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Abstract

The classic problem, first treated by Taylor [18], of the dispersion of inert soluble matter
in fluid flow continues to attract attention from researchers describing the approach to the
asymptotic state [5,17]. The present article considers some of the complications caused
when the solute is chemically active. Dispersing chemically active solutes occur in diverse
fields such as chromatography, chemical engineering and environmental fluid mechanics.

The asymptotic large-time analysis of Chatwin [5] is re-worked to handle the case of
reactive solutes dispersing in parallel flow. Matching between moderate and large-time
solutions requires consideration of the integral moments of the reactive contaminant
cloud, and the Aris method of moments is therefore invoked and modified for reaction
effects. The results are applied in detail to the outstanding practical example—the
chemical flow reactor (a device used to measure reaction rates for chemical reactions
taking place between fluids). For this case, the paper provides a practical alternative to
recent variable diffusion coefficient studies [6,7,15], and presents further results for the
concentration distribution and for the limiting behaviour under weak and vigorous
reactions at the boundary of the flow.

1. Introduction

The dispersion of soluble matter in fluid flow, originally described by G. I. Taylor
[18,19], has important applications in a number of fields such as chemical
engineering and chromatography [11,12] and environmental fluid mechanics [9].
Most previous dispersion research has been concerned with short and large time
asymptotic theories for passive (neutrally buoyant and chemically inert) contami-
nants injected into parallel flow. In fact, however, many applications involve
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interesting complications and this paper examines one such case—the dispersion
of reactive contaminants in parallel flow. We commence with the mathematical
statement of the problem, and then briefly review the progress that has already
been made on it.

The object of this paper is to investigate certain aspects of the solution
C(x, y, z, t) of the problem

ar- a/~ 7\^r a / a,

^ {)^ ( ) ^ f ) ^

Cfinite and

-pC at 8B, (1.1b)

C(x,y,z,O)=e(x,y,z), ( l i e )

0 as |x|-» oo for m, n = 0 , 1 , 2 , . . . . ( l . l d )
dx"

These equations describe the dispersion of a cloud of reactive solute injected into
the parallel flow (u(y, z), 0,0) through the cross-sectional region ft with boundary
3 £2. The problem has been written in dimensionless variables, and dimensional
variables and constants (denoted by asterisks) may be recovered using the
definitions

[x*,y*,z*]=a*[x,y,z], (1.2a)

/* = a*2t/D*, u* = U*u, (l-2b,c)

K* = D*K, C* = Q*c/a*3\Q\ , (l.2d,e)

a* = D*a/a*\ 0* = 0/a*, (1.2f, g)

where D* and U* are the mean values of K* and u* over fi*, a* is a typical
cross-sectional length, Q* is the initial amount of solute, and | ft | is the dimension-
less cross-sectional area of the flow. The dimensionless diffusive flux of contami-
nant is given by -K VC and P = U*a*/D*, the Peclet number of the flow, gives
the relative magnitude of typical convection speeds compared to typical cross-sec-
tional diffusive speeds. The inclusion of the factor | fi | in the nondimensionaliza-
tion of C* conveniently ensures that jjJCdV =\Q\ initially, and the variables K
and M have unit cross-sectional means,

The term -aC on the right hand side of the defining problem represents a first
order reaction between the solute and the solvent, whilst the term -0C in the
defining boundary condition represents a (possibly catalysed) boundary reaction.
(Some properties of (i for laboratory applications are described in reference [8].)
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As a first observation, the effects of the term involving a may be removed
immediately by writing C = C exp{-at), and so we can set a = 0 without loss of
generality. The case when /? = 0 as well described the dispersion of a passive
contaminant under the usual no diffusive flux boundary condition, and this case
is covered by an extensive literature which will be briefly surveyed below. The
emphasis in this paper is on the case /? ̂  0.

