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GROUPS WHOSE THREE-GENERATOR SUBGROUPS ARE FREE

GILBERT BAUMSLAG AND PETER B. SHALEN

Dedicated to Professor B.H. Neumann on his eightieth birthday

We define a certain class of groups, Cfc, which we show to contain the class of all fc-free
groups. Our main theorem shows that certain amalgamated free products of groups in C3
are again in C'3. In the appendix we show that many 3-manifold groups belong to C& for
suitable k.

Let k be a cardinal number. A group G is said to be k-free if for any set S C. G
wilh cardinality k, the subgroup of G generated by 5 is free (of some rank ^ k). Note
that a Ai-free group is in particular fc'-free for every k' < k. A group is 1-free if and
only if it is torsion-free.

It follows from a result proved by B. Baumslag in [1] that a free product with
amalgamation G = F *c F', where the factors F and F' are free groups and the
amalgamated subgroup C is a maximal cyclic subgroup of each factor, is 2-free. It is a
consequence (Corollary 4.2) of the main theorem of this paper that such a group G is in
fact 3-free. Our proof makes strong use of the structure theorem [6, 11] for subgroups
of free products with amalgamation, which was not available when [1] was written.

Our results apply to a broader class of groups than the one described above. Indeed,
it follows from Corollary 4.1 below that if a group G can be built up from free groups by
repeatedly using the operation of forming a free product with an amalgamated subgroup
which is a maximal cyclic subgroup of each factor, then G is 3-free. Furthermore, this
remains true if the operations of forming a free product and an ascending union are
also allowed.

These results are proved by defining a natural class of 3-free groups which includes
free groups and is closed under the operations mentioned above. (Some evidence that
our class is indeed "natural" will be offered in the appendix to this paper.)

In order to describe the appropriate class of groups, we begin by recalling some
standard definitions.

If a group H is given by a finite presentation, the deficiency of the presentation is
defined to be the integer m—n, where m is the number of generators in the presentation
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164 G. Baumslag and P.B. Shalen [2]

and n is the number of relations. The deficiency of an arbitrary presentation of H

is bounded above by the torsion-free rank of the commutator quotient of / / . The

deficiency of a finitely-presented group H is the largest integer that can occur as the

deficiency of a finite presentation for H.

A group / / is said to be freely indecomposable if (i) H is not trivial or infinite

cyclic, and (ii). / / is not a free product of two non-trivial subgroups.

For every integer k we define a class Ck of groups as follows: a group G belongs to
the class Ck if and only if every finitely-generated, freely indecomposable subgroup of
G is finitely-presented and has deficiency at least k. For k ^ k' we have Cj. C Cj./. For
any k, a group isomorphic to a subgroup of a group in Ck is in Ck , and an ascending
union of groups in Ck is in Ck • Any free group lies in Ck for every k, since a free group
contains no freely indecomposable subgroup.

We now turn to some less obvious properties of the classes Ck •

PROPOSITION 1. For any non-negative integer k, the free product of an arbitrary

family of groups in Ck is itself in Ck •

PROOF: Let G = *i^iGi be a free product of groups in Ck- Let H be a finitely-
generated, freely indecomposable subgroup of G. {in particular / / is not infinite cyclic.)
It follows from the Kurosli subgroup theorem that / / is conjugate to a subgroup of one
of the Gi. Hence / / is finitely-presented with deficiency > k. D

The following alternative description of the class Ck will be useful.

PROPOSITION 2. A group G belongs to Ck if and only if for every finitely-generated

subgroup II of G, either (i) H is free of some rank < k, or (ii) II is finitely-presented

and has deficiency at least k.

PROOF: The sufficiency of the stated condition is clear, since a free group is not
freely indecomposable. Conversely, suppose that G belongs to the class Ck, and let H

be any finitely-generated subgroup of G. It is a standard corollary to Grusko's theorem
that H can be decomposed as a free product F*H\ *.. -*Hn, where n is a non-negative
integer, F is a free group of rank in < oo, and each Hi is a freely indecomposable
group. Since G E: Ck, each Hi is finitely-presented and has deficiency di ^ k. Hence
/ / is finitely-presented, and the definition of deficiency implies that the deficiency of / /

?i

is at least m + ^2 di. Hence condition (ii) of the proposition holds unless n — 0 and

m < k, in which case (i) holds. 0

A group G is said to be coherent if every finitely-generated subgroup of G is
finitely-presented. Proposition 2 at once yields:

COROLLARY 2.1. If a group belongs to Ck for some k, then it is coherent.
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[3] Three-free groups 165

PROPOSITION 3. Let k be a non-negative integer. Then any group in the class Cjt

is k-free.

