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Abstract

This paper presents a novel neural architecture capable of outperforming state-of-the-art systems on the
task of language variety classification. The architecture is a hybrid that combines character-based convo-
lutional neural network (CNN) features with weighted bag-of-n-grams (BON) features and is therefore
capable of leveraging both character-level and document/corpus-level information. We tested the system
on the Discriminating between Similar Languages (DSL) language variety benchmark data set from the
VarDial 2017 DSL shared task, which contains data from six different language groups, as well as on two
smaller data sets (the Arabic Dialect Identification (ADI) Corpus and the German Dialect Identification
(GDI) Corpus, from the VarDial 2016 ADI and VarDial 2018 GDI shared tasks, respectively). We man-
aged to outperform the winning system in the DSL shared task by a margin of about 0.4 percentage
points and the winning system in the ADI shared task by a margin of about 0.2 percentage points in
terms of weighted F1 score without conducting any language group-specific parameter tweaking. An abla-
tion study suggests that weighted BON features contribute more to the overall performance of the system
than the CNN-based features, which partially explains the uncompetitiveness of deep learning approaches
in the past VarDial DSL shared tasks. Finally, we have implemented our system in a workflow, available
in the ClowdFlows platform, in order to make it easily available also to the non-programming members
of the research community.
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1. Introduction

Author profiling (AP), which deals with learning about the demographics of a person based on
the text she or he produced, is becoming a strong trend in the field of natural language processing
(NLP). Tasks such as age, gender, and language variety prediction (automatic distinction between
similar dialects or languages) are becoming increasingly popular, in part also because of the mar-
keting potential of this research. Most AP research communities are centered around a series of
scientific events and shared tasks on digital text forensics, the two most popular being the evalu-
ation campaign VarDial (Varieties and Dialects)? (Zampieri et al. 2014), focused on tasks related
to the study of linguistic variation, and an event called PAN (Uncovering Plagiarism, Authorship,
and Social Software Misuse)b, which first took place in 2011 and was followed by a series of shared
tasks organized since 2013 (Rangel et al. 2013).

http://corporavm.uni-koeln.de/vardial/sharedtask.html
Phttp://pan.webis.de/
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Table 1. Winning systems for AP classification tasks in PAN AP and VarDial DSL shared tasks
(language variety tasks in bold)

Year  VarDial (DSL - closed track) PAN (AP)

LIBLINEAR® 4 BON
(Lopez-Monroy et al. 2014)
LIBLINEAR® + BON
(Alvarez-Carmona et al. 2015)
SVM + BON

(Vollenbroek et al. 2016)

2017  SVM -+ BON (Bestgen 2017) SVM + BON (Basile et al. 2017)

2014  SVM -+ BON (Goutte, Léger, and Carpuat (2014))
2015  SVM + BON (Malmasi and Dras 2015)

2016  SVM + BON (Coltekin and Rama 2016)

While deep learning approaches are gradually taking over different areas of NLP, the best
approaches to AP still use more traditional classifiers and require extensive feature engineering
(Rangel, Rosso, Potthast et al. 2017). This fact can be clearly seen if we look at the architectures
used by the teams winning the AP shared tasks in recent years. Table 1 presents the winning
approaches to the VarDial Discriminating between Similar Languages(DSL) shared tasks and PAN
AP (gender, age, personality, and language variety prediction) tasks between 2014 and 2017¢. In
fact, six out of eight winning teams used one or an ensemble of Support Vector machine (SVM)
classifiers and bag-of-n-grams (BON) featuresd for classification (two other winning teams used a
LIBLINEAR classifier® and BON features), and when it comes to the task of DSL (all VarDial DSL
tasks and PAN 2017 AP task), SVM classifiers with BON features have been used by all of the win-
ning teams. The best ranking system that employed a deep learning architecture was developed by
Miura et al. (2017) and ranked fourth in the PAN 2017 AP shared task.

The main contribution of this paper is to demonstrate that it is possible to build a neural
architecture capable of achieving state-of-the-art results in the field of AP, and more specifically
on the task of DSL. The proposed neural system is unique in a sense that it combines sophis-
ticated feature engineering techniques used in traditional approaches to text classification with
the newer neural automatic feature construction in order to achieve synergy between these two
feature types. Experiments were conducted on eight distinct language varieties. First, we report
results on the DSL Corpus Collection (DSLCC) v4.0 (Tan et al. 2014) used in VarDial 2017
(Zampieri et al. 2017), which was chosen because of its size (with 294,000 documents it is by far the
largest corpus used in the presented shared tasks) and because it contains six different language
groups, which also allows to explore the possibility of building a generic architecture that would
discriminate well between languages in many different language groups without any language-
group-specific parameter tweaking. Second, we report results on two much smaller corpora, the
Arabic Dialect Identification Corpus (ADIC) used in a VarDial 2016 ADI shared task (Malmasi
et al. 2016b) and the German Dialect Identification Corpus (GDIC) used in a VarDial 2018 GDI
shared task (Zampieri et al. 2018) in order to determine how data set size and characteristics affect
the competitiveness of the proposed system. Finally, we want to encourage the reproducibility of
results and offer a larger research community (including linguists and social scientists) an easy
out-of-the-box way of using our system. Therefore, we have not only published our code online
(http://source.ijs.si/mmartinc/NLE_2017) but also implemented the architecture in the
clowd-based visual programming system ClowdFlows (Kranjc, Podpecan, and Lavrac¢ (2012)).

“VarDial evaluation campaign 2018 was not included because there was no DSL shared task. PAN 2018 gender classification
task is not included because the gender classification task dealt with determining the gender of the author from both text and
image data.

4The term BON features is used in a broader sense here, covering features such as bag-of-words, character, and word BON
and bag-of-part-of-speech tags.

€It is unclear from the system description papers by Lopez-Monroy et al. (2014) and Alvarez-Carmona et al. (2015) whether
linear SVM or logistic regression classifier was used.
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The paper is structured as follows. Section 2 addresses the related work on text classifica-
tion in the field of AP. Section 3 describes the architecture of the proposed neural classification
system in detail, while in Section 4 we report on our experimental setup. Results of the experi-
ments and an error analysis are presented in Section 5, followed by an ablation study in Section 6.
Section 7 presents the implementation of our approach in the ClowdFlows platform and finally,
the conclusions and directions for further work are presented in Section 8.

2. Related work

The most popular approach to language variety classification usually relies on BON features and
SVM classifiers (see Table 1). Bestgen (2017), the winner of the VarDial 2017 DSL task, used an
SVM classifier with character n-grams, capitalized word character n-grams, n-grams of part-of-
speech (POS) tags, and global statistics (proportions of capitalized letters, punctuation marks,
spaces, etc.) features. N-grams had sizes from one to seven and different feature configurations
were used for different language groups. The novelty of this approach was the use of the BM25
weighting scheme (Robertson and Zaragoza 2009) instead of the traditional term frequency-
inverse document frequency (TF-IDF). BM25 (also called Okapi BM25) is a version of TF-IDF
with some modifications made to each of the two components (term frequency and inverse docu-
ment frequency) that, most importantly, allow it to take into account the length of the document.
The classical TF-IDF formula is

TF — IDF = tf x log(d—zjc)

where tf is the number of terms in the document, N is the number of documents in the corpus,
and df the number of documents that contain the term. On the other hand, the formula for BM25
is the following:

tf
tf+ki*«(1—b+bx

BM?25 = )

N—df+05
7 * log( i _{ 3—5
dlfavgd]) ’

where kj is a free parameter for tuning the asymptotic maximum of the term frequency compo-
nent of the equation, dl is a document length, avg,; an average length of a document in the corpus,
and b a free parameter for fine-tuning the document length normalization part of the equation.
While Bestgen (2017) showed in his experiments that the choice of the weighting scheme does
impact the performance of the classifier, the general employment of different weighting schemes
by the best performing systems in past shared tasks (Zampieri et al. 2017) suggests that feature
weighting in general is positively correlated with gains in classification performance.

