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PERIODIC SOLUTIONS OF SOME DIFFERENTIAL DELAY
EQUATIONS CREATED BY HAMILTONIAN SYSTEMS

JIBIN Li, ZHENGRONG LIU AND XUEZHONG H E

This paper is concerned with finding periodic solutions of differential delay systems

t = l

and

where r< (t = 1,2, •• • ,n — 1) are positive constants. By using the theory of Hamil-
tonian systems, we obtain some sufficient conditions under which these systems
have many periodic solutions with known periods.

1. INTRODUCTION

In this paper we deal with the existence of periodic solutions of the differential
delay equations

(1.1) *'(0 =
t=i

and

(1.2) x'(t) n

where rt > 0 (i = 1,2, • • • , n — 1) are constants and Si = 1, S{ = ±1 for i ^ 2.

In 1974, Kaplan and Yorke [11] studied equations of the forms

(1.3) x'{t) - -f(x(t - 1))

and

(1.4) *'(*) = - [f(x(t - 1)) + f(x(t - 2))],
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378 J. Li, Z. Liu and X. He [2]

when / is an odd function. They connected the equations (1.3) and (1.4) to coupled
ordinary differential equations and derived some precise conditions under which the
equations (1.3) and (1.4) have periodic solutions of period 4 and 6 respectively. By
developing the technique of Kaplan and Yorke, numerous results have been established
on the existence of periodic solutions for some differential delay equations with one or
two delays (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,16]). For more general equations of
the form

(1.5) z'(i) = -

Kaplan and Yorke conjectured that when / is a suitable odd function, the equation (1.5)
has periodic solution of period 2n. In 1978, using some general fixed point principles of
nonlinear functional analysis, Nussbaum [13] proved that the Kaplan-Yorke conjecture
is correct. The problem and results given by Nussbaum [13] are more general, but the
idea of the proofs is completely different from that of Kaplan and Yorke [11]. In our
recent paper Li and He [12], we shown that the same technique of Kaplan and Yorke
can also be used to prove their conjecture and obtained some more generalised results
on the existence of many periodic solutions of the equation (1.5) if /'(0) = w > 0. One
of the main results of [12] is contained in the following Theorem A which will be used
repeatedly in our discussion in this paper. In [12], we considered the delay differential
equation

(1.6) At) = -Y,f{x(t-n))

where r* (i = 1,2, • • • , n — 1) are positive constant delays. In order to find the periodic
solutions of (1.6), we introduce an associated ordinary differential system

(1.7) ^ = AnVH{Y)

and a symmetry group G ^ = {g \ g = T™, m = 1,2, • • • , 2n}, where Y =
rp

(yi>2/2, • • • ,Vn) , (T denotes the transpose). The function

(1.8)
t = i

is called a Hamiltonian, F(x) = /Q
x f(s)ds for x £ R, VH(Y) denotes the gradient
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of H(Y),

(1.9)

and

An =

0 - 1 - 1
1 0 - 1
1 1 0

1 1 1

\ 1 1 1

Tn =

- 1 - 1
- 1 - 1

0 - 1
1 0 )

where In-\ is the (n — 1) x (n — 1) identity matrix.

To investigate the existence of periodic solutions of (1.7) and hence (1.6), we con-
nect (1.7) to two associated coupled Hamiltonian systems

(1.10)

and

(1.11)

^- = A2kVH(X), for n = 2k
at

at
for n =

where X = (xi ,x2 , - -- ,x2k) ,

(1.12) H(X) = H(xu x2, • • • , x2k) = F{xx) + F(x2) -f

H*(X) = H*(xux2,-- • ,x2k) = F(Xl) +F(x2)

( k

^2(X2
t= l

A2k is defined by (1.9).

Throughout this paper we assume that

F(x2k),

+ F{x2k)

(Hi)
the function f{x) 6 Cl{R), f(-x) = -f{x), /(0) = 0, /'(0) = w > 0,

xf(x) > 0 for x / 0 and 0 < x < A, where A is a constant.

