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ABSTRACT. A series of ice-sheet-model intercomparison exercises have been orga-
nized as part of EISMINT. One such set of experiments investigated the implications of
thermomechanical coupling on the flow of ice sheets with idealized geometry. The results
of these experiments are discussed by Payne and others (in press). They indicate that local
concentrations of ice flow may develop as a consequence of interactions between ice flow,
temperature and viscosity. The nature of the intercomparison exercise meant that only a
limited number of experiments could be performed by the ten contributing groups. Many
of the implications arising from the results could not therefore be investigated. This paper
focuses on four. They are the initiation of the patterning, its reversibility, the influence of
the relationship between ice temperature and viscosity, and dependence on numerical

time-step and horizontal grid size.

INTRODUCTION

The aim of this paper is to address several issues arising from
a recent intercomparison exercise supported by the Eur-
opean Ice Sheet Modelling Initiative (EISMINT) and re-
ported by Payne and others (in press). The exercise
concerned the effects of introducing thermomechanical cou-
pling into ice-sheet models. Time-dependent models of ice-
sheet evolution are typically based on two prognostic equa-
tions: one for the evolution of ice thickness and one for ice-
temperature evolution. The former comprises a statement of
ice-mass continuity and a diagnostic relationship between
ice-sheet form and velocity. The two prognostic equations
are linked in a number of ways so the evolution of the coupled
system 1s likely to be complex and nonlinear.

The original experiments used an idealized geometry in
which all boundary conditions had radial symmetry. One of
the key findings was that, in some cases, this symmetry was
broken by the development of spokes of cold ice extending
outwards from the ice-sheet divide towards its margin.
Interactions between ice form (and flow) and temperature
were identified as the cause of this pattern development.
There was, however, some doubt about the extent to which
numerical instability affected these results. This arose prin-
cipally because some elements of the patterning followed
the geometry of the underlying numerical grid. The original
experiments were performed by ten different groups and the
primary aim was model intercomparison. They did not
therefore provide a convenient means of addressing these
issues, which are therefore addressed here.

The patterning is believed to arise through the inter-
action of the evolving ice thickness, temperature and
velocity fields. It is essentially a localized form of the “creep
instability” discussed by Clarke and others (1977). A slight
positive anomaly 1n ice temperature softens ice locally. This
leads to increased horizontal ice velocities because softer ice
will flow faster for a given gravitational driving stress. This
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faster-flowing ice then generates greater quantities of heat
via dissipation, which enhances the original temperature
anomaly. Eventually, ice thickness (and ice-surface eleva-
tion) is locally reduced because of the increased ice flow.
This then favours further warming because the horizontal
flow of'ice is always downhill (over the typical length scales
associated with ice sheets) and so increasing quantities of ice
become channelled through the site of the original tempera-
ture anomaly. The result is the differentiation of an initially
uniform ice-flow field into a pattern where zones of warm,
fast flow alternate with ones of cold, slow flow.

The influence of model numerics on this instability
arises through the nature of the initial ice-temperature
anomaly. Finite-difference models, such as the one used in
this paper, employ a regular, rectangular mesh on which
discrete versions the model’s equations are solved. When
the geometry of the modelled ice sheet does not match this
rectangular mesh (as is the case with the circular ice sheet
modelled here), slight differences in modelled quantities
between adjacent gridpoints can occur. These differences
are then sufficient to trigger the instability described above.
Model numerics therefore play a role in the initiation of the
instability. A related issue is whether the actual discretiza-
tion employed by the numerical model is influencing the
patterning.

The specific questions addressed in this paper follow dir-
ectly from the discussion of Payne and others (in press) and are:

(1) how the pattern-forming instability is initiated;
2
3

) whether the process of pattern development is reversible;
) whether the particular relationship between ice tem-
perature and viscosity used in the intercomparison

played a role in the pattern formation; and

(4) whether pattern formation has any dependency on hor-
izontal grid size or time-step.

Payne and others (in press) describe three key experi-
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ments, differing only in their parameterization of air tem-
perature which provides the upper boundary condition for
the three-dimensional, advection—diffusion equation gov-
erning ice temperature. There was a 20 K difference in air
temperatures between these experiments and this difference
effectively controlled whether the patterning developed or
not. In the experiment with colder air temperatures (223 K
at the divide), all models exhibited the patterning. While in
the warmer experiments (243 K at the divide), the models
showed no sign of pattern formation.