An initial cloud of inert contaminant C(x, y, z) evolves by cross-sectional
diffusion across the velocity shear as it is swept along with the flow. This
dispersion process produces a cross-sectional distribution which is, at large times,
approximately Gaussian in x, and the most important questions to be answered
are how much of the cloud remains, where is its centre of mass, and what is the
variance and skewness of the distribution? Sophisticated theories attempt to
answer these questions for all time, or obtain expressions for the mean concentra-
tion C(x, t) itself. For the case of no boundary reactions (/? = 0), the dispersion
process has been studied extensively since the pioneering work of Taylor [18,19],
and results for large times have been obtained by at least four alternative
methods: the Taylor-Gill approximation [10], the Aris method of integral mo-
ments [1], the Chatwin asymptotic expansion [5], and numerically. A recent paper
by Smith [17] (on improvements to the Taylor-Gill approximation) contains
further references to most of the important research on the dispersion process.
(Smith [16] has also described the early stages of contaminant dispersion, but
short-time approximations are not considered in the present article.)

In contrast, the case of /? ¥= 0 has received scant attention from theorists,
despite the importance of boundary reactions (or models of them) in diverse fields
such as biology, physiology, chromatography, chemistry and, of course, in en-
vironment fluid mechanics. The most notable work, by Sankarasubramanian and
Gill [15] and De Gance and Johns [6,7] has been based on the Taylor-Gill
approximation

C(x,y,z,t)= 2fn(y,z,t)^. (1.2)
n = 0

Back substitution of (1.2) into (1.1) ultimately leads to a variable coefficient
equation for C,

^ = K0(t)C + K,(t)^ + * 2 ( ' ) 0 + • • • , (1.3)

which may be truncated and solved. The cited works [6,7, 8,15] are mainly
concerned with the /J-dependence of the asymptotic forms of K0(t), Kt(t), K2{t)
at large times. The Taylor-Gill scheme has certain attractive mathematical fea-
tures as explained by de Gance and Johns, but it is not necessarily the most
efficient method at relatively large dimensionless times when a direct large-time
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Chatwin style asymptotic expansion may as well be employed. Therefore, the
principal objects of the present article are to present such a direct asymptotic
expansion and, in doing so, to extend the results of Sankarasubramanian and Gill
[15] for the flow reactor. (The term flow reactor refers to case when the basic flow
is laminar flow in a circular pipe; flow reactors are in wide use for determining
reaction rates for chemical reactions between mixtures and fluids.)

Matching between the moderate and large-time solutions requires a knowledge
of the integral moments of the cloud of reactive solute. Thus, a further goal of the
paper is to apply the Aris method of moments to the case with /? ^ 0. The
method of moments is known to produce readily the dispersion coefficient for the
case fi — 0[\] and for the coated tube chromatograph [2], and useful results prove
also to be easily attainable for the case fi ^ 0. To be specific, the technique is
shown to give the asymptotic expressions for the amount of solute and its mean
position and spread, and it determines arbitrary constants in the asymptotic
solution developed in Section 3.

2. The integral moments of the reactive solute cloud

Aris [1] first used the moments of an injected solute cloud to describe the
dispersion process; in particular, a knowledge of the asymptotic form of the
second moment about the mean gives the 'effective diffusion' or 'dispersion'
coefficient for the dispersion process. The dispersion coefficient often differs
markedly from the ordinary molecular diffusion coefficient: for example, Aris
showed from the second moment that the dispersion coefficient is tc*(l + P2/4S)
for a solute with constant molecular diffusivity injected into a tube of radius a*
containing fluid in laminar flow. Thus the dispersion process is a much more
vigorous than normal molecular diffusion for large P. In the case of a reactive
solute, it is expected that the method of moments will readily determine (at least
for large times) how much of the cloud remains, how fast its centre of mass
moves, and how much it has spread out. Moreover, as Chatwin [5, Section 6]
points out, it is possible to calculate approximations for C(x, t) given a knowl-
edge of the first three or four integral moments.