As shown in [12], under this assumption, the linearised systems of (1.10) and (1-11)
have respectively A; pairs of purely imaginary eigenvalues (see [12, Lemma 3.1]):

(2q+l)n
I a:&7,7 = :riu> laii

(1-14)
= 1,2, •••,ljLr-- for n = 2fc+l .

n

±17, = ±icj tan —,

q = 0 , 1 , • • - . g - l

n - 1

f o r = 2k,
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Based on [12, Theorem 3.6], the systems (1.10) and (1.11) have respectively k distinct
families {F9} of periodic solutions in a neighbourhood of the origin and each family
{F9} depends on one parameter eq. If eq ->• 0, then the corresponging orbit tends to
the origin and its period Tqteq tends to 2ir/7g for n = 2k and 27r/7g for n = 2k + 1,
respectively. For every q defined by (1.14), let

j l = 2k-(2q + l) or q = (2k - I - l)/2, for n = 2k,

[ / = (2ifc + 1) - 2g or ? = ( 2 i t - l + l ) /2 , for n = 2k + l.

THEOREM A. Suppose that the condition (Hi) holds.

(i) When n ̂  jl (for 2 ̂  j ^ n / 3 , I odd and 3 ̂  I ̂  k), for a real fj. satisfying
TqiEq = 2n/j. < 27r/7q(27r/7<j) with Tqt£q sufficiently close to 2ir/~fq(2-K/'jq), take r< =
(i + 2nmi)ln where I is defined by (1.15), that is, suppose the following holds:

there exist nonnegative integers mi, m.2, • • • , j n n - i (not necessary

distinct) such that the delays r< (i = 1,2, • • • , n - 1) of (1.6) satisfy

, l g s n _ r2 — ... — r i rn-i ,

1 + 2nmi 2 + 2nm,2 i + 2nrrii (n — 1) + 2nmn_i

Then every family {Tq} of periodic solutions of (1.10) ((1.11)) yields a periodic solution
of period 2n\x of (1.6).

(ii) When n = jl0 (for 2 ^ j ^ n/Z,l0 = 2k - (2g0 + 1 ) or /0 = (2A; + 1) - q0

fixed), for a real \i satisfying TqOiEq = 2jn < 27r/7go(27r/7Qo) with Tqo<Eq suffi-
ciently close to 27r/7go(27r/7gO), take rt = (i + 2jm,i)lfi for some nonnegative integers
mi, m2, •" • j Tnn-\ (not necessary distinct), this means that the delays of (1.6) satisfy

( ' ' 1 + 2jmi ~ 2 + 2jm2 ~ ~ (n - 1) + 2jmn_i ~ M'

Then the family {F9"} of periodic solutions of (1.10) ((1.11)) yields a periodic solution
of period 2j/x of (1.6).

In this paper we obtain some sufficient conditions on the existence of periodic
solutions of differential delay equations (1.1) and (1.2) with certain given periods and
symmetries. The method we use in this paper follows from that in [12] and [8]. Namely,
it consists of two steps. First, we connect the delay equations to their coupled Hamilto-
nian systems and show that the existence of a periodic solution of the delay differential
equations can be obtained from their coupled Hamiltonian systems. Then, using the
theory on the existence of periodic solutions of Hamiltionan systems and the related
results in [12], we derive the existence of periodic solutions of the delay differential
equations. The paper is divided into three sections. In Section 2 we investigate the ex-
istence of periodic solutions of the equation (1.1). Then the results obtained in Section
2 and [12] are generalised to the wider classes of equations (1.2) in Section 3.
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n- l
2. P E R I O D I C SOLUTIONS OF THE EQUATION x'(t) = J2 f(x(t — r^)).

In this section we study the existence of periodic solutions of the differential delay
equation

n - l

(2 11 r'(t) —
I ^ . 1 1 Ju \y j —

where / is a suitable odd function and r̂  > 0 (i = 1,2, • • • , n — 1) are constants.
Associated with the equations (2.1), we consider the following ordinary differential
system

(2.2) ^ = -AnVH(Y)

where An, Y and H are defined as before.