PROOF: Let G be a group in Cfc , and let H be a subgroup generated by fc elements
of G. By Proposition 2, either II is free of rank < fc or if has a finite presentation
with deficiency > fc. But according to a theorem due to Magnus [7], if a group II can
be generated by fc elements and has a presentation of deficiency at least fc, then II is
free of rank fc. Thus in any case / / is free. D

We can now state our main result and derive its principal consequences.

THEOREM 4. Let G — K *c K' be a free product with amalgamation. Suppose

that K and fc' belong to C$ and that C is a maxima] cyclic subgroup of both K and

K'. Then GeC3.

Before proving Theorem 4 we shall point out some corollaries.

COROLLARY 4.1 . Let C denote the smallest class of groups with the following

properties:

(j) every free group is in C, and the free product of any two groups in C is

itself in C;

(ii) any group isomorphic to a subgroup of a group in C is itself in C, and

any ascending union of groups in C is itself in C;

(iii) if G = K *c K' *s a h'ee product with amalgamation such that K and

K' belong to C and C is a maximal cyclic subgroup of both K and K',

then G is in C.

Then every group in C is 3-free.

PROOF: It follows from Proposition 1, the remarks preceding Proposition 1, and
Theorem 4, that conditions (i) - (iii) of the statement of the corollary hold if C is
replaced by C3. Hence C C C3. But every group in C3 is 3-free by Proposition 3. D

Note that the proof of Corollary 4.1 also shows that every group in the class C is
coherent. (One uses Corollary 2.1 in place of Proposition 3.) The fact that the groups
in C are coherent is not a new result; it is contained in a more general result due to
Karrass and Solitar [6, Theorem 8]. Our proof that every group in C is coherent is
essentially the same as the one in [6].

As a special case of Corollary 4.1, we have:

COROLLARY 4.2. If G = F *c F' is a free product with amalgamation such that
F and F' are free groups and C is a maximal c/clic subgroup of both F and F', then
G is 3-free.
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166 G. Baumslag and P.B. Shalen [4]

As we indicated above, the proof of Theorem 4 uses the structure theorem for
subgroups of free products with amalgamation [6, 11]. We have found it convenient to
use this theorem in the form presented by Bass and Serre in [11]. We shall begin by
reviewing some elementary notions from [11].

First recall that a graph F is defined by two sets V = V? and E = E ? , two maps
I = Ir, T = Tr- E —* V, and a fixed-point free involution a = a? of E such that
I o (T = T and T o a = I. The elements of V and E are called vertices and oriented
edges. For any it G E we call / ( ~~e ) and T{ ~~e ) the initial point and terminal

point of e . The orbits of a are called edges. We shall write e for the underlying edge
{~e*,cr( ~e* )} of the oriented edge ~e* ; we call e and <r(e) the orientations of e. The
vertices /( ~e*) and T( ~e* ) are the endpoints of e. If /( ~e ) = T( ~e*) we call e a
/oop. We shall let E(r) denote the set of all edges of F.

A subgraph 1" of F is determined by subsets V and £ ' of V and 1? such that

<r( I f ) = ^ and T( if ) U /( if ) C V.

The graph F is connected \i lot any v,u; 6 V there exist eTj*, . . . , e^ € i? such
• that /( ~e~l ) = t>, T( e^ ) = w, and T( i / ) = I(ei+i) for t = 1, . . . , n — 1. Any graph is
the disjoint union of its maximal connected subgraphs, called its connected components.

A graph of groups is a pair (F, Q), where F is a connected graph and Q is a function
that assigns to each vertex or edge c of F a group G{c), and to each oriented edge ~e
a monomorphism j ' : Q(e) —> Q(T( ~~e ) ) . Note that any subgraph A of F inherits
the structure of a graph of groups (̂ 4, Q\A).

As in [11], we assign to a graph of groups (F, Q) a group Ti(F, Q), its fundamental
group. We shall recall some properties of ^ ( F , Q) that characterise it.