A very similar SVM-based system but with simpler features (just word unigrams, bigrams and,
character three- to five-grams) was used by the winners of the PAN 2017 competition Basile et
al. (2017). The authors of the paper also discovered that adding more complex features into the
model actually negatively affected its performance. An SVM ensemble with almost identical fea-
tures (word unigrams and character one- to six-grams) was also used by the winners of the VarDial
2016 ADI task Malmasi et al. (2016a). An even more minimalistic SVM-based approach was pro-
posed by the winners of the VarDial 2016 DSL competition (Coltekin and Rama 2016), who used
only character three- to seven-grams as features. The authors also report on the failed attempt to
build two neural networks capable of beating the results achieved by the SVM, first one being the
FastText model proposed by Joulin et al. (2016) and the second one a hierarchical model based
on character and word embeddings. Another attempt of tackling the task with a neural approach
was reported by Criscuolo and Aluisio (2017). They ranked ninth with a hybrid configuration
composed of a word-level multi-layer-perceptron model and a character-level Naive Bayes model.
They also experimented with a word-level convolutional neural network (CNN), which performed
slightly worse than their hybrid classifier.
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There have also been some quite successful attempts of tackling the language variety prediction
with neural networks. Miura ef al. (2017) ranked fourth in the PAN 2017 shared task by using a
system consisting of a recurrent neural network layer, a CNN layer, and an attention mechanism.
In a set of VarDial 2018 evaluation campaign tasks, Ali tackled the tasks of distinguishing between
four different Swiss German dialects (Ali 2018a), five Arabic dialects (Ali 2018b), and five closely
related languages from the Indo-Aryan language family (Ali 2018¢), ranking second in the first and
second task and fourth in the third task, respectively. The system is based on character-level CNNs
and recurrent networks. The one-hot encoded input sequence of characters enters the network
through the recurrent GRU layer used as an embedding layer. Next is the convolutional layer with
different filter sizes, ranging from two to seven, which is followed by a batch normalization, max-
pooling, dropout, and finally a softmax layer used for calculating the probability distribution over
the labels.

While neural networks were not a frequent choice in VarDial DSL 2017 (Zampieri et al. 2017),
in the VarDial DSL 2016 shared task (Malmasi et al. 2016b) three teams used some form of CNN.
Belinkov and Glass (2016) used a character-level CNN and ranked sixth out of seven teams,
achieving more than six percentage points lower accuracy than the winning system. A somewhat
more sophisticated system was employed by Bjerva (2016), who combined CNN with recurrent
units, developing a so-called residual network that takes as input sentences represented at a byte
level. He ranked fifth in the competition. A third team called Uppsala used a word-level CNN but
did not submit a report about their approach.

Two rear occasions when an SVM-based system did not win in a language variety classifica-
tion shared task occurred at VarDial 2018 GDI and Indo-Aryan Language Identification (ILI)
tasks, where Jauhiainen et al. beat the nearest competition by a large margin of four percent-
age points (Jauhiainen, Jauhiainen, and Lindén (2018a)) and more than five percentage points
(Jauhiainen, Jauhiainen, and Lindén (2018b)), respectively. Their Helsinki language identification
(HeLI) method with adaptive language modeling was in both cases calculated on character four-
grams. The HeLl system was, however, outperformed by a margin of almost five percentage points
at the VarDial 2018 Discriminating between Dutch and Flemish in Subtitles task by an SVM-based
system proposed by Coltekin, Rama, and Blaschke (2018).

3. System architecture

Research presented in Section 2 indicates that using character-level CNNs might be the most
promising neural approach to the task of DSL. CNNs are able to identify important parts of a text
sequence by employing a max-over-time pooling operation (Collobert et al. 2011), which keeps
only the character sequences with the highest predictive power in the text. These sequences of pre-
defined lengths resemble character n-grams, which were used in nearly every winning approach
in the past shared task, but the CNN approach also has the advantage over the traditional BON
approaches that it preserves the order in which these text areas with high predictive power appear
in the text.

On the other hand, its main disadvantage could be the lack of an effective weighting scheme
that would be capable of determining how specific these character sequences are for every input
document. The data are fed into a neural classifier in small batches; therefore, it is impossible for
it to obtain a somewhat global view on the data and its structure, which is encoded in the more
traditional TF-IDF (or BM25) weighted input matrix. Another intuition that might explain the
usefulness of weighting schemes for the specific task of language variety classification is related
to named entities, for which it was shown in the past shared tasks that they in many cases reflect
the origin of the text (Zampieri et al. 2015). The hypothesis is that these entities are quite rare
and somewhat document specific and are therefore given large weights by different weighting
schemes, encouraging the classifier to pay attention to them. The importance of choosing an
effective weighting scheme on the task of DSL is also emphasized in the research by Bestgen

https://doi.org/10.1017/51351324919000299 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324919000299

Natural Language Engineering 611

[ Char input (msl) J / \
Char Embedding (msl,200)
Conv 1D Conv 1D
Filter (172,4) Filter (172,5)
o0 ((msl -3),172) ((msl - 4),172) i
= Batch normalizati Batch nor i TF-IDF/.BMZS matrix
g ((msl-3),172) ((msl —4),172) input
£ Max Pooling (4) Max Pooling (5) (analyzer='Char"
gﬂ ((msl —3)/4, 172) ((msl —4)/5,172) ngram_range=(3,6),
o 7 Concatenation min_df=5,
e (csl = ((msl = 3)/4) + ((msl — 4)/5), 172) max df=0.3)
> Conv1D (200,5) - :
5 edl— ), 200) (vocabulary size)
L Batch normalization (200)
((csl — 4), 200)
Max Pooling (40)
((cs! - 4)/40, 200)
Dropout (0.4)
((cs! - 4)/40, 200)
Flatten ((cs| — 4)/40, 200) \ /
[ Concatenation ((((csl —4)/40) * 200) + vocabulary size) }
<
g [ Dense (activation = ReLU) (256) ]
b= <
2
& [ Dropout (0.4) (256) ]
(%]
(%]
B4 L Figure 1. System architecture: layer names
(@] [ Dense (Number of classes) ] and input parameters are written in bold,
layer output sizes are written in normal text,
2o msl stands for maximum sequence length,
[ Softmax (Number of classes) J [aenndgt;sl stands for concatenated sequence

(2017), the winner of the VarDial 2017 DSL task, who managed to gain some performance boost
by replacing the TF-IDF weighting scheme with BM25.

