be cubes concentric with

R with sides parallel to the axes and l(R̃) = 1300n4̺/ε2 and l( ˜̃R) = 2562n4̺/ε2.
First, let us make the following three observations:

(I) D10̺
= {x + y : x ∈ D, y ∈ R

n, |y| ≤ 10̺} ⊂ ⋃

R∈ℜ R̃ provided ̺ is small

enough.

(II) For all R0,R j ∈ ℜ with ˜̃R0 ∩ ˜̃R j 6= ∅ and R̃0 ∩ (D\Ks) 6= ∅, there exists a
chain G0, j = {R0 = S1, S2, . . . , Sm = R j} in ℜ ′ connecting R0,R j with m ≤ C

that depends only on ε, δ and n, and ∪G0, j ⊂ D\K, d(∪G0, j) > ̺, provided
̺ is small enough. Moreover, if in addition that R̃0 ∩ (D ∩ Ω\Ks) 6= ∅, then
indeed ∪G0, j ⊂ D0\K.

(III) Cubes in W2\W3 will not intersect
⋃

R j∈ℜ
˜̃R j when ̺ is small enough. More-

over, if Q0 ∈ W3 intersects
⋃

R j∈ℜ R̃ j and Ω, we may assume that ∪F(Q0) ⊂
D0\K.

A similar conclusion to (I) was first stated in [27] (with D ⊂ ⋃

R∈ℜ R̃) without

proof. Nevertheless, the reader can refer to the proof of Theorem 6.1 in [10] (with
D ⊂

⋃

R∈ℜ R̃). A similar conclusion to (II) can be found in [27, Lemma 4.1] or [15].
Next let R0,R j ∈ ℜ, R0,R j be as in (II). Suppose that G0, j is the chain connecting

R0,R j guaranteed by (II). Similar to the proof of Lemma 4.2, by the Poincaré in-

equality, if πk(R0) f , πk(R j) f are the polynomials as in Proposition 2.4, we can show
that

(4.12) ‖Dα(πk(R0) f − πk(R j) f )‖
L1(R0)

≤ C̺k−|α|‖∇k f ‖
L1(∪G0, j )

∀ 0 ≤ |α| ≤ k

where C is independent of f ,R0,R j and ̺.
For each R j ∈ ℜ, let us choose ψ j ∈ C∞

0 (R
n) with

0 ≤ ψ j ≤ χ
˜̃R j

such that
∑

R j∈ℜ ψ j ≡ 1 on
⋃

R j∈ℜ R̃ j , 0 ≤
∑

R j∈ℜ ψ j ≤ 1 and |Dαψ j | ≤ C̺−|α| for

all α. We now let q j = πk(R j) f be the polynomial as in Proposition 2.4. Also, we will
need a function Φ ∈ C∞(R

n) such that

0 ≤ Φ ≤ χ
D

c ,Φ = 1 on Q0 if Q0 ∈ W2, Q0 6⊂
⋃

R j∈ℜR̃ j .

Next, since D10̺ ⊂ ⋃

R j∈ℜ R̃ j , we may assume |Dα
Φ| ≤ c̺−|α|.

We define

fη = ( f ∗ ξt )Ψ +
∑

R j∈ℜ

q jψ j(1 − Ψ − Φ) +
∑

Qi∈W3

PiϕiΦ.
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Claim 2 If ̺ is small enough, then for 0 ≤ l ≤ k,

‖∇l(Λ f − fη)‖
L1(D∩Ω)

< Cη,(4.13)

‖∇l(Λ f − fη)‖
L1(Dc∩Ω)

< Cη,(4.14)

where C is independent of η.

Proof of Claim 2

The proof of (4.13) is indeed just a slight modification of the proof of density of

C
k−1,1
loc (R

n) (or C∞(R
n)) in the Sobolev space on the domain D in [10, 27]. First,

recall that

f − fη = ( f − f ∗ ξt )Ψ + ( f −
∑

R j∈ℜ

q jψ j)(1 − Ψ − Φ) + ( f −
∑

Qi∈W3

Piϕi)Φ

= ( f − f ∗ ξt )Ψ + ( f −
∑

R j∈ℜ

q jψ j)(1 − Ψ)

on D ∩ Ω since Φ = 0 on D. Hence for any 0 ≤ |α| ≤ k,

‖Dα( f − fη)‖
L1(D∩Ω)

≤ ‖Dα(Ψ( f − f ∗ ξt ))‖
L1(D∩Ω)

+
∥

∥Dα
[

(1 − Ψ)( f −
∑

q jψ j)
]∥

∥

L1(D∩Ω)

.

To show the above is less than Cη, we now follow the technique we have used to show

the density of Ck−1,1
loc

(R
n) ∩ L

p
w,k(D) in L

p
w,k(D) in [10, 15]. It is easy to see that

‖Dα[(Ψ)( f − f ∗ ξt )]‖
L1(D∩Ω)

=

∥

∥

∥

∑

0≤β≤α

Cα,βDα−β
ΨDβ( f − f ∗ ξt ))

∥

∥

∥

L1(K2s)

(since Ψ = 0 outside K2s)

≤ C
∑

0≤β≤α

s−|α−β|‖Dβ( f − f ∗ ξt )‖
L1(K2s)

(by the triangle inequality)

≤ C
∑

0≤β≤α

s−|α−β|ηsk−|β| ≤ Cη (by (4.11)).

Next, since (1 − Ψ) = 0 on Ks, we need only to prove that

∥

∥Dα
[

(1 − Ψ)
(

f −
∑

q jψ j

)]∥

∥

L1(D∩Ω\Ks)

≤ Cη.

To this end, first note that if R0 ∈ ℜ such that R̃0 ∩ (D ∩ Ω\Ks) 6= ∅, then
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∑

R j∈ℜ

‖Dβ((q0 − q j)ψ j)‖
L1(R̃0)

(4.15)

≤ C
∑

R j∈ℜ

∑

γ≤β

‖Dγψ jD
β−γ(q0 − q j)‖

L1(R̃0)
(by the triangle inequality)

≤ C
∑

˜̃R0∩
˜̃R j 6=∅

∑

γ≤β

̺−|γ|‖Dβ−γ(q0 − q j)‖
L1(R̃0)

≤ C
∑

˜̃R0∩
˜̃R j 6=∅

∑

γ≤β

̺−|γ|‖Dβ−γ(q0 − q j)‖
L1(R0)

(by Theorem 2.1)

≤ C
∑

˜̃R0∩
˜̃R j 6=∅

̺k−|β|‖∇k f ‖
L1(∪G0, j )

by (4.12). Also, note that on D we have

(4.16) |Dβ( f −
∑

R j∈ℜ

q jψ j)| ≤ |Dβ( f − q0)| + |Dβ
∑

R j∈ℜ

(q0 − q j)ψ j |.

