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The flow around a spinning sphere moving in a rarefied gas is considered in the following
situation: (i) the translational velocity of the sphere is small (i.e. the Mach number is
small); (i) the Knudsen number, the ratio of the molecular mean free path to the sphere
radius, is of the order of unity (the case with small Knudsen numbers is also discussed);
and (iii) the ratio between the equatorial surface velocity and the translational velocity
of the sphere is of the order of unity. The behaviour of the gas, particularly the transverse
force acting on the sphere, is investigated through an asymptotic analysis of the Boltzmann
equation for small Mach numbers. It is shown that the transverse force is expressed as
Fi = npa®(2 x v)hy, where p is the density of the surrounding gas, a is the radius
of the sphere, 2 is its angular velocity, v is its velocity and Ay is a numerical factor
that depends on the Knudsen number. Then, hy is obtained numerically based on the
Bhatnagar—Gross—Krook model of the Boltzmann equation for a wide range of Knudsen
number. It is shown that 47 varies with the Knudsen number monotonically from 1 (the
continuum limit) to —% (the free molecular limit), vanishing at an intermediate Knudsen
number. The present analysis is intended to clarify the transition of the transverse force,
which is previously known to have different signs in the continuum and the free molecular
limits.

Key words: non-continuum effects, kinetic theory

1. Introduction

The flow around a very small spherical particle moving in a gas is fundamental in fluid
mechanics and plays a vital role in many applications such as aerosol transport and particle
manipulations in nano- and micro-technologies. When the particle size is comparable
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with the mean free path of the gas molecules, conventional fluid mechanics is no longer
applicable. Instead, kinetic theory provides a suitable framework for investigating the flow
around such a very small particle. This paper investigates forces acting on a sphere moving
in a rarefied gas based on kinetic theory.

Let us restrict our consideration to the case where the Mach number based on the particle
velocity relative to the surrounding gas is small. The sphere may be rotating around one of
its axes. Moreover, the sphere’s circumferential velocity is supposed to be of same order of
magnitude as the sphere’s translational speed. It, therefore, is small compared to the sound
speed (or the thermal speed of the gas molecules). The drag (e.g. Knudsen & Weber 1911;
Epstein 1924; Willis 1966; Cercignani, Pagani & Bassanini 1968; Sone & Aoki 1977a,b;
Law & Loyalka 1986; Aoki & Sone 1987; Beresnev, Chernyak & Fomyagin 1990; Loyalka
1992; Takata, Sone & Aoki 1993; Kalempa & Sharipov 2020) and torque (e.g. Loyalka
1992; Andreev & Popov 2010; Taguchi, Saito & Takata 2019) acting on the sphere in this
situation have been investigated extensively in the past. However, the understanding of the
transverse force (i.e. lift force), resulting from the interplay between the translational and
swirling motion of the gas around the sphere, is still unsatisfactory, as described below.

The transverse force acting on a rotating sphere translating in a highly rarefied gas was
investigated by, for example, Wang (1972), Ivanov & Yanshin (1980), Borg, Soderholm
& Essén (2003) and Liu & Bogy (2008). In those studies, assuming a free molecular (or
collisionless) gas, it was shown that the transverse force has the opposite sign as compared
with the corresponding force in the continuum flow (Rubinow & Keller 1961). Therefore,
as pointed out in Borg et al. (2003), there will be a critical value of the Knudsen number
at which the transverse force vanishes and above which the force reverses its direction.
Here, the Knudsen number is defined as the reciprocal of the ratio of the sphere size to
the molecular mean free path. Indeed, a gradual transition of the transverse force with the
Knudsen number is observed in a numerical study using the direct simulation Monte Carlo
(DSMC) method (Volkov 2011). However, the precise determination of the critical point
remains an open question. In this study, we take a step further and clarify the transition of
the transverse force between the two limits, namely the continuum and the free molecular
limits.

As the basic equation, we employ the Boltzmann equation and, for simplicity, we
assume the diffuse reflection boundary condition on the sphere. In the actual numerical
computations, we use the Bhatnagar—Gross—Krook (BGK) model (Bhatnagar, Gross &
Krook 1954; Welander 1954) of the Boltzmann equation to simplify the problem further
and make the numerical analysis tractable.

The paper is organized as follows. The problem is formulated and scaling assumptions
are introduced in § 2. In § 3, we carry out an asymptotic analysis of the Boltzmann system
for small Mach numbers and derive general expressions for the drag, lift and torque acting
on the sphere. Section 4 is devoted to the actual computation of the transverse force.
Section 5 presents concluding remarks.

2. Formulation
2.1. Problem and basic assumptions

Let us consider a rigid sphere with radius L moving through a monatomic ideal gas with
constant translational velocity vo. While translating, the sphere is also rotating around an
axis of revolution with a constant angular velocity, $2¢. Far from the sphere, the gas is in
the equilibrium state at rest with pressure pg and temperature Ty. Further, we assume that
the sphere’s surface temperature is uniform and is equal to the gas temperature at infinity.
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Figure 1. Problem.

For convenience, let us choose a frame of reference translating with the sphere. In this
frame, the sphere centre is at rest, and the flow velocity at infinity is —vg. We write this
velocity as v (= —vg). We are now concerned with a steady flow of a rarefied gas past
a rotating sphere, as shown in figure 1. We investigate the behaviour of the gas under the
following assumptions.

(1) The behaviour of the gas is described by the Boltzmann equation (we use the BGK
model of the Boltzmann equation for the actual numerical computations).

(i) The gas molecules undergo diffuse reflection on the sphere. More precisely, the
velocity distribution of the reflected molecules on the surface constitutes the
corresponding part of the Maxwellian distribution characterized by the temperature
and (local) surface velocity of the sphere and by the condition that there is no net
mass flux across the surface.

(iii) The translational speed of the sphere (or the flow speed at infinity in our frame) is
small compared with the thermal speed of the gas molecules, i.e. |[v| < (2RT)) 172,
Here, R = kg/m is the specific gas constant with kp and m being the Boltzmann
constant and the mass of a molecule, respectively. In other words, the Mach number
of the flow, Ma = |vso|/(5RTo/3)"/?, is small.

(iv) The rotational surface velocity of the sphere is of the same order of magnitude as
the translational velocity of the sphere, i.e. L|2¢|/|vo| = O(1).

For the subsequent analysis, we introduce the rectangular coordinate system Lx; (i =
1, 2, 3) with its origin at the centre of the sphere (the corresponding position vector is
denoted by Lx). Without loss of generality, we can assume that the x; axis is parallel to the
angular velocity $2( and that the vector v, lies in the x1x> plane (see figure 1). Then, £2
and v, are expressed as £2¢ = (£20, 0, 0) and voo = (Vo1 Voo2, 0) With vso1, Voo2 and
20 (= |£29]) being given constants.

2.2. Basic equations

Let us first introduce the following notation. The molecular velocity is denoted by &;,
i =1, 2,3 (or by &) and the velocity distribution function by f. Furthermore, we denote by
p the density, by v; (or v) the flow velocity, by T the temperature, by p the pressure, by p;;
the stress tensor and by ¢g; (or ¢) the heat-flux vector of the gas (i,j = 1, 2, 3). Then, we
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introduce the following dimensionless variables:

& = &/QRT)?,  ¢(x,8) = E'[f/po2RTp) /] — 1, (2.1a)
wx) =p/po—1, wix)=v;/QRT)?, w(x)=T/Tp—1, (2.1b)
Px) =p/po—1, Py(x)=pi/po—38; Qi(x) = qi/[po(2RTy)"?], 2.1¢)

where pg = po/(RTp), E = n3/2 exp(—|[¢ 12) and d;j is the Kronecker delta.

We also use the spherical coordinate system (Lr, 6, ¢) related to x; by x; = rcos9,
X2 = rsinf cos ¢ and x3 = rsin# sin . Components of vectors and tensors in spherical
coordinates are represented by (7, 6, ¢) in the subscript, e.g. (¢, £s, &p), Pro, etc. Note
that Cartesian components of a vector a; are related to (a,, ag, ap) as

ay = a,cosf —agsinb, (2.2a)
az = a,sinf cos ¢ + ag cos 0 cos ¢ — ay sin @, (2.2b)
az = a,sin6 sing + ag cos 0 sin g + a, cos ¢. (2.2¢)

Throughout the paper, we write ¢ to denote || = (§j2)1/ 2,
The time-independent Boltzmann equation for ¢ is written as

§i§_¢ = l(«f(qb) + 7 (@, 9). (2.3)
Xi k
where .2 and _Z represent, respectively, the linearized and nonlinear collision operators,
whose explicit forms are given in Appendix A (see also Sone 2007). Parameter £ is defined
by

k= ﬂKn = ﬂ@,

2 2 L

where Kn = {o/L is the Knudsen number with ¢y being the mean free path of the
gas molecules in the equilibrium state at rest with density pp and temperature 7y. For
a hard-sphere gas, £ is given by £y =1/ [\/End,%(,oo/m)] with d,, the diameter of a
molecule. On the other hand, for the BGK model introduced below, £y is given by
o= (2/4/m) (2RTy)'/? /Acpo with A, being a constant (A.pp is the collision frequency
at the reference equilibrium state at rest). Further details concerning (2.3) are given in
Appendix A.

The operators .2 and _# are spherically symmetric operators, that is, for
any functions F and G of ¢, it holds that Z(F([;5)) (&) = L (F(&) )
and 7 (F(l;5), GUg)) (&) = F(F(8), G(&))(1;g), where [; is any orthogonal
transformation, i.e. /;lx; = &;x. This implies that " and _# are axially symmetric, meaning
that they satisfy the same identities as above for any orthogonal transformation /j; that
satisfies /;aj = a;, where a; is a fixed (unit) vector. Since £ and _¢ are spherically
symmetric, a; can be chosen arbitrarily. The property of axial symmetry of the operators
plays a crucial role in the present analysis.

The diffuse reflection boundary condition (e.g. Kogan 1969; Cercignani 1988; Sone
2007) on the sphere is written as

(2.4)

+ ow
¢ =31

exp(—¢2 —¢f — &y — S20sinHHE —1, >0 (r=x|=1),
(2.5
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with

ow = =247 ¢rpEdE, (2.6)

£r<0
where d¢ = d¢; d¢> dzs and £2q is the dimensionless angular velocity defined by

A LS$2g

20 = W 2.7)

The boundary condition at infinity is written as
1 A N2 N N |
¢ — WGXP(—(;H —Uso1)” — (02 = Voc2)” —§3)E — 1, asr=|x| — oo, (2.8)

with Dso1 and Doop given by

A Vooi .
Vooi = W, 1= 1, 2. (29)

The macroscopic variables are expressed in terms of ¢ as follows:
o=(¢), (+ou=(), 301+w)r=(C"=NP)—1+wu, (210a)
P=w+1t+wt, Pj=2(¢)—2(1+ w)uu,, (2.10b)
Qi = (¢it) — 3ui — wPy — 3Pu; — (1 + w)ur;, (2.10¢)

where the symbol ( ) represents the following integral with respect to ¢:

(g) =/ 8(§EdS. (2.11)
R3

In the actual numerical computations, we employ the BGK model of the Boltzmann
equation. The BGK model is obtained by replacing .Z'(¢) and _# (¢, ¢) with the following
counterparts (see Appendix A):

LK (p) = g.(p) — ¢, (2.12)
I () = (1 + 0) (¢ — ¢) — LB (¢)
= (1 + w)($e — ge) + 0. LBK(9), (2.13)
where
ge =) +2600) + (2= 3) 3{(s2 - 3) 9). 2.14)
e l+o (& — u)*
¢ =E m exp <_ﬁ> -1, (2.15)

and w, u; and T are given by (2.10a). Note that the operators . BGK (¢) and 2 BGK (¢) are
spherically symmetric.

933 A37-5
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2.3. Scaling assumptions

Now we introduce assumptions (iii) and (iv) in § 2.1 and restrict our consideration to slow
flows (i.e. low-Mach-number flows). We thus introduce the quantity
£ 1= |Doo| = (02, + D2) /2, (2.16)

and assume that & is small (¢ <« 1). Note that the Mach number, mentioned in
assumption (iii), is related to & by Ma = (6/5)!/?¢. In the next section, we carry out a
perturbative analysis for small ¢ in the case k = O(1), Qo = 0(¢) and || = O(e) (i.e. the
weakly nonlinear regime). We thus write Vo1, Uoo2 and Q) as

Vool = Us = gcosag, Uson = Ve = gsinay, Qo = Se, (2.17a—c)
where o € [0, 27) is the azimuth angle of v, (see figure 1). Note that U>+v2=1 by
definition and that (cf. assumption (iv))

_ S _ Li%|

S
€ [Vool

= 0(1). (2.18)

Then, the boundary conditions are rewritten as

¢ = 1;3—/?exp(—§r2 —f — (o —eSSin)HET — 1, & >0 (x|=1), (219

1
¢ = foo = S ep(—(G1 —eU) = (= V) = EHE T — 1, aslx| > o0,
(2.20)

where o,, is given by (2.6).

In summary, the problem to be solved is (2.3), (2.19) with (2.6), and (2.20), where &, U,
V and S are independent of €.

Finally, we make the following comment. According to the von Kdrman relation (Sone
2007), the Reynolds number Re = pg|vso|L/ L0, the Mach number Ma and the Knudsen
number Kn are not independent but are related to each other by the relation Re ~ Ma/Kn.
Here, o is the viscosity of the gas at the reference state. Thus, the present analysis
corresponds physically to a situation in which the Reynolds number is small, i.e.

Re ~ 2 <1 2.21)

3. Asymptotic analysis

In this section, we carry out an asymptotic analysis of the boundary-value problem (2.3),
(2.19) with (2.6), and (2.20) for small ¢, with the aim of obtaining expressions for the force
and the torque acting on the sphere. The analysis is a straightforward extension of that of
Taguchi (2015), in which the case of a non-rotating sphere (U =1, V=0 and S = 0)
is considered. However, the actual calculations are more involved because the flow is no
longer axisymmetric.

3.1. Inner solution

We first consider a solution to the problem whose length scale of variation is of the order
of unity (or of the order of L in dimensional space). We call this length scale the inner

933 A37-6
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scale for the reason to be clarified below. Accordingly, the solution with this length scale
is called the inner solution and hereafter is designated by attaching the subscript F, i.e.
0¢r/0x; = O(¢r). We assume that the inner solution can be expanded in € as

bF = edp1 + £2¢r2 + o(e?). (3.1)

It may be mentioned that the remainder may not be a simple power series of & but contains
terms like &3 Ine, as in the Navier—Stokes theory (Proudman & Pearson 1957; Chester,
Breach & Proudman 1969). In the present study, we will not address this issue further and
concentrate on the force exerted on a particle to 2 order.