These observations prompted the first two questions to
be investigated. The model behaviour which occurs in the
phase space between the cold, patterned and warm, sym-
metric end members was not investigated. A series of five
experiments which address this range in more detail are
therefore used to investigate states which are intermediate
between no and fully developed patterning. Further, the
initial experiments gave some indication that the patterning
could be reversed if air temperatures were warmed suffi-
ciently. Here we investigate whether an air-temperature
cooling (from a divide air temperature of 243 K to one of
223 K) is sufficient to induce pattern formation and whether
this patterning disappears once the cooling is reversed
(divide temperature rising from 223 K back to 243 K).

Payne and others (in press) identify one potential cause
of the pattern development as the form of the relationship
used to calculate ice viscosity from temperature. This rela-
tionship was proposed by Paterson and Budd (1982) and 1s
exponential. The form of this relationship is, however, dif-
ferent for ice above and below 263 K. There is in fact a dis-
continuity at 263 K and the softening of ice with increasing
temperature is far more dramatic above this point. It is pos-
sible that the observed patterning is triggered as ice crosses
this discontinuity. An alternative form of the relationship
between ice temperature and viscosity, continuous over its
entire range, was proposed by Hooke (1981). The idea that
patterning is caused by the specific form of the Paterson
and Budd (1982) relationship can therefore be tested.

Finally, the hypothesis that the patterning owes its ori-
gin to numerical instability can be addressed by repeating
the original experiments employing a range of time-steps
and horizontal grid spacing.

MODEL DESCRIPTION

This section summarizes the thermomechanical ice-sheet
model. Huybrechts and others (1996) and Payne and others
(in press) provide a more detailed discussion. The model is
time, ¢, dependent and is quasi-three dimensional (with hor-
izontal dimensions « and y and a vertical dimension z which
1s positive upwards from sea level). Isostatic deflection of the
underlying bedrock is not incorporated into the model.

The evolution of ice thickness, H, is given by the conti-
nuity equation

OH _
5 =0~V (UH) (1)

where V- is the two-dimensional horizontal divergence op-
erator, b is the local snow-accumulation/ablation rate, and
U is the vertically averaged horizontal-velocity vector. Tce
deformation is assumed to be driven solely by horizontal
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Table 1. Constants used in the experiments

Symbol  Constant Value Units
p  Density of ice 910 kgm °
g Acceleration due to gravity 9.81 ms 2
n  Power in Glen’s law 3 -

a  Multiplier in Paterson and Budd
(1982) relation

ifT* < 263K 3615x10 % s'Pa”
ifT* > 263K 1733x10° s 'Pa’®
@  Activation energy for creep
in Paterson and Budd (1982) relation
ifT* < 263K 60x10*  Jmol !
if T > 263K 139x10*  Jmol !
in Hooke (1981) relation 788 x10*  Jmol !
R Gas constant
in Paterson and Budd (1982) relation  8.314 Jmol 'K
in Hooke (1981) relation 8.321 Jmol 'K
By  Constant in Hooke (1981) relation 1.928 a'® Pa
C  Constant in Hooke (1981) relation 0.16612 KX
K Constant in Hooke (198l) relation 117 -
T,  Constant in Hooke (198]) relation 273.39 K
Ty  Triple point of water 27315 K
G Geothermal heat flux 42x107  Wm?K
k  Thermal conductivity of ice 21 Wm 'K
¢ Specific heat capacity of ice 2009 Jkg 'K!
®  Dependence of melting on pressure 976x10 % KPa'
Seconds per year 31556926
bmax  Maximum accumulation rate 0.5 ma
Sy, Horizontal gradient of accumu- 102 ma 'km '
lation rate
E  Zero-accumulation-rate distance 450 km
(Z,9) Centre of the model domain (750,750)  km
Twin  Minimum air temperature - K

St Horizontal gradient of air temperature 1.67 x 10 2 Kkm'

shear stresses, 7., and 7., which, at the spatial scales over
which ice sheets operate, can be approximated by