If F consists of a single vertex v then 7Tj(F, Q) = Q(v). For any graph of groups
(F, Q) and any subgraph A of F there is a monomorphism from TV\{A, Q) to 7ri(F, Q),
canonically defined modulo inner automorphisms of 7Ti(F, Q). In particular, for each
vertex of F there is a monoinorphism A = A£: Q{v) —» ^ ( F , Q) which is canonical
modulo inner automorphisms of ^ ( F , Q).

If e is an edge of F we can describe ^ ( F , Q) as follows. Let T{ and ej denote
the two orientations of e, and set <ij = T( e^ ). Let A denote the graph obtained from
F by removing the edge e. If A is disconnected then it has two connected components
Ai and A2, where Oj 6 Ai\ in this case 7Ti(F, Q) is a free product with amalgama-
tion 7rj(i4.i, G\Ai)*g(e) ir\(A2, ^ | J42) , where (/(e) maps to TTi(Ai, G\Ai) by the natural
monomorplusm Xai o j ' * . Likewise, if A is connected then 7Ti(F, G) is an HNN ex-
tension ITI(A, G\A)*g(e), where G{e) rnaps to ^1(^4, G\A) by the two monomorphisms
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[5] Three-free groups 167

For a finite graph F the above facts can be applied recursively to give a description
of 7rj(F, Q). (It is shown in [11] that the group so described is uniquely defined.) If F
is an infinite graph then the groups TTI(A, Q), where A ranges over the finite subgraphs
of F , form a direct system in which the maps are monomorphisms; we may then recover
•"•i(r, G) as the direct limit of this system.

If (F, Q) is a graph of groups and e is an edge of F, there is a monomorphism

\e — \T
t; Q(e) —» 7Ti(F, Q) given by Ae = Aw _.x o j ' , where "e* is an orientation of

e; like the maps Xv, this map is defined only modulo inner automorphisms, but it is

readily seen to be independent of the choice of the orientation ~e .

A subgroup of 7r1(F, Q) will be called a vertex group or edge group if it is conjugate

to a subgroup of the form Xv[Q{v)) or Xe(Q(e)).

In the proof of Theorem 4 we shall need the following construction.

Let (F, Q) be a finite graph of groups and let e^ be an oriented edge of F . Set

TQ = a{~k~\), vo = I( ~e~o ) and vi = T( e j ) . Let us suppose that (i) vo ^ v\ and

(ii) j ' 1 maps G{e\) isoinorphically onto Q(vi). We shall express these conditions

by saying that E^ is contractible. Note that we have a monomorphism I = je° o

(J*fi:G(vi)-*G(vo).
We can obtain a connected graph F' from F by "contracting" the edge ei in the

following sense. We define Vpi to be the quotient of the set Vr obtained by identifying

the two elements v<> and « i . We write p: Vr —* Vpi for the projection map and set

v'o = p{v0). We set ~E ri = E r - {e? , <r( e^ )} , /r> = p o / r , Tri = p o Tr and

<rr, = ar | ~E*r>- Note that E{V) C ^ ( F ) . Next, we define a graph of groups ( F \ G').
For each e e £(F ' ) C jB(r) we set G'(e) = G{e). We define G'{v'o) to be G'{v0).
If v' G V(T') - {v'u} then v' — p(v) for a unique v G V'(F); in this case we set

G'(v) = G(v). If ~t G ~E*r> C ^ r and T{t)^v1 we set j ^ f = j / . On the other

hand, if ~~e G E ri and T( ~e ) = Vi then we set jg, = I o jf .

The graph of groups (I", G') is said to be obtained from (F, G) by contracting ~e~t.
The gist of the followiug lemma is that this operation does not change the fundamental
group.

LEMMA 5. Let T\ be a contractibie edge in a finite graph of groups (F, G) • Let

(V, G') be obtained from (F, G) by contracting ~e~\ . Let p: V~r —» Vr; denote the

projection map. Then there is an isomorphism J: ^ ( F , G) —> "^(F1, G') such that,

modulo inner automorphisms of TT1(1", G'), we have

(i) J o A£ = ALrj for every v G Vp , and

(ii) J o A£ = Af for every e € £(F ' ) C
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168 G. Baumslag and P.B. Shalen [6]

PROOF: We argue by induction on the number of edges of F. First suppose that

ei is the only edge. Since ei is contractible, ey is not a loop; hence F has exactly

two vertices, VQ = I(e~i ) and v\ — T( e~j* ). The group 7Ti(F, Q) is a free product

with amalgamation Q{vo) *c(et) 0{vx)- Since ~e~i is contractible, j e i maps G{e\)

isomorphically onto G(?i)- Thus 7ri(F, G) is canouically isomorphic to G(i>o)- On the

other hand, I" has a single vertex v' in this case, and 7ri(F', Q) = Q(v') — Q(v0).