Corresponding to the expansion (3.1), the macroscopic variables are also expanded in €
as

hp = ehp) + 2hpy + 0(e?)  (h = w, u;, T, P, Pj, Q). (3.2)

The relations between hp,, and ¢f, (m =1,2,...) are obtained by substituting the
expansions of hr and ¢ into the definitions of the macroscopic variables (2.10) with
h = hr and ¢ = ¢ and by equating terms with the same power of ¢. We thus obtain, for
the first two orders in &,

op1 = (@F1),  wirt = (Gor), TR = 37— 1), (3.3a)

Ppi = op1 + tr1. Pypt = 20G0r1),  Qirl = (68 dr1) — %uiFla (3.3b)
wpy = (PF2), uir2 = (§iPr2) — wF1UiF1, (3.4a)

w2 = 2% — Dpr) — 3 (ujirp1)* — wp1F1, (3.4b)

Ppy = wpy + tr2 + wpi1tr1,  Pijr2 = 2(8igiPr2) — 2uipiujF, (3.40)
Qir2 = (58> br2) — Juira — wip1 Pjp1 — 3 PpiuiFy.- (3.4d)

Note that the nonlinearity enters the relations in the form of a product of lower-order terms
in (3.4).

If we substitute the expansion (3.1) into (2.3) and collect terms with the same power of
&, we obtain a sequence of linearized Boltzmann equations for ¢r,, (im = 1, 2), i.e.

0 1
é’ig;):l = %$(¢F1), (3.5a)
0 1 1
zi;’;;z = L L)+ 1 S G160, (3.5b)

Equation (3.54) is the linearized Boltzmann equation for ¢r1, while (3.5b) is the linearized
Boltzmann equation for ¢z with an inhomogeneous term. Similarly, if we insert the
expansion into the diffuse reflection condition on the sphere, i.e. (2.19) with (2.6), we
obtain a sequence of boundary conditions for ¢r,, (m = 1,2) on the sphere (see (3.7)
and (3.65)). Provided appropriate boundary conditions at infinity are given, they form a
sequence of boundary-value problems for ¢f,,, which can be solved successively from the
lowest order.

3.2. Leading order

The equation and the boundary condition on the sphere for ¢r; are given by
dPF1

1

1
o ;-i”(qu), (3.6)

933 A37-7
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¢r1 = A (PF1) +28¢,sin0, & >0 (x[=1), (3.7

where ¢ (-) represents

H(g) = —24/n r8(HE L. (3.8)

¢r<0

To derive the corresponding boundary condition at infinity, we expand ¢ in (2.20) as
boo = EPool + €22 + - - - and retain the leading-order term. This yields

or1 — 2(01U+5V),  as x| — oo. (3.9)

Equations (3.6)—(3.9) form a boundary-value problem of the linearized Boltzmann
equation for unknown ¢ .
In view of the linearity of the problem, we seek the solution in the form
¢r1 = o) + o, (3.10)

where ¢[(Jl) and @él) solve the following problems:

,-ajs) = l.,%(cbj(l)) J=U,59), (3.11)
oV =@ +10, >0 x=1, (3.12)
oV 1)), as x| - oo, (3.13)
with
I =0, 13% =2¢,Ssin0, (3.14a,b)
Iy =208 +2ve, 1)g=0. (3.15a,b)

The problem for @él) (hereafter referred to as problem S) describes the steady flow of a
rarefied gas around a rotating sphere without any flows at infinity (Loyalka 1992; Andreev

& Popov 2010; Taguchi et al. 2019). The problem for 458 ) (hereafter referred to as problem
U) is equivalent to the boundary-value problem describing a uniform flow of rarefied gas
past a sphere in the absence of sphere rotation, which has been extensively studied in the
literature (e.g. Cercignani et al. 1968; Sone & Aoki 1977a; Takata et al. 1993; Kalempa &
Sharipov 2020; see also Sone 2007).

Using the property of axial symmetry of the operator .Z’ given in Appendix B, we seek

CDI(JI) and CDS) in the forms (i.e. similarity solutions)
(1) = (Ucosf + Vsin6 cos (p)gp (r, Zr, ¢)
+ [Zo(Usin® — V cos 0 cos ) + V&, sinlpl) (r, ¢, ©), (3.16a)
oy =S¢, sinbg (r, 11, 1), (3.16b)

where the functions (p (r & 8), (p(l)(r ¢ry ) and g@g )(r ¢r, £) solve the following
boundary-value problems in space in one dimension (in spherical coordinates):

933 A37-8
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Order Problem Function  Functions appearing in  Definition Note
the similarity solution
el U fDI(Jl ) 9"8 3, (pgb) (3.16a) Linear motion
gl S ol o (3.16b)  Rotational motion
2 2 2 2 2 . .
&2 uu le(ﬂ)J gol(ﬂ)m, goé&b, wé&c (p{H)Jd (3.79) Linear motion
2 2 2 2 2 . .
2 SS <1§és) ‘Pés)a’ ‘Pés)h’ ‘Pés)c’ (pés)d (3.80) Rotational motion
2 2 2 2 2
&2 US @{Jgﬁ (pl(JS)g, ¢I(Js)g’ ‘/’l(Js)g’ (pl(JS)Z (3.82) Cross effect
2 20 (2 26 (@b
&2 US 45[(}5)9 wI(JS)a’ (p[(JS)Z, goés)(, <p[(JS)d (3.83) Cross effect

Table 1. Functions appearing in the similarity solutions.

(a) Problem U

3<ﬂ(1) ¢? Crzaﬁﬂ(l) 2 —¢? (1)

Z ) 3.17
&r oy + P o7, + (Pug) (3.17a)
) 24 (1)
3<P { —¢o 0oy, & ot 1
& P T ‘rJ“ = Zlp). (3.17b)
%Ia) H@LD). ehy =0, &>0, atr=1, (3.170)
PU) = 2Ly, Q) —> 2, asT— oo (3.17d)
(b) Problem S
(M 20 ()
890 § — ¢ 8§0 &y )
.z 3.18
&r a7 ; ac, rﬁps (905 )s ( a)
o) =2, >0 atr=1, (3.18b)
o =0, asr— oc. (3.18¢)

Here, the operators %) and .£] are defined in Appendix B. Note that %) (go(l)) A ((p(l))

and .4 (gaé )) appearing on the right-hand sides of (3.17a), (3.17b) and (3.18a) are
functions of r, ¢, and ¢. For clarity, table 1 summarizes the notation for the similarity
solutions.

Suppose that go(l) and (p(l) (or cD[(JD) and <p§1) (or q§§l)) are known. Then, the
leading-order macroscopic quantities wri, ujr1, etc., are obtained by substituting (3.10)
with (3.16) into (3.3). To this end, we first introduce the following notation:

algl = (g), wilgl = (zig), Flgl=3((* —3)g), (3.19a)

Plgl = 3(¢%) = @lgl + Tlgl.  Pylgl = 2(¢igig),  Qilgl = (Gi(¢* — 3)g).,  (3.19b)
where g = g(¢;). Note that, for every position x in the gas, 058) and @él) (and thus ¢F1) are
of the form g = aogo (¢, ¢) + bil;(8j — Xix)g1(Lr, §), where & = x;/r = x;/|x| (8 = 1)
933 A37-9
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and ap and b; are independent of ¢;. For such a function, the components of it‘f = ujlgl,
f—’lgj = Pjlg] and Of = Qilg] in spherical coordinates are calculated as

o o bit; ~y
i = ao(trgo), it = <(c —¢Da).  PE=2a0(ctgo),

Pétit; = ap((¢* — 4“3)go>, Pt = bit (6% = D)gn), (3.20)

~ 0 5 ~ o ili 5
of =a0<§r <§Z—E)go>, Of1; = 7<(§2—§rz) ({2—§>g1>,

where ¢; is an arbitrary unit vector perpendicular to ;. Therefore, if we further introduce
the notation

i lp] = (), iulpl = 3% — ¢He), (3.21a)
Pplo] = 2(579),
Pulpl = (22 = £ o) (= 2iulp)), (3.21b)
Pulpl = (55 = o),
Orlpl = (6:(c* = Do), Qilel = 5% = tH(E* = ), (3.21¢)

where ¢ = ¢(¢r, ¢), the leading-order macroscopic quantities (as functions of (r, 6, ¢))
are expressed in the forms

wr1 = (Ucos§ + Vsin cos p)ay, (1), (3.22a)
urr1 = (Ucos@ + Vsinb cos <p)ur Ua(r) (3.22b)
ugr1 = (Usinf® — V cos 0 cos w)ﬁt Ub(r), (3.22¢)
upr1 = (Vsin@)iil(, (r) + (Ssin )i, o (1), (3.22d)
1 = (U cosf + Vsinf cos go)tI(Jla) (r), (3.22¢)
Pr1 = (Ucos6 + Vsin6 cos p) Py (r), (3.22f)
Ppr1 = (Ucosd + Vsing cos 9) Py, (1), (3.229)
Pror1 = (Using — Vcos 6 cos )P, (), (3.22h)
Pror1 = (Vsin@) P, (r) + (Ssin0) P (1), (3.22i)
Pgor1 = Pyyr1 = (Ucos® + Vsinf cos )P 1, (1), (3.22))
Poor1 =0, (3.22k)

Orp1 = (Ucos B + Vsind cos 9) O, (1), (3.221)
Qpr1 = (Usin® — V cos 6 cos ¢)Q§13Jb(r), (3.22m)
Oyr1 = (Vsin go)Qt Ub(r) + (S'sin G)Q (r), (3.22n)
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Inversion of the transverse force on a spinning sphere
where
Ol = Ololal T, =Wlotal 7 =Flen) P =Pleg,)
PO = PrloD1, PO, = Pule1. 00, = Olel,

1 1 1 ~(1 1
iy = wleGy). PGy, = Pulebyl, O, = O],

1 1 1 o 1 1 1
i =iuleg ), Pls = Pules’l. 019 = Oiles 1.

Note that a){J1 E)l, E% 4 €tc., depend on r through (pU P (pl(jlg and (pél),

(3.22). We will not repeat similar comments in what follows.

Finally, let us consider the force and the torque acting on the sphere. Let poL>F; and
poL® M, denote, respectively, the force and moment of force (about the origin) acting on
the sphere. Then, F; and M; are given in terms of the stress tensor as

(3.23)

as shown explicitly in

Fi = —/ PjjFn; dS, M; = —/ €ijkXjPrirn; dS, (3.24a,b)
Ix|=1 Ix|=1

where dS is the surface element, n; is the unit normal vector on the sphere pointing to

the gas, € (i,j, k = 1,2, 3) is the Eddington epsilon (the permutation symbol) and the

integration is carried out over the whole surface |x| = 1. We expand the (dimensionless)

force and torque in € as

Fi=eFD 4+ 2F? o6, Mi=eMP +2MP +o@?),  (3.25ab)
where ]-'l.(m) and Mgm), m = 1,2, are given by
F =~ / Pyjrnnjds, M"™ = — / €jix;Prigmmn dS. (3.26a,b)
Ix|=1 |x|=1

Substituting (3.222)—(3.22i) into (3.26a,b) with m = 1, the force .E(l) and the moment of

force MEI) are obtained as

FV=unp, AP =vmp, FY=o0, (3.27a)
MY =Sy, M =0, MY =0, (3.27b)
where
hp = =4(P )y, — 2P )1, (3.28)
hy = =3Pl (3.29)
Introducing the two unit vectors
(ei=123=(U,V,0), (e)i=1,23=(1,0,0), (3.30a,b)
the force and the torque acting on the sphere are summarized as
Fi = ehpe; + O(e*),  M; = eShyé; + O(e?). (3.31a,b)

Thus, no transverse force acts on the sphere at leading order, i.e. 3 = O(g?). It should
be noted that ip and hy; depend on k through goU s (p[(jl,f and goél). Therefore, we write
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Figure 2. Schematic of the solution structure. The gas region is divided into two, the inner region
1 < r < ¢! and the outer region 1 < r < oo, overlapping each other in the crossover region 1 < r <« el

hp = hp(k) and hy; = hy(k). In other words, the magnitudes of the force and torque vary
with k.

To summarize, the sphere is subject to a drag force but no transverse force acts on the
sphere at the order €. The drag and torque are modulated by the Knudsen number through
the functions ip (k) and Ay (k) given by (3.28) and (3.29), respectively.

3.3. Slowly varying solution

In the preceding section, we considered the leading-order problem under the condition
that the length scale of variation of the solution is of the order of unity. The solution does
not support a transverse force on the sphere. Thus, we are motivated to proceed to the
next-order problem in &.

We note that the linearized Boltzmann equation considered in the preceding subsection
may not provide an approximate solution to the original (nonlinear) problem for small

¢ uniformly in space. Indeed, using the asymptotic representation of ¢r; = CD[(JI ) 4 Cbél)
for r = |x| > 1 (see Proposition 3.1 given below), it can be shown that the linearization
is valid in the region |x| < ¢~! for @y, although no such restriction is found for @s.
In the region beyond this range, the nonlinear term _¢ (¢®@y, e®dy), integrated over a
long distance, gives a non-negligible contribution to the behaviour of ¢®y. (Note that
the term ¢;d(e®y)/0x; is comparable with the nonlinear term _# (¢®y, e®Py) when the

length scale of variation of @y is of the order of ¢~1)) In other words, we encounter a
situation analogous to Whitehead’s paradox in the Navier—Stokes theory (Van Dyke 1975;
Taguchi 2015).

Given this observation, we introduce another length scale to describe the solution in
the far region. More specifically, from now on, we assume a solution whose length scale
of variation is of the order of 1/¢ in the far region. We call this solution the slowly
varying solution (or the outer solution) and designate it by attaching the subscript H, i.e.
0o /0x; = O(e¢y). The situation is schematically shown in figure 2.

To analyse the slowly varying solution, it is convenient to introduce a new spatial
variable (called the outer or slow variable) by

Vi = ex;, (3.32)
933 A37-12
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and assume that ¢ = ¢g( i, ;). Then, the Boltzmann equation for ¢y is recast as

0dn

1 1
By, kel @+ S (@ ). (3.33)

Gi
We seek a solution to (3.33) in the form of a power series in ¢, i.e.

dn = e + 2Py + -+ . (3.34)

Likewise, the macroscopic quantities hy (h = w, u;, 7, etc.) are expanded in € as
hy = ehyy + €*h + - - - (3.35)

The relations between hg,, and ¢g;, are the same as those between hr;,, and ¢, except
that the subscript should be changed from F to H (see (3.3) and (3.4)).

