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Abstract. We prove a Reider type theorem for separating any cluster by an adjoint system to a
pseudoeffective divisor on a normal surface. As a corollary we get a Reider type theorem for
adjoint linear systems (to a nef (Q-divisor) on normal log surfaces. This theorem is new even
for smooth surfaces.
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0. Introduction

Let X be a normal projective surface over C and L a pseudoeffective Weil divisor on
X such that Ky + L is Cartier. It is well known that every such L has the Zariski
decomposition L = P+ N into the nef part P and the negative part N. This paper
is devoted to the study of properties of the linear system |Ky + L| in terms of P.
More precisely, fix a cluster { (i.e., a 0-dimensional subscheme of X). We are
interested when the restriction map H°(Ky + L) — Oy(Ky + L) is surjective.
Without loss of generality we can assume that H%(Ky + L) — Os(Ky + L) is
surjective for any subcluster { Z {. Then either H*(Ky + L) — O¢(Ky + L) is onto
or { is Gorenstein. In this last case we consider an invariant J; equal to 4 deg{ plus
a correction term vanishing for a locally complete intersection in a Gorenstein sur-
face (see Definition 1.12). One can interpret §; as a local second Chern class of
a certain vector bundle associated to { (see 2.1). Now we have the following theorem
(this is a simplified version of Theorem 3.2).

THEOREM 0.1. Under the above notation, assume that P? > O¢. If the restriction
map H(Ky + L) — Oy(Ky + L) is not surjective then there exists a curve D con-
taining { such that

() H°Op(Ky + L)) — Oy(Kx + L) is not surjective,
(2) for every subcurve C of D, (L — D)C < }4,
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(3) the following inequality is satisfied:

OISR —

— < S0
27 14+ 1=/ 2

Let M be a Q-divisor on a normal surface X such that Ky + [M] is Cartier. As a
corollary to Theorem 0.1 we get the criterion for the surjectivity of the restriction
map H°(Kx + [M7) — O(Kx + [M).

—_—

THEOREM 0.2. If

(I M?> - B2, where p =1, and
(2) MCz=1s; -ﬁ«/ﬁfor every curve C on X,

then H'(Ky + [M1) — O¢(Kx + [M) is surjective.

This is a log version of the Reider type theorem obtained in [La2]. For a more
precise version, with condition (2) relaxed, see Theorem 4.1.

This formulation bridges the two most common forms of generalization of
Reider’s results. Assume X is a smooth surface (or has at most Du Val singularities).
Then on the one hand we get a separation of degree s clusters when M? > 4s and
MC = 2s for all curves C (this theorem, in case M is Cartier, is due to Beltrametti,
Francia and Sommese), and on the other hand when M2 > (s+ 1) and
MC > s+ 1 for all curves C (take B = (s + 1)/2+/s). This second form is useful when
considering multiples of an ample divisor.

Instead of assuming that Ky + [M] is Cartier in Theorem 0.2 it is sufficient to
assume that Ky + [M] is Cartier in the support of {. This, together with some results
by Kollar and Alexeev, implies a birational boundedness of minimal log surfaces of
general type (see Theorem 5.4). The bound is effective thanks to [AM] but
unrealistically high and hence we do not state a precise bound.

Theorems 0.1 and 0.2 would be useless without a better knowledge of J;. Since J; is
additive, we can assume that { is supported on a single point x. Here we provide a few
basic properties of this invariant.

(0.3.1) d; = 0. Moreover, if " C { then J; < J;.

(0.3.2) If (X, x) is smooth then 6 = 4deg(. If (X, x) is a Du Val singularity then
or < 4degl.

(0.3.3) 6, = 4/|m1(X, x)|, where n1 (X, x) is the local fundamental group around x. In
particular, d, = 0 if (X, x) is not a quotient singularity.

(0.3.4) If f: (X,E)— (X,x) is any resolution and D is a divisor such that
f+O3(=D) C I; then for any effective f-exceptional (Q-divisor G we have

o < —(Ky + D+ G
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In particular, if (X, x) is a rational singularity (nonsmooth) and m* C Z; then

d: < k*(emb dim, X — 1).

(0.3.5) If m: (Y, y) — (X, x) is a proper map, ¢tale in codimension 1 and 7, = n*Z;
torsion (that is, {’ is a scheme-theoretic preimage of (), then

Oy =degm - dy.

The above properties are proved in 1.1.2. More precise information about 6 for a
degree 2 cluster associated to the tangent vector is provided in [La2].

In particular, we get an effective criterion for spannedness (see Proposition 4.3)
and very ampleness (by Proposition 4.4.8, [La2]) of Ky + [M] for a nef QQ-divisor
on any normal surface. Further applications include very precise results on smooth
surfaces (by (0.3.2)) and effective k-jet ampleness on surfaces with at most rational
singularities (by (0.3.4)).