The resulting canonical isomorphism between 7Ti(F, Q) and TTI(F', Q') is readily seen

to satisfy (i) and (ii).

Now suppose that F has more than one edge. Let e be an edge different from ej.
Let A be the graph obtained from F by removing e. Consider the case where A is
connected. In this case (A, Q\A) is a graph of groups, and e^ is a contractible edge
of (A, G\A). Furthermore, the graph of groups obtained from (.4, G\A) by contract-
ing "e*i is canonically isomorphic to (A1, G'\A'), where A' is the (connected) graph
obtained from I" by removing the edge e. By the induction hypothesis there is an
isomorphism JA ' Ki(A, G\A) —* n^A', £'|.4') such that

(i A ) JA O X* = *p(v) f o r e v e r v v $ VA 7 and

(iiA) JAO\? = X*' for every e G E(A') C E{A).

Now 7n(r, G) is an HNN extension 7n(A, G\A)*g(e), and 7ri(F', G') is an HNN
extension TTI(.A', G\A')*g(e). It follows from (i^) and (HA) that the isomorphism JA

is compatible, modulo inner automorphisms of n\(A', G\A'), with the monomorphisms
from G{e) to iri(A, G\A) and iri(A', G\A') involved in these HNN extensions; thus J\

extends to an isomorphism / : 7Ti(F, G) —* Ti(F', G')- It is easy to check that J satisfies
(i) and (ii). This completes the induction in the case where A is connected. If A is
disconnected the argument is the same, except that free products with amalgamation
appear in place of HNN extensions. D

The next lemma is essentially contained in [0]; we have included an explicit proof
for the sake of convenience.

LEMMA 6. Let (F, G) be a finite graph of groups. Suppose that G{e) is finitely-

generated for every e G -^(F) and that 7r1(F, G) is finitely-generated. Then G(v) is

finitely-generated for every v G

PROOF: It is a special case of [6, Theorem 4] that if a free product with amal-
gamation A *c B is finitely-generated and the amalgamated subgroup C is finitely
generated, then the factors A and B are finitely-generated. Similarly, by [6, Lemma
3], if an HNN extension A*c is finitely-generated and the associated subgroup C is
finitely-generated, then the base group A is also finitely-generated. The lemma follows
from these facts by virtue of the recursive definition of 7Tx(F, G) given above. U
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The next four lemmas are intended to summarise information that will be needed

for the proof of Theorem 4.

LEMMA 7. Let (F, Q) be a finite graph of groups in which all the vertex groups are

finitely-presented and all the edge groups are cyclic. Then 7r1(F) Q) is finitely-presented

and its deficiency is at least 1 + J ] (dv — 1), where v ranges over the vertices of F , and
V

where dv denotes the deficiency of G(v).

PROOF: We use induction on the number n of vertices of F. For n = 1 the

assertion is obvious. If n > 1 then the graph F has at least one edge e. The graph

A obtained by removing the edge e from F has one or two connected components.

If A has two components A\ and A2 then T I ( F ) is the free product of iri(i4i, S|^4i)

and Wi(A2, ^ ^ 2 ) with the cyclic amalgamated subgroup G(e). Hence the deficiency

of 7r1(F, G) is at least dt + d2 — 1, where di is the deficiency of ir1(Ai, G\Ai). The

induction step follows at once in this case. If A is connected then 7Ti(F, G) is ail HNN

extension with base group ni(A, G\A) and cyclic associated subgroup £7(e). Hence in

this case the deficiency of ^ ( F , G) is at least that of i^\{A, G\A). Again the induction

step follows. U

Recall that a subgroup C of a group K is malnoj~mal if for every x 6 K — C we

have xCx^nC = {!}.

LEMMA 8. If K is a group in the class Ci, then any maximal cyclic subgroup of

K is malnormal.

PROOF: Let C be a maximal cyclic subgroup, and let x £ K — C be given. Let

y be a generator of C. Since K £ Ci, it follows from Proposition 3 that the subgroup

/ / of K generated by x and y is free of rank at most 2. If H has rank ^ 1 then

it is a cyclic subgroup containing C; hence II = C. This is impossible since x <fc C.