The above expansion for ¢ is a Hilbert-type expansion starting from the order ¢, which
is equivalent to the S expansion (Sone 1971, 2002, 2007). Since a detailed description of
the expansion is given in Sone (2002, 2007), we only give the results necessary for the
subsequent analysis, omitting the derivation.

3.3.1. Fluid-dynamic-type equations

First, we summarize fluid-dynamic-type equations describing the behaviour of the gas in
the far region. That is, the macroscopic quantities hg,,, m = 1,2, ..., are described by
the following (incompressible) Navier—Stokes-type equations (hereafter, we call them the
Navier—Stokes equations).

Order ¢:
oP
1l —o, (3.36)
dyi
8I/th1
— =0, (3.37a)
dyj
ouig 10Pyy  vik
i =—= — Auig1, 3.37b
UiH1 by, > oy, + 5 Air ( )
oty1  wk
i = — A1y, 3.37
UjH1 3y, > TH1 ( c)
oyl = Py1 — tH1. (3.37d)
Order &2:
u; 0
NH g L (3.384)
ay; ayj
ouin? duig
UjH1 + (wH1UHT + UjH2)
H lj j 3y,
19 Yv2—4y3 »
= Py - P22
20y, ( H3 G THI
vk vak 0 ouig1  ujgy
—~Au; B , 3.38b
+ > uig2 + 2 oy, |:TH1< oy, + oy; ( )
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HS BGK Note
Y1 1.270042427 1 Viscosity
V2 1.922284066 1 Thermal conductivity
V3 1.947906335 1 Thermal stress
V4 0.635021 1
5 0.961142 1

Table 2. The numerical values of y; for a hard-sphere gas (Sone 2002, 2007). The values for the BGK model
are also shown.

otyr 2 0Py

a‘EH
w1 ——— + (wg1WH + W) ——

i
3y dy; 57 By
vik (duign  dwim\®  k < Y5 2)
= — —A — , 3.38
s < 5y, + 3, + S A2t + 5 (tH1) (3.38¢)
wp2 = Py — Ty — wf1tHI. (3.384d)
Here, A = 92/ By]z is the Laplacian operator and y;, i = 1, ..., 5, are constants defined by
= 2(*B), 1y =LA, (3.39)
v = %<;“AB> 2(¢'Dy) + (§6D2) = —1(¢*F), (3.39b)
ya = =371 + % (¢°B) + £ (¢*BC), (3.39¢)
s = —6y2 + 1= (¢°A) + £ (LAG), (3.394)

where A(¢), B(¢), C(¢), Di1(¢), D2(¢), F(¢) and G(¢) are functions defined in
Appendix C. Physically, y; are dimensionless transport coefficients. For example, the
viscosity o and the thermal conductivity Ay at the reference equilibrium state at rest
are expressed as

ﬁ poﬂo RPOEO

The numerical value of y; depends on the molecular model. For the BGK model, y; = 1.
The values of y; for the hard-sphere model are summarized in table 2.

3.3.2. Velocity distribution functions and boundary conditions for the Navier—Stokes
system at infinity

Suppose that the macroscopic variables Ppy,, g, and tg, (m > 1) satisfy the

fluid-dynamic-type equations (3.36)—(3.38). Then, ¢y, m = 1, 2, are expressed using

Py, wign and tg, (n =1, 2) as

OH1 = PeH1, (3.41a)
ou; 0 0
b2 = etz — kmj (;)( S M) KA @)= L (3.41b)
y] ay; i
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where

5
et = Py1 + 25iuig + <§2 — 5) TH1, (3.42a)

5 5
@er2 = P2 + 28iuims + <{2 — 5) T + 28iuig1 P + ((2 — 5) 1P

2 3 2 7
+ 3 (52 - 5) (ujm)* 42 (Ci&“j - %511) Wi WiH + 28 (Cz - 5) UiH1THI
1 35
+3 ({4 — 7%+ T) (tr1)?, (3.42b)

and the functions A(¢) and B(¢) are defined in Appendix C. It should be noted that ¢,z
and ¢.pgo are the first two terms of the expansion ¢y = o1 + 82¢)6H2 + ... of the
Maxwellian

(3.43)

(1 + b E = 1+ Py (_(Ci—uiH)z)

— T e
73/2(1 + t)/? P 1+t

obtained by inserting the expansions of Py, u;y and ty in ¢ (see (3.35)). Therefore, for
¢pg to satisfy the boundary condition at infinity, i.e. (2.20) with ¢ = ¢y, the macroscopic
variables contained in ¢y; and ¢y should satisfy the following conditions:

Py — 0, w1 — e =(U,V,0), 41— 0, asn— oo, (3.44)
PH2 — 0, Uujg? — 0, TH? — O, asn — o9, (3.45)

where
n =e¢er=1|y| (outer variable). (3.46)

These conditions serve as a part of the boundary conditions for the Navier—Stokes
equations. The remaining conditions are derived by matching the outer solution with the
inner solution, as shown next.

3.4. Outer problem

In the preceding subsection, we introduced a slowly varying solution characterized by the
longer length scale of variation. This solution is meaningful only if it can be matched with
the inner solution while meeting the boundary condition at infinity. This subsection shows
that it is indeed the case and we determine the first two terms of the ¢ expansion of ¢g.

3.4.1. Preliminary
We begin with the following results.

PROPOSITION 3.1. Let (goI(Jl;, goI(Jlg) be a solution to the boundary-value problem (3.17)

for k < oo and let (pél) be a solution to the boundary-value problem (3.18) for k < oo.
933 A37-15
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Then, they have the following asymptotic representations as r — 0Q:
1 _ cp 2 5 5\ 3
¢Ua—24“r(1+7+73>+(4 _E)ﬁ

k 2¢3 1 3co 5 5
+ 5 e+ —GAQ) — s | i+ — ) (€7 =35)B(6)
r r 2 r

K? 3
= {mwm +2 [c1<2;2 —3¢H + %(3@2 — 5@3)} D2 (2)

3
- %(;2 - 3§3>F<§)} , (3.47)

c 1) k 36‘2
wSZ - _0_ = + = + 3 <C3A(§) + TfrB(§)>

k2 c1 9¢y
-3 {chm + [5@2 -3¢ + ﬁqz - 5:3)] Dy(¢)

6
+{%m@} (3.48)

3k 3k?
o = 124 Z0B@) — 5 (€7 = SEHDAO) |« (3.49)
I r I

where c;, i = 1, 2, 3, 4, are constants independent of r, ¢ and ¢, and A(¢), B(¢), D1(¢),
D>(¢) and F(¢) are the solutions to the integral equations (C1) with the subsidiary
conditions (C2), given in Appendix C. The constant y, is defined in (3.39a).

It should be noted that ¢; depends on k. The next proposition relates ¢; and c4 with Ap
and hyy.

PROPOSITION 3.2. Constants c| and cq are related to hp and hy, defined in (3.28) and
(3.29), by
hp hy

= = — 0<k . 3.50a,b
“l 4myrk c 8my1k O <k <co) ( “b)

The proofs of Propositions 3.1 and 3.2 are given in Appendix D. We also mention that
the constant c¢3 is related to the thermophoretic force acting on a single sphere (Taguchi &
Suzuki 2017).

3.4.2. Leading- and second-order outer solutions
Let us consider an arbitrary point x in the domain such that » = [x| > 1 and r = |x| K
1/¢. From Proposition 3.1, the leading-order inner solution at this point is approximated
by
1 i - 1 1 -
PULr 6. ©) = 26 (14 ) 4007, ¢l 8) = =2= = + 007, (35la)
95 (r, 8, 8) = O™, (3.51h)
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or equivalently by
¢r1 =20U+ 20V
~+ 2¢-(U cos 6 + Vsin 6 cos (p)c—r1 — Lp(Usinf — V cos 8 cos @)CTI

—g,Vsing = + 0, (3.52)
r

using (3.10) and (3.16). Thus, the inner solution has a far-field asymptotic representation
of the form

1
Por=c¢ <2§1U+2§2V+ ;(m) +0(r_2)> +, r=xI> 1, (3.53)

where the part ‘(---)’ in the parentheses is independent of » and €. Now we consider
the limit ¢ \( 0 (and r /" c0) with er (= n) fixed. Substituting r = n/¢ into the above
expression and arranging the resulting terms in increasing order of &, we obtain an ¢
expansion of ¢ of the form

¢p = Q01U +25V)
+ 82[2§r(Ucos9 + Vsinf cos @) — {p(Usind — V cos 6 cos @) — g‘stin(p]C—1
n

4+ -, ase N\ 0 with er (= n) fixed. (3.54)

Here, we have attached * to indicate that ¢F is expressed using the outer variable 7 (or y;).
Thus, a term-by-term comparison between (3.41) (with (3.42)) and (3.54) shows that ¢y
can be made to match ¢j. by imposing the following conditions:

Py — 0, wimp — (U, V,0), 11 — 0, (3.55)
Py — 0, (3.56a)
uygy — (UcosB + Vsiné cos (p)c—l, (3.56b)
n
ugpgr — —(Usin® — V cos 6 cos (p)g—l, (3.56¢)
n
Uyt — —Vsin(p;—:], (3.56d)
T2 — 0, (3.56¢)

as n — 04. Together with the conditions (3.44) and (3.45), these conditions serve as
appropriate boundary conditions for the Navier—Stokes equations (3.36)—(3.38).
The leading-order problem, (3.36), (3.37), (3.44) and (3.55), is trivially solved by

uig1 = ej, Ppi =141 =01 =0, Py, =0. (3.57a—c)

(Note that Py» is determined up to an additive constant but this constant can be made to
vanish by using the condition (3.56a).) Then, the next-order set of equations (3.38) reduce
to the following system of linear partial differential equations:

ujr

0, (3.58a)
ayj
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Ouigy _ 10Pp3  yik

= — Auigo, 3.58b
€j 8}1]' 2 oy, + B UiH2 ( )
0 k
PRALLNE NS (3.58¢)
ayj 2
wHY = —TH2, (3.58d)

which, equipped with the boundary conditions (3.45) and (3.56b)—(3.56¢), describes the
behaviour of u;y>, Py3, ty2 and wpyy in the far region. We first note that Ty = 0 is the
trivial solution of (3.58¢) satisfying (3.56¢) and the last condition of (3.45). Next, (3.58b)
with (3.58a) is the Oseen equation for incompressible flow, and the solution subject to the
boundary conditions (3.56b0)—(3.56d) and (3.45) is easily obtained (e.g. Rubinow & Keller
1961).

Here, we summarize the second-order macroscopic quantities in the outer region. They
are given by

ciyik 1
2 p?

Urg2 = [—1+<l+ﬁ(l+Ucos9+Vsinecos¢)>
1
X exp (—ik(l — Ucosf — Vsin# cos g0)>:| , (3.59a)
V1

UgHr = —;—I(UsinQ — V cos 8 cos @) exp (—Lk(l — Ucosf — Vsin6 cosgo)) ,
n 14!

(3.59b)
UpH? = —C—leingoexp <—L(1 — Ucosf — Vsin6 cos ga)) , (3.59¢)
2n Yik
oy = T2 = Py =0, (3.594)
c1yik .
Py3 = 5 (UcosB + Vsinf cos @). (3.59¢)
n

Note that (u,p2, ugn2, tyng2) are proportional to the k-dependent constant cj.

Finally, we can readily obtain the explicit forms of ¢y1 and ¢y from (3.41a) and (3.41b)
by substituting (3.57a—c) and (3.59). In particular, the outer solution is a Maxwellian to
order &2, i.e.

1
(14 ¢m)E = —75 exp(=(& — e — £*ui)") (1 + o). (3.60)

3.5. Second-order inner problem

Now we return to the near region and consider the second-order approximation, i.e. ¢r».
As before, we consider an arbitrary point x such that [x| > 1 and |x| < 1/e. Because
(trH2, UgH2, Upp2) are expanded for small n < 1 as

up2(n, 0, 9) = ﬂ(Ucos@ + V'sin6 cos ¢)
n

+ 4Clk(UCOS(9 + Vsinf cosg — D[3(Ucosd + Vsinb cos ) + 1]
"
+0(). (ola
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upH2(n, 0, ) = —;—;(Usiné — Vcos @ cos ¢)

— %(Usin@ — VcosOcosp) (UcosO + VsinOcosp — 1)
V1
+0(n), (3.61b)
upn2(n, 0, ¢) = —;—leingo — C—IVsimp(UcosG 4+ Vsinfcosp — 1)
n 2y1k
+ 0, (3.61¢)

the outer solution ¢y = £¢p1 + €22 + - - - has the following expansion in terms of the
inner variable:

oy =c¢ [2({1U + V) +2¢,(U cos O + Vsin 6 cos go)c—1
,
. 1 .. a
—¢o(Usin® — Vcosh cosp)— — g‘(stm(p—]
r r

+ &2 |:§,(Uc059 4+ Vsinf cosg — 1)(3(Ucosf + VsinO cos ¢) + 1)%
4!

— Lp(Usin® — VcosO cosp)(Ucos + Vsinb cos g — I)C—lk
Vi

— ¢y Vsing(Ucosf + Vsinf cos g — l)c—lk + 2(ej;“j)2 — l]
Vi

4+ -+, ase N\ 0 with n/e (=r) fixed. (3.62)

Here, * has been attached to indicate that ¢y is expressed using the inner variable r (or
x;). We observe that the e-order term coincides with the far-field expansion of e¢p; for
r>> 1 (see (3.52)). Hence, for the inner solution to match the outer solution to order &2,
we should impose the following matching condition:

¢r2 = ¢ (Ucos@ + Vsinh cosep — 1)[3(UcosO + Vsinb cos @) + l]zc—lk
4!

— Lp(Usin® — VcosO cos ) (UcosH 4+ Vsinb cosp — 1)C—1k
4!

— ¢V sing (Ucos® + Vsin® cos g — l)c—lk + 2(ej§j)2 —1, as|x] - oo.
V1

(3.63)
In summary, the equation and boundary conditions for ¢, are given by
0pry 1 1
i— =-Z - , , 3.64
q %k (Pr2) + k/(¢F1 ér1) (3.64)

dr2 = H (Br2) + (247 — S sin® 6 + 27 (pr1)¢ySsind, & > 0. x| =1, (369)
¢r2 = §(Ucos® + Vsinb cosg — 1)(3(Ucost + Vsinb cos ¢) + l)ﬁ
— ¢p(Usin® — VcosO cos @) (UcosO + Vsinb cosp — D;le
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— ¢y Vsing (Ucos® + Vsinf cos ¢ — I)C—lk
Vi

+2(eig)? — 1, as |x| — o0. (3.66)

Note that ¢r> depends on the leading-order solution ¢ through ¢ (¢r1, ¢r1), £ (¢r1)
and ¢ (= —hp /47y k). In the remaining part, assuming the existence of a solution for the

above problem, we derive expressions for the force and torque acting on the sphere.