We now consider two cases:

Case 1 β < α. Then Dα−β(1 − Ψ) = 0 outside K2s and note that K2s\Ks ⊂
⋃

R0∈ℜ R0 if ̺ is small enough, hence

‖Dα−β(1 − Ψ)Dβ( f −
∑

j

q jψ j)‖p

L1(D∩Ω\Ks)

≤ Cs−|α−β|
∑

R0∈ℜ
R0∩(K2s∩Ω\Ks)6=∅

‖Dβ( f −
∑

j

q jψ j)‖
L1(R0)

(by the triangle inequality)

≤ Cs−|α−β|
∑

R0∈ℜ
R0∩(K2s∩Ω\Ks)6=∅

(

‖Dβ( f − q0)‖
L1(R0)

+ ‖Dβ
∑

R j∈ℜ

(q0 − q j)ψ j‖
L1(R0)

)

(by the triangle inequality and the fact that
∑

ψ j = 1 on R0)

≤ Cs−|α−β|
∑

R0∈ℜ
R0∩(K2s∩Ω\Ks)6=∅

̺k−|β|‖∇k f ‖
L1(R0)

+ Cs−|α−β|
∑

R0∈ℜ
R0∩(K2s∩Ω\Ks)6=∅

∑

˜̃R0∩
˜̃R j 6=∅

̺k−|β|‖∇k f ‖
L1(∪G0, j )
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by (4.16) and (4.15). Next note that ‖∑

R0∈ℜ

∑

˜̃R j∩
˜̃R0 6=∅

χ
∪G0, j

‖
L∞ ≤ C where C is

independent of ̺. Moreover by (II), if R0 ∩ (K2s ∩ Ω\Ks) 6= ∅, and ˜̃R j ∩ ˜̃R0 6= ∅,
then ∪G0, j ⊂ D0\K, and in particular R0 ⊂ D0\K. Hence if α > β then |β| < k,

and

‖Dα−β(1−Ψ)Dβ( f −
∑

j

q jψ j)‖
L1(D∩Ω\Ks)

≤ Cs−|α−β|̺k−|β|‖∇k f ‖
L1(D0\K)

≤ Cη.

Case 2 β = α. First observe that for each R0 ∈ ℜ such that R̃0 ∩ (D∩Ω\Ks) 6= ∅,
we have

‖Dα
∑

q jψ j‖
L1(R̃0)

≤ ‖Dαq0‖
L1(R̃0)

+ ‖Dα
∑

(q j − q0)ψ j‖
L1(R̃0)

by the triangle inequality and the fact that
∑

j ψ j = 1 on R̃0

≤ C‖Dαq0‖
L1(R0)

+ C
∑

R j∈ℜ
˜̃R0∩

˜̃R j 6=∅

̺k−|α|‖∇k f ‖
L1(∪G0, j )

by Theorem 2.1 and (4.15)

≤ C‖Dα(q0 − f )‖
L1(R0)

+ C‖Dα f ‖
L1(R0)

+ C
∑

R j∈ℜ
˜̃R0∩

˜̃R j 6=∅

̺k−|α|‖∇k f ‖
L1(∪G0, j )

≤ C̺k−|α|‖∇k f ‖
L1(R0)

+ C‖Dα f ‖
L1(R0)

+ C̺k−|α|
∑

R j∈ℜ
˜̃R0∩

˜̃R j 6=∅

‖∇k f ‖
L1(∪G0, j )

.

Next, note that again by (II), if R̃0 ∩ (D ∩ Ω\Ks) 6= ∅ and ˜̃R0 ∩ ˜̃R j 6= ∅, then

∪G0, j ⊂ D0\K, and in particular R0 ⊂ D0\K. Hence by the triangle inequality and
the previous estimate,

‖(1 − Ψ)Dα( f −
∑

q jψ j)‖
L1(D∩Ω\Ks)

≤
∥

∥Dα
(

f −
∑

q jψ j

)
∥

∥

L1(D∩Ω\Ks)

≤ ‖Dα f ‖
L1(D∩Ω\Ks)

+
∑

R0∈ℜ
R̃0∩(D∩Ω\Ks)6=∅

C
∥

∥Dα
∑

R j∈ℜ

q jψ j

∥

∥

L1(R̃0)

.
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However,

∑

R0∈ℜ
R̃0∩(D∩Ω\Ks)6=∅

∥

∥Dα
∑

R j∈ℜ

q jψ j

∥

∥

L1(R̃0)

≤ C
∑

R0∈ℜ
R̃0∩(D∩Ω\Ks)6=∅

[

̺k−|α|‖∇k f ‖
L1(R0)

+ ‖Dα f ‖
L1(R0)

+ ̺k−|α|
∑

R j∈ℜ
˜̃R0∩

˜̃R j 6=∅

‖∇k f ‖
L1(∪G0, j )

]

≤ C‖Dα f ‖
L1(D0\K)

+ C̺k−|α|‖∇k f ‖
L1(D0\K)

since ‖
∑

R0∈ℜ

∑

˜̃R j∩
˜̃R0 6=∅

χ
∪G0, j

‖
L∞ < C . Thus

∥

∥ (1 − Ψ)Dα( f −
∑

q jψ j)
∥

∥

L1(D∩Ω)

≤ Cη

and hence

‖Dα( f − fη)‖
L1(D∩Ω)

< Cη.

This completes the proof of (4.13).