It can be shown that in both cases n = 2k and n = 2k +1, the system (2.2) can be
related to the following Hamiltonian system, which is called the coupled Hamiltonian
system of (2.1),

I -y

(2.3) — = -A2kVH(X), for n = 2k
at

and

(2.4) ^ =-A2kVH'{X), for n = 2fc + l,
at

where H(X) and H*(X) are defined by (1.12) and (1.13). Let X(t) be a periodic
solution of the coupled systems of (2.1). Then, obviousely, X(t) is a periodic solution
of (2.2) when n — 2k. In the case of n = 2k + 1, X(t) is the periodic solution of

(2.4). Take Y(t) = (X(t),x2k+i(t)) in which x2k+1 = " ^ [*«(*) - x2i-i{t)], then one

can verify that Y{t) is a solution of (2.2) and it is also a periodic solution. Hence, to
find the periodic solutions of (2.2), we only need to study the coupled 2k-dimensional
Hamiltonian systems (2.3) and (2.4).

Note that the systems (2.3), (2.4) and (1.10), (1.11) are autonomous systems. Let
t in (2.3) and (2.4) be replaced by —t. Then the systems (2.3) and (2.4) are reduced
to the systems (1.10), (1.11), respectively, and hence the systems (2.3), (2.4) have the
same type of solutions as (1.10), (1.11) except the corresponding orbits have opposite
time direction. Therefore, the existence theorems of periodic solutions of Hamiltonian
systems in [12, 1.10 and 1.11] can be used for the systems (2.3) and (2.4).
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LEMMA 2 . 1 . For the linearised systems x = -wA^x and x — - w A ^ i of (2.3)

and (2.4), corresponding respectively to the pairs ±ryg and ±«7g of eigenvalue

and uiA^k, there exist k families of periodic solutions as follows:

(2.5)

and

X

(2.6)

where a = (a + i(3)/2, q = 0,1, 2 , . . . , k - 1 for n = 2k and q = 1, 2 , . . . , k, for
n = 2k + 1. Moreover, we have for n — 2k

(2.7) X?(t) = T£X1 (t + 2k~%+1)Tq) = l£X?(t + ±-

where Tq = 2n/iq, / = 2k-(2q + 1); and for n = 2k+l letting x$+1(t) = J2

4?-iW], Yq(t) = {Xq(t),x
q

2k+1(t)), we have

(2.8) Yq
T (t) = T-^Yj (t + {2t+*] ~,29T^) = T^.J* (t + &;),

where Tg* = 2ir/7,, i = (2fc + 1) - 2q.

P R O O F : I t is easy to show t h a t (2.5) and (2.6) hold. We now prove (2.7). Similarly,

we can prove that (2.8) holds. Write Xq = (x[q){t),x{^\t), ••• , x{
2
q
k\t)) and

By using [12, Lemma 3.1] and (2.5), we get tha t

Note that
x(

1
9)(0) = a, 4^(0) = - a .
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It follows that

This means that (2.7) holds. D

It is easy to see that the system (2.2) is G^ -equivariant and G^ is also a gen-
eralised symplectic action on Rn, where G^ = {g \ g = T~m, m = 1,2, • • • , 2n}. By
using [12, Lemmas 3.3 and 3.4], we have the following.

LEMMA 2 . 2 . Suppose that the condition (Hi) holds. Then the system (2.3)
((2.4)) has k distinct G^ -orbit families {Tq} of periodic solutions in a neighbourhood
of the origin and each familiy of periodic solutions depends on one parameter eq. If
eq -» 0 then the corresponding orbits tend to the origin and the period Tq<eq < 2n/jq,
q = 0,1,2, • • • , k - 1 for n = 2k (Tqi£q < 2i:/%, q = 1, 2, • • • , k for n = 2k + I),
as eq —> 0, Tq<eq -4 2TT/7, (2TT/79) . Under the generalised symplectic action T~l,
these distinct families {Tq} of periodic solutions satisfy the relations (2.7) and (2.8),
where X^{t) and Yq

T(t) are G^-orbits of periodic solutions of (2.2) for n = 2k and
n — 2k + 1 respectively.