3.6. Similarity solutions for the second-order problem and the second-order force and
torque acting on the sphere

We begin by noting the following.
(1) The right-hand side of (3.66) is arranged in the form

(right-hand side) = —Zc—lk(Zej{j) + (other terms). (3.67)
V1
Note that the first term is a constant multiple of CD[(Jl ) at infinity (see (3.13) with

J=1U).
(i1) Since ¢ = QI(JI) + Cbél), the inhomogeneous term in (3.64) is decomposed as

1 1 1 1 1 1
I @r1 o) = F@F oi) + F@ o) +2 7@, o). (3.69)
Then, noting the linearity of the problem, we seek ¢> in the form

1 1 2 2 2
b = __2y1kcpfj) +o) + ol + 0. (3.69)

Here, @I(le)J qﬁézs) and CDI(JZS) solve the following problems:

00,” 1., o Lo
; =L@+ -1 (J=UL, Ss, US), (3.70)
ik k
o = (@) +10), >0 r=Ix=1, (3.71)
P > 12, asr=|x| - oo, (3.72)

where

2 1 1 2 1 1 2 1 1
K= 7@y ef). 1§ = 7@ o). Ig=27@y . o). (.73a)

1%, =0, 1% =2 - DS sin*0, 125 =24(@),=)g,Ssing, (3.73b)

w,SS — w,

: 3¢
Ic(><23),UU = (Ucos® + Vsin6 cos ¢)* (5)/T]k§r +302 - {2)
+ (Ucos 4 Visin® cos )[(Usin® — Vcost cos )¢y + Vsing £,]
G-l

X (—C—lk — 4{,) +2 {[(Usin@ — Vcos6 cos ¢)* — VZsin? (p]T
4

+2Vsing(Usin6 — V cos 6 Cosw)ggg(p} — %{Q +¢2— ;rz —1, (3.73¢)
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@ @

Qss =12us =0, (3.73d)

Note that .7 (cbél) |r=1) = 0 has been used in the second condition of (3.73b).

Physically, the problem for d)[(le)j (or for @éé)) describes the second-order Mach number
effect in the uniform flow over a sphere (or in the swirling flow around a rotating sphere).
On the other hand, the problem for gogs) describes the cross effect between the flow past a
sphere and the flow induced by a sphere rotation. We call them problems UU, SS and US,

respectively. As we see below, only problem US is essential for the transverse force acting
on the sphere.

Using the similarity solutions for ¢[(Jl) and ¢§1) shown in (3.16) and the formulas in
Appendix B, we can transform the inhomogeneous term 152) (J =UU, SS, US) into

I{% = (Ucosf + Vsind cos ¢)*

[l o - S5 ol o) - Aol
4+ 2(Ucos B 4 Vsinb cos @) [(Usinf — VcosO cos )Ly + Vsing é’w]/ﬂ(/’éla)v §0((Jlb))

{[(Usm@ V cos 6 cos ¢)? — V? sin? w{ _C

+ 2V sing(Usinf — V cos 6 cos ¢)§9{¢} I @), o8

{2 -7
+ T/z(wf},f, oD + Z3(05) o), (3.74)

2.2
2 {7 =¢ n n
és) = §%sin’ 6 |:—r/2(<p§ ), ®g M+ /3(§0§ ), ¥g ))]

2

%
— $%sin?92 2% / ((pél), (psl)) 3.75)
2 2
1R =13+ 180 (3.76)

I[(jzs)tI = 28sin O (U cos 6 + Vsinb cos )¢, £1 (wgg, (pél))
2 _ 2

. Y : M M
-+ 2Ssin6 |:—Vs1n<p + (Usinf — Vcos 6 cos (p)§9§¢i| D@y 95 )

_ _ 2 —¢2
+2SVsing s1n<p[ 5 AR C R ARURON 3.77)
12 = 2Ssinf (Usin® — V cos 6 cos (), M
Us = ©) & Zaloyps o5 )- (3.78)

Here, the operators _#;,i =0, 1, 2, 3, 4, are defined in Appendlx B. Note also that _Z;(-, -)

appearing above are functions of 7, ¢, and ¢ through (pU 2 (p[(Jl [3 and (pél). Given these forms,
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we consider the following similarity solutions for <15[(sz)], d)(z) ¢(2) (see table 1):
CDI(JZI)J = (Ucosf + Vsin6 cos ¢)? goUUa(r &, 8)
+ (Ucos 6 + Vsin6 cos p)[(Usinf — V cos 6 cos )zp + Vsing Elo, (r, ¢, )
. — &}
+ |:((U sinf® — V cos 6 cos (,0)2 V2 sin (p) > 4

+2Vsing(Usinf — V cos 6 cos w){e%} O, Crn O) + o 20, 0,

(3.79)
(Dgs) = 5% cos Q‘Pssa(” & C) + $%cosOsin@ gggpSSh(r & 0)
2(6% - ;‘2 2 2) 2 @)
+ S 2 . Sin 9¢SSc(r’ Cr’ é‘) + S (pssd(r9 {r» ;)’ (380)
D3 = BUg + DY s (3.81)

CD[(]ZS)ﬁ = Ssin6 (U cos 6 + Vsin6 cos go){(pchsg(r &r, )

+ ScosO[(Usin® — Vcost cosp), — Vsing gg]gogs)g(r, &, &)

2 2
+ Ssin6 |:—Vsin(p§9 ? 4 (Usin® — Vcosb cos<p)§9§¢i| goUSC(r &, &)

+ SVsin6 sing g5 (r, &1, 0), (3.82)

q)[(JZ)b = S§sinf(U sin6 — V cos b cos ¢)¢Usa(” &rs §)

+ S[(Usin26 — V cos 20 cos ¢)&p + V cos b sin ¢ ;w]go[(jzgi(r, &, &)

2,2

+ S'sin6 |:(U sinf — V cos 0 cos (p)gg—w (2P

+ Vsin@ §9C¢;:| (PUSL(”, é‘r, é‘)

+ SUQSL (. 81, ), (3.83)

where (<p[(J21)Ja, (pézs)a, gogs)g, (pgS)Z) o =a, b, c,d, which are functions of r, ¢, and ¢, are

the solutions to the boundary-value problems shown in Appendix E. Note that they also
depend on the parameter k.

Because of the similarity solutions, we can obtain the explicit dependency of the
second-order macroscopic quantities on 6 and ¢. Below, we only give the results for P2,
Pror2 and P,y for conciseness. That is, substituting (3.69) with (3.79)—(3.83) into the
definition of P> (see (3.4c)), we obtain

Prpa(r, 0, ¢) = ——(Uc0s9 + Vsin6 cos go)P

rr,Ua

4+ (Ucosf + Vsinf cos @) (Pr,[<p[(J21)ja] —2( ~ﬁ%a)z)
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% 2 2 % 2
+ Prr[(p[(j[)]d] + §% cos? 0Prr[§0és)a] + SZPrr[(pés)d]

+ SV sin 6 sin P, [pa5] + Ssin6(Usinf — V cos 6 cos )Py [p2 ]

+ SUP, o520, (3.840)

Propa(r, 0, @) = —%(U sin® — V cos 6 cos cp)INJS,)Ub
4+ (Ucos8 4 Vsinb cos @) (U sinf — V cos b cos @)

fd 2 1 ~(1
X (Prlogy,) = 2000, i,

+ §% cos 6 sin Glsr,[gas%] — SV cos 0 sin wﬁr;[wgs)i]

+ S(U'sin26 — V cos 26 cos 9) Pl o], (3.84b)
Propa(r, 0, @) = —ﬂV sin (pPrt up T (Ucost + Vsin6 cos )V sing

2 1 -~
X (Prt[‘P[(JI)Jb] —2u (gla El)lb)

+Ssin6 (Using + Vsin @ cos ) (Ppulplar] — 20, Q)

+ Scosf (Usinf — V cos b cos go)f’r,[goggg]
+ 8V cos 0 sin oPrlp(2), (3.84c)

where P,,[ -] and Py - ] are defined in (3.21b) and the underlined quantities are functions
of r. Finally, substituting (3.84) into (3.26a,b) (with m = 2) and carrying out the surface
integral, we obtain the second-order force and torque as follows:

FO— T ypy FO = Ly FO = _svn, 3.85
1 21k D 2 21k D 3 L ( a)
MP = M = MP =0, (3.85b)

where the dimensionless transverse force Ay, is defined by

4 jod ~ ~
hy = gn(Pn[fpgs)g] — Pl + PrrlpiD)m1. (3.86)

Note that /iy, depends on k through gags)g gogs)g and gogs)g, and hence we write iy, = hy (k).

(2

Also, it is interesting to note that the transverse force is determined by @ ;¢ describing the
cross effect between the uniform and rotational flows, in particular by the part ¢I(J25) h

3.7. Summary of the force and torque acting on the sphere
Here, we summarize the expressions of the force and torque acting on the sphere derived
from the asymptotic analysis. Let us consider a slightly general situation in which the
flow velocity at infinity and the angular velocity of the sphere are given by vy =
(Vools Voo2, Voo3) and 20 = (£20.1, $20.2, §20,3), respectively. We also define the small
parameter € = |voo|/(2RT()'/? as before, and denote the dimensionless angular velocity
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by S; = LS§20.i/|vso|. Then, the force poLz}",- and the torque poL3/\/l ; acting on the sphere
are written as

hp (k)
Fi=c¢ (1 + 83‘[8/—1/{)28) eihp(k) + 82(6,']'16]'51) hr (k) + 0(82), (3.87)
M; = eSihy (k) + o(2), (3.88)

where e; = vVeoi/|Voo| and hp, hy and hy; are given by (3.28), (3.86) and (3.29),
respectively. In (3.87), we have used (3.50a) to eliminate c¢;. Note also that the functional
dependencies of hp, hy, and hy; on k are explicitly shown in the above formulas.

The formulas (3.87) and (3.88) give the force and torque acting on a rotating sphere
as functions of k once the functions ap(k), hys(k) and hy (k) are known. The numerical
values of hp(k) were obtained in Takata et al. (1993) (see also Sone 2007), in which
the steady flow of a rarefied gas past a sphere (problem U with U =1 and V = 0) was
investigated based on the linearized Boltzmann equation for a hard-sphere gas under
the diffuse reflection boundary condition. Later, Taguchi & Suzuki (2017) obtained the
numerical values of /p (k) for the ellipsoidal statistical model (Holway 1966; Andries et al.
2000; Brull & Schneider 2008). Concerning hy;, Taguchi et al. (2019) investigated the
steady flow around a rotating sphere (problem S) based on the ellipsoidal statistical model
(and the BGK model), in which the numerical values of h);(k) were obtained for both
the BGK and the ellipsoidal statistical model. We also mention that the time-dependent
behaviour of a gas caused by the impulsive rotation of a sphere has been recently studied
(Taguchi, Tsuji & Kotera 2021). For readers’ convenience, we summarize the values of
hp(k) and hy (k) obtained in those studies in tables 3 and 4, respectively, together with new
data obtained in the present study. On the other hand, the function /Ay (k), which describes
the effect of gas rarefaction on the transverse force, is unknown. Therefore, in the next
section, we compute /iy (k) based on the BGK model.

In table 3, the values of ip for a hard-sphere gas and for the BGK model are shown
against k. The viscosity is not adjusted between these models (cf. (3.40a)). If we regard the
viscosity given by (3.40a) as the common basic quantity, we obtain the relation k2¢K =
1.2700042427 x kHS. With this conversion, a better agreement of hp between the two
models can be obtained (Takata ef al. 1993; see also figure 4a below). The drag problem
for a rarefied gas has also been investigated by Kalempa & Sharipov (2020) based on the
Shakhov kinetic model. We can derive the values of &p for the Shakhov model from their
results.

For subsequent discussions, let us summarize the asymptotic expressions of ip (k), hr (k)
and hyy (k) for small k < 1 (for the general molecular model). They are given by

hp = 6myik(l + kok + O(K%)), k< 1, (3.89a)
hy = 27(1 4 3kok + O(K?)), k < 1, (3.895)
Iy = —8myk(1 + 3kok + O(KY), k< 1. (3.89¢)

Here, ko represents the slip coefficient (shear slip). The value of ky under the diffuse
reflection boundary condition is known as (Sone 2002, 2007)

(3.90)

o — —1.25395 (hard-sphere gas),
9= 1-1.01619 (BGK model).
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k HS BGK k HS BGK
0.009 — 0.1681 1 9.5625 8.4168
0.01 — 0.1866 1.2 — 9.0040
0.02 — 0.3694 1.5 — 9.6637
0.03 — 0.5485 2 11.2772  10.4056
0.04 — 0.7240 3 — 11.2381
0.05 1.1091  0.8960 4 12.2333  11.6897
0.06 — 1.0645 5 — 11.9721
0.07 — 1.2297 6 12.5557  12.1645
0.08 — 1.3916 7 — 12.3040
0.09 — 1.5503 8 — 12.4096
0.1 2.1168 1.7056 9 — 12.4923
0.15 — 24378 10 12.8071  12.5588
0.2 3.8110  3.1008 12 — 12.6590
0.3 — 4.2446 15 — 12.7598
0.4 6.2292  5.1864 20 — 12.8611
0.5 — 5.9679 30 — 12.9626
0.6 7.7951  6.6228 40 — 13.0133
0.7 — 7.1781 50 — 13.0436
0.8 — 7.6522 oo 13.1653  13.1653
0.9 — 8.0611

Table 3. Values of hp for various k for a hard-sphere gas (HS) (Takata ef al. 1993) and for the BGK model
(Taguchi & Suzuki 2017) under the diffuse refection boundary condition. Here k = oo shows the value of /p
in the free molecular limit (hp(c0) = 24/7(m + 8)/3). For the BGK model, the values of ip for k < 0.1 and
k > 10 have been newly obtained in this study.

k BGK k BGK k BGK

0.01 0.2437 03 3.3047 5 4.6405
0.02 0.4727 04 3.6197 6 4.6551
0.03 0.6873 0.5 3.8271 7 4.6655
0.04 0.8882 0.6 3.9723 8 4.6732
0.05 1.0760 0.7 4.0790 9 4.6792
0.06 1.2514 0.8 4.1602 10 4.6840

0.07 1.4152 09 4.2239 12 4.6912
0.08 1.5681 1 4.2752 15 4.6983
0.09 1.7108 1.5 4.4293 20 4.7054
0.1 1.8441 2 4.5058 50 4.7179
0.15 2.3903 3 4.5813 e 4.7265
0.2 2.7862 4 4.6185

Table 4. Values of —hy, for various k for the BGK model under the diffuse refection boundary condition
(Taguchi et al. 2019). Here k = oo shows the value of —/y; in the free molecular limit (fy(00) = —84/7/3).
The values of iy for k < 0.1 and k > 10 have been newly obtained in this study.