To prove (4.14), first note that

‖Dα( fη − Λ f )‖
L1(Ω∩D

c)

=

∥

∥

∥
Dα

[

∑

q jψ j(1 − Φ) +
∑

PiϕiΦ − Λ f
]
∥

∥

∥

L1(Ω∩D
c)

=

∥

∥

∥
Dα

[(

∑

q jψ j −
∑

Piϕi

)

(1 − Φ)
]
∥

∥

∥

L1(Ω∩D
c)

≤
∑

0≤β≤α

∥

∥

∥

[

∑

(Dβq j)ψ j −
∑

(DβPi)ϕi

]

Dα−β(1 − Φ)
∥

∥

∥

L1(Dc∩Ω)

+
∑

0≤β≤α

∑

0≤γ<β

∥

∥

∥

∥

(

∑

Dγq jD
β−γψ j

−
∑

DγPiD
β−γϕi

)

Dα−β(1 − Φ)

∥

∥

∥

∥

L1(Dc∩Ω)

=: I + II.

We now let W̺ = {Q0 ∈ W2 : Q0 ⊂
⋃

R j∈ℜ R̃ j ,Ω∩Q0 6= ∅}. Note that if Q0 ∈ W̺,

then Q0 ∈ W3, l(Q0) ≤ C̺ and
∑

i ϕi =
∑

j ψ j = 1 on Q0. Also recall that Φ = 1
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on Q0 ∈ W2 if Q0 /∈ W̺. Hence

I ≤ C
∑

0≤β≤α

̺−|α−β|
∑

Q0∈W̺

∥

∥

∥

∑

R j∈ℜ

(Dβq j)ψ j −
∑

Qi∈W3

(DβPi)ϕi

∥

∥

∥

L1(Q0)

= C
∑

0≤β≤α

̺−|α−β|
∑

Q0∈W̺

∥

∥

∥

∑

Dβ(q j − P0)ψ j −
∑

Dβ(Pi − P0)ϕi

∥

∥

∥

L1(Q0)

(since
∑

ϕi =
∑

ψ j = 1 on any Q0 in W̺)

≤ C
∑

0≤β≤α

̺−|α−β|

(

∑

Q0∈W̺

∑

˜̃R j∩Q0 6=∅

‖Dβ(q j − P0)‖
L1(Q0)

+
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

‖Dβ(Pi − P0)‖
L1(Q0)

)

= C
∑

0≤β≤α

̺−|α−β|(I ′β + I ′ ′β ).

Next, note that by Hölder’s inequality and Lemma 4.2,

I ′ ′β ≤
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

Qi∈W3

‖w−1/p‖
Lp ′ (Q0)

‖Dβ(Pi − P0)‖
Lp

w(Q0)

≤ C
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

Qi∈W3

l(Q0)k−|β|‖w−1/p‖
Lp ′ (Q0)

‖∇k f ‖
Lp

w(∪Fi,0)

≤ C
∑

Q0∈W̺

l(Q0)k−|β|‖w−1/p‖
Lp ′ (Q0)

‖∇k f ‖
Lp

w(F(Q0))

≤ C‖w−1/p‖
Lp ′ (∪W̺)

(

∑

Q0∈W̺

‖∇k f ‖p

Lp
w(∪Fi,0)

) 1/p

(by Hölder’s inequality and since l(Q0) ≤ C )

≤ C‖∇k f ‖
Lp

w(D0\K)
(by (4.6) and (4.8)).

On the other hand, note that if ˜̃R j∩Q0 6= ∅ with Q0 ∈ W̺, then since l(Q0) < C̺,
l(Q∗

0 ) ≤ Cl(Q0) and d(Q0,Q
∗
0 ) < C̺, there exists c > 0 (independent of ̺) such that

Q0,Q
∗
0 ⊂ cR j . Let us choose c sufficiently large such that R̃0 ⊂ cR0 and let

ℜ̺ = {R j ∈ ℜ : cR j ∩ D
c ∩ Ω 6= ∅}.

Note that unlike C , the constant c is fixed. If ˜̃R j ∩ Q0 6= ∅ with Q0 ∈ W̺, then
R j ∈ ℜ̺ since Q0 ∩ Ω 6= ∅ and Q0 ⊂ cR j . Moreover, recall that if R j ∈ ℜ,
there exists Q j ′ ∈ W1 such that R j ⊂ Q j ′ . If in addition that R j ∈ ℜ̺, then since
d(Q j ′) ≤ d(R j) < C̺, we have l(Q j ′) ≤ C̺. Furthermore since

d(Q j ′ ,Ω ∩ D
c) ≤ d(R j ,Ω ∩ D

c) < c
√

n̺,
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we may assume that C ′Q j ′ ⊂ D0\K (in particular, R j ⊂ Q j ′ ⊂ D0\K) for any fixed
constant C ′ if ̺ is small enough by (4.9) and (III).

Next, by the triangle inequality,

I ′β ≤
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(q j − Pi)‖
L1(Qi )

≤
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

(

‖Dβ(q j − Pk(Q j ′) f )‖
L1(Qi )

+ ‖Dβ(Pk(Q j ′) f − Pi‖
L1(Qi )

)

= IA + IB.

The estimate of IA is quite straightforward,

IA ≤ C
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(q j − Pk(Q j ′) f )‖
L1(Q∗

i )
(by Theorem 2.1)

≤ C
∑

R j∈ℜ̺

‖Dβ(q j − Pk(Q j ′) f )‖
L1(cR j )

(since there are only a bounded number (independent of ̺) of Qi with the same Q∗
i )

≤ C
∑

R j∈ℜ̺

‖Dβ(q j − Pk(Q j ′) f )‖
L1(R j )

(by Theorem 2.1)

≤ C
∑

R j∈ℜ̺

(‖Dβ(q j − f )‖
L1(R j )

+ ‖Dβ( f − Pk(Q j ′) f )‖
L1(R j )

)

(by the triangle inequality)

≤ C
∑

R j∈ℜ̺

(‖Dβ(q j − f )‖
L1(R j )

+ ‖Dβ( f − Pk(Q j ′) f )‖
L1(Q j ′ )

)

≤ C
∑

R j∈ℜ̺

(‖Dβ(q j − f )‖
L1(R j )

+ ‖w−1/p‖
Lp ′ (Q j ′ )

‖Dβ( f − Pk(Q j ′) f )‖
Lp

w(Q j ′ )
)

(by Hölder’s inequality)

≤ C
∑

R j∈ℜ̺

(̺k−|β|‖∇k f ‖
L1(R j )

+ ‖w−1/p‖
Lp ′ (Q j ′ )

̺k−|β|‖∇k f ‖
Lp

w(Q j ′ )
)

(by Lemma 2.5)

≤ C‖∇k f ‖
L1(D0\K)