Hence / / has rank 2 and is therefore freely generated by x and y. It follows that

xCx~lr\C = {\}. D

LEMMA 9. If the hypotheses of Theorem 4 hold, then C, K and K' are mainormaJ

in G. Furthermore, if H is any finitely-generated subgroup of G, then U is isomorphic

to the fundamental group of a finite graph of groups (F, G) with the following properties:

(i) every vertex group of (F, G) i s either a free group of rank < 2 or a

finitely-presented group of deficiency ^ 3;

(ii) the edge groups and vertex groups of (F, G) are all malnormal in H;

(iii) every edge group of (F, G) is infinite cyclic or trivial.

PROOF: It follows from Lemma 8 that C is malnormal in K and K'. This implies,

by a straightforward application of the normal form (see B.H. Neumann [9]) for elements
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of a free product with amalgamation, that C, K and K' are mahiormal in G =

To prove the second assertion, we regard G as the fundamental group of a graph
of groups in which every vertex group is conjugate to K or K' and every edge group
is conjugate to C. By [11, Theorem 12], G acts on some (simplicial) tree X in such
a way that the stabiliser (in G) of every vertex of X is conjugate to K or K', and
the stabiliser of every edge of Ar is conjugate to C. Now let H be a finitely-generated
subgroup of G. By restricting the above action of G on X, we obtain an action of H

on X under which the stabiliser of every vertex of X is the intersection of H with a
conjugate of K or K' in G, and the stabiliser of every edge of X is the intersection of
/ / with a conjugate of C in G. Hence by [11, Theorem 13], H is the fundamental group
of a graph of groups (F, G), where each vertex group of iri(Y, Q) is the intersection
of H with a conjugate of K or K' in G, and each edge group of 7Ti(r, Q) is the
intersection of H with a conjugate of C in G.

By the above discussion of graphs of groups, H = ^ ( F , Q) is the direct limit
of the groups 7T1(,4, Q), where A ranges over the finite subgraphs of F; the maps in
the direct system are monomorphisms. Since / / is finitely-generated, it follows that
/ / = Ti(F' , Q) for some finite subgraph F' of F . Hence we may assume that F is a
finite graph.

The vertex groups of F are 'finitely generated by Lemma 6, and are conjugate to
subgroups of K or K', which belong to the class C3; thus it follows from Proposition
2 that conclusion (i) of the lernma holds. Likewise, (iii) holds because the edge groups
are conjugate to subgroups of the cyclic group C. Finally, each vertex group or edge
group in 7ri(F, Q) is the intersection of H with a conjugate of if, K' or C; since the
latter subgroups are malnormal in G, it is clear that the vertex groups and edge groups
in wi(r , G) are malnormal in H. Q

LEMMA 10. Suppose that the hypotheses of Theorem 4 hold, and that H is a
finitely-generated, freely indecomposable subgroup of G. 1'hen If is isomorphic to the

fundamental group of a finite graph of groups (Fo, £0) with the following properties:

(i0 ) every vertex group of (Fo, £0) is either a free group of rank 2 or a finitely

presented group of deficiency ^ 3;
(iio) the graph FQ has no loops;

(iii0 ) every edge group of (To, Qo) is infinite cychc.

PROOF: Among all finite graphs of groups (F, G) satisfying conditions (i) - (iii) of

Lemma 9 and having fundamental group isomorphic to / / , choose one, say (Fo, Gn)>

whose underlying graph Fo has the smallest possible number of vertices. We claim that

(F, G) satisfies (ig) - (ii i0).

We establish (iii0 } first; this amounts to showing that no edge group of (FQ, GO)
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[9] Three-free groups 171

is trivial. Suppose that Q»{e) is trivial for some edge e. The graph A obtained from
To by removing the edge e has one or two connected components. If A has two
components Ai and Ai, then ^ ( F o , GO) = n^Ai, Gi)*^i(A2, G2), where Gi — Go\Ai.

Since II is freely indecomposable, one of the factors, say w\{Ai, G\), is trivial. But
then / / = ^\{Az, G2); since A2 has fewer vertices than F o , this contradicts our choice
of (Fo, Go)- If A is connected then ni(TQ, Go) = ^i{A, Go\A) * Z; this contradicts the
hypothesis that II is freely indecomposable.