Our architecture (visualized in Figure 1) builds on these findings from the literature and is in
its essence an effective hybrid between a traditional feature engineering approach, which relies
on different kinds of BON features, and a newer neural feature engineering approach to text
classification. This combination of two distinct text classification architectures is capable of lever-
aging character-level and more global document/corpus-level information and achieving synergy
between these two data flows. The main idea is to improve on standard CNN approaches by
adding an additional input to the network that would overcome the lack of an effective weighting
scheme. Therefore, the text is fed to the network in the form of two distinct inputs (as presented
in Figure 1):

o Char input: Every document is converted into a numeric character sequence (every character
is represented by a distinct integer) of length corresponding to the number of characters in
the longest document in the train set (zero value padding is added after the document char-
acter sequence and truncating is also performed at the end of the sequence if the document
in the validation or test set is too long).

o TF-IDF/BM25 matrix: We explore the effect of two distinct weighting schemes on the perfor-
mance of the classifier; therefore, input data set is converted into a matrix of either TF-IDF
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or BM25 weighted features with a TfidfVectorizer from ScikitLearn (Pedregosa et al. 2011)
or our own implementation of the BM25Vectorizer. The matrix is calculated on character
n-grams of sizes three, four, five, and six with a minimum document frequency of five and
appearing in at most 30% of the documents in the train set. Sublinear term frequency scal-
ing is applied in the term frequency calculation when TfidfVectorizer is used and for BM25
weighting parameters b and k; are set to 0.75 and 1.2, respectively, same as in Bestgen (2017).

The architecture for processing Char input is a relatively shallow character-level CNN with ran-
domly initialized embeddings of size msl x 200, where msl stands for maximum sequence length.
Assuming that w is a convolutional filter, b is a bias, and f a nonlinear function (a rectified lin-
ear unit (ReLU) in our case), a distinct character n-gram feature c; is produced for every possible
window of h characters x;;,j_1 in the document according to the convolutional equation:

¢i =f(W- Xiipn—1 +b)

In the first step, we employ two parallel convolutional layers (one having a window of size four
and the other of size five), each of them having 172 convolutional filters. These layers return two
feature maps of size (msl — ws + 1) x 172, where ws is the window size. Batch normalization and
max-over-time pooling operations (Collobert et al. 2011) are applied on both feature maps in
order to filter out features with low predictive power. These operations produce two matrices of
size (msl — ws + 1)/mws x 172, where sizes of max-pooling windows (mws) correspond to con-
volution window sizes. Output matrices are concatenated and the resulting matrix is fed into a
second convolutional layer with 200 convolutional filters and window size five. Batch normaliza-
tion and max-over-time pooling are applied again and after that we conduct a dropout operation
on the output of the layer, in which 40% of input units are dropped in order to reduce overfitting.
Finally, the resulting output is flattened (changed from a two-dimensional to a one-dimensional
vector) and passed to a Concatenation layer, where it is concatenated with the input TF-IDF/BM25
matrix. The resulting concatenation is passed on to a fully connected layer (Dense) with a ReLU
activation layer and dropout is conducted again, this time on the concatenated vectors. A final
step is passing the resulting vectors to a dense layer with a Softmax activation, responsible for
producing the final probability distribution over language variety classes.

4. Experimental setup

This section describes the data sets and the methodology used in our experiments.

4.1 Data
All experiments were conducted on three corpora described in Table 2:

« DSLCC v4.0 (Tan et al. 2014): the corpus used in the VarDial 2017 DSL shared task. The
corpus contains 294,000 short excerpts of news texts divided into 6 distinct language groups
(Slavic, Indonesian and Malay, Portuguese, Spanish, French, and Farsi) and covering 14
language varieties in total: Bosnian, Croatian and Serbian; Malay and Indonesian; Persian
and Dari; Canadian and Hexagonal French; Brazilian and European Portuguese; Argentine,
Peninsular, and Peruvian Spanish. Each language contains 20,000 documents for training
(out of which 2000 are to be used as a validation set) and 1000 for testing.

o ADIC (Ali et al. 2015)8: the corpus used in the VarDial 2016 ADI shared task. It contains
transcribed speech in Modern Standard Arabic, Egyptian, Gulf, Levantine, and North African

fThe corpus is publicly available at http://ttg.uni-saarland.de/resources/DSLCC/
8The corpus is publicly available at http://alt.qcri.org/resources/ArabicDialectIDCorpus/
varDial_DSL_shared_task_2016_subtask2/
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Table 2. DSLCC v4.0, ADIC and GDIC corpora

DSLCC v4.0

Language/Variety Class  Traininst.  Traintokens  Testinst.  Testtokens
Bosnian bs 20,000 716,537 1000 35,756
Croatian hr 20,000 845,639 1000 42,774
Serbian sr 20,000 777,363 1000 39,003
Indonesian id 20,000 800,639 1000 39,954
Malay my 20,000 591,246 1000 29,028
Brazilian Portuguese pt-BR 20,000 907,657 1000 45,715
European Portuguese  pt-PT 20,000 832,664 1000 41,689
Argentine Spanish es-AR 20,000 939,425 1000 42,392
Castilian Spanish es-ES 20,000 1,000,235 1000 50,134
Peruvian Spanish es-PE 20,000 569,587 1000 28,097
Canadian French fr-CA 20,000 712,467 1000 36,121
Hexagonal French fr-FR 20,000 871,026 1000 44,076
Persian fa-IR 20,000 824,640 1000 41,900
Dari fa-AF 20,000 601,025 1000 30,121
Total 280.000 8,639,459 14,000 546,790
ADIC

Egyptian EGY 1578 85,000 315 13,000
Gulf GLF 1672 65,000 256 14,000
Levantine LAV 1758 66,000 344 14,000
Modern Standard MSA 999 49,000 274 14,000
North African NOR 1612 52,000 351 12,000
Total 7619 317,000 1540 67,000
GDIC

Bern BE 4956 35,962 1191 12,013
Basel BS 4921 36,965 1200 9802
Lucerne LU 4593 38,328 1186 11,372
Zurich ZH 4834 36,919 1175 9610
Total 19,304 148,174 4,752 42,797

dialects. Speech excerpts were taken from a multi-dialectical corpus containing broadcast,
debate and discussion programs from Al Jazeera. Altogether 7619 documents were used for
training (out of which 10% were used for validation) and 1540 documents for testing.

» GDIC (Samardzic, Scherrer, and Glaser (2016)): the corpus used in the VarDial 2018 GDI
shared task. Texts were extracted from the ArchiMob corpus of Spoken Swiss German®,
which contains 34 oral interviews with people speaking Bern, Basel, Lucerne, and Zurich
Swiss German dialects. A total of 19,304 documents were used for training (out of which
10% were used for validation) and 4752 for testing.

"The ArchiMob corpus is publicly available at https://www.spur.uzh.ch/en/departments/research/
textgroup/ArchiMob.html
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4.2 Methodology

For experiments in the DSLCC v4.0 we chose to use a two-step approach, as first proposed by
Goutte, Léger, and Carpuat (2014):

(1) The general classifier is trained to identify the language group for every specific document.
For this step, the input TF-IDF/BM25 matrix is calculated only on the word bound charac-
ter n-gramsi of sizes three, four, and five with a minimum document frequency of five and
appearing in at most 30% of the documents in the train set. This configuration produces
a TF-IDF/BM25 matrix of smaller size than if the configuration for the TF-IDF/BM25
matrix, described in Section 3, was used. This size reduction was chosen because dis-
tinguishing between different language groups is not a difficult problem, therefore, this
parameter reduction does not influence performance but it reduces the execution time.