Results about spannedness of Ky 4+ [M] were previously known (the first such
result appeared in [EL] for surfaces with at most Du Val singularities; for the
best recent result see Theorem 1, [Ka] with a worse bound for M?) but very
ampleness was known only for smooth surfaces (see Theorem 1, [Mas]; the
bound for MC is slightly worse than in our theorem). Apparently nothing
was known about separating of higher jets of Ky + [M] even for smooth
surfaces. As we already remarked the case M = [M] of Theorem 0.2 was proved
in [La2] by using Bogomolov’s instability, but even in this case Theorem 0.1 is
new.

As we have already mentioned, Theorem 0.2 follows from Theorem 0.1. Theorem
0.1 is proved in the following steps. First we construct a reflexive sheaf £ as an exten-
sion of Z;O(Ky + L) by wy (generalised Serre’s construction). Using Kawamata’s
covering trick we compute an asymptotic growth of the number of sections of
3'2”5,,0,.,,1(nN ). Then the Mumford-Mehta—Ramanathan theorem yields P-instability
of &£. Clearly, this idea comes from Miyaoka’s proof of Bogomolov’s instability
theorem (see [Mi], §4). The idea behind passing to covering is that for a finite cover
f of X the sheaf £ is P-semistable if and only if (f*£)* is f*P-semistable. Now
we can use P-instability of £ to get the suspected ‘bad’ curve D. To bound
(L — D)C for a subcurve C of D we perform an elementary transformation of £
with respect to C. Finally we use obtained inequalities and instability of £ to
get a precise bound for PD.

The structure of the paper is as follows. In Section 1 we recall some facts and
notions we need in the proof. In Section 2 we introduce a certain invariant of a
saturated inclusion. This invariant is very important in the proof of Theorem 0.1.
Section 3 is devoted to the statement and proof of a more refined version of Theorem
0.1. In Section 4 we prove a version of Theorem 0.2 and give an example how it can be
applied to more special cases. Finally, in Section 5 we prove a birational
boundedness of minimal log surfaces of general type.
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NOTATION AND CONVENTIONS

We use Mumford’s intersection of divisors on a normal surface: if D and D, are Weil
divisors on a normal surface X then D| D, = f*D,f*D,, where f is any resolution of
singularities and f*D is the unique Q-divisor of the form f~'D + exceptional part
having zero intersection with each irreducible component of the exceptional set
of f. Furthermore we use the following notation:

F&G = (F ® )™, S'F = (S"F)*™, F(D) = FRO(D).

1. Preliminaries

1.1. Let (X, x) be a germ of a normal surface and let /- (X’, E) — (X, x) be a good
resolution of (X, x), i.e., such that the exceptional curve E has only normal crossings.

DEFINITION 1.1.1. For a vector bundle F on X we define
(1) the modified Euler characteristic (see [Wa])
x(x, F) = dim(f, F)*™* /£, F + dim R'f, F,

(2) the first Chern class ¢;(x, F) as the unique exceptional Q-divisor such that for
any exceptional curve C we have c|(x, F) - C = deg F|,
Now assume that rkF = 2 and define
(3) the second RR Chern class c}(x, F) as a real number such that
.. qx, S F(—ndet F
lim inf 1 ’(13 ndet) _ L@ady(x, F) = c1(x, F)P).

n—0o0

(4) the RR anomaly &'(x, F) by setting
d(x, F) = y(x, F) =2 y(x, Og) + S e1(x, F)ei(x, F) — Kg) — h(x, F).
Let us remark that ¢'(x, ) depend only on the isomorphism class of the reflexive
sheaf (f,£)™ at the singularity (X, x).
DEFINITION 1.1.2. Let { be a Gorenstein cluster supported on a point x. We define
an invariant J; , by
Orx = Hd (x, &) + deg),

where & is a unique class of a reflexive sheaf in Eth(Ig, wy).
For a general Gorenstein cluster { we set d; . = oy, where {’ is a part of {
supported on x.

We already listed several properties of J; (see (0.3.1)-(0.3.5)). Property (0.3.1)
follows from Corollary 2.8. (0.3.2) follows from the fact that a(x, ) < 0 for any
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reflexive sheaf at a Du Val singularity (with equality if and only if £ is locally free).
(0.3.3) is Theorem 4.3.1 in [La2] and (0.3.5) is a special case of Lemma 2.2. Let
us sketch a proof of (0.3.4):

Take F € Ext'(O;, (D)) such that (f,.F)*™ € Ext'(Z;,wy). Then d; = —
4¢s(x, F). Pass to the finite covering g: (Y, F) — (X, E) such that g*G has integral
coefficients and take the kernel G of the natural map g*F — Og«g. It is easy to com-
pute that 4ey(x, F) - degg = dea(x, g F) = dea(x, G(g*G) = (¢°(Kz + D+ G))*. [

1.1.3. Let X be a global projective surface and £ a reflexive sheaf on X. We set
a/(g) = erSingX a/(x’ £) and 5C = erSuppC 55,-’('

Take any good resolution of singularities /: ¥ — X and any vector bundle F such
that (£, 7)™ = £. Then the number ¢;,€ = 2 F — )"y ¢5(x, F) depends only on an
isomorphism class of the reflexive sheaf £ and it is called the second RR Chern class
of &.