The next-order term in the formulas (3.89a) and (3.89¢), namely the k?-order term in the
parentheses, can be found in Sone (2007) for ip and in Taguchi et al. (2019) for hy,. Note
that the expression (3.89b) is new; we give more details on its derivation in § 4.3.

To conclude this section, we present the force and torque using the dimensional
quantities initially introduced at the beginning of §2.1 for a moving sphere. Let F
and M denote the force and the moment of force (around the centre) acting on the
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sphere, respectively. Then, they are given by

F = —6mpoLvo(l + 3 Re hp(k)hp (k) + mpoL (20 x vo)hr, (k). (3.91)
M = —8npoL’ 2ohy (k) (1 + o(Re)), (3.92)
where
- hp(k) - hp(k) - hy (k)
hp (k) = . hpk) = . k) = ——/——, 3.93a—
p(k) brpik L(k) o m (k) STk (3.93a—c)

and Re is the Reynolds number (see the last paragraph of § 2). The drag Fp and the lift F,
(transverse force) are therefore written as

Fp = —6muoLvg(1 + 3 Re hp(k))hp(k), (3.94)
Fi = mtpoLl® (R0 x vo)hy (k). (3.95)

We remark that although the asymptotic analysis has been carried out under the
assumption k = O(1), the formulas are applicable to arbitrary k as long as the Reynolds
number Re is small. In particular, using the asymptotic expressions (3.89) in (3.94),
(3.95), and (3.92) (with (3.93a—c)), we obtain for small k (= (/7/2)Kn) the following
expressions:

Fp = —6muoLvg(l + koKn+ 3Re +---), Kn < 1, (3.96)
Fr =npol* (R0 x vo)(1 + 3kgkn+---), Kn < 1, (3.97)
M = —8nugLl’R20(1 + 3kokn+--+), Kn<1, (3.98)

where kg = (v/7/2)ko and Kn has been used instead of k (ko ~ —1.11128 for the
hard-sphere model and kg &~ —0.90057 for the BGK model; see (3.90)).

4. Computation of the transverse force acting on a sphere

In this section, we construct /iy (k) numerically based on the BGK model. Unlike /p and
hyr, hy is defined through a second-order problem (see (3.86)). Therefore, the difficulty
of computing Ay, is much more severe than that of computing hp or hys. Thus, we are
motivated to devise an alternative approach to obtain 4y, reducing the complexity and
making the computation tractable. In this section, we obtain Az along this line. The key is
to use a symmetry relation associated with the linearized Boltzmann equation.

Below, we first give some general remarks on the asymptotic analysis based on the BGK
model and then derive an alternative formula for Ay for the general Boltzmann collision
operator (including the BGK operator as a particular case). Finally, we compute h; with
the aid of this formula in the case of the BGK collision operator.

4.1. Remarks on the asymptotic analysis based on the BGK model

The asymptotic analysis described in § 3 can be carried out also for the BGK model in
a similar way, and essentially the same results are derived. To present the results for the
BGK model in a unified way, we expand the operator ¢ BGK (@) (see (2.13)) as

TBK gy = 78K (¢, ¢) + 0(¢?), @1
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where
°BGK 4“2 5
/ (9, ¢) =2 (;l{j lj> u1[¢]uj[¢] +2¢; <§ - _> uilpl(e]
1 15
+3 (C — 502+ ) t[p]* + dlgl.L2K (9, 4.2)

and O(¢3) is the remainder. Here, @[ - ], ;[ - ] and 7[ -] are defined in (3.19a). Operator
j BGK (¢, ¢) is a nonlinear operator and quadratic in ¢. We can therefore define the
symmetric bilinear form associated with _# BGK (¢, ¢) by

: 1 o o o
IR, ¢) = 5(/“’% +¢, v +¢)— Z5Kw, v) — 78K (9, ¢))
2
- (mj - g—ai,-) @l lilg] + wllaly )

+ & (C - —) (il 1Tle] + uilolTly])

Dlpa 2 1) s
+5(§ -3¢ +Z)T[lﬁ]f[¢]

1
+ 5 @Y LBK () + dlp] LBK()). (4.3)

Note that .ZB%K(¢) =2 / BGK (1, ¢) holds (cf. the sentence below (A8)). With these
preparations, the results in § 3 apply to the case of the BGK model by taking into account
the following correspondence:

BGK 7 BGK
L - 2L 7 - 7 (Oexcept for (3.33)), 4.4)
L — LK (=012, gi—> gP% (i=0,1,234),
where i”iBGK and %BGK are the operators derived from .#2¢K and / BGK " whose
explicit forms are given in Appendix B (see (B9) and (B10)). Note that in (3.33), the
term _Z (¢n, ¢n) should be replaced by 7 BGK (py).
Since Z 4BGK (-, -) = 0 holds identically (see (B10e)), the inhomogeneous terms for the
problem (E10)—(E12) are absent for the BGK model (see also (E16)). Consequently, the

term @gs)b (or wgs)i, a=a,b,c,d)in cb[(fs) happens to be identically zero for this model.

4.2. Cross-coupling formula

We now derive an alternative formula for A for the general collision operator. We
can immediately obtain the corresponding result for the BGK model by adopting the
corresponding BGK collision operators as shown in (4.4). The following discussion is
based on the symmetry relation that relates two problems described by the linearized
Boltzmann equation (see, e.g. Sharipov 1994; Takata 2009a,b).

We consider the following auxiliary problem:

(Problem U’)  Consider a sphere (radius L) at rest with uniform surface temperature
To immersed in a rarefied gas. Let Lx; denote Cartesian coordinates whose origin
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is at the sphere centre. We denote by po, To, po(= poRTp) and v, the (constant)
density, temperature, pressure and flow velocity of the gas at infinity and let v =
(0,0, QRT0)2uso) (oo > 0). We investigate the steady behaviour of the gas under the
same assumptions as (i) and (ii) in § 2 and

(iii)” the flow velocity at infinity v (or us) is so small that the equation and boundary
conditions can be linearized around the reference state at rest with density pg and
temperature Tj.

In other words, we consider the same sphere as in the original problem in § 2, but the
sphere is at rest, and the flow over it is perpendicular to the x;x; plane.

Let po (2RTy) 321 + uoo<158>3 (x, ¢))E denote the velocity distribution function of the

gas molecules in problem U’. Then, using the same notation as before, CDI(JQ satisfies the
following equation and boundary conditions:

M
i Bx,-* = L@y, x> 1 (4.5q)
D) = A (@), & >0, x| =1, (4.5b)
cD[(J{Z — 2¢3  as |x| — oo. (4.5¢)

Note that by assumption (i), we implicitly assume that the molecular model is common for
problem U’ and the original one in § 2.

The problem U’ is essentially problem U that arose in § 3.2 (see (3.11)—(3.13) with J =
U), but there is a difference in the flow direction at infinity. We chose this flow direction to
be consistent with the direction of the transverse force in the original problem. Moreover,
the equivalence between problem U’ and problem U suggests that we can write @8 ﬁ in

terms of the similarity solutions. Indeed, straightforward computations show that <1>I(J] >3 is
given by

@) = (sin 0 sin )\ (r, &, £) — (Lo cos O sing + ¢, cos @)l (1, &, C), (4.6)

where (pg a) and 908;3 are the solution to (3.17). Therefore, if we know the solution to problem
U, we essentially know the solution to problem U’.

We now return to the boundary-value problem for @l(fs) arising in the second-order
problem in the asymptotic analysis, that is, (3.70)—(3.72) with J = US. The equations
for CDI(J] i and (D[(JZS) are both linearized Boltzmann equations, and the application of the
symmetry relation described in Takata (2009a) (Proposition 2 there) leads to the following
identity, valid for the entire range of k (0 < k < 00):

1

1) ,(2)— 1D, (2)—

SVhy = / (g“,cD[(LZIfV,)US)dS—z / (@157 dx, 4.7
[x|=1 [x]>1

where IQ)US and I[(ng are given in (3.73b) and (3.73a), dx = dx; dx; dx3 and ~ indicates

w,
the reflection operator acting on the variable ¢;, that is, F~ (¢;) = F(—¢;) for any function
F(¢&;). The range of the first (second) integral is the whole surface of the sphere (the whole

gas region). Note that If?US and Igs) are determined by @I(Jl) and <1§§1). Therefore, if we

know CDI(J] ) and @él) (and thus CDI(J] 3 ), the above identity gives a closed expression for 4y,
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which can be evaluated without knowledge of ch(JZS). Moreover, substituting (3.16) and (4.6)
and integrating the result with respect to 6 and ¢, we can further simplify (4.7) to

h—4 1, 11 I 4.8
L—gﬂ[w—;(l‘FZ)]v (4.8)

where

b= %((p(l)“—l)P(z wr =1, (4.9a)
h= /1 r <<01(J13 [—g ;gr L), o8+ 73y, o)™ :|>dr, (4.9b)

>, 4“2 (1 M (1
h=2 /] 2 L2800y 4.90)

Here, Zi(-, )~ (r, ¢ 0) = _Z1(, )(r, =&, £), 1 = 1,2, 3. In this formula, /7, is expressed

in terms of ((pI(JB , (pl(jlb)) and (p(l) only, namely the solutions of the elementary problems U
and S. In this way, we can bypass the difficulty to solve the second-order problem as far as
hy is concerned.

The formula (4.8) (or (4.7)) underlines that the transverse force is a cross effect
between the translational and swirling motion. In this sense, we may refer to (4.8) as
a cross-coupling formula. Sharipov (2011) discussed a similar expression for a general
weakly perturbed Boltzmann system. In this connection, we stress that, although the
transverse force in the present problem is of second order in ¢, it is a leading-order
effect since the first-order transverse force degenerates. We also remark that the asymptotic
properties of @I(jli and (p[(st) as |x| — oo play a crucial role in deriving the formula (4.7),
as discussed in Takata (2009a). To see this point more clearly, we give a direct derivation
of the formula in Appendix F.

4.3. The function hy (k) for k — oo and for k < 1

As an application of the formula (4.8), let us first consider two limiting cases, the case of
k — oo and the case of k < 1.

First, we explain the case of k — oo (i.e. the free molecular gas or collisionless gas). In
this case, the term k~! (/] + L) is negligibly small compared to /,, and therefore is ignored.
On the other hand, the term /,, can be easily calculated with the aid of the free molecular
solution for problem U (see Appendix G for a summary of the free molecular solution).

Since A (p{,|r—1) = —/T and P\, (r = 1) = 1/y/T (cf. (G3¢)), we obtain

hy, — —%n as k — oo (collisionless gas). (4.10)

Meanwhile, we can also compute h; directly from (3.86) using the second-order
macroscopic quantities for the free molecular flow. According to (G6e), (G7¢) and
(G7e), we have P, (o251 (r = 1) = 0, Pl i l(r = 1) = 0 and P[0l 1r = 1) = —1.
Therefore, (3.86) gives h;, = —(4/3)m, which coincides with (4.10).

Equation (4.10) implies that a sphere moving in a collisionless gas with translational
and angular velocities vy and $2( is subject to the (dimensional) transverse force
—%n poL? (220 x vg). The direction of the force is therefore opposite to the corresponding
force in the continuum flow (e.g. Rubinow & Keller 1961). This result, pointed out by
Wang (1972), Ivanov & Yanshin (1980) and Borg et al. (2003), is known as the inverse
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Magnus effect. It may be worth noting that Ivanov & Yanshin (1980) arrived at this
conclusion without the smallness assumptions for £2¢ and vy.

Next, we consider the case of k <« 1. To explicitly evaluate the terms /,,, I; and /> in
(4.8), we need the explicit forms of the velocity distribution function for problems U and

S (ie. gol(jli , gol(;g and (pél)) for small k. Such expressions can be obtained with the aid

of the asymptotic theory of the Boltzmann equation with small Knudsen numbers (Sone
2002, 2007). More precisely, we first apply the theory to the system (3.11)—(3.13) to obtain
asymptotic expressions for (p[(J];, gog,f and (pél) for small k. Then, we substitute them into
(4.9) to compute /,,, I and I explicitly.

In this study, we intend to derive an expression for Az (k) for small k up to order k.
This means that we need to obtain /; and I, (or I,,) to order k% (or k). The derivation is
straightforward but lengthy. Therefore, we omit it here and only give the final results. That

is, I, I1 and I are expressed for small k as

Ly ==2yik* + 0K, k<1, (4.11a)
I = —Y%k(1 4 3kok + O(K*), k<1, (4.11b)
I = — k(1 4 3kok + O(K?), k< 1. @.11¢)

Substituting them into (4.8), we obtain (3.89b). Note that the leading-order term of
(3.89h) coincides with the result obtained by Rubinow & Keller (1961) based on the
incompressible Navier—Stokes equation (with no-slip boundary conditions). Since kg is
negative (see (3.90)), the magnitude of the transverse force decreases with an increase of
k when k < 1.

4.4. hp (k) for intermediate values of k

In this subsection, we compute the function Az (k) numerically utilizing the formula (4.8).
We employ the BGK model of the Boltzmann equation to reduce the complexity in the
numerical integration. We thus replace the operators ¢; (i = 1,2,3) in I} and I, with

%BGK (see Appendix B for their explicit forms). Consequently, many integrals with
respect to the molecular velocity can be carried out, and we obtain for the BGK model
the following:

rr,Ua

oo
L=- / Pl P, — POy dr, (4.12a)
Tt

o0
2D _~() pI) L =)D
L= 2/1 ity g (=g 5o Py up + Tua 9, 0p) A7
o[- ~a
A
<[ 1 1
_n/ / ¢4 sin’ 000, (r, 0c, ) (r, 7 — 6, £)E d6; dg} dr.  (4.12b)
0 0

~(1 ~(1 (1 5(1 ~(1 5(1 ~(1 ~( ~ (1
Here, i (3, (1), ity § (1), P15, (1), Py, (r)s g s, (7, Py (0, 85, (7). 010, () and @y (1),
defined in (3.23), are the macroscopic variables arising in problems U and S. In the last
term of I, the variable 0, = cos ! (¢+/¢) (0 < 0y < m)isusedin place of ¢,. Accordingly,

‘/’Sb) and gaél) are regarded as functions of 7, 6; and ¢. Note that the integral with respect

to 6; is a convolution of §01(J1b) and (pél).
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Figure 3. Plot of Az versus k for the BGK model under the diffuse reflection boundary condition. The circle
symbols represent the numerical results. The asymptotic formula (3.895) with ko = —1.01619 (see (3.90))
is shown by the dashed curve. The asymptotic values at k — 0 (the continuum limit) and k — oo (the free
molecular limit) are shown by the solid and dash-dotted lines, respectively. The value of i;, decreases with k
and intersects iy, = 0 at k = kg, ~ 0.710.