Next we establish (ii 0)- If e is an edge of Fo having both its endpoiuls at a
vertex v, and A is the subgraph of F consisting of the vertex v and the edge e,
then fti(A,Go\A) < 7ri(F0£u) — H < G is an IINN extension with base group G»(v)
and associated subgroup £/(e). By (iiio)) G{e) is infinite cyclic. Hence Go(v) is not
maJnormal in / / . This contradicts condition (ii) of Lemma 9.

To prove ( i 0 ) we must show that no vertex group of (Fo, Go) is infinite cyclic or
trivial. Suppose that Go(v) ls trivial or cyclic for some v. If v is not incident to any
edge of Fo then the graph Fo consists of the vertex v alone; in this case we have
H = Go{v), so that / / is itself cyclic or trivial. This contradicts the hypothesis that H
is freely indecomposable.

Now suppose that there is an edge e of Fo incident to v. By (ii 0 ) , e is not a
loop. By (iiio)) Go(e) is infinite cyclic; by (ii) it is malnormal. It follows that Go{e) is a
maximal cyclic subgroup of G. Since H is cyclic, the map j t , v ' Go{e) —* Go{v) must be
an isomorphism. Thus e is a contractible edge. Let (F, G) denote the graph of groups
obtained by contracting e. By Lemma 5, there is an isomorphism between irj(r, G)

and iri(Fo, £0) that takes edge groups to edge groups. Thus H can be identified
isomorphically with 7T1(F, G) in such a way that condition (ii) of Lemma 9 holds. It is
clear from the definition of contraction that (F, G) also satisfies conditions (i) and (iii)
of Lemma 9, and that F has fewer vertices than Fo . This contradicts the definition of

(ro,e«). D

PROOF OF THEOREM 4: Let / / be a finitely-generated, freely indecomposable
subgroup of G. Let us exhibit H as the fundamental group of a graph of groups F, Q

satisfying conditions (io ) - (iiio ) of Lemma 10. Condition (io ) implies that each vertex
group of F, G is finitely presented and has deficiency > 2. Hence if F has at least two
vertices, it follows from Lemma 7 (and condition (iiio)) that H has deficiency > 3.

Now suppose that F has a single vertex i>. By condition (iio) of Lemma 10
it follows that F has no edges, that is it consists of the vertex v alone. Therefore
II = G{v). Since II is freely indecomposable, it now follows from condition ( i0) that
H is finitely-presented with deficiency at least 3. U
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APPENDIX

The classes Ck, for k G N, seem to be of independent interest. For example, in this

appendix we shall show that many 3-manifold groups belong to Cj, for suitable positive

values of fc. (That 3-inanifold groups are coherent was proved by Scott [10] and Shalen

(unpublished).) As an application of our result we shall give a criterion (Corollary Al)

for subgroups of 3-manifold groups to be free; this criterion generalises the closed case

of [5, VI.4.1J (see also [13]).

In the following discussion we shall work, in general, in the piecewise-linear cate-

gory. A 3-manifold M is irreducible if every (PL) 2-sphere in M bounds a ball. (For

relevant background in 3-manifold theory, see [3] or [4].)

For any integer g ^ 0, let Sg denote the closed orientable surface of genus g. For

example, ni(Sx) is free abelian of rank 2.

THEOREM A. Let M be a non-compact, irreducible, orientable 3-manifold, and
set G = ITI(M). Let h be a positive integer, and suppose that G has no subgroup
isomorphic to ni(Sg) tor any g < k. Then G G C*.

PROOF: Let H be any freely indecomposable, finitely-generated subgroup of G.

By elementary covering space theory, II is isomorpliic to the fundamental group of

some covering space M of M. Since M is non-compact, so is M. According to the

sphere theorem of Papakyriakopoulos [3, Chapter 4], the irreducibility of M implies

that TT2(M) = 0. Hence IT2(M) - 0.

By [10], the manifold M has a compact core, that is, it contains a compact (con-

nected) manifold-with-boundary TV C M such that the inclusion N <—> M induces

an isomorphism of fundamental groups. Since M is non-compact, TV has non-empty

boundary.

Among all compact cores for M, let us suppose TV to be chosen so as to have

the smallest possible number of boundary components. Then no component of TV is a

sphere. (Indeed, since ^(MJ — 0, any sphere component S of dN would bound a

compact, sirnply-connected submanifold B of M: see [8, Proof of Theorem 2). Since
N is connected we would have N C B or TV D B = S. But TV C B would imply
that 7T1(7V) = {1}, contradicting the free indeconiposability of H = TTI(TV). If we had
TV D B = 5", the manifold TV' = TV U B would be a compact core for M having fewer
boundary components than TV.)