We have the following Riemann—Roch type formula for a rank 2 reflexive sheaf £
on a normal surface X:

KX, 8) =2 7(Ox) +5(1€)? = Kx - ¢1€) — E + d/(€).

LEMMA 1.14. Let n: X' — X be a finite morphism of normal surfaces and £ a
reflexive sheaf on X. Then c¢,(n*E)™ = degmn - ¢)€.
The lemma is a globalization of Theorem 4.14, [La3].

LEMMA 1.1.5 (see [Ha], Corollary 1.7). Let n: X’ — X be a finite morphism of nor-
mal surfaces and £ a reflexive sheaf on X'. Then n,.€ is reflexive.

1.2. Let us recall a few basic facts about a position of a cluster with respect to a linear
system.

DEFINITION 1.2.1. A cluster { is in special position (or has the Cayley—Bacharach
property) with respect to a linear system |L| if HO(I;(L)) = H%Z:(L)) for every
{" ¢ ¢ with deg{’ =degl — 1.

DEFINITION 1.2.2. Let £ be a line bundle on a Cohen—Macaulay curve C. A
cluster { is in very special position with respect to |£]| if and only if there exists
an injection ¢:Z;£ — wc, which is not induced by any ¢: 7L — wc for a sub-
cluster { Z (.

Remark 1.2.3. If { is in very special position with respect to |£|, then ¢|. is gen-

erically an isomorphism for any subcurve C’ of C. In particular, if C is a curve
on a smooth surface X and £ is a line bundle on X then

wocle) Z 1T Lle) = 1(Oc) + C' - e L —deg({ N C),
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1.€.,

(1L — Ky — C)C' < deg(( N C).

THEOREM 1.2.4 (see [Lal], Theorem 1.2 and [La2], Theorem 1.5). Let X be a nor-
mal projective surface, { a cluster and L a Cartier divisor on X. Then the following
conditions are equivalent:

(1)  There exists an extension 0 — wxy—E—I; - O(L) — 0 such that £ is a reflexive
sheaf.
(2) ( is Gorenstein and it is in special position with respect to |L|.

THEOREM 1.3 (Mumford—Mehta—Ramanathan, see [Mi], Theorem 2.5). Let X be a
normal projective variety of dimension n = 2 and &€ a torsion free sheaf. Let Hy, ...,
H,_| be ample Cartier divisors. Then, for sufficiently large integers my, ..., m,_y,
the sheaf £ is (Hi, ..., H,—1)-semistable if and only if | is semistable, where C is
a general complete intersection curve of |m;H;|’s.

THEOREM 1.4 (see, e.g., [Ma], Theorem 2.6). Let £ be a reflexive sheaf on a normal
variety X and H an ample Cartier divisor. Then £ is H-semistable if and only if S"E is
H-semistable.

LEMMA 1.5. Let L be a pseudoeffective Weil divisor on a normal surface X. Let
L = P+ N be the Zariski decomposition of L. Then for k =0

(kL) =1Pk*> +O(k) and h'(kL) = —iN?*k* + O(k).

Proof. Let (Y, L) be the minimal model of the pair (X, L) and /: X — Y the
associated morphism. The divisor L' is nef and by the construction of the
Zariski decomposition P =f*L' and N is contracted by f (see the proof of
Corollary 7.5, [Sa]). Therefore f,Ox(kL) = Oy(kL’) for k > 0 (see Theorem 6.2,
[Sa]). Hence K'(X,kL)=h(Y,kL)=1(L)k*+O(k) =1Pk*>+O(k). Since
2(X,nL)=11?k*> + O(k) and h*(X,kL)=h(Ky —kL)=0 for k>0 we get
the lemma.

2. Invariants of Saturated Inclusions

Let £ be a rank 2 reflexive sheaf on a germ of a normal surface (X, x). Let £ be a rank
1 reflexive sheaf on (X, x) and suppose we have an inclusion £« & with a torsion free
cokernel M.

DEFINITION 2.1. We define an invariant J,(£ — &) by setting

0L = &) =d(x, &) —a(x, L) — a(x, M*™) + ' (M**/ M).
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By Proposition 2.11, [La3] we know that 6,(L — &) = 0. If (X, x) is a germ of
smooth surface then (L — &) = h°(M™ /M) measures how far is the cokernel
of the map from being locally free. Note also that if £ € Extl(Ig, wy) is the unique
class of a reflexive sheaf then é; = 46(wx — &;).

Here we give a very useful interpretation of 6,(£ — ). Let (X, E) — (X, x) be a
good resolution of singularity (X, x) such that on X there exists a sequence of vector
bundles 0 — £L—>E—> M — 0 such that (Z — (E,')|5(_E = (L — &)|xy_,- Such a res-
olution always exists (see the proof of Proposition 2.11, [La3]). Then we have

1(x, &) = 1(x, £) + 1(x, M) — h°(coker (€ — M™)).
After a simple computation one gets

0L =—ERM ). @.1.1)
In particular,

45 (L — &) < — (ce1(x, L) — e1(x, M) (2.1.2)
This interpretation immediately implies the following lemmas:
LEMMA 2.2. Let n: (Y, y) = (X, x) be a finite proper map. Then

Oy((T" L) — (&)™) =degn - 0(L — €).
LEMMA 2.3. For any divisor D we have 6,(L(D) — E(D)) = 0.(L — &).