(2) We train six different classification models, one for each language group. After being clas-
sified as belonging to a specific language group by the general classifier in Step 1, the docu-
ments are assigned to the appropriate classifier for predicting the final language variety.

Since NLP tools and resources such as POS taggers, pretrained word embeddings, word dictio-
naries, and tokenizers might not exist for some underresourced languages, we also believe that an
architecture which does not require language-specific resources and tools, apart from the training
corpus, might be more useful and easier to use in real-life applications. For this reason, our system
does not require any additional resources and the conducted preprocessing procedure is light!.

We show (see Section 5) that the proposed architecture is generic enough to outperform the
winning approach of VarDial 2017 on all of the language groups without any language-group-
specific parameter or architecture tweaking. In contrast, most of the approaches of the VarDial
2017 DSL shared task resorted to language-group-specific optimization, as getting even the slight-
est possible performance boost by employing this tactic was important due to the competitive
nature of shared tasks.

For the experiments on the smaller ADIC and GDIC data sets, we use the same hyperparameter
configuration and TD-IDF/BM25 features as for the six classification models for specific language
groups in the DSLCC v4.0 corpus because we want to explore the relation between model perfor-
mance and data set size. The hypothesis is that the performance of traditional SVM approaches
would be less affected by smaller data set size than neural approaches.

We conducted an extensive grid search on the DSLCC v4.0 in order to find the best hyper-
parameters for the model. All combinations of the following hyperparameter values were tested
before choosing the best combination, which is written in bold in the list below and presented in
Section 3:

 Learning rates: 0.001, 0.0008, 0.0006, 0.0004, 0.0002

o Number of parallel convolutions with different filter sizes: [3] [4], [3,4], [4,5], [5,6], [6,7],
[3,4,5], [4,5.,6], [5,:6,7], [3,4,5,6], [4,5,6,7], [3,4,5,6,7]

o Character embedding sizes: 100, 200, 400

o Dense layer sizes: 128, 256, 512

o Dropout values: 0.2, 0.3, 0.4, 0.5

o Number of convolutional filters in the first convolution step: 156, 172, 200

o Number of convolutional filters in the second convolution step: 156, 172, 200

iWord-bound character n-grams are made only from text inside word boundaries, for example, a sequence this is great
would produce a word-bound character 4-gram sequence this, is__, grea, reat, in which _ stands for empty space character.

JWe only replace all email addresses in the text with EMAIL tokens and all URLs with HTTPURL tokens by employing
regular expressions. Even if this might not be relevant to all of the corpora, we keep the preprocessing unchanged for all the
settings.
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« Size of a max-pooling window in the second convolution step: 10, 20, 40, 60

o« BON #n sizes: [3] [4] [3,4], [4,5], [5,6], [6,7], [3,4,5], [4,5,6], [5,6,7], [3,4,5,6], [4,5,6,7],
[3,4,5,6,7]

o Minimum document frequency of an n-gram in the TF-IDF/BM25 matrix: [2], [5], [10]

o BM25 b parameter: 0.5, 0.75, 1.0

o BM25 k; parameter: 1.0, 1.2, 1.4

The hyperparameters, which influenced the performance of the network the most, were the
learning rate, CNN filter sizes, size of the max-pooling window, BON # size, and a minimum
document frequency of n-grams. Too many parallel convolutions, small sizes of the max-pooling
window, and low minimum document frequency of n-grams showed tendency toward overfitting,
especially when used together in combination. In general, we noticed quite a strong tendency
toward overfitting no matter the hyperparameter combination, which could be to some extent the
consequence of feeding a high-dimensional TF-IDF/BM25 matrix to the network, which greatly
increases the number of network parameters. We noticed that a combination of a relatively small
learning rate and a large dropout worked best to counter this tendency.

Another thing we noticed is that using exactly the same configurations of convolutional filter
sizes and n-gram sizes negatively affected the performance, which was slightly improved when
the configurations did not completely overlap. The hypothesis is that synergy between two data
flows is less effective if the information in these two data flows is too similar. The validation set
results did however show that configurations containing 4- and 5-grams and filter sizes of 4 and 5
in general worked better than other configurations for DSLCC v4.0 classification; therefore, these
configurations were used in both data flows despite the overlap.

We use the Python Keras library (Chollet 2015) for the implementation of the system. For
optimization, we use an Adam optimizer (Kingma and Ba 2015) with a learning rate of 0.0008.
For each language variety in the DSLCC v4.0, the model is trained on the train set for 20 epochs
and tested on the validation set after every epoch. The models trained on the ADIC and GDIC
data sets are trained for 80 epochs due to longer convergence time on less data. The model with
the best performance on the validation set is chosen for the test set predictions.

5. Results

First we present results on the DSLCC v4.0, which is (as it is the largest and covers the largest
number of language varieties) the main focus of this study, then we present results on ADIC and
GDIC and finally, we present findings of the error analysis conducted on the misclassified Slavic
documents of the DSLCC v4.0 corpus.

5.1 Results on the DSLCC v4.0

Table 3 presents the results achieved by our neural classifier in comparison to the winner of the
VarDial 2017 DSL shared task (Bestgen 2017) in terms of weighted F1, micro F1, macro F1, and
accuracy measures.

The first step of the two-step classification approach, distinguishing between different lan-
guage groups (All-language groups (TF-IDF) and All-language groups (BM25) rows in Table 3),
proved trivial for the system, which achieved almost perfect weighted F1 score and misclassified
only 27 documents out of 14,000 in the test set when TF-IDF weighting scheme was used and
29 documents when BM25 weighting scheme was used. If we look at the confusion matrices for
language group classification (Figures 2 and 3), both models had most difficulties distinguish-
ing between Spanish and Portuguese language groups. Ten Spanish texts were misclassified as
Portuguese but on the other hand, only one Portuguese document was misclassified as Spanish
when TF-IDF weighting scheme was used. With BM25 weights, the classifier misclassified nine
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Table 3. Results of the proposed language variety classifier on the DSLCC v4.0 for different
language groups, as well as for the discrimination between language groups (All-language
groups). Also the results for all language varieties (All-language varieties) are provided,
for which a comparison with the official VarDial 2017 winners is made. Results for both
weighting schemes, TF-IDF and BM25, are reported separately

Language group (weighting) F1(weighted)  F1(micro) F1(macro) Accuracy
All-language groups (TF-IDF) 0.9981 0.9981 0.9980 0.9981
All-language groups (BM25) 0.9979 0.9979 0.9980 0.9980
Spanish (TF-IDF) 0.9136 0.9140 0.9136 0.9140
Spanish (BM25) 0.9042 0.9047 0.9042 0.9047
Slavic (TF-IDF) 0.8645 0.8650 0.8645 0.8650
Slavic (BM25) 0.8752 0.8753 0.8752 0.8753
Farsi (TF-IDF) 0.9685 0.9685 0.9685 0.9685
Farsi (BM25) 0.9690 0.9690 0.9690 0.9690
French (TF-IDF) 0.9570 0.9570 0.9570 0.9570
French (BM25) 0.9545 0.9545 0.9545 0.9545
Malay and Indonesian (TF-IDF)  0.9855 0.9855 0.9855 0.9855
Malay and Indonesian (BM25) 0.9860 0.9860 0.9860 0.9860
Portuguese (TF-IDF) 0.9480 0.9480 0.9480 0.9480
Portuguese (BM25) 0.9460 0.9460 0.9460 0.9460
All-language varieties (TF-IDF) ~ 0.9310 0.9312 0.9310 0.9312
All-language varieties (BM25) 0.9304 0.9305 0.9304 0.9305
VarDial 2017 winner
Bestgen (2017) 0.9271 0.9274 0.9271 0.9274
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Figure 2. Confusion matrix for language group classification (TF-IDF ) N
weighting scheme). Predicted label