The approach adopted in this section follows that recently used by the author
[3] in calculating the moments for passive contaminants. Thus, the moments
Cn(y, z, t) and Mn(t) are defined by

Cn(y, z, I) = (°°x"C(x, y, z, t) dx, (2.1)
- 00

Mn{t) = CK = ±ffQCn(y,z,t)dydz, (2.2)
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and it may be readily established that Cn and Mn are the solutions of the problems

,0) = en(y,z), (2.3b)

= -pCn at3fi (2.3c)

and

-2, (2.4a)

Mn(0) = en = 91ln (2.4b)

where the overbar denotes the cross-sectional mean.
The first term on the right hand side of (2.4a) is caused by the reaction at the

boundary of the flow, and implies that a knowledge of Cn is required before using
(2.4a) to calculate Mn. This is in contrast to the case of passive contaminants in
which /? = 0 and one needs Cn_, and Cn_2, but not Cn, to calculate Mn. Thus, for
/? ¥= 0, there is nothing to be gained by using equations (2.4); instead, solutions
for Cn (up to n — 2) will be obtained by separating variables in equations (2.3)
and Mn{t) follows by taking the cross-sectional mean.

For n = 0, the solution to (2.3) may be written

Q(') = 2A0lf,e-" (2.5)
i

where it is assumed that K(y, z) is such that the eigenvalue problem

f.A^-Pfi at3fi, /finite, (2.6b)

possesses a discrete spectrum of real eigenvalues {/t,}^i ordered so that 0 < /x, <
H2 < fi3 < • • • and a corresponding complete set of eigenfunctions that are
orthogonal and normalized so that

77 = i1' i=j'JIJJ j o , i *j.

Fitting the initial condition CQ(y, z, 0) = 60(y, z) determines the constants AQj in
(2.5) to be

Ao, = eof. (2-7)
and so we have

co(y, z, t.) = 2 eofjie->'1. (2.8)
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The problem for C, is more complicated, however, since certain solvability
conditions have to be satisfied to obtain the solution. A discussion of these
solvability conditions has recently been given by the author [3] for the case with
(1 = 0, and the methods required for the present problem follow naturally from
those in the reference. Thus the defining equation for Ct(y, z,t) is modified by
adding in and subtracting out inhomogeneous terms chosen so that the problem
for C, is solvable. That is, we write

where the solution of this equation under the boundary condition (2.3c) is

c, = 2 {Kf, + A40,(*, + ty.f. )}«-*•'• (2-9)

Here, the particular solutions </>, are the solutions of

£,*, = - ( « - • & ) / „ (2.10a)

Kv<t>rn = -/3<t>, at afi, ^ f i n i t e , (2.10b)

and, as is well-known from eigenvalue theory, the solution </>, exists only if the
inhomogeneous term (M — y,)/ in (2.10a) is orthogonal to the eigenfunction ft of
the homogeneous problem. The constants y, are therefore found to be

It is now possible to express <|>, in terms of the complete set of eigenfunctions
{/}£„ thatis,

*, = 2*,yJ5- (2.12a)
j

where the coefficients are given by expanding the inhomogeneous terms in (2.10a)
in terms of the {/}. After simplification, it is found that

m / ( , , , , ) , j*i,] ( 2 1 2 b )

[arbitrary, j = 1,J

where the an are hereinafter set equal to zero. The constants Au in (2.9) are then
found to be
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by fitting the initial condition Cx(y, z,0) = S,(j , z), and, after simplification, the
full solution for C, is found to be

c, = 2 e,//,*-*'1 + P2 2

The moment C2 is obtained by solving the problem (2.3) with n — 2, and the
analysis becomes quite laborious at this point. To solve (2.3) with n — 2, various
terms have to be added into and taken out of the inhomogeneous terms to ensure
solvability, and, omitting the tedious details, C2 is found to be