2.4. Now assume that (X, x) is a germ of a normal (quasiprojective) surface and fix a
sequence

0> L—E—>M—>0

together with a curve C passing through x. An elementary transformation E[—C] of £
with respect to C is defined as a kernel of the surjection £ - M ® O¢/O¢-Torsion.
It is easy to show that [—C] is a rank 2 reflexive sheaf and we have an inclusion
i"" L — &[—C] induced by i: L — €£.

EXAMPLE 2.4.1. Suppose that X is smooth at x and write M in the form Z; M** for
some cluster {. Then 6(L — &) =deg{ and 6(L — E[—C]) = deg{ — deg({ N C). In
particular, we have 6.(L — &) = 6.(L — E[—C]). This inequality holds also for a
general normal singularity (X, x). To prove it we will need the following lemma.

LEMMA 2.5. For any globally generated rank r vector bundle F on X we have
dim R'£,S"F = O(m'™").
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Proof. Take an effective exceptional cycle Z such that R! f+O3(—Z) = 0. Since F is
globally generated we have R!f,F(—Z) = 0. Hence from the sequence

0—> F(-Z2)—F—Fl|l,—0

we get dim R'f,F = H'(Z, F|,). Since S"F is also globally generated we have
dim R'f, S"F = h'(Z, S"F|,). If F is a rank r vector bundle then for generic r sec-
tions of F the induced map O, — F|, is generically onto. Then the induced
map on symmetric powers S"(0),) — S"F|, is surjective outside the finite set
of points. Therefore h'(Z, S"F|,) < rkS"(O,)-h'(Z,0z) and dim R'f,S"F =
o). N

THEOREM 2.6. §,(L — &) = 6.(L — &[-C)).

Proof. First we consider the following special case. Assume that there exists a good
resolution of singularities (X, E) — (X, x) such that D = f*C is a Weil divisor and
we have the following commutative diagram on X:

such that j|y_p =ily_, and j'|3_p =1i|y_, and M is a line bundle.
We will show that under such assumptions we have

7(x, $"E) < y(x, S"(E[-D))) + O?). (2.6.1)
Using this inequality and Proposition 4.18, [La3], one can see that

2(x, SPE @ det & ) < y(x, S¥(E[-D]) ® det E[—D] ") + O(n?).
Since ¢(x, &) = c1(E[-D]) we get

G ERL ) < E-DI® L.

But ,(L — &) = —4(x.E@ L) and 6.(L — E[-C]) = —c4(x. E-DI® L), s0
the theorem follows in this case.
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Note that (2.6.1) is equivalent to the similar inequality for & and E[—D] twisted by
the same line bundle on X (see Pr9position 4.18, [I:a3]). Therefore we can assume

that all the bundles &, E[— D], L, M, ZI(—K)-() and M(—Kj) are globally generated.
We have the following commutative diagram:

0 —— Sh1E @ [k S"kE & " o ® 7 0

T T

0 —> S G — SHE-D)®L — M T (——D)® L — 0

|

Using it one can see that

dim coker (HL(X, S"(§[-D])) — HL(X, S"&))

u ~ ok an—k
<D hp O @M L ). (2.6.2)
k=0

CLAIM 2.6.3. The set {hh(Op(A)): 4 — Ky is f-nef’} is finite.

To prove the claim note that H'(O(4)) = H'(O3(4 — D)) = 0(D is f-trivial) and
therefore

hi(Op(A)) = hp(O3(4 — D)) — hi(Ox(A)) = 7(x, O3(A)) — 1(x, O3(4 — D))
=a(x, A) — a(x, A — D).

But the set {a(x, N): N is a line bundle} is bounded by Corollary 4.13, [La3], which
proves the claim.

Now, we can use the claim and the sequences
0— O(k—l)D(_D)—>OkD—>OD — 0
to show that 2L(Oxp ® ./\~/tk ® L") = O(k). Therefore by (2.6.2)

dim coker (HL(X, S"(E[-D))) - HL(X, §"E)) = O(n?).
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Note that we have the following commutative diagram

0 — H(X, 8" —— HYX —E, §"¢) —— HL(X,5"§) —— 0

T T [

0 — H'X,S"(-D))) — H'X —E, S"(§[-D]))) —— HLX,S"(E[-D])) — 0

from which follows that

dim coker (£,S"(E[-D)))" /S"(E[-D)) — (£.S"E)" /S"E)

< dim coker (HL(X, S"(E[-D))) — HL(X, S"E)) = O(n?). @64
On the other hand by Lemma 2.5 we know that
dim R'£,S"(E[-D]) = O(n) (2.6.5)
and
dim R'/,S"€ = O(n). (2.6.6)

Now the inequality (2.6.1) follows from inequality (2.6.4) and equalities (2.6.5) and
(2.6.6).