+ C‖w−1/p‖
Lp ′ (

⋃

R j∈ℜ̺
Q j ′ )

(

∑

R j∈ℜ̺

‖∇k f ‖p

Lp
w(Q j ′ )

) 1/p

(since there are only a bounded number (independent of ̺) of R j inside each Q j ′)

≤ C‖∇k f ‖
L1(D0\K)

+ C‖∇k f ‖
Lp

w(D0\K)
.
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However, the estimate of IB is much more complicated. We will use an idea used
in the estimate of weighted inequalities on Boman chains; see [11, Proof of Theo-

rem 1.5].
Next, let

W1,̺ = {Q j ′ ∈ W1 : R j ⊂ Q j ′ , for some R j ∈ ℜ̺}.
Note that for each Q j ′ ∈ W1,̺, by choosing ̺ sufficiently small, as d(Q j ′) < C̺,
we can make sure that d(Q j ′ ,Q

∗
i ) < δ whenever Q∗

i ⊂ cQ j ′ , Q∗
i ∈ W1. Recall that

̺ ≤ l(Q j ′) ≤ C̺. Let xi , x j ′ be the center of Q∗
i and Q j ′ , respectively. Since D is an

(ε, δ) domain, there exists a rectifiable curve γ that connects xi and x j ′ such that

d(z) >
ε|x j ′ − z‖xi − z|

|xi − x j ′ |
for all z ∈ γ and l(γ) <

|xi − x j ′ |
ε

.

However, if z /∈ Q j ′ , then |x j ′ − z| > l(Q j ′)/2. On the other hand, recall that
|x j ′ − xi | ≤ Cl(Q j ′) since Q∗

i ⊂ cQ j ′ . Thus d(z) > C|xi − z| when z ∈ γ and
z /∈ Q j ′ . Hence, if z ∈ γ, z /∈ Q j ′ , and z ∈ Q, Q ∈ W1, then d(Q) > C|xi − z| since
d(Q) ≥ d(z)/(1 +

√
n). In particular, Q∗

i ⊂ NQ for some constant N independent of

̺, since l(Q∗
i ) ≤ 2|xi − z| as we may assume z /∈ Q∗

i . Also, since

d(Q,Q j ′) ≤ d(z, x j ′) ≤ l(γ) <
|xi − x j ′ |

ε
≤ Cl(Q j ′)

and
l(Q) ≤ d(Q) ≤ d(Q,Q j ′) + d(Q j ′) +

√
nl(Q j ′) < Cl(Q j ′),

we have Q ⊂ C ′Q j ′ with C ′ independent of ̺. We can now choose ̺ small enough
such that C ′Q j ′ ⊂ D0\K. Hence if Q j ′ ∈ W1,̺ and Q∗

i ⊂ cQ j ′ , we can find an

appropriate chain {Q j ′ = S0, S1, . . . , Sm = Q∗
i } of touching cubes in W1 which

intercept γ and connect Q j ′ to Q∗
i . Now, similar to the proof of Lemma 4.2, we can

find a chain of cubes {Ŝ0, . . . , Ŝ2m} that satisfies the condition of Lemma 2.10 and
⋃2m

l=0Ŝl =
⋃m

i=0Si , Ŝ0 = S0, Ŝ2m = Sm.

Indeed, we will choose them such that Ŝ2i = Si , Ŝ2i+1 ⊂ Si ∪ Si+1, and

|Ŝ2i+1| = min{|Si |, |Si+1|} = 2|Si ∩ Ŝ2i+1| = 2|Si+1 ∩ Ŝ2i+1| for i = 0, 1, . . . ,m − 1.

It is then clear that there exists a constant N independent of ̺,Q j ′ and Q∗
i such that

N|Ŝl ∩ Ŝl+1| ≥ |Ŝl ∪ Ŝl+1| and Ŝ2m = Q∗
i ⊂ NŜl, Sl ⊂ C ′Q j ′ for all l.

We now let Ŵ1 be the collection of all cubes in W1 together with above mentioned

types of cubes (Ŝ2i+1). Then

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )

(4.17)

≤
2m−1
∑

l=0

‖Dβ(Pk(Ŝl) f − Pk(Ŝl+1) f )‖
L1(Q∗

i )
+ ‖Dβ(Pk(Q∗

i ) f − f )‖
L1(Q∗

i )

(by the triangle inequality)
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≤ C
∑

l

|Q∗
i |

|Ŝl+1 ∩ Ŝl|
‖Dβ(Pk(Ŝl) f − Pk(Ŝl+1) f )‖

L1(Ŝl∩Ŝl+1)

+ ‖Dβ(Pk(Ŝ2m) f − f )‖
L1(Ŝ2m)

(by Theorem 2.1)

≤ C
∑

l

|Q∗
i |

|Ŝl+1 ∩ Ŝl|

(

‖Dβ(Pk(Ŝl) f − f )‖
L1(Ŝl∩Ŝl+1)

+‖Dβ( f − Pk(Ŝl+1) f )‖
L1(Ŝl∩Ŝl+1)

)

+ ‖Dβ(Pk(Ŝ2m) f − f )‖
L1(Ŝ2m)

(by the triangle inequality)

≤ C
∑

l

|Q∗
i |

|Ŝl+1 ∩ Ŝl|
(

‖Dβ(Pk(Ŝl) f − f )‖
L1(Ŝl)

+ ‖Dβ( f − Pk(Ŝl+1) f )‖
L1(Ŝl+1)

)

+ ‖Dβ(Pk(Ŝ2m) f − f )‖
L1(Ŝ2m)

≤ C

2m
∑

l=0

|Q∗
i |

|Ŝl|
‖Dβ(Pk(Ŝl) f − f )‖

L1(Ŝl)
.

We now note that

(4.18)
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )

=

∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

∫

Rn

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )
χ

Q∗
i

(x)
dx

|Q∗
i |
.

But by (4.17) and recall that W1,̺ = {Q j ′ ∈ W1 : R j ⊂ Q j ′ , for some R j ∈ ℜ̺},
for any Qi ∈ W̺, we have

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )
χ

Q∗
i

(x)/|Q∗
i |

≤ C
∑

Q j ′∈W1,̺

∑

S⊂C ′Q j ′

Ŝ∈Ŵ1

‖Dβ(Pk(Ŝ) f − f )‖
L1(Ŝ)

χ
NŜ

(x)/|Ŝ|.