The numerical solutions of ((pfj1 3 (p[(}b)) and (pél) based on the BGK model have been
prepared beforehand in Taguchi & Suzuki (2017) for problem U and in Taguchi et al.
(2019) for problem S, using an accurate finite difference method (Takata et al. 1993).
Therefore, we can make use of these data to carry out the numerical integration in (4.12).
We also made additional computations to supplement the data, in particular for £ < 0.1
and k > 10 (see also the second paragraph of § 3.7). See Appendix H for further details of
the numerical computations.

Figure 3 shows the obtained /y, as a function of k. In the figure, the symbols represent the
numerical results, the values of which are also tabulated in table 5. As seen from the figure
and table, hy decreases monotonically with k. The dashed curve shows the asymptotic
formula (3.89b) for small k, and the solid (horizontal) line represents its leading-order
term (hy = 27), corresponding to the Navier—Stokes result (Rubinow & Keller 1961). The
dash-dotted line shows the result for the free molecular gas (see (4.10)). The numerical
results tend to approach both 27 and —%n as k — 0 and k — oo, respectively. The values
of hy in these limits have different signs, and the curve Ay (k) intersects iy = 0 at an
intermediate value of k. Writing this value ky, (i.e. the threshold of k£ above which the
negative lift occurs), we find ky, = 0.710 for the present computation based on the BGK
model and the diffuse reflection boundary condition. In this way, the present asymptotic
theory supplemented by the numerical computations for /7 can describe the change of
the transverse force in terms of the Knudsen number and, in particular, the transition to
negative lift.

In order to obtain further insight into the present results, we compare the formulas (3.87)
and (3.88) with existing numerical results, in particular with those obtained by the DSMC
method (Volkov 2011). To this end, we consider the case in which the angular velocity of
the sphere 2 is perpendicular to the flow velocity at infinity v, i.e. ¢ = (£2¢, 0, 0) and
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k hy, k hr, k hr,

0.01 6.0935 (6.0916)¢ 0.3 22129 4 —3.1052
0.02  5.9047 (5.9001)¢ 0.4 1.4763 5 —3.3085
0.03 5.7189 (5.7085)¢ 0.5 0.8970 6 —3.4481
0.04  5.5358 (5.5170)¢ 0.6 04272 7 —3.5498
0.05 5.3563 (5.3254)¢ 0.7  0.0362 8 —3.6271
0.06  5.1806 (5.1339)“ 0.8 —0.2935 9 —3.6879

0.07 5.0089 (4.9424)¢ 0.9 -0.5762 10 —3.7368
0.08  4.8417 (4.7508)¢ 1 —0.8213 12 —3.8108
0.09  4.6789 (4.5593)“ 1.5 —1.6807 15 —3.8855
0.1 4.5204 (4.3677)¢ 2 —2.1964 20 —3.9607
0.2 3.1866 3 —2.7827 50 —4.0972

Table 5. Values of /i, for various k for the BGK model under the diffuse refection boundary condition. Note
that h;, — —%‘JT ~ —4.1888 as k — 00. “The results obtained by using the asymptotic formula (3.895).

Voo = (0, vso, 0) with 29 > 0 and v, > 0 (or g = 1/2) in figure 1. Following Volkov
(2011), we introduce the drag, lift and torque coefficients by
Fp —Fr -M

Cr=

Cp = -
%ponL5.Q§

%poTthvgo’ Cr %,OoTEL3vooQo’ (4.13a—c)
where (0, Fp, 0), (0,0, Fr) and (M, 0, 0) are the drag, lift and moment of force (torque)
acting on the sphere. Note that these coefficients depend on physical parameters Kn =
lo/L, Ma = voo/(SRTo/?a)l/2 and (}0 = LQO/(zRTQ)l/Z. If we use the expressions of the
forces and torque for small Ma < 1 obtained in the present study, Cp, Cp and Cr are
given, at leading order in Ma, as

5 h
\/jMaCD —— (4.14a)
6 T
h
CL = =, (4.14b)
T
R h
Q0Cr = -1 (4.14¢)
T

In figure 4, we compare Cp, Cr, and Cr based on (4.14) with those obtained by Volkov

(2011) for various Kn and Ma in the case of S}o = 0.1. Here, to evaluate Cp, Cr, and Cr
from (4.14), we have used the numerical data of hp, h; and hy, for the BGK model shown
in tables 3, 5 and 4. For k < 0.01, we have used the asymptotic formulas (3.89a)—(3.89c¢).
Note that the DSMC results are for a hard-sphere gas, but the data Ap, iy and hy, are for the
BGK model. For the drag, it is known that the agreement between the BGK model and the
hard-sphere model is enhanced if we make a conversion of the Knudsen number (see the
third paragraph of § 3.7). This conversion has been used in figure 4(a), that is, Cp for the
BGK model is shown against Kn/1.270 - - - . We also mention that the original values of the
Knudsen number presented in Volkov (2011) (e.g. figure 8 there) have been multiplied by
/7 in figure 4(a—c); otherwise, the values of Cp by Volkov (2011) deviate systematically
from the known results based on the linearized Boltzmann equation for a hard-sphere
gas (Takata et al. 1993), resulting in an inconsistency. As seen from figure 4(b), the
agreement of Cr between the present results and the DSMC results is quite encouraging.
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Figure 4. Coefficients (@) Cp, (b) Cr, and (c¢) Cr as a function of Kn in the case of L§2y/ (2RTp)"/? = 0.1. The
solid lines represent (4.14) using the data of /p, i, and hy, for the BGK model. The symbols show the results
of the DSMC computations for a hard-sphere gas (Volkov 2011). The results for Cp based on the linearized
Boltzmann equation for a hard-sphere gas (Takata er al. 1993) (i.e. (4.14a) using the data of ip for hard-sphere
gas in table 3) are also shown in (a).

When Ma = 0.03, Cr obtained by the present formula (the solid curve) and Cy, by the
DSMC data (the red circle) are close each other for Kn 2 0.4. In particular, the Knudsen
number at which Cp vanishes in the DSMC simulations seems to be close to the point
Kn = Kny, ~ 0.801 obtained by the present theory, despite the difference in the molecular
model. As the Mach number increases, the discrepancy between the DSMC and present
results becomes larger. We also notice that the discrepancy is more pronounced for smaller
Kn. We recall that the Mach number should be smaller than Kn for the present theory to
be applicable (the Reynolds number should be small). Therefore, the limit Kn — 0 with
Ma fixed does not correspond to our analysis, which explains the observed discrepancy for
small Kn. The torque coefficient obtained through /s also compares favourably with the
DSMC results when Ma < 0.2 (see figure 4c).
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5. Concluding remarks

In this paper, we considered the flow around a spinning sphere moving in a rarefied gas.
In this situation, the sphere is subject to a transverse force (lift force) in addition to a
drag force. Previous studies suggest that the transverse force acting on the sphere changes
direction with an increase of the Knudsen number. This study aimed to reveal precisely
the transition of the transverse force with the Knudsen number, assuming that the relative
speed between the sphere and the surrounding gas is small (weakly nonlinear setting).

The present analysis is based on the method of matched asymptotic expansions for the
Boltzmann equation for small Mach numbers. The physical space is divided into two
regions based on the solution’s underlying characteristic length. Then, we constructed
the asymptotic solution in each region by considering their matching in the crossover
region. As a result, we successfully derived the boundary-value problems of the linearized
Boltzmann equation for the near region up to the second order of Mach numbers. Then,
with the aid of the similarity solutions, we derived the expressions of the force and torque
acting on the sphere, which are summarized in (3.87) and (3.88) (or (3.91) and (3.92)).

The second outcome of this study is the actual construction of the force formula.
In the derived expressions, the force and torque exerted on the sphere depend on the
Knudsen number through the functions hp(k), iy (k) and hys(k), and their numerical data
are necessary to complete the formulas. The numerical values of hp(k) and hys(k) are
available in the existing literature, but A7 is new. In this study, we obtained /y (k) (the
transverse force) numerically based on the BGK model of the Boltzmann equation for
a wide range of k (we also derived its asymptotic expression for small k for the general
collision model). The obtained /;, exhibits a monotonic decrease in k and changes sign
when crossing the threshold &y, & 0.710. Thus, the transverse force acting on the sphere
reverses its direction when the Knudsen number is above this threshold for any sphere
velocity vg and rotation 2 in the present weakly perturbed system.

Wang (1972), Ivanov & Yanshin (1980) and Borg er al. (2003) pointed out that the
direction of the transverse force is opposite in the free molecular gas with respect to that for
the continuum flow. The present work connects these two limits and clarifies the transition
of the transverse force in terms of the Knudsen number.
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Appendix A. The Boltzmann equation and the BGK model

Using the quantities introduced at the beginning of § 2.2, the time-independent Boltzmann
equation is written as

of
1 e lac - V|
J(f. ) = P /(f(E f (&) —FEfENB (lTI |V|> d$2(er) d§ ., (A2)
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E/ = E + [(S* - §) ° a]a, S; = g* - [(S* - ‘E) ° a]a, (A?’a,b)

where X; (= Lx;) (or X (= Lx)) is the space rectangular coordinate system (or the position
vector), e is the unit vector, d§2 (&) is the solid angle element in the direction of & and B is
a non-negative function of | - V|/|V| and |V| with V = &, — &, whose functional form
is determined by the intermolecular force. The domain of integration in (A2) is the whole
space for &, and all directions for . Note that the dependency of f on X is not shown in
(A2).

Let

B 1 E° + 1.7
5= | Grarrew (<P ) B @t g o

where the domain of integration is the whole space for & and &, and all directions for «.
Then, the dimensionless counterpart 5 of B is defined by

y afleV 5 14
B;'B B( 5 ,|V|>, V= GrioE =8 (A5a,b)

With this relation and the variables introduced in (2.1), the Boltzmann equation (A1) is
transformed into the dimensionless form (2.3), where the operators £ (¢) and _Z (¢, ¢)
are given by

L (¢) = /E*(qb(C’) F L) — o) — ¢(¢,))BdR (@) dE,, (Aba)
(@, ¢) = /E*(¢(§/)¢(§;) — 3P (&, ))BdR () d¢., (A6D)

with
=0+, -0 ale, ¢,=¢,—[C,—0) - ale, (A7a,b)

and E, = n—3/2 exp(—|§*|2). The domain of integration in (A6a) and (A6b) is the whole
space for ¢, and all directions for «. Note that the dependency of ¢ on x is not shown.

The symmetric bilinear operator associated with the quadratic form ¢ (¢, ¢) is given
by

1
/(I/f,¢)=5(/(1ﬂ+¢,1//+¢)—f(l/fﬂlf)—/@,(lﬁ))

1
- / E.U @) EL) + ¢@I (&) — (@) (E.)

— ¢ )Y (¢ ))BdR (@) dE,. (A8)

Note that £ (¢) =2 _Z (1, ¢) holds.

The molecular mean free path in the equilibrium state at rest with density po and
temperature Ty is given by £g = (2//7)(2RT0)?/[(po/m)Bo] (e.g. Sone 2007). For a
gas consisting of hard-sphere molecules with diameter d,, (i.e. a hard-sphere gas), B is
given by B = (d2,/2)|a - V|. Therefore, we have

N |(x . IA/|
By = 2v/2nd? (2RTy)'?, B = , (A9a,b)
’ miee 427
for this model, and the mean free path is given by £y = 1/ [\/zndﬁ1 (po/m)].
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The (time-independent) BGK model of the Boltzmann equation is obtained by replacing
J(f,f) in (Al) with

Q"K(f)y =Acp(fe =), (A10)
_ P (& —v)?
fe = GarTyir P <_ 2RT ) ’ (AlD
1 1
p= /fds, v = — / gfdE, T=-— /(gi — v)’f dE, (A12a—c)
P 3Rp

where A, is a constant and p, v; and T are the local density, the flow velocity and the
temperature of the gas, respectively. The integrals with respect to & in (A12) are carried
out over the whole space. With the dimensionless quantities introduced in (2.1), the
dimensionless form of the BGK equation is obtained as

9 1
ax; k
QB (¢) = (1 + w)(¢e — ¢), (A14)

g Q8K (¢), (A13)

where ¢, is defined in (2.15). Linearizing QBGK () around the reference state, we obtain
the well-known linearized BGK collision operator pBGK (¢) as shown in (2.12). On the
other hand, we define ¢ BGK () as the remainder of QBK(¢) subtracted by .Z29K (¢).
We then obtain (2.13).