Now we reduce the general case to the special one in which we proved the theorem.
Let f: (X, E) — (X, x) be any good resolution. Let us take a generically finite proper
covering 7 : (Y, F) — (X, E) from a smooth surface Y such that *f*C is a Weil
divisor. Take the Stein factorization of f7: (Y,F)— (X, x). We get a finite covering
n:(Y,y) = (X, x) together with a resolution of singularities f: (Y,F)— (Y,y).
By Lemma 2.2 to prove the theorem it is sufficient to prove that

5@ L) L () = 5. L)L (1)~ ),

whereas we know that f*(n* C) =7m*f*C is a Weil divisor.

Therefore we can assume that D = f*C is a divisor. Clearly, we can also assume
that £ = wy (see Lemma 2.3). Now take any line bundle M on (X, E) such that
fiM C cokeri and f,M(—D) C cokeri’ and both these inclusions have finite
cokernels. We can achieve this by taking any M’ such that (f*/\~/l/) = (cokeri)**
and twisting it by a sufficiently f-ample exceptional divisor. Since we have a com-
mutative diagram

Extl(M, 03) —> Extl(f*M, wy) <« Extl(cokeri, wy) &

T T T

Ext'(M(=D), w;) —» Ext'(iM(=D),wy) < Ext'(cokeri,wy) > &[—C]
we can lift € to € € Extl(J\}l, wg) and then E’[—D] — & maps to E[-C]— &. [
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LEMMA 2.7. Let Rbe alocal ring andlet I C I’ C Rbeideals such that A = R/I and
B = R/I' are 0-dimensional Gorenstein rings. Then there exists a nonzero f € R such
that fT' = I N(f).

Proof. By Theorem 21.23c¢, [E], anideal J = (0 :4 I’ A) is principal. Let f be any lift
of the generator of J to R. Since f - I'’A = 0in A we have fI' C I N (f). Now take any
element x=fg in IN(f). Then f-gl =0 in A4 and ge(0:4J)=1'A (since
(0:4(0:4J)) =J for any ideal J in a 0-dimensional Gorenstien local ring A; see
also Theorem 21.23a, [E]). Therefore g € I’ and x € fT, O

COROLLARY 2.8. Let (X,x) be a germ of a normal surface and let {' C { be
Gorenstein clusters supported on x. Then 6y < d;.

Proof. By Lemma 2.7 there exists an element f/ € Oy . such that fZ, = Z; N (f).
Let C be the zero set of f. Then the following sequence is exact:

0—Z(=C)—Z;— I;®Oc/(O¢ — torsion) — 0.
In particular, if & is a reflexive sheaf lying in a sequence
0wy —>&&—->Zr—0

and we make an elementary transformation with respect to C then we get a reflexive
sheaf &y € Extl(Igr(—C), wy) ~ Extl(Ig/, wy). Now by Theorem 2.6 we get the
required inequality. [

3. The Main Theorem
DEFINITION 3.1. Let us set

Sec =Y (e — 4du(wx — E[-C))).

xeC

Remark 3.1.2. Note that 0 <drc < D ¢ 0rx <J; and 6y c=0if (NC=40.
However, it is important to subtract also contributions from the local elementary
transformations of &;. For instance, if X is smooth at Supp{ then
0¢,c =deg({ N C), whereas ) ¢ is usually larger.

THEOREM 3.2. Let L be a pseudoeffective Weil divisor and { a Gorenstein cluster on
a normal surface X. Let L = P+ N be the Zariski decomposition of L. Assume that
Ky + L is Cartier and P* > &;. Then ( is in special position with respect to
Ky + L if and only if there exists a curve D containing { and such that { is in very
special position with respect to |Op(Ky + L)|. We can choose D such that for every
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subcurve C of D (L — D)C < %5g,c and
1 1 1

—55~—<—5(.
20 14+ /1=§/P2 2~

Moreover, if 6y =0 then D < N.

Proof. Let { be in special position with respect to Ky + L. By the Serre con-
struction (see Theorem 1.2.4) there exists a reflexive sheaf &£ € Ext'(Z;O(Kx+
L), wy). By Lemmas 3.3 and 3.4 the sheaf £ is not P-stable. Let M be a maximal
P-destabilizing divisorial subsheaf of £. By definition 0 < P(2c;M — 2Ky + L)),
ie., P(c;M —Ky)> P> > 0. Therefore Hom(M,wy) =0 and we can apply
Lemma 3.1, [La2]. So we get an effective curve D such that  is in very special pos-
ition with respect to |Op(Ky + L)| and M = O(Ky + L — D). By P-instability of
& we have (L —2D)P = 0.

Let C be a subcurve of D. Let £[—C] be the kernel of the natural map & —
Z:Oc(Ky +L). It is a rank 2 reflexive sheaf and we have an inclusion
i'"* M — E[—C] induced by i: M — £. Moreover, we also have another inclusion
Jj i wxy—E&[—C]induced by j: wy<— & and all of the above inclusions have torsion free
cokernels.