As there are only a bounded number of Qi with the same Q∗
i , we have

∥

∥

∥

∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

χ
Q∗

i

∥

∥

∥

L∞

≤ C
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and hence,

∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )
χ

Q∗
i

(x)/|Q∗
i |

≤ C
∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

‖Dβ(Pk(Ŝ) f − f )‖
L1(Ŝ)

χ
NŜ
/|Ŝ|.

Thus,

∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(Pk(Q j ′) f − f )‖
L1(Q∗

i )

≤ C
∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

∫

Rn

‖Dβ(Pk(Ŝ) f − f )‖
L1(Ŝ)

χ
NŜ

(x)

|Ŝ|
dx

= C
∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

‖Dβ(Pk(Ŝ) f − f )‖
L1(Ŝ)

≤ C
∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

‖w−1/p‖
Lp ′ (Ŝ)

‖Dβ(Pk(Ŝ) f − f )‖
Lp

w(Ŝ)

(by Hölder’s inequality)

≤ C
∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

‖w−1/p‖
Lp ′ (Ŝ)

l(S)k−|β|‖∇k f ‖
Lp

w(Ŝ)
(by (4.1))

≤ C̺k−|β|‖w−1/p‖
Lp ′ (

⋃

Ŝ⊂C ′Q
j ′
,Ŝ∈Ŵ1 ,Q j ′

∈W1,̺
Ŝ)

(

∑

Q j ′∈W1,̺

∑

Ŝ⊂C ′Q j ′

Ŝ∈Ŵ1

‖∇k f ‖p

Lp
w(Ŝ)

) 1/p

(

by Hölder’s inequality and since {C ′Q j ′ : Q j ′ ∈ W1, l(Q j ′) ≥ ̺}

has bounded overlap
)

≤ C̺k−|β|‖∇k f ‖
Lp

w(D0\K)
.

Recall that we have chosen ̺ small enough such that C ′Q j ′ ⊂ D0\K.

We can now estimate IB.

IB ≤ C
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

‖Dβ(Pk(Q j ′) f − Pi)‖
L1(Q∗

i )
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≤ C
∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

[

‖Dβ( f − Pk(Q j ′) f )‖
L1(Q∗

i )
+ ‖Dβ( f − Pi)‖

L1(Q∗
i )

]

≤ C̺k−|β|‖∇k f ‖
Lp

w(D0\K)
+ C

∑

R j∈ℜ̺

∑

Q∗
i ⊂cR j

Qi∈W̺

̺k−β|‖w−1/p‖
Lp ′ (Q∗

i )
‖∇k f ‖

Lp
w(Q∗

i )

(by the previous estimate, Hölder’s inequality and (4.1))

≤ C̺k−|β|‖∇k f ‖
Lp

w(D0\K)

by similar argument as in the previous estimate. Finally, let us look at the estimate
of II. First, by the triangle inequality,

II ≤
∑

0≤β≤α

∑

0≤γ<β

(

∥

∥

∥

∑

j

Dγq jD
β−γϕ jD

α−β(1 − Φ)
∥

∥

∥

L1(Dc∩Ω)

+
∥

∥

∥

∑

i

DγPiD
β−γψiD

α−β(1 − Φ)
∥

∥

∥

L1(Dc∩Ω)

)

=

∑

0≤β≤α

∑

0≤γ<β

(IIA + IIB).

Next recall that Φ = 1 outside
⋃

R0∈ℜ R̃0. Thus

IIA ≤ C̺−|α−β|
∑

R0∈ℜ

∥

∥

∥

∑

j

Dγq jD
β−γϕ j

∥

∥

∥

L1(R̃0∩D
c∩Ω)

.

Moreover, since R̃0 ⊂ cR0, if R0 ∈ ℜ\ℜ̺, then R̃0 ∩ Dc ∩ Ω ⊂ cR0 ∩ Dc ∩ Ω = ∅.
Hence,

IIA ≤ C̺−|α−β|
∑

R0∈ℜ̺

∥

∥

∥

∑

j

Dγq jD
β−γϕ j

∥

∥

∥

L1(R̃0∩D
c∩Ω)

≤ C̺−|α−β|
∑

R0∈ℜ̺

∥

∥

∥

∑

j

Dγq jD
β−γϕ j

∥

∥

∥

L1(R̃0)

.

Note that by choosing ̺ small enough, similar to property (II), we may assume

that if R0 ∈ ℜ̺, then R0 ⊂ D0\Ks and ∪G0, j ⊂ D0\K whenever ˜̃R0 ∩ ˜̃R j 6= ∅ and
R j ∈ ℜ. Thus,

IIA ≤ C̺−|α−β|
∑

R0∈ℜ̺

∥

∥

∥

∑

j

Dγ(q j − q0)Dβ−γϕ j

∥

∥

∥

L1(R̃0)

(since
∑

Dβ−γϕ j = Dβ−γ
∑

j ϕ j = 0 on R̃0 as β > γ)
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≤ C̺−|α−β|
∑

R0∈ℜ̺

̺−|β−γ|
∑

˜̃R j∩R̃0 6=∅

‖Dγ(q j − q0)‖
L1(R̃0)

≤ C̺−|α−β|
∑

R0∈ℜ̺

̺k−|β|‖∇k f ‖
L1(∪G0, j )

(by Theorem 2.1 and (4.12))

≤ C̺k−|α|‖∇k f ‖
L1(D0\K)

.

Also, recall that Φ = 1 outside
⋃

Q0∈W̺
Q0, hence

IIB ≤ C̺−|α−β|
∑

Q0∈W̺

∥

∥

∥

∑

i

DγPiD
β−γψi

∥

∥

∥

L1(Q0)

= C̺−|α−β|
∑

Q0∈W̺

∥

∥

∥

∑

i

Dγ(Pi − P0)Dβ−γψi

∥

∥

∥

L1(Q0)

(since
∑

Dβ−γψi = 0)

≤ C̺−|α−β|
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

l(Q0)−|β−γ|‖Dγ(Pi − P0)‖
L1(Q0)

≤ C̺−|α−β|
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

l(Q0)−|β−γ|‖Dγ(Pi − P0)‖
L1(Q∗

0
)

(by Theorem 2.1)

≤ C̺−|α−β|
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

l(Q0)−|β−γ|‖w−1/p‖
Lp ′ (Q∗

0
)
‖Dγ(Pi − P0)‖

Lp
w(Q∗

0
)

(by Hölder’s inequality)

≤ C̺−|α−γ|
∑

Q0∈W̺

∑

Qi∩Q0 6=∅

l(Q0)k−|γ|‖w−1/p‖
Lp ′ (Q∗

0
)
‖∇k f ‖

Lp
w(∪F0,i )

(by Lemma 4.2)

≤ C̺k−|α|‖∇k f ‖
Lp

w(D0\K)

by similar argument as before. The proof of (4.14) is now completed by (4.10), and

this concludes the proof of Proposition 4.1.