Spanish documents as Portuguese and four Portuguese documents as Spanish. The analysis also
reveals some surprising mistakes, such as that three Slavic documents and two documents from
the Indonesian and Malay language group were misclassified as French with TF-IDF weighting
and four documents from the Indonesian and Malay language group, three Spanish, and three
French documents were classified as Slavic with BM25 weighting. A closer inspection of misclas-
sified documents also reveals that these documents are in general much shorter (average word
length is 9.74 and 10.17 when TF-IDF and BM25 are used respectively) than an average document
in the Slavic sub-corpus (39.06 words long) and very likely contain some misleading named enti-
ties (e.g., a Slavic document, which was misclassifed as Spanish when TF-IDF weighting was used,
contains the following text: Caffe - Pizzeria ""BELLA DONNA"" u DOC-u).
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Results for the second step of the two-step classification approach indicate that the difficulty
of distinguishing language varieties within different language groups varies. The system had most
difficulties with distinguishing between different Slavic languages, where it achieved by far the
worst results with an weighted F1 of 0.8645 when TF-IDF weighting scheme was employed and
about one percentage point better results when BM25 weighting was used. The second most dif-
ficult were Spanish varieties. We should point out that this comes as no surprise, since Slavic and
Spanish languages groups were the only two groups that contained three varieties, while the other
groups in DSLCC v4.0 contained two varieties. The system had least problems with distinguishing
between Malay and Indonesian languages.

When it comes to comparing two weighting schemes, there is no clear overall winner. The
biggest differences in performance are on Spanish varieties, where TF-IDF weighting outperforms
BM25 by about one percentage point according to every measure, and on Slavic varieties, where
BM25 weighting outperforms TF-IDF by a very similar margin. The differences on other vari-
eties are smaller, ranging from 0.005 on Farsi and Malay and Indonesian varieties to 0.020 on
Portuguese varieties.

Confusion matrices for specific language varieties enable a more thorough analysis of the
results. For Spanish varieties (Figures 4 and 5), the system had most problems distinguishing
between Argentine and Castilian Spanish. The second most common mistake no matter the
weighting scheme was classifying Argentine Spanish as the Peruvian variety of Spanish. On the
other hand, Peruvian Spanish was the easiest to classify by the system, with altogether only 36
(TF-IDF weighting) and 37 (BM25 weighting) misclassified instances.
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The system performed well for all binary predictions (Figures 6 and 7, Figures 8 and 9, Figures
10 and 11, Figures 12 and 13) and the difference in performance between two weighting schemes
are small. Out of these confusion matrices, the most unbalanced with regard to false predic-
tions is the confusion matrix for Indonesian and Malay variety (Figure 10), where twice as many
Indonesian documents were classified as Malay than the other way around when TF-IDF weight-
ing was used. Although, as mentioned before, distinguishing between Indonesian and Malay was
the least difficult task for the classifier and altogether only 29 and 28 instances were misclassified
when TF-IDF and BM25 weighting were used, respectively.

For Slavic languages (Figures 14 and 15), the hardest problem for the system was distinguishing
between Croatian and Bosnian, with 113 Bosnian documents being classified as Croatian and 112
Croatian documents being classified as Bosnian when TF-IDF weighting was used and with 113
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6‘* Figure 10. Confusion matrix for Indonesian and Malay variety classifica-
Predicted label tion (TF-IDF weighting scheme).

Bosnian documents being classified as Croatian and 99 Croatian documents being classified as
Bosnian when BM25 weighting was employed. Distinguishing between Bosnian and Serbian was
also not trivial for the classifier no matter the weighting scheme, with 94 Bosnian documents
being misclassified as Serbian and 66 Serbian documents misclassified as Bosnian when TF-IDF
weighting scheme was deployed and 73 Bosnian documents being misclassified as Serbian and
vice versa when BM25 weighting was used. On the other hand, distinguishing between Serbian
and Croatian is a much easier problem, with altogether only 20 (TF-IDF weighting) and 16 (BM25
weighting) documents being misclassified.
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Overall (rows All-language varieties (TF-IDF) and All-language varieties (BM25) in Table 3),
the neural network outperforms the SVM-based approach used by the winners of the shared task
by about 0.4 percentage points according to all measures when TF-IDF weighting scheme is used.
BM25 weighting performs slightly worse but still outperforms state of the art by about 0.35 per-
centage points margin. Our results therefore differ from the study conducted by Bestgen (2017),
the winner of the shared task, where he reported improvement in performance for all but one lan-
guage group when TF-IDF weighting is replaced by BM25. It should, however, be noted that these
improvements were only reported on the validation set and no comparison between weighting
schemes was done on the official test set.

There were no available reported results for individual language groups on the official test set,
therefore we provide a comparison with the VarDial 2017 DSL winning team on the validation set,
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Table 4. Accuracy comparison of our system to the VarDial 2017 DSL winners on validation

sets

Language group (weighting) Oursystem  VarDial 2017 winner  Improvement (%)
Spanish (TF-IDF) 0.9180 0.8970 2.10
Spanish (BM25) 0.9202 0.9030 1.72
Slavic (TF-IDF) 0.8663 0.8445 2.18
Slavic (BM25) 0.8670 0.8506 1.64
Farsi (TF-IDF) 0.9685 0.9598 0.87
Farsi (BM25) 0.9720 0.9632 0.88
French (TF-IDF) 0.9588 0.9396 1.92
French (BM25) 0.9590 0.9472 1.18
Malay and Indonesian (TF-IDF) 0.9863 0.9835 0.28
Malay and Indonesian (BM25) 0.9875 0.9827 0.48
Portuguese (TF-IDF) 0.9440 0.9299 1.41
Portuguese (BM25) 0.9428 0.9355 0.73
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Figure 14. Confusion matrix for Slavic language varieties classification
Predicted label (TF-IDF weighting scheme).
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Figure 15. Confusion matrix for Slavic language varieties classification

as the author (Bestgen 2017) reports them when presenting the benefits of the weighting scheme
BM25 (in their Table 3 on p. 119). Note, however, that the results report on a slightly simplified
system, as for the weighting scheme comparison, the author used only character n-grams features.
Comparison results are presented in Table 4.
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Table 5. Results of the proposed language variety classifier on the ADIC and GDIC.
Results for both weighting schemes, TF-IDF and BM25, are reported separately

Language group (weighting) ~ F1 (weighted)  F1(micro)  F1(macro)  Accuracy

ADIC (TF-IDF) 0.5152 0.5123 0.5147 0.5123
ADIC (BM25) 0.5090 0.5097 0.5067 0.5097

VarDial ADI 2016 winner

Malmasi et al. (2016a) 0.5132 / / 0.5117
GDIC (TF-IDF) 0.6281 0.6294 0.6280 0.6294
GDIC (BM25) 0.6289 0.6311 0.6289 0.6311
VarDial GDI 2018 winner / / 0.6860 /

Jauhiainen et al. (2018a)

Our system performs better than the simplified version of the VarDial 2017 DSL shared task
winning system on all language groups. When TF-ID weighting is used by both systems, the differ-
ences vary from around two percentage points on Spanish, Slavic, and French language groups, to
about 1.5 percentage point difference on the Portuguese language group, and finally, to only 0.28
percentage point difference on Malay and Indonesian, which are the easiest languages to distin-
guish for both of the classifiers. When BM25 weighting scheme is used, the differences are smaller,
ranging from about 1.5 percentage point on Spanish and Slavic to about 0.5 percentage point on
Malay and Indonesian.