C2 = 2 {A2,f, + +, + tSJ, + P2tA0,yi[24>, + ty,f, ]}«-".' (2.14)

where ̂  is the particular solution of

- M , = 2A0lKf, + 2P[Auuft + PAOl(u - y,)<t>] - 8,f, (2.15)

under the boundary conditions (2.3c). The constants 8, are found to be

8,. = 2A0iKfJi + 2P[AM + PA0,(u-y,)^f,]

by applying the usual solvability condition. Also, the »/>, can be expressed in the
form

*, = 2M (2-16)
j

where the b^ are ultimately found to be

h = f {lAo.'Wjj + T-P[A,rtJj + PAo, ( « - y,)<t>Jj]}/ (My - M,), j * i , \
[arbitrary, 7 = j.J

(2.17)

If the coefficients bn are also set equal to zero, C2 is completely specified by
assigning the constants A2i to fit the initial condition C2{y, z,0) = i£2(y, z). The
procedure is again straightforward and gives

The foregoing mathematics has therefore determined Co, C, and C2 and could
be used to determine three-term approximations to C(x, t) at any time by
following the procedures described by Chatwin [5, Section 6]. To do this, the first
few moments about the mean are required; they are defined by

fJJCdv { '
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where

_ JJfxCdV _ - -
IfJCdV ^ i / ^o .

and it follows that

"2(0 = Q/C o - x2, (2.20a)

Of course, a lot of numerical work is required to calculate the eigenvalues and
eigenfunctions and then the Cn(t) for general values of time. A calculation of C3

would give a four-term approximation to C(x, t), and, in view of the complexity
of C2 that has already been shown, it would appear that C3 would be the highest
moment that is practically obtainable.

The calculation of CQ(t), C,(0 and C2(0 does, however, enable some simple
and interesting conclusions to be drawn for asymptotically large times. If the
notation EST is used to denote exponentially small terms, the largest of which is
of order exp{-(/i2 — nt)t), the results above can be used to establish that, for
large t,

Co=AOlfxe-»'(\+EST), (2.20)

x = yxPt +{Au/A0l + /»*,//,) + EST, (2.21)

and

ii + ^ ] + EST (2 22)

These expressions (2.20-2.22) therefore describe, for large values of time, the
most important features of the reacting solute cloud: the total amount of solute is
exponentially decaying and is given by (2.20), its centre of mass moves at the
speed Yî > and C(x, t) ultimately tends to a Gaussian distribution in x with
dispersion coefficient {A/,/, + P2(u — yi)<j>\f\}-

3. A direct asymptotic expansion for large /

We now consider the problem of finding a direct asymptotic expansion of the
solution of equations (1) with a = 0 and fi ¥* 0. The method adopted is a
generalization of that used by Chatwin [5] to investigate the asymptotic behaviour
of C when wall reactions are absent (/? = 0), and it may be regarded as an
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alternative at large times to the Taylor-Gill approach of references [6, 7, 15].
Accordingly, the variables X, Y, Z and T defined by

X = (x - yPt)/PT, Y = y, Z = z, T = (Mt)W1 (3.1)

are introduced, where y and M are dimensionless constants whose values will be
determined shortly. In terms of these variables, the problem (1.1) for C becomes

K*£+ (u~y xM\dc _ K d2c a (Kzc\ +_3_
IT dt \ T 2 r 2 / 9 * p2T2 dX2 dY\ dY} dZ

(3.2a)

C finite, h.KvC=-PC at 9fi, (3.2b)
together with a matching condition between the asymptotic and moderate time
solutions. Guided by Chatwin's work and the interpretation of the results of the
previous section at large times, an asymptotic solution for C is sought in the form

C = e-^
Tl/M{Cw{X, Y, Z)/T+ C(2\X, Y, Z)/T2

+ Cm(X, Y, Z)/T3 + ••• } (3.3)

where /a, is the smallest eigenvalue of problem (2.6). The coefficient functions Cn

in (3.3) satisfy the conditions (3.2b) and the following equations obtained by
comparing coefficients of T~" in (3.2a):

= 0, (3.4)

(3.5)

2 \P2M dX2

« = 3,4, . . . . (3.6)