Next, we will show that under one additional condition, then indeed the extension
of a C

k−1,1
loc

function is still a C
k−1,1
loc

function.

Lemma 4.3 Under the assumption of Proposition 4.1, if in addition

(4.19) ‖Dα( f − Pk(Q) f )‖
L∞(Q)

≤ Cl(Q)k−|α|‖∇k f ‖
L∞(Q)

for all f ∈ Ck−1,1
loc

(D) and cubes Q ⊂ D such that l(Q)

d(Q)
≤ A0,A0 > 0, then Dα

Λ f is

locally Lipschitz for all α, 0 ≤ |α| < k if f ∈ C
k−1,1
loc (D).
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Proof Again, we will just consider the case A0 ≥ 1. We can proceed as in the proof
of (4.4) and (4.3) to obtain

(4.20) ‖Λ f ‖
L∞

k (Q)
≤ C

(

‖∇k f ‖
L∞(∪F(Q))

+
∑

Q j∈W3

Q j∩Q6=∅

‖ f ‖
L∞

k (Q∗
j )

)

∀Q ∈ W2.

(If Q /∈ W3, we take ∪F(Q) = ∅). To prove (4.20), we only need to replace p by ∞
in (4.4) and (4.3) since if Ω is a bounded set in (Dc)o, then there exists G ⊂ W2 such
that Ω ⊂ ∪G and ∪G is bounded. Thus

‖Λ f ‖
L∞

k (Ω)
≤ ‖Λ f ‖

L∞
k (∪G)

≤ C‖ f ‖
L∞

k (K)
<∞,

where K is a compact set containing
⋃

F(Q)∀Q ∈ G and containing Q∗
j ∀Q j ∈ W3

with Q j ∩ Q 6= ∅,Q ∈ G. We now show that Dα
Λ f is continuous for all α, 0 ≤

|α| < k. To this end, one only need to show that

lim
x→x0

x∈(Dc)o

Dα
Λ f (x) = Dα f (x0)∀x0 ∈ ∂D, 0 ≤ |α| < k.

Nevertheless, it suffices to show that if Q j ∈ W3 and d(Q j , ∂D) → 0 then

‖Dα
Λ f − 1

|Q∗
j |

∫

Q∗
j

Dα f dx‖
L∞(Q j )

→ 0.

However, the proof is again quite standard. For the details, see [27, 10]. This con-

cludes the proof of Lemma 4.3.

We can now prove our main theorems.

Proof of Theorem 1.6 First, by repeated applications of (1.5), we know (4.1) in

Proposition 4.1 holds with Pl(Q) f = Pl
w(Q) f which is the polynomial of degree

< l such that
∫

Q

Dα( f − Pl
w(Q) f ) dw = 0 for 0 ≤ |α| < l.

Moreover, it is obvious that

‖ f − fQ,w‖L∞(Q)
≤ Cl(Q)‖∇ f ‖

L∞(Q)

and hence

‖Dα(Pk
w(Q) f − f )‖

L∞(Q)
≤ Cl(Q)k−|α|‖∇k f ‖

L∞(Q)
.

The theorem now follows from Proposition 4.1 and Lemma 4.3.
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Proof of Theorem 1.7 First recall that

W3 =

{

Q ∈ W2 : l(Q) ≤ εr

16nL

}

, L = 2−m,m ∈ Z+,

where L is chosen so that Ω ⊂ (
⋃

Q∈W3
Q) ∪ D.

We will now prove the following lemma.

Lemma 4.4 Under the assumption of Proposition 4.1, if Pk(Q) f = πk
µ(Q) f and

(4.21) ‖ f − fQ,µ‖
L1

µ(Q)
≤ Al(Q)µ(Q)w(Q)−1/p‖∇ f ‖

Lp
w(Q)

,

for all cubes Q ⊂ D such that l(Q)/d(Q) ≤ A0, A0 > 0, then for any 1 ≤ |α| ≤ k and

Q0 ∈ W3,

(4.22) ‖Dα
Λ f ‖

Lp
w(Q0)

≤ C‖∇|α| f ‖
Lp

w(
⋃

F(Q0))

where F(Q0) is the collection of cubes which belong to any of the chains F0, j (guaranteed
by (E)) for which Q j ∩ Q0 6= ∅. Here the constant C depends only on A, ε,w, p, k, L
and the dimension n.

Proof Let Q j ∩ Q0 6= ∅, Q j ,Q0 ∈ W3 and α > 0. Then similar to the argument
of the proof of Lemma 4.2, there exists a chain of cubes {S0, S1, . . . , SM} that satisfies
the condition of Lemma 2.10 and such that

∪Si =
⋃

F0, j , S0 = Q∗
0 , SM = Q∗

j ,
l(Si)

d(Si)
≤ A0 and

∑

i

χ
Si
≤ 2 a.e.