We now suppose

there exist some integers TOJ ̂  1 (t = 1,2, • • • , n — 1) (not necessary distinct)
(H2)

such that the delays ft (i = 1,2, • • • , n — 1) satisfy

in iri\ 7*1 f*t rn—\ 1

2nm.\ — 1 2nm,i — i 2nmn_i — (n — 1)

LEMMA 2 . 3 . Suppose that the conditions (Hi) and (H^) hold. If the system

(2.2) has a 2n^0-periodic solution Yq{t) = ( ^ ( t ) , : ^ ( * ) , - • • ,x^\t)) and n / jl

for 2 ^ j ^. n / 3 , I an odd number, then the equation (2.1) has a periodic solution

x(t)(x(t) = Xi(t)) having period p — 2n/io and satisfying x(t — nfig) = —x(t).

PROOF: By Lemma 2.2, there is a periodic solution Yq(t) of period 2n^o of (2.2).
We have from the relations (2.7) and (2.8) that Y^t) - T~lYj{t + lu.o), where I is
defined by (1.15). This implies

= ( x i { t - l f i o ) , x 2 { t - / M o ) , ••• , x n ( t -

(2.11) =Yq
T(t
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Then, using the condition (H^), we have from (2.10) that

= xi{t + I no) = xi(t- (2n - l)^0)

V 2 n m i - 1 2 n m l J u h

= x2(t + lno) = xi(t + 2lno) =xi(t+ (2n - 2)Z/x0)

/ (2n - 2)r2
= XlV*" 2 2 ~2 n m 2 - 2 2nm2 - 2

xn(t) - -xi(t - lno) = xi(t-(n + l)lfJL0)

(n + l ) r n _ i 2n(mn-i + l)rn_1
>\

- o 7 TT ~ -̂  7 TV =

2n77Zn_i — (n — 1) 2nmn_i — (n — 1) /
Therefore, it follows from the first equation of the system (2.2) that x(t) = xi(t) is

a nonconstant periodic solution of (2.1) with period 2n^o- The relation (T~x) = —/

and the oddness of I show that x(t — n/io) = — x(t). U

Similar to the proof of [12, Theorem 4.1], Lemmas 2.2 and 2.3 lead to the following
result.

THEOREM 2 . 4 . Suppose that the condition (Hi) holds.

(i) When n ^ jl (for 2 ^ j ^ n/Z, I odd and 3 ^ I ^ k), for a real no
satisfying Tq>£q = 2n/i0 < ^/lq{^/lq) w>th Tq:€q sufficiently close to 2-K/jq(2-K/:yq),
take ri = (2nrrii — i)l/j.o where I is defined by (1.15), that is, suppose the condition
(#2*) holds. Then every family {r«} of periodic solutions of (2.3) ((2.4)) yields a
periodic solution of period 2nno of (2.1).

(ii) When n = jl0 (for 2 ^ j < n / 3 , l0 = 2k - (2q0 + 1) for l0 = {2k + 1) - 2q0)

fixed), for real no satisfying TqOtEq = 2j/j,0 < 2-rr/'yqo(2Tr/7yqo) with Tqo>£q suffi-

ciently close to 27r/7qo(27r/79o), take ri — {2jm,i - i)no for some nonnegative integers

'Tii, "*2, • • • , Tin_i (not necessary distinct), that is, suppose the following (H2 J holds:

to 121 r i r2 U rn_i
2jmi - 1 2jm2 - 1 2jm,i - i 2 jmn_i - (n - 1) M0

Then the family {Tqo} of periodic solutions of (2.3) ((2.4)) yieids a periodic solution of

period 2j/j.o of (2.1).

n - l

3. PERIODIC SOLUTIONS OF THE EQUATIONS x'(t) = =F X) &if(x{t - u)).

This section is devoted to the existence of periodic solutions of the following two
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types of delay differential equations:

(3.1) *'(*) = - £ > / ( * ( « - M )
t=i

and

(3.2) At) = J2Sif(x(t-ri)),
i= l

where 6i = +1 or — 1. Let <Tj — [1 — <5j]/2, where [a] denotes the integer part of
a. Clearly Gi = 1 when Si = — 1 and <?i = 0 when <5j = 1, and <5»(—1)cr* = 1.
We shall use the method given by Ge [8] to obtain the existence of periodic solutions
for (3.1) and (3.2). We first assume that n ^ jl for 2 ^ j < n/3 with I odd. Let
T±eq = 2nn±/(2nm+l) (m ^ 0) and f±£ ? = 27r/x±/(2nm - 1) (m > 1). Suppose
that

(H3) for every integer q defined by (1.14),
(3.3) ± T±eq < 2n/-yq(2Tr/%) with T±£q sufficiently close to 271-/7,(27r/7,) •

(3.4) ± f±Cq < 27r/7g(27r/7g) with T±Cq sufficiently close to 2ir/yg(2n/%).

LEMMA 3 . 1 . Suppose that the conditions (Hi) and (H3) hold. The equations

(3.5) ± a W = -

and
n - l

(3.6) ± x'(i) =

have respectively at least one nonconstant periodic solution X^'(t) and X± (t) of
periods 2nn±/(2nm+ 1) and 2nn±/(2nm— 1), created by the periodic family {Tq}
of (1.7) and (2.2), where i and q are defined by (1.15) and

(t - \ T ^ = -XJZHt), Xg (t - i

PROOF: Let rt = ilu.± in (1.6) and (2.1), respectively, and mj = im in (1.16) and
(2.10) where m ^ 0 for (1.16) and m ^ 1 for (2.10). Then the conditions (H2) and
(#2) h°W with \x = fj,±/(2mn+ 1) and ̂ 0 = ^±/{2mn - 1). Consequently, Theorem
A and Theorem 2.4 imply the conclusion of Lemma 3.1. D
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We now suppose that in (3.1) and (3.2), the delays r̂  satisfy

(3.7) n - {{2rrii + cr^n + i)//j+, i = 1,2, • • • ,n - 1

or

(3.8) Ti = ((2mi + (Ti)n-i)ln_, i = 1,2,- • • ,n - 1.

THEOREM 3 . 2 . Suppose that (Hi) holds.

(i) If (3.7) and (3.3) + are satisfied, then equation (3.1) has at ieast one
nonconstant periodic solution of period T+e = 2n/x+/(2mn + 1) created
by the periodic family {Tq} of (1.7).

(ii) If (3.8) and (3.3) _ are satisfied, then equation (3.2) has at ieast one

nonconstant periodic solution of period T~£ = 2n/u_/(2mn + 1) created
by the periodic family {Tq} of (1.7).

(iii) If (3.7) and (3.4) + are satisBed, then equation (3.2) has at ieast one

nonconstant periodic solution of period T+e = 2nfi+/(2mn - 1) created
by the periodic family {V1} of (2.3).

(iv) If (3.8) and (3.4) _ are satisfied, then equation (3.1) has at ieast one

nonconstant periodic solution of period T~e = 2n/i_/(2mn - 1) created

by the periodic family {Tq} of (2.3).

PROOF: We have from Lemma 3.1 that for the solutions X{J!\t) and X^\t) of
(3.5)± and (3.6)±,

(3.9) X^(t - n/i±) = -X$>\t), X^(t - n/i±) - -X^(t).

By the oddness of f(x) and (3.9), we claim that X± (t) and X±\t) are also periodic
solutions of equations (3.1) and (3.2). In fact, if ri (i = 1,2, • • • , n - 1) are defined by
(3.7), then

-Ti)) =6if(x!*)(t-

(3.10) =/(*<?>(*

Similarly,

(3.11) Sif(X^\t - r^ = f(x!°\t -

https://doi.org/10.1017/S000497270003656X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003656X


[11] Differential delay equations 387

Similarly, if r< (i = 1,2, • • • , n — 1) are defined by (3.8), then we have

- ((2m, + at)n - z)//x_

(3.12)

Similarly,

(3.13) 8if{X^\t - n)) = f(x^{t - (n - i)J/i_)).