Here the operator L, is defined by equation (2.6a) with i = \.
The solution of equation (3.4) satisfying conditions (3.2b) is

C^(X,Y,Z)=fi(Y,Z)hl(X) (3.7)

where hx(X) is arbitrary and/, is the eigenfunction corresponding to /*,. Equation
(3.5) then has a solution satisfying the boundary condition (3.2b) provided that
the solvability condition

Y - WJi (3.8)
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is satisfied. This ensures that the inhomogeneous term in (3.5) is orthogonal to the
eigenfunction of the homogeneous equation, and permits the solution of (3.5) to
be written

, Y, Z) =/,(y, Z)h2(X) + g2(Y, Z ) ^ (3.9)

where h2( X) is arbitrary and g2 satisfies

under conditions (3.2b). It is noted that, apart from an arbitrary multiple of/,, g2

is the negative of <j>t in the previous section. For the rest of this section, it proves
convenient to choose this arbitrary multiple of / , so that g2 satisfies the auxiliary
condition g2 = 0.

A differential equation for the arbitrary function ht(X) in (3.7) is obtained by
considering the solvability condition which results when (3.7-3.9) are substituted
into (3.6) with n = 3. The right hand side of (3.6) becomes

(« - y)fxh>2 - f \jj\^t ~ (« -

and solvability requires that y = ufx / , (already known) and

',' + Xh\ + /i, = 0 . (3.11)
2 * / , / ,
M\

Thus the most convenient description of the solution will be when M takes the
value

and hx(X) is then

(3.13)

To continue the construction of the solution, the results (3.11, 3.12) are sub-
stituted into (3.6) with n — 3 to obtain

The solution for C(3) is

C^(X, Y, Z) =/,(y, Z)h3{X) + g2(Y, Z ) § + g3(X, Z ) ^ (3.14)

where /i3( A') is arbitrary and g3(Y, Z) is the solution of

- ( « - Y)g 2 / iA-y 2 ( K -
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under the conditions (3.2b). The function g3 is completely specified by making the
further (convenient) restriction that g3 = 0.

The pattern of the asymptotic expansion is now clear and the details are quite
similar to those given by Chatwin for the case with /} = 0. The asymptotic
solution involves Hermite polynomials, Hn(X), defined by

* 2 } (3.16)

and, in terms of these, the coefficient functions C(1), C(2) and C(3) are

(3.17)
2 } , (3.18)

«2,0S3 + «.,0g3)#2

] U 2 } - (3.19)

In these expressions, a, 0, a20 and a30 are arbitrary constants, g2 and g3 are the
solutions of (3.10, 3.15), and the remaining constants are specified by enforcing
the solvability conditions as described above. Omitting the tedious details, these
constants are found to be

- ~KgJ[/P2)/M

«3.2 = i«i.o{ L (" ~ Y)g3/. ~ *g2/i /p \/M + lg2f\} • (3.20)

It now remains to determine the arbitrary constants an0 (« = 1,2,3,...). These
constants depend on the initial distribution and they can be determined using the
integral moments (2.19) which were investigated in the previous section. The plan
is to determine the moments by integrations of the series (3.3), and, for this
purpose, the following properties of the Hermite polynomials are required:

QA — KL.TI \ in lo

0 if m < n or (m — n) is odd,

(2TT) m\ (m — n — \){m — n — 3) • • •
\/{m — n)\ if (nt — n) is even.
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Thus, using expressions (3.3, 3.17-3.19), we find that

fjjCdV = /V(2,7)l/2«li0/1e-'"', (3.21)

x = yPt + Pa2fi/alfi, (3.22)

v2(t) ~ P2MT + 2P2a3fl/auo, (3.23)

' 3 W - " ' V"2,lJr

In equation (3.22), it is convenient (as Chatwin points out) to choose the axes of
the coordinate system so that x = yPt asymptotically. With such a choice, a2 0

becomes zero and this simplification has been incorporated in (3.23, 3.24).
The calculation of the asymptotic form of the integral moments from the Aris

moment equations therefore fixes the constants an0(n > 3). In particular, using
expressions (2.22, 3.23), a30/at 0 is given by

«3,0 _ 1 \A2\

«i.o IP2 [AH Amfx

This expression depends on the initial distribution through the constants AOi, Axu

A2l and, in contrast with Chatwin's analogous expression (3.10), further simplifi-
cation of it is not warranted for /? ¥= 0.