Note that we have a sequence

PD <

0 — cokeri'—>cokeri—Z:Oc(Ky + L) - 0

from which one can compute that

h((coker i)™ /coker i) — h°((coker i')** /coker i')
=Ky + D) — y(Kx + D — C) — y(Z:Oc(Kx + L)).
Now note that by the Riemann-Roch theorem on C we have
1Z:Oc(Ky + L)) = 1(Oc) + (Kx + L)C — deg({ N O),
and by the Riemann-Roch theorem on X we have
2(0c) = 1(Ox) = 1(Ox(=C)) = =3 C(Kx + C) — a(=C).
Therefore
oM — &) — (M — &[-C))
= d'(§) — 2a(—D) + h°((coker i)** /coker i) — (d'(E[-C]) — a(—D)—
—a(—(D — C)) + h°((coker i')** /coker i'))
=d(€) — d(E[-C]) + a(—(D — C)) — a(=D) + y(Kx + D)~
— 1(Kx + D — C) = (Z:Oc(Kx + L))
— d() - d(E[-C) - YT Oc(Kx + L) + %(KXC ~ €Y +CD
=d(€) - d(E-C)+ C(D - L)+ a(—C) — deg({ N C).
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In much the same way as above one can compute that

1((coker j)** /coker j) — h°((coker j')** /coker j) = deg({ N C)
and

10 = d(wx = E[-C)) = d(wy = &) — d(wy — E[-C))

=d (&) —d(E-C]) +a(—C)+degl — deg(( N C).

But we also have

%5g — oy — E-C)) = Z(éx(w)( — &) —o(wyxy — E[-C)) = %5;0

xeC

since at the points x € { N C the reflexivization of the cokernel of ;' is locally free and
Ox(wy — &) = d(wxy — E[—C]). Therefore

(M = &) — M — E[-C))+(L—-D)C = ‘1‘5;0
and by Theorem 2.6 we get (L — D)C < 16; c.

CLAIM 3.2.1. For any effective Q-divisor F < D we have (L — D)F < %5g.

To prove this write F = ) _f;C; + ) _g;C; as a sum of irreducible divisors, where
(L—D)C; <0 and (L — D)C; > 0. Then

(L—DJF <) gC(L—D)< > [g1C(L—D)

and the claim follows from the fact that ) [g;1C; is a subcurve of D and d; ¢ < J; for
any subcurve C of D.

To prove the second part of the theorem write N — D = N’ — D', where N’ and D’
are effective (Q-divisors without common irreducible components. Then by Claim
3.2.1 we get

’ / 1
(P—-D)D'<X(P+N —-D)D' =(L-D)D' < 39

¢

By the Hodge index theorem

1

PD/2

p2

and hence
(P2 —2PD')’ > PA(P? - 5)).

We already know that PD = PD’ < P?, so

1 1 1
PD< - PZ—,/P2P2—5y):—5v-—.
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Finally note that if 6; = 0 then PD’ = 0 and (D')? = PD' =0, so by the Hodge index
theorem D' =0, i.e., D < N. O

Remarks. (1) As a special case of this theorem for (= one gets the
Kawamata—Viehweg vanishing theorem for surfaces: H'(Ky + [M]) =0 for any
nef and big Q-divisor M. In fact, our theorem in this case is much stronger (especially
for singular surfaces).

(2) If X is smooth then the inequality (L — D)C < 1/4d;.¢c = deg({ N C) follows
from the fact that { is in very special position with respect to Ky + L (see Remark
1.2.3).

(3) In the proof of Theorem 3.2 we used only the fact that Ky + L is Cartier in the
support of { and we do not need to assume that Ky + L is Cartier everywhere.

LEMMA 3.3. Let £ € Ext!(Z;O(Ky + L), wy) be a reflexive sheaf. Set F = E(—Ky).
Then h(S¥ F(—nP)) = L(P> — dn* + o(n).

Proof. Let f: X — X be a log resolution of the pair (X, N). There exists a finite
covering #: Y — X from a smooth surface Y such that #*f*N has integral
coefficients (see Theorem 1.1.1, [KMM]). Let us take the Stein factorization of
f. We get a normal surface Y and two maps g: ¥ — Y and n: Y — X such that
g is birational and = is finite. Moreover, n*N = g,7*f*N is an effective divisor with
integral coefficients. Set & = (7*&)**.

Now let us note that on Y we have the following sequence

0— Oy(ﬂi*Kx)—>é—>Il/Oy(7T*KX +7*L) —> 0

where (' is some cluster and 45(Oy(n*Ky) — cz,’) =degmn - (see Lemma 2.2). Let G
be the kernel of the natural map RN ToOpn(m* Ky +7*L) (if 7N =0 set
G=2¢&). Set H=G(—n*Ky) and F = (n*F)™. By definition we get an induced
inclusion Oy — H with a torsion free cokernel. It is easy to see that
cyH = 0(Oy — H). By the Serre duality theorem we get

(S H(—nr* P)) = i°(S*H(—nm*P)Rwy) = h*(S¥"H(—nm*P)) + O(n?).
Therefore
RS F(—n*P)) = h(S*H(—n*P)) = Ly(S*H(—nz*P)) + O(n?)
> L(w*P)* — 45(Oy — H)P> + o(n?).