Again similar to the proof of Lemma 4.2, we have

‖Dα−β(πk
µ(Q∗

0 ) f − πk
µ(Q∗

j ) f )‖
Lp

w(Q0)

≤ C‖Dα−β(πk
µ(S0) f − πk

µ(SM) f )‖
Lp

w(S0)
(by (A) and Theorem 2.1)

≤ Cl(S0)−|α−β|‖πk
µ(S0) f − πk

µ(SM) f ‖
Lp

w(S0)
(by Theorem 2.3)

≤ Cl(S0)−|α−β|
[

‖πk
µ(S0) f − f ‖

Lp
w(S0)

+ ‖ f − πk
µ(SM) f ‖

Lp
w(S0)

]

(by the triangle inequality)

≤ Cl(S0)−|α−β|
M

∑

i=0

‖ f − πk
µ(Si) f )‖

Lp
w(Si )

(by Lemma 2.10)

≤ Cl(Q0)−|α−β|
M

∑

i=0

[

‖ f − Pl
µ(Si) f ‖

Lp
w(Si )

+ ‖πk
µ(Si)( f − Pl

µ(Si) f ‖
Lp

w(Si )

]

(by the triangle inequality)
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(

where Pl
µ(Si) f is the unique polynomial of degree< |α| such that

∫

Si
Dγ( f − Pl

µ(Si) f ) dµ = 0 for all 0 ≤ |γ| < l.
)

≤ Cl(Q0)−|α−β|
M

∑

i=0

[

‖ f − Pl
µ(Si) f ‖

Lp
w(Si )

+
w(Si)

1/p

µ(Si)
‖ f − Pl

µ(Si) f ‖
L1

µ(Si )

]

(by Proposition 2.4)

≤ Cl(Q0)−|α−β|
M

∑

i=0

[

l(Si)‖∇( f − Pl
µ(Si) f )‖

Lp
w(Si )

+l(Si)‖∇( f − Pl
µ(Si) f )‖

Lp
w(Si )

]

(by Lemma 2.8 and (4.21))

≤ Cl(Q0)−|α−β|
∑

i

l(Si)
|α|‖∇|α| f ‖

Lp
w(Si )

≤ Cl(Q0)|β|‖∇|α| f ‖
Lp

w(
⋃

Si )
= Cl(Q0)|β|‖∇|α| f ‖

Lp
w(

⋃

F0, j )
.

Next, again let P
|α|
µ (Q∗

0 ) f be the unique polynomial of degree< |α| such that

∫

Q∗
0

Dγ( f − P|α|
µ (Q∗

0 ) f ) dµ = 0for all 0 ≤ |γ| < |α|.

Then

‖DαP0‖Lp
w(Q∗

0
)
= ‖Dα(P0 − P|α|

µ (Q∗
0 ) f )‖

Lp
w(Q∗

0
)

≤ Cl(Q0)−|α|‖πk
µ(Q∗

0 ) f − P|α|
µ (Q∗

0 ) f ‖
Lp

w(Q∗
0

)

≤ Cl(Q0)−|α|w(Q∗
0 )µ(Q∗

0 )−1‖ f − P|α|
µ (Q∗

0 ) f ‖
L1

µ(Q∗
0

)

≤ C‖∇|α| f ‖
Lp

w(Q∗
0

)

by (4.21) and repeated applications of Lemma 2.8.

Let us now look at the proof of (4.3) again. Recall that

‖Dα
(

∑

P jϕ j

)

‖
Lp

w(Q0)

≤ ‖Dα(
∑

P jϕ j −
∑

P0ϕ j)‖Lp
w(Q0)

+ ‖DαP0‖Lp
w(Q0)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

l(Q0)−|β|‖Dα−β(P j − P0)‖
Lp

w(Q0)
+ ‖DαP0‖Lp

w(Q∗
0

)

≤ C
∑

β≤α

∑

Q j∩Q0 6=∅

l(Q0)−|β|‖Dα−β(P j − P0)‖
Lp

w(Q∗
0

)
+ C‖∇|α| f ‖

Lp
w(Q∗

0
)
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(by Theorem 2.1 and the previous estimate)

≤ C
∑

Q j∩Q0 6=∅

‖∇|α| f ‖
Lp

w(
⋃

F0, j )

≤ C‖∇|α| f ‖
Lp

w(
⋃

F(Q0))
.

This completes the proof of Lemma 4.4.

We now return to the proof of Theorem 1.7. We will let Pk(Q) f = πk
µ(Q) f . For

any 0 < l ≤ k, since (1.6) holds, by the previous lemma, we have

‖∇l
Λ f ‖

L
pi
wi

(Ω∩D
c)
≤

∑

Q0∈W3

‖∇l
Λ f ‖

L
pi
wi

(Q0)

≤ C
∑

Q0∈W3

‖∇l f ‖
L

pi
wi

(
⋃

F(Q0))

≤ C‖∇l f ‖
L

pi
wi

(D)

by (4.6). We now note that, similar to Lemma 4.3, we can show that Λ f ∈ C
k−1,1
loc

(R
n)

when f ∈ C
k−1,1
loc (D). Thus, we have

‖∇l
Λ f ‖

L
pi
wi

(Ω)
≤ ‖∇l

Λ f ‖
L

pi
wi

(D)
+ ‖∇l

Λ f ‖
L

pi
wi

(Ω∩D
c)
≤ C‖∇l f ‖

L
pi
wi

(D)
.

Finally, if v is any doubling weight such that v/µ ∈ Ap(µ), we have by Proposi-
tion 2.4,

‖Pk(Q) f ‖
Lp

v (Q)
≤ v(Q)1/p‖Pl(Q) f ‖

L∞(Q)
≤ C

v(Q)1/p

µ(Q)
‖ f ‖

L1

µ(Q)
≤ C‖ f ‖

Lp
v (Q)

.

Again, let us look at the proof of (4.3). For any Q0 ∈ W3,

∥

∥

∥

∑

P jϕ j

∥

∥

∥

Lp
v (Q0)

≤ C‖
∑

Q j∩Q0 6=∅

P j‖Lp
v (Q0)

≤ C
∑

Q j∩Q0 6=∅

‖P j‖Lp
v (Q∗

j )
(by Theorem 2.1)

≤ C
∑

Q j∩Q0 6=∅

‖ f ‖
Lp

v (Q∗
j )

(by the previous estimate)

≤ C‖ f ‖
Lp

v (
⋃

F(Q0))
.

Thus, just as before, we have

‖Λ f ‖
Lp

v (Ω)
≤ C‖ f ‖

Lp
v (D)

.

This concludes the proof of Theorem 1.7.
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Remark 4.5

(i) If for some i, we have w
−1/pi

i ∈ L
p ′

i

loc
(R

n), then the conclusion of Theorem 1.7

also holds for all functions f ∈
⋂

E
pi

wi ,ki
(D), 1 ≤ ki ≤ k for all i.

(ii) In case D is an unbounded (ε,∞) domain, Theorem 1.7 will hold for Ω = R
n

with the same extension operator. Note that now rad(D) = ∞ and hence R
n ⊂

D ∪ (
⋃

Q∈W3
Q) with any choice of L > 0.

5 Applications

We will now use our main result to extend some weighted interpolation inequalities.