Similar procedures would suffice to determine a40 and the an 0 for n ^ 5. These
details are not included because they are not required for a three term asymptotic
series for C which, as Chatwin points out, is sufficient for most purposes.

4. Application of the results to the flow reactor

Perhaps the most important application for the preceding work is to the flow
reactor—a device in wide use for measuring reaction rates for chemical reactions
taking place in a mixture of fluids [4, 11, 12, 13, 20]. The flow reactor consists of a
circular pipe of radius a* containing a solvent m laminar flow so that u is the
Hagen-Poiseuille profile

u(p) = 2(1 - p 2 ) , 0 < p < l , (4.1)

where p is the usual cylindrical polar coordinate. It will be assumed that the
problem is independent of the other polar coordinate ^ and that the diffusion
coefficient is constant so that K — 1; the eigenvalue problem (2.6) then becomes
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Figure 1. Plots of the parameter af against the dimensionless wall reaction parameter /S: ,
result of numerical root finding procedures; , approximations due to Sankarasubramanian and
Gill; , approximations developed in the present paper.

^ = -j8/, at p = 1, /finite.

The eigenvalues and normalized eigenfunctions for the problem are

where Jo is the Bessel function of order 0 and {a,}?i} are the roots of

(4.2b)

(4.3)

(4.4)

The evaluation of various constants in Sections 2 and 3 requires the standard
integrals

' =J,
i ¥> /,
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0 . 5

Figure 2. Plots of the dimensionless parameter y, (occurring in x ~ yPt) against the dimensionless
wall reaction parameter /?: , exact expression (4.7); , approximations due to Sankara-
subramanian and Gill; , approximations developed in the present paper.

2(a,2
6a

2j82)j0(af)y0(ay)

and the computation of the (a^yS)}^, using standard root-finding procedures.
The root a,(/?) is of particular importance since the total amount of contaminant
ultimately decays as exp{-a2f}. The value of a2 as a function of /J is displayed in
Figure 1, together with the small and large /? approximations due to Sankara-
subramanian and Gill:

a2~2/J for small 0,

«? ~yo..O - 2/0) for larger

(4.5a)

(4.5b)
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0. 03r

0.02

Figure!. Plots of the dimensionless quantity ( u — -y i) <#> I /"i (occurring in Deff= 1 + P2(u — Y1H1/1)
against the dimensionless wall reaction parameter /S: , exact expression (4.11) (or by summing
(2.12a) and integrating); , approximations due to Sankarasubramanian and Gill; , ap-
proximations developed in the present paper.

where j 0 l s 2.40483 is the first zero of J0(x). Figure 1 also shows the improved
small and large /} approximations

of ~ 2/3 - {$2 +

i ~7o.i(l - VP +

for small /8,

))2 for large 0,

(4.6a)

(4.6b)

which can be derived without much additional effort.
The centre of mass of the contaminant cloud ultimately moves at the speed ytP

where y, = «/, /, is found to be

(4.7)

https://doi.org/10.1017/S0334270000004094 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004094


302

o.oi
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log |0 p

Figure 4. A plot of the skewness parameter a2.i/ai,o defined by (4.14) against the dimensionless wall
reaction parameter /?.