By Theorem 2.6 we have 46(0y — H) < 46(Oy — F) = degn - 0. By the projection
formula:

0,8 F(~nm*P) = (S F(~nP))&m,Oy.

For any fixed divisorial sheaf £ on X we have

(S F(—nP)®L) — i (S¥ F(—nP)) = O(n?).
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Since 7, Oy is a rank degn reflexive sheaf one gets
(8 F(—nP)@n,Oy) < degn - i%(S¥'F(—nP)) + O(n?).
Hence

1(8% F(—nP))
1 ~on 2 ]
> —— (S F(—nn*P)) + O(n?) = L(P? = 5)n® + o(n?).
degn

LEMMA 34. Let F be a rank 2 vreflexive sheaf with o F =L. If
(8> F(—nP)) = an’® + o(n®) and a > 0 then F is not P-stable.

Proof. Let H' be a small ample Q-Cartier Q-divisor and set H = P + H’. Then for
sufficiently large and divisible » we have an exact sequence

0 — 8% F(~nH)—> 5 F(~nP)—> 5 F(~nP)|c — 0 (3.4.1)

where C € |[nH’| is a general curve.

If F|c is not semistable for n > 0 then by the Mumford-Mehta-Ramanathan
theorem (see Theorem 1.3) F is not H’'-semistable. If this happens for any small
H' then F cannot be P-stable.

Therefore we can assume that for some small H’ the bundle F| is semistable for
n>> 0. Then ' F (—nP)|c is also semistable for any n >> 0. Hence

(8 F(=nP)|¢) < tkS¥'F(—nP)|¢ + deg S F(—=nP)| = 2n + )(*NH' +1).
Hence by (3.4.1) we get

W(SYF(—nH)) = h°(S¥ F(—nP)) — i°(S¥'F(—nP)| ()
> (a —2NH + o(n’) > 0

for n > 0 (since NH' is small by assumption).
Let us note that

1(S¥ F(—nH)) = 2n + Dn(N — H')

and (N — H')P = —H'P < 0. Therefore we can choose an ample (Q-Cartier divisor
H’ close to P and such that (N — H)H" < 0.

By Theorem 1.4 the sheaf F is H’-semistable if and only if 3‘2”.7-'(—nH) is
H'-semistable. But #°(S*F(—nH)) >0, whereas c(S*F(—nH)H" <0, so
Sznf(—nH) is not H'-semistable. It follows that F is not P-stable. O

Remark. If P in the above lemma is ample then by restriction to the general curve
C € |kP| for k > 0 one gets that Sz”F(—nP)lc is a degree 0 vector bundle with a
nonzero section (otherwise hO(SQ”]-' (—nP)(—sC)) = 0 for any positive s and we have
a contradiction with Serre’s vanishing theorem). Therefore by the Mumford—
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Mehta—Ramanathan theorem F is not P-semistable. Unfortunately these arguments
do not work if P is only nef and big and we need another proof.

4. Applications to ()-divisors on Log Surfaces

THEOREM 4.1. Let X be anormal projective surface. Let M be a Q-divisor on X such
that Ky + [M is Cartier and let { be a Gorenstein cluster on X. If

(1) M?> o B> where > 1, and

@
1 p

5C,C'7
2 pryp -t

for all irreducible, reduced curves C,

MC >

then { is not with special position with respect to |Ky + [M]].

Proof. Set L=[M],B=L— M and let L = P + N be the Zariski decomposition
of L. Assume that { is in special position with respect to |Ky + L|. Since
P> > M? > §; we can apply Theorem 3.2. Let D be the curve satisfying all the
assertions of this theorem.

Write B— D = B’ — D', where B’ and D’ are effective (Q-divisors without common
irreducible components. Note that D’ # 0, since [B] = 0. Write D’ = Y 4;C; as a sum
of irreducible components C;. Set y = min(d¢, Y a;9¢,¢,). Since D’ < D is an effective
Q-divisor, we can use Claim 3.2.1 to get

(M—-D)D' <(M+B —D)D' =(L-D)D < iy,
that is MD' — %y < (D')*. By the Hodge index theorem we have

(PD')’
P2 < %55'

(D) <
Therefore
MD' < 3(6;+7v) <iM>. (4.1.1)

Now apply the Hodge index theorem once more to get

1 (MD')?
MD — -y < (D) <
17 ( e
Hence
1 2
(EM2 — MD’) > ZMz(Mz — 7). 4.1.2)
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If y=0 then MD' =0. Hence by the Hodge index theorem (D')*> <0 though

MD' < (D')?, a contradiction. Therefore we can assume that 7 > 0. Then by (4.1.1)
and (4.1.2) we get

<= — JIM2AM2 — S
MD 2(M M2 (M y)) zy

M+ P08 =)
LB

<§y-m.