7o) = —pols — 2) o0 ©)
where s 1s ice-surface elevation, p is ice density and g 1s ac-
celeration due to gravity. The values used in this study for all
constants are given in Table 1. Assuming a non-linear flow
law for ice (Glen, 1955), one can find horizontal velocity as

wz) = ~2pa) 1o 52 [ A6 -0 @)
h

where h is bedrock elevation, n 1s usually taken as 3 and the
parameter A introduces the temperature dependence of ice
viscosity. Similar expressions are used to find 7,.(z) and
uy(2), and vertical velocity, w(z), is found from the horizon-
tal velocity field using the incompressibility condition. Basal
slip is not included in the experiments described here.

The ice accumulation/ablation rate, b, is specified as a
radially symmetric function of horizontal position, x and ¥,

(4)

where bpay is the maximum accumulation rate, Sy, the gra-
dient of accumulation-rate change with horizontal distance

and F is the distance from the centre of the model domain
(2,9) at which accumulation rate is zero. This parameter-
ization results in a large accumulation area, over most of
which accumulation is held constant at b,.x. Around this
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area, b falls linearly with distance from (£,9) and rapidly Table 2. Brief summary of the experiments
becomes negative (ablation).

The temperature dependence of ice viscosity is incorpo-

rated initially using an Arrhenius relation, choosing con- Code Toin [nitial condition Comment
stants based on work by Paterson and Budd (1982) K
A(T") = aexp [ Q*} (5) A 2380 Zeroice
RT B 235.5 Zeroice
o . C 233.0 Zeroice
where T" (in K) is absolute temperature corrected for the D 998.0 Zero ice
dependence of melting point on pressure, a is a constant of E 9930 Zero ice
proportionality, () is the activation energy for ice creep, and F 223.0 Experiment A
R is the universal gas constant. It should be noted that the G 2380 Experiment F
values of a and @) are different above and below 263 K. ? g‘;’gg ézg i: gzzlﬁz 8333 EZZS
This relationship is replaced in some experiments by J 9930 Zeroice dt = 100 years '
that due to Hooke (1981) K 2230 Zeroice dt = 25.0 years
n L 223.0 Zeroice dt = 100.0 years
AT — 1 Q 3C M 2230 Zeroice dz =500km
(T7) = B,) P\ &mr + (T —T)F| (6) N 9230 Zero'ice do = 125km
In Equations (5) and (6), T is defined as
T*:T_Tpnlp+ﬂ) (7) 1500 R TERENE SSNRNEREN 1 RRRREEN Y RN RRF S AN]SR RRRNEEN] SURRENEET!
where T}, is the pressure-melting-point temperature and a
Ty 1s the triple point of water. 1950
The ice temperature, T, evolves according to
or  k o*T oT  g(s—2) ou
—=———-U.VI'-w—+=—+Vs.-— (8
ot pc 022 0z c 0z () 1000

where U is the horizontal-velocity vector, £ is the conductiv-
ity of ice and c is its specific-heat capacity. These and the 750
other thermal parameters used in the model are assumed
to be independent of ice temperature. Equation (8) forms 500
the second prognostic equation on which the model is based.

265

AR RN R R RN R R AR RARRRER R

It contains terms representing vertical diffusion, horizontal
advection, vertical advection, and dissipational heat gen- 250
eration, respectively.

Two boundary conditions are required for the integration 0

of Equation (8) forward through time. The upper boundary
condition is a specified surface air temperature (73) 0 250 500 750 100012501500

v e b o b bes v Lo
]
(o))
@
\v)
~
(=]

AEARARERNRURRAR

AR AR R AN R RN R AR AR AR RN RN R RR R

Cra(fﬂ,y):Tmin*FST\/(I’*;i‘)?«F(yf:g)Q (9) 1500 JEENEEES UL SRR NRARRE AN S SNREENY SURNENR NS ARRENNDRRE S RRERENT!
b

where T}y 1s the minimum surface air temperature and St

the gradient of air-temperature change with horizontal dis- 1250
tance. Air temperatures therefore increase in a linear fash-

ion away from the centre of the model domain and are

radially symmetric. Several of the experiments reported 1000
below employ changes to the value of T}, which is a con-

trol on the overall temperature of the ice sheet and on the 750
presence of patterning.