The dependence of Yi upon /? is shown in Figure 2. Again, the approximations
developed by Sankarasubramanian and Gill, namely

1 1
1 3(2 + fi)

for small /?,

-r 1 for large /?,

(4

(4

.8a)

.8b)

are displayed; and these may be compared with the improved approximations

y, ~ 1 + ^-0 - ^r/?2 for small 0, (4.9a)

y, given by (4.6b, 4.7) for large p. (4.9b)

The presentation of further results requires the calculation of the function <f>i

(or g2) or, at least, these functions up to an arbitrary multiple of/,. The function
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<J>, is given by the summation in (2.12a) with / = 1, but it is fortunate that the
neater form

j-p3Ma\p) (4-9)

is also found to be a particular solution of (2.10 a, b). As written, the form (4.9)
satisfies neither p , / , = 0 nor g2 = 0, but arbitrary multiples of/, can be included
for these purposes if required. The inclusion or otherwise of such arbitrary
multiples does not affect any of the subsequent results.

The dispersion coefficient {AT/i/, + P2(u — 7,)•>,/,} may now be calculated
by performing the summation implied by (2.12a) or by using the form (4.9). The
second method is slightly more convenient and, using the reduction formulae
given in the Appendix, Defj is found to be

Def/=±P2M=1+P2{u- 7 l)*,/, (4.10)

where

X {-aj° + a?[-21 - 14)8 - 302] + a?[840 + 15/82 - 18/33 -

+ [-84j82 + 9803 + 43y34 - 4/35 - 06]

+«2[-128j34 + 34y85 + 17/86] -

(4.11)

The values of ("~Yi)<J>i/i are displayed as a function of /? in Figure 3.
Included in the figure are the approximations developed by Sankarasubramanian
and Gill [15],

{\ + 4 l } for sma11 '8> (412a)

forlarge)3, (4.12b)

https://doi.org/10.1017/S0334270000004094 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004094


304 N. G. Barton

t=O.I25

- 0 . 2

Figure 5. Plots of \]2/TT C exp{ +a}t}/ax 0 as a function of the dimensionless quantity (x — ylPl)/2P
at dimensionless times t = 0.125, 0.5 and 1.0: , two term plot; , one term (Gaussian)
plot; case (a) is for p — 0.02 and case (b) for 0 = 50.

and the improved approximations

r J_
1 48

1
4320

for small ft, (4.13a)

\u- y, )<*>,/, given by (4.6b, 4.11) for large ft. (4.13b)

As a further application of the theory developed in Sections 2 and 3, we now
examine the parameter a2l defined by (3.20). This parameter is of some impor-
tance as it determines the skewness of the asymptotic distribution (see 3.24), and
it is required for a two-term expression for C (see 3.3, 3.17, 3.18). Omitting a large
amount of algebra, a2l/at 0 is eventually found to be

(4.14)

where M and Yi are given by (4.10) and (4.7), and the various cross-sectional
means in the expressions may be evaluated using standard integrals. The quantity
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t =0.115

305

(b)

J

- 0 . 3 - 0 . 2 0.2 0.3

(x-Y,Pt)/JP

Figure 5. (continued)

a2 , /a, 0 is shown in the high Peclet number limit (that is neglecting the constant
1 on the right hand side of 4.10) in Figure 4.

A physical interpretation of the information contained in Figures 1 to 3 has
been given by Sankarasubramanian and Gill. The plot in Figure 4 is new,
however, and is most interesting as it shows a change in the sign of the skewness
of the distribution for /? slightly greater than 1. Thus, for /} near 1, the Gaussian
approximation to C would be unexpectedly good compared with the approxima-
tion described by Chatwin for /? = 0. As /? -> 0, a2 i/

ai,o agrees well with the
theoretical value of 1/120 [5, equation 4.6] whilst, as fi — oo, a2,i/«i,o approaches
-1/200.