Interestingly, when it comes to comparing both weighting schemes only on validation sets, the
influence on the performance of our system when BM25 weighting is used is quite consistent with
the influence reported by Bestgen (2017). By using BM25 weighting, the performance is improved
on five out of six language groups, same as in Bestgen (2017), although the language groups are not
the same: in Bestgen (2017) performance is not improved on the Malay and Indonesian language
group while we report no improvement on Portuguese. However, these improvements at least in
our case do not translate well to performance improvements on the official test set.

5.2 Results on ADIC and GDIC

Table 5 presents the results achieved by our neural classifier on the ADIC and GDIC corpora in
comparison to the winners of the VarDial ADI 2016 and VarDial GDI 2018 shared tasks. The
system manages to improve on the state of the art on the ADIC by a small margin of about 0.2
percentage point according to the weighted F1 score when TF-IDF weighting is used, even though
the ADIC contains more than 10 times less documents per class than the language varieties in
the DSLCC v4.0. By using BM25 weighting, the performance of the classifier is about 0.6 and
0.2 percentage points worse in terms of accuracy and weighted F1 score. On the other hand, the
results on the GDIC are almost six percentage points lower than the current state-of-the-art HeLI
method (Jauhiainen et al. 20184) in terms of macro F1 score. Our system also performed worse
than the SVM-based system proposed by Coltekin et al. (2018) and a recurrent neural network
proposed by Ali (2018a), which achieved macro F1 scores of 0.646 and 0.645, respectively. We can
also observe that BM25 weighting slightly improves the performance according to all the criteria.
Results on ADIC and GDIC corpora are somewhat in line with the initial hypothesis that neural
approaches are more affected by a small data set size than more traditional SVM approaches.
Previous SVM-based state of the art on the ADIC corpora is outperformed by a smaller margin
than the DSLCC v4.0 state of the art and the proposed system performs worse than the second
ranked SVM system (2018) on the GDIC corpus.
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Confusion matrices for the ADIC (Figures 16 and 17) show that the Modern Standard Arabic
is the easiest to classify no matter the weighting scheme. We can also see that if BM25 weighting is
used, the classifier struggles much more with the Gulf dialect, correctly classifying only 99 out of
256 instances, than if TF-IDF weighting is used, in which case it correctly classifies 119 instances.

Confusion matrices for the GDIC (Figures 18 and 19) show that the choice of the weighting
scheme does not have as big of an influence on the performance of the classifier as in the case of
ADIC. No matter the weighting scheme, by far the most common mistake was misclassifying the
Lucerne dialect as a Bern dialect. Interestingly, the opposite mistake of misclassifying Bern dialect
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Table 6. Results of the error analysis on 405 misclassified Slavic documents

Group Num.doc.  Prop.ofdoc.  Avg.doc. length
No named entities 144 0.36 26.94
Misleading named entities 70 0.17 40.96
Clarifying named entities 41 0.10 34.96
Unrelated named entities 150 0.37 33.17
All misclassified 405 1.00 32.48
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Figure 19. Confusion matrix for German language varieties classification ’\\/z\ \9 Q)o) Q)(('
(BM25 weighting scheme). Predicted label

as Lucerne dialect is much rarer, which might be connected to some extent to the fact that the
train set contains 328 more documents for the Bern dialect than for the Lucerne dialect.

5.3 Error analysis

We conducted a manual error analysis on the misclassified Slavic documents® in order to get a
clearer picture about what kind of documents are the hardest to classify. Misclassified documents
were manually grouped into four classes according to the number and type of named entities
found in the document:

« No named entities: Documents without any named entities.

o Misleading named entities: Documents containing any named entities (e.g., names of
regions, cities, public figures) originating from a country with the official language vari-
ety corresponding to one of the two possible incorrect language varieties (e.g., a document
labeled as Serbian containing the word Zagreb, which is the capital of Croatia, would be put
into this class).

o Clarifying named entities: Documents containing named entities originating from a coun-
try with the official language variety being the correct language variety and containing no
misleading entities.

o Unrelated named entities: Documents containing only named entities that are not originat-
ing from any of the countries speaking target language varieties (e.g., a document containing
only the named entity Budapest would be classified into this category).

Results of the analysis are presented in Table 6. Results show that a large portion of misclassified
documents (73%) either contain no named entities (36%) or contain only unrelated named entities

(37%), which might make them harder to classify, although we cannot claim that for sure, since we

KError analysis was conducted on documents misclassified by the system that employed TF-IDF weighting scheme.
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Table 7. Results of the ablation study. Column CNN F1 (weighted) presents performance
of the system in terms of weighted F1 if only CNN-based features are used, column BON
F1 (weighted) presents performance of the system if only TF-IDF-weighted BON features
are used and column All F1 (weighted) presents the performance when these two types
of features are combined

Language group AllF1 (weighted)  CNN F1 (weighted)  BON F1 (weighted)
DSLCC v4.0

All-language groups 0.9981 0.9971 0.9976
Spanish 0.9136 0.8599 0.8863
Slavic 0.8645 0.8300 0.8594
Farsi 0.9685 0.9465 0.9610
French 0.9570 0.9325 0.9420
Malay and Indonesian 0.9855 0.9560 0.9875
Portuguese 0.9480 0.8994 0.9434
All-language varieties 0.9310 0.8935 0.9199
ADIC 0.5152 0.3971 0.5177
GDIC 0.6281 0.6059 0.6190

do not know the distribution of these classes across the entire test set. About 17% of the documents
on the other hand contain misleading named entities that could influence the classifier prediction.
There are also 41 documents (10%) containing only clarifying named entities that would be easily
classified correctly by any human annotator with some basic background knowledge about Serbia,
Bosnia, and Croatia. This suggests that there is still some room for improvement for the developed
classifier.

Another finding is that misclassified documents are in average shorter (32.48 words long) than
an average document from a Slavic language group (39.18 words long), suggesting that shorter
documents are harder to classify by the classifier due to less available information. We can also see
that the only group containing documents with similar length as the whole test set are documents
containing misleading named entities (40.96 words long), which suggests that the classifier does
somewhat rely on named entities during the prediction process.