Thus, we obtain from (3.12)-(3.13) that

(3.14) -

n-1 n-1

t=l

(3.15)

(3.16) £
»=i t=i

^( t - n)) = 2 / ( ^ ( t - (n -
t = l t = l

(3.17)

If follows that X^9)(i) and X^\t) are periodic solutions of (3.1) with periods T+e =

2n/z+/(2nm + 1) and r-£ ( j=2n/x_/(2nm + 1), respectively; A"19)(*) and X(*\t) are

periodic solutions of (3.2) with periods T+eq=2n(i+/(2nm - 1) and T?~£

= 2n^_/(2nm — 1), respectively. This completes the proof. D

We next assume that n = jl0, where 2 ^ j < n /3 , Zo = 2k - (2qo + 1) or
l0 = {2k + l)-2q0, q0 € {0,1,2, •• • , * - l } for n = 2k, q0 e {1,2, • • • ,k} for n = 2A;+1.
In this case we take

(3.18) ri = ((2mi+<ri)i + t)/i+> < = 1,2, • • • ,n - 1

or
(3.19) ri=((2mi+<Ti)j-i)fM+, i = 1,2, • • • ,n - 1.
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Write T±, e , = (2 j>±) / (2 jm+ 1) (m ^ 0), and f± | £ g - (2j>±)/(2im - 1) (m £ 1).
We next suppose that for the integer 90 defined by (1.15) with I = l0,

(3.20) ±
T±)£g <27r/790(2Tr/790)with T^Cg sufficiently close to 2n/jQ0{2n/%Q)

(3.21)±
? « , « , < 2 7 r / ^ o ( 2 7 r /%o) w i t h TLeq

 a r e sufficiently close to 27r/7go(27r/79o)

D
THEOREM 3 . 3 . Suppose that (Hi) holds.

(i) If (3.18) and (3.20) + are satisfied, then equation (3.1) has at ieast one
nonconstant periodic solution of period T,+ £ — 2jn+/(2mn + 1) created
by the periodic family {V">} of (1.7).

(ii) If (3.19) and (3.20) _ are satisfied, then equation (3.2) has at ieast one
nonconstant periodic solution of period T~Q e = 2j/i_/(2mn + 1) created
by the periodic family {r<?o} of (1.7).

(hi) If (3.18) and (3.21) + are satisfied, then equation (3.2) has at ieast one
nonconstant periodic solution of period T*Qt — 2jfj.+/(2mn — 1) created
by the periodic family {1^°} of (2.3).

(iv) If (3.19) and (3.21) _ are satisfied, then equation (3.1) has at ieast one
nonconstant periodic solution of period T~Q e = 2j^_/(2mn - 1) created
by the periodic family {T<>°} of (2.3).

PROOF: Consider equations
n- l

(3.22)± *'(«) = "
t = l

and
n - l

(3.23) ± *'(<) =

Applying Lemma 3.1 to (3.22)± and (3.23)± with / replaced by lo in (3.5)± and

(3.6)± , we get from Theorem A and Theorem 2.4 that equations (3.22)± and (3.23)±

have respectively at least one nonconstant periodic solution XQ±\t) and XQ± (t) of

periods T±t£q = 2ju.±/(2mj + 1) and T±|Eg - 2jM±/(2mj - 1), satisfying

(3.24) X{™\t

Obviously

(3.25) X^ (t - n M ± ) = X^(t - jJ0M±) = 4± o ) (* -
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Similarly,

(3.26) X$\t-nv±) = -Xlg)(t).

By the same discussion as in the proof of Theorem 3.2, we obtain the conclusion
of Theorem 3.3. D

REMARK 3.4. In the case n ̂  jl (for 2 ̂  j ^ n/3, with I an odd number), we know
from Theorem 3.2 that all k- families {F9} of periodic solutions of (1.7) and (2.2) can
yield periodic solutions of (3.1) and (3.2) with period 2na, where a is a given real
number.
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