To conclude this section, we present plots for one and two terms of the
asymptotic series

(4.15)
x i .o

in various ways so as to deduce when C(x, t) can be described by the one term
Gaussian approximation. All of the variables mentioned in (4.15) have been
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described in this section, and the plots are again for the high Peclet number limit
in which M becomes 2( u — y, )<>,/,. The variables X and T are

X=(x-ylPt)/PT, T={Mt)1/2

and a 2 , /a , 0 is given by (4.14).
Figures 5a, b show ^2/TT Cea'' as a function of (x - y,Pt)/2P at t = 0.125,

0.5 and 1.0 and for /? = 0.02 and 50.0. The scales are chosen to enable a direct
comparison with the one and three term plots of Chatwin [5, Figure 3]. For
/} = 0.02, the similarity of the present results to Chatwin's is clear: the peak of C
occurs behind the centre of mass and the asymmetry in the two term curve is
practically negligible for t at 1.0. For /8 = 50.0, the peak of C occurs ahead of the
centre of mass, and, for practical purposes again, there appears to be no
significant different between the 1 and 2 term approximations for t greater than 1.
Plots of (4.15) for /? = 1,0 were prepared for / = 0.125, 0.5, 1.0, but are not
included here as they are almost indistinguishable from the Gaussian curve by
virtue of the change of sign of a2J near 1.

/2 =

p=0.02

X=0.5P

0 . 5 1 . 5

Figure 6. Plots of \j~l/-n C/al0 as a function of the dimensionless time / for /? = 0.02, 1, 50: ,
two term plot; , one term (Gaussian) plot; cases (a,b,c) are at dimensionless distances
(0.5P, \.QP, \.5P) downstream of the injection point.
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(b)

x=l.0P

0 . S 1

Figure 6. (continued)
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Plots of C against x for fixed values of the time represent a ' photograph' of the
distribution, and are quite different from the usual measurement which is of C
against / at fixed values of x. Accordingly Figures 6a, b, c display /2/TT C/al0

against t for fi = 0.02, 1, 50.0 at x = 0.5P, \.0P, 1.5P. Some noteworthy points
are: the similarity of the one and two term approximations is evident for fi = 1.0,
even for t = 0.5; the fi = 50.0 curves are almost indistinguishable from zero at
x = \.5P: the change in skewness of the curves for small and large fi; and the
closeness of the one and two term approximations for all fi for t > 1.0.

5. Conclusion

A direct asymptotic theory has been developed to describe the dispersion of
reactive contaminants injected into parallel flow. The theory is somewhat less
general than references [6, 7, 15] based on Taylor-Gill expansions, but gives
comparable results at large times and is arguably easier to apply. The theory has
been applied in detail to the flow reactor example, and confirms the results of
reference [ 15] for the total amount of solute, the speed of the centre of mass, and
the dispersion coefficient. The small fi and large fi expansions developed herein
are superior to those in reference [15]. Also, the skewness parameter a2 , /a, 0 has
been presented as a function of fi for the first time: as fi -» 0, this parameter
agrees with Chatwin's result [5], and it changes sign for fi slightly greater than 1.

One and two term asymptotic expansions for C(x, t) have been plotted for
various values of x, t and fi in the flow reactor example. The broad conclusion is
that these expansions are identical for practical purposes for non-dimensional
times / greater than 1, although, for fi near 1, the change in skewness means that
the one and two term expansions are practically identical for much smaller /. It is
noted that the shape of the original injected cloud affects the asymptotic
expansion at the third and subsequent terms. Sufficient details are presented to
compute the third term if required, but the calculation depends in a complicated
manner on fi, P and the shape of the initial cloud and is not included here.
Finally, the present work has recently been used to determine diffusion coeffi-
cients for mixtures of gases at low pressures [14]. The shape of the initial
distribution in this application affected the distribution observed further down
the tube, but was accounted for by partitioning the initial distribution into a
succession of short input pulses. By such a device, the importance of the third and
subsequent term in the series can be diminished.
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Appendix

The following reduction formulae were used in the evaluation of (M — y,)
in Section 4:

fz2"Jl(z)Jo(z)dz = -iz2%2(z) +

(n + 2)fz"+2J0
2(z) dz = -\{n + lffz"J2(z) dz

)}2 + {z2 + i(«

(The second formula is a special case of Schafheitlin's reduction formula.)
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