But by assumption we have

1 B
MD = E aiMC; = = E aide.c ) - —————>
> (i) P -1
a contradiction. =

Remark 4.2. (1) Note that we used [B] = 0 only to show that D’ # 0.

(2) Let /1Y — X be a resolution of singularities of X — Supp{. If the map
H(Y,ZpOKy + [f*M1)) > Op-1(Ky + [/*M7) is surjective then the map
HY(X,Z:O(Ky + [M1)) = O¢(Ky + [M1) is also surjective. This follows from
the fact that H'(X,Z;O(Kx +[M1)) = H'(X,f,Z; 150Ky + [f*M1)) C H'(Y,
I10O(Ky + [f*M1)) = 0.

Finally we give a more special example of application of Theorem 0.2.

PROPOSITION 4.3. Let X be anormal projective surface. Let M be a Q-divisor on X
such that Ky + [M is Cartier. If M* > 4/|m\(X, x)| then |Kx 4+ [M| is globally gen-
erated at x unless (X, x) is smooth or of type A, and there exists a curve C such that
2 1 2
C< . < .
|1 (X, X)| 4 |1 (X, X)|
1 l——
VT e

Proof. By Remark 4.2, (2) we can assume that X is smooth off x. The assertions is
nontrivial only at quotient singularities of type different to A4,. But then s=
min{n: nC is Cartier for any C on X} < |n;(X, x)|, since the class group of the
singularity (X, x) is equal to the abelianization of 7;(X, x).

Applying Theorem 3.2 we get a curve D such that for any its subcurve C

1 1

L-D)[(CL —— <
L=DICs o s

and 2PD < P2, where P is the positive part of [M7]. But (L — D) - (sC) € Z, so it
follows that (L— D)C < 0. As in the proof of Theorem 3.2 write N —D =
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N’ — D'. Then

(P—-DYD' <(L-D)D' <£0.
Therefore

(PD')’
PD' < (D) < 7

If PD’ = 0 then (D)’ = 0 and we have a contradiction with the Hodge index theorem.
Otherwise we get P> < PD' = PD, a contradiction with 2PD < P2, m

5. Birational Boundedness of Log Surfaces of General Type

DEFINITION 5.1. Let a subset C C [0, 1] satisfies a descending chain condition and
assume that 1 € C. Then we define S(C) as a set of normal projective surfaces with
boundary (S, A) such that

() (S, A) is log canonical,
(2) coefficients of A belong to C,
(3) Ks+ A is nef and big.

All the definitions and notation used from now on is explained in [Ko]. For any C
one can define a certain invariant &(C) > 0 such that for any covering family
{C,} of curves and (S, A) € S(C) we have (Ks + A+ C;)C; = ¢1(C) (see Complement
5.7.4, [Ko]). Moreover, from the proof of Complement 5.7.4, [Ko], one can see that
£1(C) = min(min(}_ DiffC N R, ), min(} (DiffC — 2) N R)), so we get an effectively
computable bound on ¢;(C).

THEOREM 5.2 (Theorem 6.4, [Ko]). Let (S, A) € S(C) and set (Ks + A)* = d?. Let
{C;} be a covering family of curves. Then

(Ks +A)C, > d(,/sl(C) + % - %) > (v/483 — 21)de; (C) = 0.977de1 (C).

Proof. By the Hodge index theorem
(Ks +M)C) = Cld*.

On the other hand C? > & (C) — (Ks + A)C,. Now the first inequality follows by a
simple computation. Second inequality follows from the fact that & (C) < 41—2 for
any C (see Remark 5.15, [Ko]). O

THEOREM 5.3 (Theorem 4.12, [AM]). Let (S,A) € S(C). Then there exists an
effectively computable bound ¢(C) such that (Ks + A)* = ¢(C).
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THEOREM 5.4. Let (S,A) € S(C). Then there exists an effectively computable
integer N(C) such that for any n > N(C) a rational map defined by the linear system
|Ks + [n(Ks + A)1| is birational. In particular, i°(Ks + [n(Ks + A)]) > 3.

Remark. As a corollary we see that there exists N € NN such that for any log
canonical surface with Kg nef and big the map defined by NKg is birational and
the plurigenus Py(S) = h°(NKs) > 3. This implies Conjecture 5.5, [BI].

Proof. Take

[ 4 2.05

Then for n > N(C) (n(Ks + A))* > 4. Take two very general points of S and assume
that they are not separated by |Ks + [1n(Ks + A)]|. Then by Theorem 0.2 there exists
an irreducible curve C passing through a general point of S and such that
n(Ks + A)C < 2. But by the countability of the number of irreducible components
of the Hilbert scheme any irreducible curve passing through a very general point
occurs as a fiber in a covering family of curves. Hence by Theorem 5.2 we get

n(Ks +A)C > N(C) - 0.977de1(C).

Since the last term is bigger than 2, we get a contradiction. O
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