We claim that for every component X of dN, the inclusion X <—> TV induces a
monomorphism of fundamental groups. Indeed, if the induced homomorphism Ti(A") •—>
7Ti(TV) has a non-trivial kernel, then by the loop theorem of Papakyriakopoulos [3,
Chapter 4], some non-trivial element of the kernel is represented by a simple closed
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curve 7 C X , and 7 bounds an embedded disk D in N with 3D = D H dN. If N - D

is connected, it follows from van Kampen's theorem that ni(N) = n\(N — D) * Z; this
contradicts the free indecomposability of II = TTI(N). If N — D is not connected, it
has two components A and B. Since 7 is homotopically non-trivial in dN, each of
the manifolds A and £ has a positive-genus boundary component; hence TTI(A) and
Ki(B) are both non-trivial. But van Kampen's theorem gives TTI(N) = TTI(-A) * K\(B),

and again the free indecomposability of II is contradicted. This proves the claim.

Thus for every component X of dM, the group 7Ti(X) is isomorphic to a subgroup
of / / and hence to a subgroup of G. Since no component of dN is a sphere, the
hypothesis of the theorem implies that each component has genus at least k. Since
dN ^ 0, it follows that x{9N) ^ 2 - 2k, where x denotes Eider characteristic. By
Poincare-Lefschetz duality we have X(N) = {l/2)x{dN) < 1 - Jfc.

As N is a compact connected 3-manifold with non-empty boundary, it is homotopy-
equivalent to a finite CW complex K. After collapsing a maximal tree in the 1-skeleton
of K to a point, we may suppose that K has a single vertex. If m denotes the number
of 1-cells in K, and n the number of 2-cells, then H = iri(K) has a presentation with
m generators and n relations. On the other hand, we have 1 —m-\-n = x{K) = x{N) =

(l/2)x{0N) < 1 - k, so that m — n ^ k. This shows that H is finitely-presented and
has deficiency at least k, and completes the proof of the theorem. U

COROLLARY A l . Let G be the fundamental group of an irreducible, orientable 3-
manifold. Let k be a positive integer, and suppose that G has no subgroup isomorphic

to 7ri(5g) for any g < k . Then any finitely-generated, freely indecomposable subgroup

of infinite index in G has deficiency at least k. In particular, any infinite-index subgroup

of G generated by at most k elements is free (of some rank ^ k ) .

PROOF: If G — TTI(M) then any II ^ G is isomorphic to the fundamental group of
some covering space M of M . If H has infinite index in G then M is non-compact, so
that / / € Ck by the theorem. Hence if / / is finitely-generated and freely indecomposable
then it has deficiency at least k. This proves the first assertion. It follows that every
infinite-index subgroup of G belongs to the class Ck • Hence by Proposition 3, if an
infinite-index subgroup of G is generated by at most k elements then it is free. D

The case k = 2 of Corollary Al includes the closed case of VI.4.1 of [5]. One can
also prove a version of Corollary Al that includes the bounded case of [5, VI.4.1]; we
leave the details to the reader.

COROLLARY A2. Let G be the fundamental group of an irreducible, orientable

3-matii/uid M. Let k be a positive integer, and suppose that

(i) rank //i(A/;Q) = ran* Ih(G;Q) > k, and
(ii) G has no subgroup isomorplu'c to Tti(Sg) for any g < k.
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Then G is A;-free.

PROOF: It follows from (i) that every A-generator subgroup of G has infinite index.
Hence the assertion follows from Corollary Al. D

For example, G = 7Ti(M) is 2-free provided that / /^MjQ) has rank at least 3
and G contains no free abelian group of rank 2. (The latter condition holds if M is
hyperbolic; see [2].)

In [12] it will be shown that if fc is a positive integer, and M is an orientable
3-manifold such that

for some prime p, then any k elements of TTI(M) generate an infinite-index subgroup.
Hence Corollary A2 remains true if (i) is replaced by (*). For example, if an orientable
hyperbolic 3-manifold M satisfies rank H1(M;ZP) > 6 for some prime p, then TTI(M)

is 2-free. Some applications of this fact will be given in [12].
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