The boundary condition at the ice-sheet base 1s

T a 500

2 (10)

250

where G is the geothermal heat flux (assumed constant).
The evolving temperature field is constrained so that it
cannot exceed the pressure-melting-point temperature 0

Tomp = To — pg®(s — 2). (11) 0 250 500 750 100012501500

An equivalent melt rate is determined where calculated

v o b b b e

AR RN RN AR RN R RN R R RN R AR

temperatures exceed the pressure-melting point. Fig. 1. The predicted pattern of basal temperature (in K)
The model summarized above is solved using finite differ- after 200 kyr in experiments with (a) Ty = 238 K (ex-

ences on a regular horizontal and a stretched vertical grid periment A) and (b) Tiin = 225 K (experiment E). The

using mostly implicit methods. A discussion of the numerical contour interval is 5.0 K and temperatures are not corrected

methods employed in the model can be found in Hindmarsh Jor pressure-melting-point variation. The units of the x and

and Payne (1996) and Payne and Dongelmans (1997). Yy axes are km.
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EXPERIMENTS

The results from a series of experiments designed to address
the issues raised in the Introduction will now be discussed.
All experiments lasted for 200 kyr by which time a long-
term equilibrium had developed. A horizontal grid spacing
of 25km and a time-step of 50 years were employed except
in the final set of experiments. Unless otherwise stated, the
initial conditions are zero ice on a flat bedrock plane.

The nature of the patterning is such that regions of higher
temperatures are always associated with softer ice (increased
values of A), faster horizontal velocities and reduced ice thick-
nesses (Payne and others, in press). In order to simplify the
discussion of the results, we will therefore concentrate on the
predicted patterns of basal-ice temperature.

The onset of patterning

The onset of patterning was investigated in series of five ex-
periments in which T}, in Equation (9) was given the values
238, 235.5, 233, 228 and 223 K (they will be referred to as ex-
periments A—E). These and all other experiments reported
here are summarized in'Table 2. The simulated basal-ice tem-
perature field in A is radially symmetric and is dominated by
patterning in E (Fig. 1). The extensions of cold, interior ice
toward the margin will be referred to as “cold spokes”, while
“warm spokes” are the intervening divideward extensions of
warm, margin ice.

Much of the information in Figure 1 is redundant. The
comparison of a variety of experiments is therefore eased
by using simplified representations of this information. This
is done in Figure 2 for experiment E. The basal temperature
at each model gridpoint is plotted as a function of its dis-
tance from the domain centre or ice divide (the black dots
in Fig. 2). These temperatures show very little scatter near
the divide and towards the margin. This is indicative of ra-
dial symmetry. In contrast, points falling 150 to 500 km from
the divide show much scatter, which is indicative of pattern
formation (see Fig. 1b).

This information can be further summarized by divid-
ing the abscissa into 25 km sections and recording the max-
imum and minimum within each section (as indicated by
the bars in Fig. 2). The difference between the maximum
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Temperature (K)
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Distance from divide (km)

Fig. 2. Basal temperature plotted as a function of distance
Jfrom the ice divide (at x = 750 km, y = 750 km ). The bars
indicate the maximum and minimum lemperatures within
each concentric 25 km section of the domain. The difference
between maximum and minimum temperature within each
section is taken as an index of the strength of patterning.
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and minimum for each section provides a useful index of
the degree of patterning.

The degree of patterning in all five experiments is sum-
marized in Figure 3. The patterning develops between ex-
periments with T, = 233 K and T, = 2355 K. The
development of patterning is therefore triggered fairly
abruptly over a small temperature range. The contrast
between warm and cold spokes increases as Tpni, decreases.
The warm spokes are invariably at pressure-melting point.
This difference can therefore be interpreted entirely in
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Fig. 3. The range of predicted basal temperature as a_function
of distance from the divide for experiments A—E described in
the text. The letters refer to the experiment name.
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terms of cooling within the cold spokes and the majority of
this cooling is simply a reflection of the cooler upper bound-
ary condition (T}).