Appendix B. Axial symmetry of the operators .2 and ¢

Let a; (i = 1,2, 3) be any fixed unit vector and let ¢ = ga;, & = j(8;; — ajaj) and ¢ =
[¢] = ({H2 + Ciz)l/z. For any function f of ¢ and ¢, Z(f), L (&if) and L (&igf). i) =
1, 2, 3, are expressed in the following forms (Sone 2002, 2007):

ZL(f) = Z(f), (Bla)
L@ = &L, (B1b)
LG = GG + 6 — aia) L5(f), (Blc)

where Zj(f), [ =0, 1,2, 3, are functions of ¢ and ¢. Also, for any functions f and g

of gy and ¢, 7 (f.). F(f.5ig). 37 Gf. §io) + 7 (Gf. Lig)) and 37 (&if . §ig) —
/ (&if, ¢ig)), i,j = 1,2, 3, are expressed in the following forms (Sone 2002, 2007):

([, 8) = 2, 8, (B2a)

J(f, g = F &g ) =& (S, ), (B2b)

L@ Go) + ZGf. ti9) = 4§ F2(f, g) + (85 — aiay) F3(f. &), (B2¢)
3@ 59) — FGf . 8i9)) = €jmamt) Fa(f. Q). (B2d)

where _7;(f, g),1=0,1,2,3,4,are functions of ¢ and ¢. Note that _#o(f, g), #2(f, 8)
and _#3(f, g) are symmetric and _Z4(f, g) is antisymmetric with respect to interchange
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of fand g, i.e.
Jif.89) = 21 f), 1=0,23 _Zuf,89)=— 2481 (Fa(f.f)=0).
(B3a,b)
From (Blc), we have ) .
L) = L) +2.25(). (B4)

Multiplying this by %(5,-] — a;a;) and subtracting the result from (B1c), we obtain

22 22
Z ((Eiéj - %(&; - aiaj)>f> = (Eiéj - %(8,-,- - a,-ap) (1) (B5)
Next, adding both sides of (B2c¢) and (B2d), we obtain
F(&Gf §g) = &g F2(f. &) + (8 — aia)) Z3(f, &) + €ijmaml) Fa(f, g).  (B6)

In our spherical coordinate system, it follows from (B1b) and (BS5) that
L(GgF) = A (F), ZL(GoF) = 5 1(F),

L5 — o o -8 (B7)
&z ( — g"F) = Lt BF). LtF) = oty La(F),
where F is any function of ¢, and ¢. From (B2b) and (B6), it follows that
/(FvCGG)=§9/I(F7G)7 f(F’Q‘QDG)=§(pj1(F’G)’
F(GoF. 5G) = {5 F2(F,G) + #3(F, G), B3

J (GF, 8,G) = 3 72(F,G) + F3(F, G),
F (GoF. £,G) = Loty F2(F, G) + & Z4(F, G),

where F and G are any functions of ¢, and ¢.
For the BGK collision model, .# and _¢# in the above formulas should be replaced by

#BCK (see (2.12)) and / BGK (see (4.3)), respectively. If we denote the corresponding

counterparts of £ (I=0,1,2,3)and #; (I=0,1,2,3,4) by DQ”IBGK and /OIBGK, the
formulas (B7) and (B8) hold with

LPK(F) = &IF] + 24, [F1 + (¢* — 3)T[F] — F, (B9a)
LBOK(F) = 2@ [F] - F, (B9b)

ZBOK(F) = —F, (B9¢)

LPOKF) = w[F1+ &t (0% — (HF) + 5% = DT = ;))F], (B9d)

POK(F, G) = 23¢2 — (M Fliy Gl + &, = 3) @ FI1EIG) + i [GIF[F])
+3@* =507 + DE[FIF[G]
+ S @IFILEK(G) + alGLLL  (F)), (B10a)

BOK(F, G) = 2u[GlI¢ i, [F1 + 12 = DEIF + LalF1£P%% (G),  B10b)
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"BOK(F, G) = 2, [Fli,[G), (B10c)
BOK(F, G) = =22 Flil G, (B10d)
JEK(F, G) =0, (B10e)

where @ and 7 (or i, and ;) are given by (3.19a) (or (3.21a)).

Appendix C. Functions related to the linearized collision operator .Z

Let us introduce functions A(¢), B(¢), D1(¢), D>(¢) and F(¢) as the solutions to the
following equations:

L(GA) = —¢i(¢* = 3), (Cla)

2 2
((az, & U)B) (;,c, < y> (Clb)

L((&ibjk + ¢idki + Lkbij)D1 + &igisiD2)
= Y1(&idjk + &idki + Ckdij) — LiGiCkB, (Clo)

¢ e
Z ((é‘lgj - ?50) F) (GCJ U)A (Cld)

where yj is defined in (3.39a), and A(¢), D1(¢) and D;(¢) are subject to the following
subsidiary conditions:

(¢%A) = (5¢°D1 + ¢*Dy) = 0. (C2)
With A(¢) and B(¢) introduced above, functions C(¢) and G(¢) are defined by the
relations
e e
27 (cZ - (4,4, ,,) ) (ac, ,,) C, (C3a)
2,77 =3, 64) = 4G, (C3b)
For the BGK model, the functions A, ..., F are explicitly given by
AQ)=¢2 -3, B@) =2, D1(§)=—1,} A
Dae) =2, F()=—22+3. (

Appendix D. Proofs of Propositions 3.1 and 3.2
In this appendix, we present the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1

We recall the relations (3.10) and (3.16) and go back to the original problem (3.6)—(3.9)
for ¢p1. Consider a large sphere (say, Sg) with radius ry (>1) centred at the origin,
enclosing the original sphere inside. For a sufficiently large ry, the length scale of variation
of ¢ is of the order of rg near the surface of Sp. Since rg can be taken arbitrarily
large, we can assume that the local Knudsen number, k/rg, is small near the surface of
So. Consequently, the behaviour of the gas is described by the Grad-Hilbert expansion
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(e.g. Sone 2007, Chap. 3) there. As a result, the macroscopic variables wri, uir1, Tr1, Pri
are described by the following partial differential equations (i.e. Stokes-type equations):

8 .
WiEl _ o, (Dla)
ox;
oP
yikAuipy — —2L =0, (D1b)
3)6,'
At = 0, (ch)
wfr) = Pp1 — 1F1, (D1d)

where A = 32/ asz is the Laplacian operator and y; is the constant defined in (3.39a).

Moreover, with Pry, u;r; and tr; that satisfy (D1), the velocity distribution is expressed
in the form

5
or1 = Pr1 + 2¢uir1 + (4“2 - 5) TF1

ouU;F1 ou JFl) 8TFl

0x; 0Xx; X;

é“z{JB(C) (

ul a [0 Ju:
*E[(Ciaﬂ+¢;az,-+czaij>01<;)+;igaDz<;>];( Iy ”JF‘)

X; 0x; 0x;

(D2)

— 25

where the functions A(¢), B(¢), ..., F(¢) are defined in Appendix C. Because of the
condition (3.9), Pr1, ujr1 and tr; contained in (D2) are required to satisfy the condition

Pr1 — 0, (wir1)i=123— (U,V,0), 171 — 0, as|x|]— oo. (D3a—c)

This serves as boundary conditions for (D1) at infinity.
Now we introduce (3.10) together with the similarity forms (3.16). Consequently, Prq,
uir1 and tp; take the forms given by (3.226)—(3. 22f) Substituting them into (D1), we

obtain a set of ordinary differential equations for u u (r) Ztt(%b(r) i)(l)(r) r(l)(r) and

(1)(r) (we omit the resulting equations for con01seness) The most general solution
satlsfylng the condition at infinity (D 3) is given by
~(1 2 ~(1 Cl 2
() = 1+ =4 50 i) = —1- 5+ 2%,
(1) (1) €3 (1) 2r (D4)
Py, (r) = Vlkﬁ, fUa( r) = 3 i, g(r) =

where ¢;,i = 1, ..., 4, are undetermined constants. Meanwhile, if we use (3 22b)—(3.22f)
together with (3 10) and (3.16) in (D2), we obtain the expressions of gan, gol(j]b) and (p(l)

in terms of ui%a, ;%b, PS;, r[(Jla) and u(l) Substituting (D4) into gan, gol(jlg and (p(l) thus

obtained, we arrive at the expressions (3 47) (3.49). This concludes the proof.

Proof of Proposition 3.2
Multiplying (3.6) by ¢; and integrating over {, we obtain dP;r1/0x; = 0 everywhere
in the gas region. We then multiply 1 or ep;x; to this and integrate the result over
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the domain enclosed by the original sphere (radius 1) and the sphere Sy (radius
rg) considered in Proposition 3.1 to obtain .7-"1(1) — flx\=ro PjiFin;dS and MEI) =
— fl - €ijmXjPmir1ndS, where n; is the outward unit normal vector on Sy and '7:1'(1) and
M are defined in (3.26a,b). Using (3.22¢)—(3.22), this in turn implies that

hp = =47 (P, (ro) — 2P 3, (o)), (D5)
hy = TcrOPitl )s (ro). (D6)
H(1)

Now, direct computations using (3.47)—(3.49) show that P Ve P(l) up and P(1 (see
(3.23)) have the following asymptotic properties for large r > 1:

3yrkey

~ 3y1ke -
Ve =Tt 007, Py, =007, Pli="EE r» 1 (DTao)

rr,Ua -

Substituting (D 7) with r = rg into (D5) and (D6) and letting ry — oo, we obtain (3.50a,b).

Appendix E. Boundary-value problems for the second-order inner problem

In this appendix, we show boundary-value problems for ((p&)}a, ‘Pézs)a’ (p[(st)g, gS)Z) o=

a, b, c,d, appearing in the similarity solutions (3.79)—(3.83). They are summarized as
follows.

(a) Problem UU

(2) 2 (2) 2 2
uua | §° =& 9uua | 3874 @ _ 1 @ @)
Cr ar 4+ p A Bé'ra + 5 p 4 Puup = %o%((ﬂUUa) + IUUa’ (Ela)
)
; 000 4 § f UUb §r¢(2) B %90(2) n 4'2 - §;’2¢(2)
e - 2, uls ~ - 9Ula  Putc
1 2 2
= Loty + 7 e (B1b)

2

douu. |, 02 —¢ a‘PUU fr @) ‘PUUb ) @
& 8rc + r } Bg“rc B UUc j( Uue) T IUUC’ (Elc)
(2 2 242 2 2
Oyt | 5" =8 0%%uta 5T -4 o 1 0 @
by T - 2, zr’goUUb=;,%(¢UUd)+ IUUd, (Eld)
) )
PUva = H(PUUL)-
(2)
(p - Oa
be U 6 >0, r=1, (E2)
2 _ 0
Puue =
(2) (2)
Puua = X @Gua):
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) 3¢ 2 2
Yuva Ey?(fr + 3¢ —¢%,
2) €1
Poup = — = — 4
b.c. yik asr — 00.
2
P = 2
) Cl 2 2
gDUUd_) _mgr+§ _é‘r _17
(b) Problem SS
2 2)
dose, £l 0es, 380 -82 o _ 1o .@ L0
&, p ae, 2 Pssp = 3 0(Pss,) + 7 lssa
(2) (2)
¢ Issp, & =67 0955, & ) 2(/)(2) n o Crz(p(z)
T, . ac, - ¥ssb L ¥ssa  ¥sse
1 1
_ (2) (2)
= zgl (@ssp) T 7 Lssp»
(2) 2 2 q.(2) 2
; 09ssc | 87— 8 99sse 58 @ _ Pssh _ lg( @y, 10
"oy , 3¢, r‘/’ssc 2 ¥ssc & sse’
2) 2)
¢ Apssa | §° =& dpssy &0 — frz(p(z) _ 130@(2) )+ 1
r ar r a;r 2 SSh k SSd k SSd’
2 2
(Pés)a = %(wés)a) - ((2 - frz - 1),
2)
% =0,
b.c. fzs)b 60, r=1,
Psse = —2,
2 2
soq = H (@5g) + 2= g2 — 1,
2)
b.c. @5, >0 asr— o0 (x=a,b,cd.
(c) Problem US
) 2 2 ) 2 2 (2}
‘ Ousa , 5~ =5 9usa & @1, §" =& @, Pusd
" or r ¢, rUSa 2r USc
1 @z, Lo
= ;"?1 (q)USa) + zIUSa’
(@3} 2 2 )t 2 2 )t
¢ dpusy | &~ — & dous, Qw(Z)u §° =& (@ Yusd
" oor r 9Ly r T USh 2r USe r

1 2 I o
Egl (ﬁﬂl(js)g) + %Iés)g,

(E3)

(E4a)

(E4b)

(E4c)

(E4d)

(E5)

(E6)

(E7a)

(E7b)
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) (@2} (2} (@2}
¢ dPys. " £* =& 0puse 28 @2 _ Pusa _ Push _ lgz(w(Z)ti) i 1 (E7¢)
" or r ¢, r USc r r k USe k Use
(@2): ) 2 2
 Msa | &= 000s =8 o -8 o
"o r Lle 2r USa 2r Ush
1 2 1
= Lo (@isa) + e (E7d)
2 1
o= i)
(@)t
eusy = 0,
b.c. ‘(JZS)’; 6>0, r=1, (E8)
gDUSC = O’
(@)t (@2):
PUsa = (@sq):
be. o2 50 —a,b,c,d E9
€ Wusy — asr—> oo (x=a,b,c,d), (E9)
2)b 2 2 2)b 2 2
0Pusa  C°— &7 dgyg $7—=¢7 op 1 @b, 1 op
Cr 97 4+ ; - 3§ra -3 . - Pusp = EZO(gDUSa) + %IUSa’ (E10a)
2)b 2)b @b
; dpue | &= &2 delR, _Gr,@  Pusa =& o
" or r ALy r USh r 2r USe
1 2y 1 o@p
= Li(ousy) + L Hsh: (B10b)
(2)p 2 24 (2)b 2)b
IPyuse ¢ — &7 dgpg & @b APusy 1 b L @p
Cr ar <+ p - 3§rc - 7('0USC - ’ = ]_632((’0USC) + %IUSC’ (E10c)
(2)b 2 24 (2 2 2
00usa | §” =8  9Pusa | 57— ¢ @p 1 @by, 1oop
Cr ar . - 3z, +2 . - Pusp = %30(¢U3d) + %IUSd’ (E10d)
@b )b
PUsa = A (@sa):
@b
eusy =0,
be ‘(st)’b’ 6 >0, r=1, (E11)
Yusc = 0,
2)p _ (2)b
Pusa = £ (@Pysa)
be. g0 =0 asr— oo (@=a,b,cd), (E12)
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where the operators .Z7(-), [ = 0, 1, 2, are defined in Appendix B and the inhomogeneous

terms Il(j%a, Iézs)a, I(st)g and II(JZS)Z (¢ =a, b, c, d) are given by
(2) (D (1) (1) (€Y (1)
v = Jo(@y, ¢’U — J3(@yp. 9up)-
(2) () (1) (2) (D (1)
Tgup = 2/ 1 ((pUa’ eup)s  Iute = 22@up up) (E13)
1(2) _ (1) (1) (1) (1)
uud =
2 _ (H (1) (H (1) 2 _
Igs, = ) — F3(eg ,905 ), Isg, =0,

@ H o«
Iss)c == (QDé g ‘Pé : (El4)
1(2)

1 (1 1 1
SSd_ @ ))+j3((p§)’¢§))

(2)11 (1) (@) )z 2)a (1)
Lise =2 710y 05 ), Loy =0, Iyse =2 72(y;. 95 ),
2 H H A
190 = (&2 = D) 220, o) + 2 7300, o),

2)b o 2)b 2)b 2
Iae =26 Fa(oli 087, 158 = 150 = Laq = 0. (E16a.)

It should be noted that Z,(+), £ (-) and %(-) in (El), (E4), (E7) and (E10) as well as
Ji(-,),1=0,1,2,3,4,in (E13)~(E16) are functions of r, {, and ¢.