6. Ablation study

The main novelty of our approach is the combination of weighted BON features with CNN-
generated character features in the neural architecture. We carried out an ablation study in order
to determine the contribution of these two types of features in the overall performance. To mea-
sure the contribution of weighted BON features, we removed the part of the system that deals with
the convolutional processing of the character sequence input (the left side of the feature engineer-
ing part sketched in Figure 1). On the other hand, we removed the TF-IDF/BM25 matrix input
in order to determine the contribution of the CNN-generated character features. Only TF-IDF
weighting was used in the ablation study. The results of the study are presented in Table 7.

In all cases, classifier with only TE-IDF-weighted BON features (BON classifier) performs bet-
ter than the classifier with only CNN-based features (CNN classifier), which also raises questions
about the established deep learning paradigm that in a large majority of cases relies only on the
automatically generated neural features. In DSLCC v4.0, the difference in performance is the
largest in the case of Portuguese language variety classification, measuring more than four per-
centage points. If we ignore the language group classification, which is apparently trivial for all
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Table 8. Results of the error analysis on Slavic documents misclassified by
the BON classifier and correctly classified by the CNN classifier and on Slavic
documents misclassifed by the CNN classifier and correctly classified by the
BON classifier

Group Num.doc.  Prop.ofdoc.  Avg.doc. length

BON misclassifed

No named entities 57 0.31 27.14
Misleading named entities 17 0.09 38.18
Clarifying named entities 28 0.15 33.14
Unrelated named entities 83 0.45 35.04
All 185 1.00 32.61

CNN misclassifed

No named entities 81 0.30 31.43
Misleading named entities 36 0.13 45.67
Clarifying named entities 58 0.21 35.53
Unrelated named entities 99 0.36 34.98
All 274 1.00 35.45

three versions of the system, the difference in performance is the smallest for the French language
variety classification, only around one percentage point.

By combining both types of features, we manage to surpass the performance of the BON classi-
fier on all language groups in the DSLCC v4.0 but the Malay and Indonesian pair. Here, the BON
classifier beats the classifier with the combination of both types of features by a small margin of
0.2 percentage points. The synergy effect is the largest in case of Spanish language variety, where
we improve the performance of the BON classifier by almost three percentage points. Overall
performance of the classifier on all the languages is improved by about one percentage point in
comparison to the BON classifier.

Results on smaller data sets are somewhat hard to generalize. In the case of ADIC, the per-
formance gap between BON and CNN is almost 11 percentage points. The bad performance of
the CNN classifier in this case also most likely outweighs any positive synergy effect, causing the
classifier that uses a combination of both feature types to perform slightly (by about 0.3 percentage
points) worse than the BON classifier (which is therefore a new state-of-the-art classifier for the
ADIC data set). In the case of GDIC, the performance gap is smaller (about 1.3 percentage points)
and there is some synergy effect between the two classifiers.

In order to determine what types of texts are better predicted with the BON classifier and what
types of text are better predicted with the CNN classifier, we performed the same error analysis
as in Section 5.3 on 185 Slavic documents, which were correctly classified by the CNN classifier
and misclassified by the BON classifier, and on 274 documents which were correctly classified by
the BON classifier and misclassified by the CNN classifier. Results are presented in Table 8. We
can see that on average both of these documents are shorter (32.61 and 35.45 words long) than
an average document in the Slavic sub-corpus (39.18 words long). Similar share of documents
with no named entities was misclassified by both classifiers but there are differences in shares
when it comes to other classes. Both BON and CNN classifiers performed the worst on docu-
ments containing only unrelated named entities but the share of these documents in the overall
distribution of misclassified documents is much bigger for the BON classifier (0.45 vs. 0.36). On
the other hand, documents containing clarifying named entities represent a smaller share in the
distribution of documents misclassified by the BON classifier (0.15 vs. 0.21). These results are in
accordance with the hypothesis that the BON classifier relies to a larger extent on named entities
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than the CNN classifier. The share of documents with misleading named entities is the smallest
in distributions for both classifiers, which was not the case in the error analysis in Section 5.3 (see
Table 6), where the smallest share presented documents with only clarifying named entities. This
suggests that both classifiers struggle with these documents and are in most cases misclassified by
both classifiers; therefore (as this ablation study is focused on the differences between the BON
and CNN classifiers), these documents were not manually analyzed.

7. Workflow for language variety classification

The AP—and larger NLP—community encourages reproducibility of results and code sharing;
therefore, our source code is published at http://source.ijs.si/mmartinc/NLE_2017/.
Since AP is also a very interdisciplinary field, we also believe it is important to make our tools
available to the users outside of the programming community (e.g., linguists or social scientists)
with lower level of technical skills.

In our previous work (Martinc and Pollak 2018), we have already implemented a set of pre-
trained gender classification models into a cloud-based visual programming platform ClowdFlows
(http://clowdflows.org) (Kranjc et al. 2012). These tools can be used out-of-the-box and are
therefore appropriate for the less tech savy members of the AP community. The ClowdFlows
platform employs a visual programming paradigm in order to simplify the representation of com-
plex data mining procedures into visual arrangements of their building blocks. Its graphical user
interface is designed to enable the users to connect processing components (i.e., widgets) into
executable pipelines (i.e., workflows) on a design canvas, reducing the complexity of composi-
tion and execution of these workflows. The platform also enables online sharing of the composed
workflows.

We took all our pretrained models for language variety classification (six models for six lan-
guage groups and the general model for distinguishing between different language groups from
the DSLCC v4.0, and German and Arabic models used for ADIC and GDIC classification)
and packed them in a widget Language Variety Classifier. The widget takes a Pandas dataframe
(McKinney 2011) containing the corpus as an input and returns a dataframe with an additional
column with predicted language/language variety labels. The user needs to define the name of the
column containing text documents as a parameter and choose the language group (or language
parameter value all in order to use the general classifier) according to the input text.

Workflow in Figure 20 (available at http://clowdflows.org/workflow/13322/) is a
ClowdFlows implementation of the two-step approach described in Section 4.2 for the language
variety classification, illustrated on the DSLCC v4.0 test set. The corpus is loaded from a CSV file
with two columns (one for texts and one for true labels) with the help of the Load corpus from
CSV widget and passed on to the Language variety classifier widget, which predicts general lan-
guage groups for all the texts. The Filter corpus widgets are used to split the corpus according
to the predicted language group labels. Each of the slices is then fed into six different Language
variety classifier widgets responsible for intra-language group classification. They output a Pandas
dataframe with an additional column containing the predicted variety labels for each corpus slice.
The corpus is reassembled with the help of the Concatenate corpora widget. The reassembled cor-
pus and the six sub-corpora are then fed into seven Calculate F1 and accuracy widgets, which
are in fact subprocess widgets™, each of them containing a subprocess for calculating the accu-
racy and weighted F1 score™ of the classification. The results of the classification are written to a
table with the help of an Evaluation results to table widget. We have presented a repeatable and

'For example, this is the Github repository for the PAN shared task: https://github. com/pan-webis-de
MMore information about the different types of widgets in the ClowdFlows platform is available at the ClowdFlows
documentation page https://clowdflows.readthedocs.io/en/latest/.
"The results produced by the workflow vary very slightly from the results reported in Section 4 because Theano (Bergstra
et al. 2011) is used as Keras backend in the ClowdFlows platform instead of Tensorflow (Abadi et al. 2016), which is used for
producing the results reported in Section 4.
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Figure 20. ClowdFlows implementation of the two-step approach for the language variety classification on the DSLCC v4.0.
Workflow is publicly available at http://clowdflows.org/workflow/13322/.

transparent evaluation workflow, which can be easily tested on novel test sets, but note that the
Language variety classifier widget can also be used in novel workflows, for assigning the language
of unlabeled text segments. The simplest use would be to input a file with text that user wants to
label in a CSV format and connect it to the two-step language classification widgets in order to
obtain the labeled corpus (http://clowdflows.org/workflow/13670/).