The reversibility of patterning

Two further experiments (each lasting 200 kyr) were under-
taken to test whether the patterning shown in Figure 11s re-
versible. Experiment F used the final equilibrium state
reached by experiment A (which shows no patterning) as
an initial condition and imposed a stepped change of T},
from 238 K to 223 K. The results, again in terms of radial
temperature anomalies, are shown in Figure 4a. The final
equilibrium state of experiment I is directly comparable to
that of experiment E (which also employed T},;, = 223 K).
The relevant lines in Figures 3 and 4a indicate a close but
not perfect correspondence. Investigation of the actual basal
temperature field indicated that rather than the 12 cold-ice
spokes shown in Figure 1b, a total of 20 had formed. The di-
agonal spokes shown in Figure 1b each split into one central,
major spoke and two smaller neighbours.

Reversibility was tested in experiment G by using the fi-
nal state produced in experiment I'as an initial condition and
reversing the change of T;, back from 223 K to 238 K. The
results can be seen in Figure 4b. The patterning rapidly
breaks down and radial symmetry is restored after approxi-
mately 50 kyr. The final state reached in experiment G is es-
sentially identical to that of experiment A (basal temperature
at the divides are within 0.0004 K of each other).

The ice-viscosity relationship used

Experiments H and I are identical to experiments A and E
except that the Paterson and Budd (1982) (Equation (5)) ice-
viscosity relationship is substituted with that of Hooke (1981)
(Equation (6)). A comparison of the values of A predicted
by the two relationships over a temperature range from
223 K to 273 K is shown in Figure 5. The Paterson and Budd
(1982) relationship predicts higher values of A at tempera-

10"

" s L L L
220 230 240 250 260 270 280
Temperature (K)

Fig. 5. The values of A predicted by relationships due to Pater-
son and Budd (1982) (circles) and Hooke (1981) ( crosses)
over a temperature range typical of glacier ice. The apparent
discontinuity in the Hooke (1981) relationship near 275 K is
due to the sampling interval used to plot this curve. The rela-
tionshuip us, in fact, continuous throughout.
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tures below 250 K and in a narrow range between approxi-
mately 268 K and 272 K.

The basal-temperature distribution at the end of the two
experiments is shown in Figure 6, which is directly compar-
able to Figure 1. The patterning is much stronger in the ex-
periments employing the Hooke (1981) relationship. A Tip
of 238.0 K was previously too warm for patterning to devel-
op when employing Paterson and Budd (1982), however the
patterning is very clearly developed with the Hooke (1981)
relationship. Patterning in the experiment with Tii, =
223.0 K 1s now so pronounced that the concentration of flow
leads to the extension of the ice-sheet margin downstream of
warm-ice spokes. This intensification of the patterning is
probably because of the step (but continuous) rise in the
value of A close to the melting point, which is a feature of
the Hooke (198l1) relationship (Fig. 6).
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Fig. 6. The predicted pattern of basal temperature (in K)
after 200 kyr in experiments employing the Hooke (1981) re-
lationship with (a) Tmin = 238 K (experiment H) and
(b) Twin = 223 K (experiment I). The contour interval is
5.0 K and temperatures are not corrected for pressure-melting-
point variation.
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with vartous horizontal grid spacing (experiments E, M and
N). The letters refer to the experiment name.

Changing time-step and grid spacing

The time-step (d¢) and horizontal grid spacing (dz) used in
all of the experiments reported so far are 50 years and
25 km, respectively. It should be noted that the maximum
horizontal velocity in these experiments is approximately
80ma !, which with dz = 25 km would equate to a maxi-
mum time-step (in terms of Courant stability) of 312.5 years.
A useful test of the role that numerics plays in the develop-
ment of patterning is to change the numerical time-step and
grid spacing.

A series of three further experiments repeated experi-
ment E with d¢ = 10, 25 and 100 years (experiments J, K,
and L). The results, again presented as radial temperature
anomalies, are summarized in Figure 7a. Although the de-
gree of patterning is consistent in all four experiments, there
are differences in the geometry of the spoked pattern pro-
duced in each experiment. In particular, the pattern pro-
duced in experimentJ (d¢ = 10 years) features a total of 20
spokes and was very similar to that described for experi-
ment F above. The results for experiments E and K (dt =
50 and 25 years) were virtually identical.