(E15)

Appendix F. Derivation of (4.7)

In this appendix, we present a direct derivation of the formula (4.7). We begin with
repeating the equation and boundary conditions for @8 i and ¢I(J2§ Writing cD[(J] i = ¢!
and <D[(j2§ = ¢! for brevity, they are summarized as

(problem I)
9 1
Gi aﬁ éf(qﬁ) x| > 1, (Fla)
=@, >0, I|xI=1, (F1b)
o' — 23, as|x| — oo (Flc)
(problem 1)
apll 1 2
¢ ¢’_ L@+ @y o) x> 1, (F2a)
o' = (") +2¢,Ssin6.x (@), & >0, |xl=1, (F2b)
¢H — 0, as|x| — oo, (F2c¢)

where 45( ) and @él) appearing in the inhomogeneous terms of problem II are the solutions
to the problem (3.11)—(3.13) (with J = U or S). The following derivation follows the line
of Takata (2009a) and takes several steps.
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We first define the reflection operator as follows: F(¢;)~ = F(—¢;) for any function F
of ¢;. Obviously, (F7)™ = F and (F~) = (F). Multiplying both sides of (F2a) by ¢'" and
integrating the result over ¢, we obtain

0 110 - .3‘151 II (1) 5@
8—xi<§l¢ ¢ >+<¢ §laxi> —(p"" L") = ¢> F(@y7, g 7). (F3)

Because the operator .Z is self-adjoint and commutes with the reflection operator (-)~,
that is, Z(F~) = (ZF)~ for any F = F(¢;), we can transform the third term as

1
E<¢>I*.$<¢“>> @"Z")) = ("L @H7)

»IH a~|>—‘

1

k
("2 (") = < = > = (the second term).  (F4)
Thus, we are left with the identity

<a¢ —oll) = ¢I‘/(¢“) o). (F5)

Further integration with respect to x over the gas region enclosed by a sphere with radius
ro > 1 leads to, after letting rp — oo,

lim (6, ") ds — / (6" ds

10700 JIx|=ry lx|=1
2

= /| | 1<¢>I—/<<z>“),<z>§”>>c1x, (F6)

where the divergence theorem has been used on the left-hand side. Note that the improper
integral on the right-hand side is well defined (Proposition 3.1).
We argue that we can replace ¢ in the second term of (F6) by gH =

2¢,S sin 9%(@8) |/=1). This is because
(9" (@' — ) = / . 69! (9" — g IEdL + / ) o' (9" — g Edg
&> &<

= f o' (9" — gHEdL — Gt — g EdS
&r>0 >0

= 7 (o™ . Gl EdE — (Y . & — g EdS
&> >

= — 7 (o™ GO EAE + (@Y crd)“Ed;
¢r<0 &r<

%/II% _ N4 ,%/H
Zf @A (¢h \/—(45) (@")

=0, (F7)

holds on the boundary |x| = 1, where (F1b) and (F2b) have been used in the third equality.
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Concerning the first term of (F6), we write the integral as

[ @eeas= [ weleraumas—2 ] @aetes @

|x|=ro

Meanwhile, multiplying (F2a) by ¢3 and integrating over ¢, we have 8({3{1-(1)11) /0x; =
0 for |x| > 1, implying that f|x|:r0<g3g,¢ﬂ> ds = ﬁxl:l<;3;,¢11> dS. Therefore, we can
transform the last term of (F8) as

-2 / | (&3¢¢™") dS = —2 f (&3¢0 dS

Ix|=1
=2 fl | 1(;3;@{}5)) ds = —SVh;. (F9)
xX|=

Here, the last equality follows from (3.81)—(3.83) and (3.86) together with (3.21) (note

that f‘ x|=1 (&3 g“,d)l(fs)b) dS = 0). Concerning the first term of (F8), it can be shown that ¢!

(= GDI(JZS) ) behaves for large |x| as

P"(x, &) = 26:d™ + O(1x|72),  |x| > 1, (F10)

where le is a quantity of O(|x|™!) (see the last paragraph of this appendix). Since

¢! behaves as ¢l (x, ) = 203 + 2¢;d) + O(|x|7?) for |x| > 1, where d! is a quantity of

o(lxI™H (Proposition 3.1), we conclude that the first term on the right-hand side of

(F8) vanishes as rg — oo. Then, the identity (4.7) follows from (F6), since ol = <1§[(jl*),
2 2 1 1

gl =12 and IR =2 g7 (@, o).

w,

Finally, we briefly explain the derivation of the asymptotic property given in (F10). To
see the asymptotic behaviour of @I(jzs) at large x| > 1, we apply a procedure similar to that
described in the proof of Proposition 3.1. A difference is that the equation for (pI(JZS) has

an inhomogeneous term, which depends on cD[(Jl) and cbél). In this case, we can simplify
the analysis by using the S expansion (Sone 2007) instead of applying the Grad—Hilbert
expansion to (F2a). More precisely, we first apply the S expansion to (2.3), assuming
the local Knudsen number is small, to derive the Navier—Stokes-type system equivalent
to (3.36)—(3.38), which we sum up to obtain the equations for the (total) macroscopic
variables for ¢ in the far region. Then, substituting the expansion (3.2) and rearranging
the terms, we extract a system of partial differential equations describing the macroscopic
behaviour corresponding to ¢r>. The derived equations consist of the Stokes equations
for ujr» and Py with sources and the Laplace equation for tp» with sources, whose
homogeneous counterparts are similar to (D1) (the source terms consist of lower-order
terms, i.e. u;r1, Tr1, etc.). The remaining process is parallel to that in Proposition 3.1 for
the derivation of (D4) and that of (3.47)—(3.49). The asymptotic property (F10) is obtained
in this way.

Appendix G. Asymptotic analysis in the case of a free molecular gas

In this appendix, we give a summary of the asymptotic analysis (§ 3) in the case of a
free molecular (or collisionless) gas. We note that Wang (1972), Ivanov & Yanshin (1980)
and Borg et al. (2003) investigated this case and showed the essential feature of the force
and the torque acting on a sphere moving in a collisionless gas. Here, we study the same
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problem in the framework of the present asymptotic analysis. We use the notation of the
main text. Then, the basic equation is given by (2.3) with the right-hand side replaced by
zero. The boundary conditions (2.5) and (2.8) are unchanged.

G.1. Leading order in ¢

The leading-order solution is obtained in the form of (3.10) with (3.16) with (p&z , wgg and

(pél) given by

oD —Zi(r,0;), 0<6 <sin~'(}), Gla)
Ua 2¢ cos b, sinfl(%) <6 <m,
NEd . 1.1
———7Z(r,0;), 0<6; <sin” "(-),
) =" o) ¢ ) (G1b)
-2, sin!(}) <6, < m,
P |
1) 2r, 0<0; <sin 1(;),
= Gl
s {O, sin_l(%) <0 <m, (Gle)

where 0, = cos™! (¢r/¢) and

Z1(r, 0;) =/ 1 — r2sin® 6 cos O + rsin” 6, (G2a)
Zo(r,0;) = rcosf — /1 — r2sin® 6, (G2b)

0=<6, < sin~! (1/7)). Note that gogcz, gol(j]b) and goél) are discontinuous at 6; = sin~! (1/r).
The leading-order macroscopic quantities are given in the form of (3.22). In particular,

1 1 32\ 1 1\
rua=g\1m )P et e) el
e 1 21 r41 G3a)
—|(l—= ] In
16 r2 r—1)° “
1

oAV (L ) (L (G3b)
— ——= (= n
32 r2 r2 r—1)°
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32
~ 1) ﬁ 1 3 10 1
Prt,Ub:_W |:I"—(1—r—2) <I’+ 5)—(;4'1 F R (G3e)

~ 1
ey
Pis=r (G3f)

With (G3d)-(G3f), we can derive P, r1, Pror1 and Pryr) from (3.22¢)—(3.22i).

G.2. Second order in &

Next, we consider the second-order problem in ¢. The equation is ¢;d¢p2/0x;
0, equipped with the boundary condition on the sphere (3.65) with £ (¢r1) =
—/7(U cos O + Vsinf cos ¢). The condition at infinity is given by

br2 — 2(eig)* — 1 as |x| — oo, (G4)
where ¢; is defined in (3.30a). Note that the condition (G4) is identical to the condition
(3.66) with ¢; = 0. This is consistent with the fact that ¢; vanishes as k — 0o (see
(3.50a)). Accordingly, we can obtain the solution in the form ¢p> = cD[(JZI)J + (Dézs) + (Dgg
(cf. (3.69) with ¢; = 0), where @, @) and @1 are of the form (3.79)~(3.83).
Moreover, because inhomogeneous terms are absent in the problem for <1§I(JZS)b (see (E16)),
@gs)b is identically zero for the free molecular gas (thus, @gs) = @I(st)ﬁ). Then (p[(Jz[)Ja, (pézs)a
and gogs)i (¢ = a, b, ¢, d) are given by

VA3 VAY/ 72
2 _»n 2 2 2) _ %4122 ) 2
Puua =41 — X sin® O, oyy, = 2_; » Puuc = p

72 72 c? sin® 6
2) 2 2 (2) 2 2 2 ¢
(pUUd:?SIH Oc wSSa:ZI_<?+2r>—’

@ _ L4 o 5 2
Pssp =2 c Psse = 2 2r,

72 §2s1n29
@ _ [ 2 ¢
(pSSd ({_24_2,,)7_1’

2 2 2
OUsa = —2VTIZ1. gy =0 gpgi = —2/mr

(G5a)

Z ¢ 2 sin? 0¢
¢ 2

2
ot =2/

for0 <6, < sin_l(l/r) and

2 2 2
(pl(ﬂ)m = ;2(3 cos? O — 1), wl(j[}b = —4¢ cos b, (pl(ﬂ)JC =2,
©)

. 2 2 2 2
(OUUd = 4'2 Sll’l2 0; — 1, q)és)a = 0, gﬂés)b = O, (pés)c = O, gpés)d = 0, (GSb)

) ) )4 (@3}
PUusa =0 ousy =0, @i =0, g, =0,

for sin_l(l/r) < 0y < m. Here, Z; = Z(r,0;) and Z, = Z>(r, 0;) are defined in (G2).
Note that the solutions are discontinuous at 6; = sin~ (1 /7).
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Unlike the case with finite Knudsen numbers, we do not require the slowly varying outer
solution, and the inner solution is directly connected to the boundary condition at infinity
in the case of a free molecular gas.

The components (P,r2, Pror2, Pryr2) of the second-order stress tensor Pjjgp are given
in the from (3.84a)—(3.84c¢) with ¢; = 0, where

. 1 I 1 9 38 I
Prlglia =~ 145 [— (1 = ;) (1 + ;) (2— 72) (3 - r_2) 2 (1 - 72)

445 84 342 48
) =y
Tt — =5 ——+ rs} , (G6a)

~ ) 1 1 1 11 14\ , 1
Prr[wUUd]:m - 1_; 1+; 2—r—2+7 rrll— 1_1‘_2

+(1—%)(1+%+1r2—26+%—§)}, (G6b)
PrlpSe,] = 14110 {— (1—%> (H%) (644—%—?4—7) r2<1— 1-%)

+(1_})(32+372‘i_3+i—;+§)] (Géc)
Prr[¢§§2]=—ﬁ) [— (1—%) (H%) (68+j—§—%) r (1— 1—:_2)

34 21 7 16
)(34+——r—2+r—3+r—4)j|s (G6d)
X 121+121+1 P g

—_— — — r p—

r r r2 2 r+1

1\ 1 11
+O—J (1-4-3+2)) =

r)r roor r

Prrlpieq) = Prrlgal =0, (G6f)

~ 1 1 1 40 57 1
(2) 2
P”[QDUUb]__g |:<1—;) <1+;> <8+r—2+—1>r < 1_}’_2_1)

+74+17 7 57+8
2 3 AT s

s o, 1 1 1 0 9\ , 1
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1\2 16 23 16
+(1——) (8+—+—2+—3):|, (G7b)
r r I r
Puloia1 =0, (GT¢)
Palp(e) =0, (G7d)
R 1 1\? 1\? 1\ [r. (r—1
Prt[(pUsa]:_E 3 1_; 1+; 1+r—2 riln S + 1
(188 3] G70)
- +—=——)—q- e
oo )

Appendix H. Some comments on the numerical computations

In this appendix, we give more details of the numerical computations for /. We restrict the
rangesof rand ¢ to 1 <r < ryurand 0 < & < &yax, Where ryqy and &g, are appropriately
chosen constants, which are large enough. In our computations, the value of 7, is varied
depending on k (7,4 = 150k is used for most of the cases). For numerical integration,
the domain [1, ryax] X [0, 7] X [0, {max] (r X 6, x ¢ directions) is further subdivided
by (N + 1) x (2Ng, + 1) x (N; + 1) lattice points non-uniformly distributed along each
direction. For every k, the same lattice system is used for solving both problems U and S.
Note that (gol(jli, @813 ) and (pél) are discontinuous on 0y = sin~'(1 /r) and this discontinuity
is fully accounted for in the present computations (see Takata er al. 1993; Taguchi &
Suzuki 2017). The values of N,, No, and N used for the results shown in table 5 and
figure 3 are as follows:

(3200, 1024, 74) for 0.01 < k < 0.09,
(Ny, No,., N¢) = (H1)
(1600, 512, 74) for 0.09 < k < 50.

Note that, by restricting the range of r to 1 <r < ryqy, the upper limits of the
integrals /1 and I in (4.8) are also restricted. Using the asymptotic expressions given
in Proposition 3.1, we can estimate the error introduced by this restriction as follows.
That is, writing fooo = Or me [ rz:”, the contribution from the second integral is found to

be 2kcica/rmax + O(rggx) for I1 + I». Since ¢ and ¢4 are known from Ap and hy; (see
Proposition 3.2), the term 2kcc4/Fmqx 1S known and can be used to correct the numerical
result for the first integral. The results presented in table 5 and figure 3 are obtained in this
way.

To assess the accuracy of the data presented in table 5, we consider the following
quantity:
hr[S1] — hel[S1)2]

h[S1]

Here, i1 [S1] denotes the value obtained using a lattice system with (N,, No., N¢) shown
in (H1) and h.[S;/2] the value obtained using a lattice system with N, and No, halved.
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Then, the values of £ in our computations are summarized as

8.7x 107 (0.01 <k <0.04),
2.8x 1077 (0.05 <k < 0.09),
73 x107% (0.1 <k <0.4),
J64 x 1073 (0.5 <k <0.9),
—]12x107% (1 <k<4),
56x 1070 (5<k<09),

1.5% 1075 (10 < k < 20),
2.6 x 107%  (k = 50).

(H3)
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