8. Discussion and conclusions

In this paper, we present an original neural language variety classifier. The main novelty is the
architecture that is capable of leveraging character-level and more global document/corpus-level
information by combining weighted BON features with character-based CNN features. The sys-
tem was tested on the DSLCC v4.0, ADIC and GDIC corpora, used in the VarDial shared tasks,
and managed to outperform state-of-the-art approaches developed in the scope of the shared task
on two (including on the benchmark DSLCC v4.0) out of three corpora. An ablation study shows
that weighted BON features generally contribute more than CNN-based features. This is in accor-
dance with the previous results in the AP shared tasks where BON-based classification systems
were always the winners. On the other hand, our experiments showed that replacing TF-IDF
weighting with BM25 weighting in most cases does not improve performance, which is not in
accordance with the previous research (Bestgen 2017). Our system is also openly available as a
workflow in the ClowdFlows platform for less tech savy members of the AP community.

The experiments on the DSLCC v4.0 have shown that building a neural architecture outper-
forming the popular SVM BON classification combination on the language variety task is possible,
although the performance gains are not very large. With some additional language-group-specific
parameter tweaking the performance could be improved, but we decided against this idea in
order to preserve the generic nature of the common architecture, which is currently capable of
producing state-of-the-art predictions for six different language groups.
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The system also proved to be competitive on the much smaller ADIC corpus (minimally out-
performing state of the art) but failed to achieve competitive performance on GDIC (where the
winning system HeLI was proposed by Jauhiainen et al. (2018a)).

We can speculate why this is the case. The results of the error analysis indicate a deteriora-
tion in performance of the proposed system on shorter documents. On the other hand, results
of the VarDial 2018 shared tasks suggest that the performance of the HeLI system deteriorates
less on shorter texts in comparison to other systems participating in shared tasks, since it ranked
first on GDIC, where the documents are on average nine words long, and in the Vardial 2018 ILI
shared task, where the task was to classify sentences®, but only ranked fifth in the VarDial 2018
Discriminating between Dutch and Flemish in Subtitles task where the average document was
34.64 words long. Another hypothesis is that the proposed system is more reliant on named enti-
ties than the HeLl system, and therefore performs worse on GDIC, since this is the only corpus
that does not contain news excerpts or news channel transcripts but transcripts of interviews with
the dialect speakers and supposedly contains less named entities. We plan to test these hypotheses
in the future work. We might also be able to boost the performance of our system on the GDIC
data set by adjusting hyperparameters in order to make the network better suited for the classifi-
cation of much shorter documents in the GDIC corpus, since currently a lot of data (e.g., n-grams
that appear in less than five documents, character sequences filtered out by an aggressive max
pooling ...) is discarded.

Small performance gains over the current state of the art also raise a question, how much better
can automatic discrimination between similar languages actually get? The only study about the
theoretical limit of the classification performance on the DSLCC that we are aware off was con-
ducted by Goutte et al. (2016) on the DSLCC v2.0 used in the Vardial 2015 DSL shared task, which
partially overlaps with the DSLCC v4.0 (Slavic, Malay and Indonesian, and Portuguese parts of
the corpus are the same). First, they measured the upper bound on accuracy by taking all the pre-
dictions generated by all the systems which participated in the shared task and combining them
using ensemble fusion methods such as plurality voting and Oracle. In the plurality voting, the
label with most votes (i.e., the label predicted by most systems) is selected as correct and the con-
ducted experiments showed that small improvements (of about 0.5 percentage point) over the best
single system can be achieved. The Oracle method for determining the upper-bound performance
on the other hand assigns the correct class label for an instance if at least one system classified the
instance correctly. This gave them a very optimistic potential accuracy upper boundary of 99.83%.

In order to determine if the instances misclassified by the Oracle method can be correctly classi-
fied by humans, they conducted additional evaluation experiments. As it turns out, the difficulty of
classification varies across different language groups. Discriminating between the three Slavic lan-
guages (Bosnian, Croatian, and Serbian) proved to be the most difficult. For 5 out of 12 instances
misclassified by the Oracle method, none of the 6 annotators was able to correctly classify them.
On these 12 examples the mean annotator accuracy was 16.66%, which is in fact 16.67% below the
random baseline of 33.33%. On the other hand, discriminating between Brazilian and European
Portuguese proved more feasible and the mean annotator accuracy on the misclassified instances
was 67.50%, 17.50% above the 50% baseline.

This suggests that, at least for some varieties, the upper bound of automatic variety classifica-
tion has not yet been reached, since our method achieved only 94.80% accuracy on the Portuguese
language group. The conducted error analysis (see Section 5.3) on Slavic language varieties also
showed that 10% of misclassified documents contained only clarifying named entities; there-
fore, any human annotator with some basic knowledge about Serbia, Bosnia, and Croatia would
be able to classify them correctly without too much difficulty. This would suggest that further
improvements on automatic language variety classification are possible, perhaps by employing

°We were unable to obtain the average document length for this data set since the number of tokens in the data set is not
published in the Vardial 2018 report (Zampieri et al. 2018).
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transfer learning techniques (Devlin et al. 2018) that would provide the classifier with the needed
background information. We plan to test the transfer learning approach in the future.

CNNs have been so far the most successful neural architecture for language variety classifica-
tion but the conducted ablation study shows that the produced features do have some deficiencies
that make them less successful than weighted BON features. As shown, the proposed approach of
feeding an additional weighted BON matrix into the network does partially compensate for these
deficiencies on the language variety classification tasks but further work of exploring the synergy
effects of combining automatically generated neural features and weighted features on a number
of different NLP tasks and neural architectures is still needed. Feeding the sparse weighted BON
matrix into the network does, however, have a drawback of drastically increasing the number of
network parameters, which tends to lead to overfitting and increased computational costs. We
managed to minimize these negative side effects mostly by an extensive use of dropout and by
removing #n-grams with low document frequencies from the input matrix, but perhaps a some-
what more efficient solution would be to avoid feeding the BON matrix to the neural classifier
altogether. Therefore in future work, we plan to propose methods by which we would inject global
document/corpus-level information into CNN-based features directly, in order to fix their current
deficiencies. In that way combining them with the features that are the result of the more tradi-
tional feature engineering would no longer be required. Another option we also plan to explore is
building heterogeneous ensembles of traditional SVM BOW-based models and CNNs and see if
the performance gains are comparable to the proposed system.

Another line of future research will deal with building better and more useful tools for users
with lower level of technical skills. Currently, the ClowdFlows platform does not support training
of new neural classification models due to high level of resource consumption of these operations
which would negatively affect the scalability of the platform, and since it does not yet support
graphics processing unit (GPU) acceleration, which would allow for training of the models in a
more reasonable time. The newer version of the ClowdFlows platform, on which the work has
already begun, will address all these deficiencies and will allow for training of neural classification
models on new varieties and therefore increase the overall usefulness of the system.
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