Experiments with dz = 50km (M) and dz = 125km
(N), in addition to the standard dx = 25 km experiment E
are shown in Figure 7b. The radial temperature anomalies
reveal very different patterning associated with each hori-
zontal-grid resolution. Inspection of the basal-temperature
field produced in each experiment indicates that the number

https://doi.org/10.3189/172756400781820534 Published online by Cambridge University Press

Payne and Baldwin: Analysis of EISMINT ice-flow instabilities

of individual cold-ice spokes rose to 32 in the 12.5 km experi-
ment, while this number fell to 8 in the 50 km experiment
(from the 12 of experiment E).

DISCUSSION

The four specific questions raised in the Introduction can
now be answered (at least partially).

Patterning develops fairly abruptly between two experi-
ments separated by a 5K difference in air temperature.
Within this 5 K range there is an intermediate form (experi-
ment B) which shows minor undulations in its basal-tem-
perature field. This abrupt onset is thought to be related to
the extension of relatively cold ice towards steeper ice-sur-
face slopes near the margin. The mechanism discussed in
the Introduction partially relies on the deflection of hori-
zontal ice flow towards warmer, faster-flowing areas of the
ice sheet. This type of flow adjustment can occur more easily
in areas of steeper surface slope near the margin, rather
than in the flatter areas near the ice divide. One of the con-
ditions necessary for pattern formation may therefore be
that relatively cold ice (with the potential for warming and
hence flow differentiation) occurs in close proximity to rel-
atively steep ice-surface slopes near the margin.

The development of patterning has been shown to be re-
versible. The details of the final form of patterning do, how-
ever, show some dependence on the pathway taken. The
number of spokes developed in experiments starting from
zero-ice and radial-ice-sheet 1nitial conditions differs. This
is an indication that the form of the patterning instability is
very sensitive to precise numerical details (as discussed
further below).

The discontinuity present in the Paterson and Budd
(1982) relationship between ice temperature and the value of
A is not a necessary condition for pattern development. The
relationship derived by Hooke (1981) contains no such discon-
tinuity but produces similar behaviour. The exponential nat-
ure of these relationships is probably a necessary condition
for pattern formation (this could be tested by constructing
artificial, linear relationships between temperature and A).

Finally, the details of the patterns developed show depen-
dence on both the numerical time-step and horizontal grid
spacing employed. Hindmarsh and Payne (1996) show that
grid-spacing effects predicted ice-sheet geometry because of
varying truncation errors. In uncoupled experiments, this
affect can amount to as much as 100 m near the margin. These
changes in ice-sheet geometry, exaggerated by thermo-
mechanical coupling, may therefore be responsible for the
slight differences in the form of the patterning observed here.

It should be stressed that the type of behaviour discussed in
this paper 1s generic to the majority of the large-scale models
currently used to simulate the Antarctic and Greenland ice
sheets as well as the former, mid-latitude ice sheets. This is clear
from the intercomparison reported by Payne and others (in
press) and implies that the basal temperatures predicted by
these models should be treated with some caution.

There is a strong coincidence between spoke orientation
and the underlying finite-difference grid (or diagonals to it)
which implies an underlying, numerical control. It is unlikely
that this arises simply because we model a circular ice sheet
using a rectangular grid. This is because Payne and Dongel-
mans (1997) found similar behaviour when modelling both
square ice sheets and ones whose divide ran parallel to the
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rectangular finite-difference grid. In addition, ice-sheet
models should be able to cope with arbitrary geometries
because their main application is to irregular, real-world ice
sheets. Future work must address why this grid dependence
arises and must seek ways of removing it. One likely area is
in the discretization of the dissipation term in the tempera-
ture-evolution equation (Equation (8)).

The model discussed in this paper does not incorporate
longitudinal stresses. This omission is unlikely to affect the
observed patterning because the flow is relatively slow
(always <100ma "). The warm-ice spokes are therefore
not equivalent to ice streams. Longitudinal stresses may be
important at the head of the warm-ice spokes where there
are relatively steep horizontal-velocity gradients. However,
the incorporation of the dissipational heating produced by
these longitudinal stresses is likely to exaggerate creep in-
stability and the patterning rather than lessen the effect.
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