First, let us recall a weighted interpolation inequality in [17].

Theorem 5.1 ([17, Theorem 1.7]) Let 1 ≤ p, r, q <∞, r ≤ q, h > 1, 1
q
≤ h−1

rh
+ 1

ph
,

0 ≤ i < k, i, k ∈ Z. Let σ, v, v0,w be doubling weights such that v0/σ ∈ Ar(σ). Suppose

‖ f − fQ,w‖Lq
w(Q)

≤ Cw(Q)1/qv(Q)−1/pl(Q)‖∇ f ‖
Lp

v (Q)
;(5.1)

‖ f − fQ,σ‖
L1

σ(Q)
≤ Cσ(Q)v(Q)−1/pl(Q)‖∇ f ‖

Lp
v (Q)

(5.2)

for all f ∈ Liploc (R
n) and cube Q in R

n. If
(5.3)
( w(Q̃)

w(Q)

) 1/q

≤ C
( v0(Q̃)

v0(Q)

)

h−1

rh
( l(Q̃)

l(Q)

) i
[

( v0(Q̃)

v0(Q)

) 1/rh

+
( l(Q̃)

l(Q)

)−k/h( v(Q̃)

v(Q)

) 1/ph
]

for all cubes Q̃ ⊂ Q in R
n, then

(5.4)
‖∇i f ‖

Lq
w(Q)

≤ Cw(Q)1/ql(Q)−i

( ‖ f ‖
Lr

v0
(3Q)

v0(Q)1/r

)

h−1

h
( ‖ f ‖

Lr
v0

(3Q)

v0(Q)1/r
+

l(Q)k‖∇k f ‖
Lp

v (3Q)

v(Q)1/p

) 1/h

for all f ∈ C
k−1,1
loc (R

n).

With the help of extension theorem, we can replace 3Q by Q in (5.4).

Theorem 5.2 Under the assumption of the previous theorem, (5.3) holds for all cubes
Q̃ ⊂ Q in R

n if and only if
(5.5)

‖∇i f ‖
Lq

w(Q)
≤ Cw(Q)1/ql(Q)−i

( ‖ f ‖
Lr

v0
(Q)

v0(Q)1/r

)

h−1

h
( ‖ f ‖

Lr
v0

(Q)

v0(Q)1/r
+

l(Q)k‖∇k f ‖
Lp

v (Q)

v(Q)1/p

) 1/h

for all f ∈ C
k−1,1
loc (R

n).

Proof First, let us observe that (5.5) implies (5.3). For any cubes Q̃ ⊂ Q, we can let
f = χ

Q̃
P where P is a polynomial of degree at least k such that DαP = 0 on ∂Q̃ for
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0 ≤ |α| ≤ k − 1. Note that then f ∈ C
k−1,1
loc

(R
n). It then follows from Lemma 2.2,

Theorem 2.3 and the nonweighted Poincaré inequality that for any doubling weight

w, there exist constant C1,C2 > 0 such that

C1‖P‖
L∞(Q̃)

≤ w(Q̃)−1/pl(Q)i‖∇iP‖
Lp

w(Q̃)
≤ C2‖P‖

L∞(Q̃)
.

It is now clear that (since v, v0 and w are doubling weights)

w(Q̃)1/ql(Q̃)−i ≤ Cw(Q)1/ql(Q)−i
( v0(Q̃)

v0(Q)

)

h−1

rh
( v0(Q̃)1/r

v0(Q)1/r
+

l(Q)k

l(Q̃)k

v(Q̃)1/p

v(Q)1/p

) 1/h

.

It is now easy to see that (5.3) holds.

Next, if (5.3) holds, then by the previous theorem we know that for any function

f ∈ C
k−1,1
loc

(R
n) (5.4) holds. We will then apply Theorem 1.7 with Ω = 3Q and

D = Q. Note that the constant L will be independent of the cube Q. Hence, there

exists Λ f ∈ Ck−1,1
loc

(R
n) (with Pk(Q) f = πk

σ(Q) f ), such that

Λ f = f on Q, ‖∇k
Λ f ‖

Lp
v (3Q)

≤ C‖∇k f ‖
Lp

v (Q)
and ‖Λ f ‖

Lr
v0

(3Q)
≤ C‖ f ‖

Lr
v0

(Q)

since v0/σ ∈ Ar(σ) and (5.2) holds. Finally, note that since Λ f ∈ Ck−1,1
loc

(R
n), (5.4)

holds for Λ f . It is now easy to see that (5.5) holds.

Next, it is easy to extend the weighted interpolation inequality to (ε,∞) domains.

Theorem 5.3 Under the assumption of the Theorem 5.1, (5.3) holds for all cubes Q̃ ⊂
Q in R

n if and only if

(5.6) ‖∇i f ‖
Lq

w(D)
≤ Cw(D)1/q rad(D)−i

( ‖ f ‖
Lr

v0
(D)

v0(Q)1/r

)

h−1

h

×
( ‖ f ‖

Lr
v0

(D)

v0(D)1/r
+

rad(D)k‖∇k f ‖
Lp

v (D)

v(D)1/p

) 1/h

for all f ∈ C
k−1,1
loc (R

n) and bounded (ε,∞) domains D.

We now look at the extension of weighted Sobolev interpolation inequality to un-
bounded (ε,∞) domains. The following theorem is indeed an extension of [17, The-
orem 1.5]

Theorem 5.4 Let p, r, q, h, i, k, and doubling weights v, v0, σ,w be as in Theorem 5.1.
If v(Q)1/pv0(Q)−1/rl(Q)−k → 0 as l(Q) → ∞, then

(5.7) ‖∇i f ‖
Lq

w(D)
≤ C‖ f ‖ h−1

h

Lr
v0

(D)
‖∇k f ‖1/h

Lp
v (D)
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for all f ∈ C
k−1,1
loc

(R
n) such that ‖∇k f ‖

Lp
v (D)

6= 0 and any unbounded (ε,∞) domain

D if and only if

(5.8) w(Q)1/q ≤ Cv0(Q)
h−1

rh l(Q)i− k
h v(Q)

1

ph

for all cubes Q in R
n.

Proof Instead of using Theorem 1.7, we will use the extension theorem for un-
bounded (ε,∞) domains; see Remark 4.5(ii). The theorem will then follow from
[17, Theorem 1.5].
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