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FINITE POTENT GROUPS

JOHN POLAND

A group is potent if for any element of the group and any

prescribed positive integer (dividing its order if this order is

finite) there corresponds a finite homomorphic image of the group

in which the element has the prescribed integer as its order.

The finite potent groups form a finite variety that contains all

finite nilpotent groups, all finite metabelian groups, and

precisely one simple group, A .

A finite group G is called -potent (following Lennox and Rhemtul la

[2]) if and only if for any element x of G and divisor n of the order

of x there is a normal subgroup N of G such that xN has order

precisely n in G/N .

The concept was developed originally in the context of residually

finite groups: an arbitrary group A is potent if and only if for every

element y of A and every positive integer m (dividing the order of y

if this order is finite), there is a normal subgroup M of finite index in

A such that yM has order (precisely) m in A/M . Finitely generated

nilpotent groups are potent; as free groups have this property residually

they too must be potent. Hence quotients of potent groups need not be

potent, and Lennox and Rhemtulla illustrated that even metabelian groups

need not be potent. The context of their discussion was primarily torsion-

free groups.

In contrast we will show that the finite potent groups form a finite
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variety (subgroups, quotients and finite direct products of finite potent

groups are potent), and all finite metabelian groups are potent. The

implication for infinite groups is that periodic potent groups and torsion-

free potent groups behave differently. And the classification of periodic

potent groups will rest on results for finite potent groups: a periodic

group is potent if it is residually a finite potent group because the

finite potent groups form a finite variety.

The development of these results on finite potent groups is

independent of the paper of Lennox and Rhemtul la [2], but I wish to thank

Dr Rhemtulla for bringing to my attention the need for an investigation of

these groups, and supplying a preprint of [2].

Let us begin with a simple test for potency.

PROPOSITION. The finite group G is not potent if and only if there

exists an element x of G and a proper prime divisor p of the order of

x such that x lies in the normal closure of x^ [that is, every normal

subgroup containing ar also contains x ) .

Proof. Suppose G has an element x lying in the normal closure of

ar for some proper prime divisor p of the order n = pr of x , and

suppose xN has order p for some normal subgroup N of G . Then N

contains ar but not x . But if N contains ar it must contain its

normal closure and hence x , a contradiction. Thus G is not potent.

Conversely, suppose G is not potent so there is an element y of G

of order n , and for some (proper) divisor m of n , every normal sub-

group K of G is such that yK has order different from m . Pick y

and m such that m is minimal; thus, for every proper divisor k of m

there is a corresponding normal subgroup K such that yK has order

(precisely) k .

Suppose m were a prime power, say m = p , p prime. Put

t
x = y" so a; has order p{n/m) - thus p is a proper divisor of the

order of x . Let N be any normal subgroup of G and suppose ar lies

in N . This means N contains y and so yN has order dividing m .
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By the conditions on m and y , yN must have order a proper divisor of

m = p* + 1 and so (yN)P = N . That is, y? = x must lie in N . This

means that every normal subgroup containing of must also contain x ; as

p was a proper divisor of the order of x , we are done.

If m were not a prime power, say m = ab with a and b

relatively prime proper divisors of m , then there would exist normal

subgroups K and L with yK of order a and yL of order b . The

proof will be complete if we can just show that y(K n L) would have as

order the least common multiple of a and b , namely m .

LEMMA. If N and M are normal subgroups of the group G then the

order of x(N n M) is the least common multiple of the orders of xN and

xM .

Proof. If n and m are the orders of xN and xM , and k is the

least common multiple of n and m then x lies in N and M and

hence in N n M . But x lies in N n M if and only if it lies in N

and in M and hence i is divisible by n and m . Thus k is the

order of x(N n M) .

THEOREM, (i) Subgroups of potent groups are potent.

(ii) Quotients of potent groups are potent.

(iii) Direct products of (finitely many) potent groups are potent.

Proof. (i) If H is a non-potent subgroup of the group G then H

has an element x that lies in <ar > for some proper prime divisor p

of the order of x . Clearly x has the same order in G , and <a^>

contains <ar > and hence x , so G cannot be potent, as we wished to

show.

(ii) Suppose G were a minimal counterexample: a potent group with

a normal subgroup N such that G/N is not potent. Without loss of

generality we can assume N is a minimal normal subgroup of G because

for any non-trivial normal subgroup M lying in N , G/M cannot be

potent (otherwise, it would be a smaller counterexample than G ). Since

G/N is assumed not to be potent, there exists an a; in G and a prime p
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properly dividing the order of {xN) - and hence the order of x too -

such that for every normal subgroup K of G , if af lies in KN then

so does x . But G is potent so x does not lie in the normal closure

L of aP in G .

Now if L contains N then xLN - xL with xL + L but (xL)P = L ,

a contradiction. Hence the minimal normal subgroup N must avoid L and

LN c* L * N . Since {xLN)P = spLN = LN then x lies in LN and so

x = ab for (commuting) elements a of L and b ot N . Consequently

x^ = (ab)P = aPtP and we know sP (and a? ) lie in L , hence tP lies

in L n ff = 1 . Therefore iP = 1 .

But now consider a = x£>~ . Since xb = bx and V = 1 then

aP = d? , so L = <x?) and L contains a . This will contradict the

potency of G if p is a proper divisor of the order of a . But. the

latter is straightforward to verify: if a = 1 then (xb~ ) = 1 so

k k k
x = b and (xN) = N so the order of xN divides the order of a and

p must be a proper prime divisor of the order of a . This final

contradiction establishes that quotients of potent groups are potent.

(Hi) Let G = A x B be the direct product of potent groups A and

B and let x = ab for a In A , b in B . The order n of x is a

least common multiple of the orders h of a and k of b , so if m is

a divisor of n then m is a least common multiple of divisors h' of h

and k' of k . Now A and B have normal subgroups A' and B'

respectively such that aA' and £>B' have orders h' and k'

respectively. Hence xA'B and xAB' have orders ?i' and k' so

x(i4'B n 45') has order m as required.

The following three corollaries can be easily deduced and we omit

their proofs.

COROLLARY. Every finite nilpotent group is potent.

COROLLARY. If G is the smallest group in a quotient-closed class
that is not potent, then G is monolithic.

COROLLARY. The class of finite potent groups is a formation.
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EXAMPLE. The class of finite potent groups is not a Fitting class:

the wreath product G = S \ C is not a potent group (the base group B

is the normal closure of x for each of its elements x of order 6 J

but G = N' N for proper normal potent subgroups N and /!/„ of G (in

fact, all proper subgroups of G are potent).

EXAMPLE. The smallest group which is not potent is the binary

tetrahedral group G = <x, y | x = y = {xy) = s, z = 1 ) of order 2k ,

a central extension of A, (equivalently, G = SL(2, 3) ) . G has a

normal Sylow 2-subgroup which is quaternion; its compliments are not

normal (and not maximal) in G so every normal subgroup of G , and every

maximal subgroup, contains <2> . Clearly <2> = Z(G) = $(G) is the

unique minimal normal subgroup of G . For every normal subgroup N of G

either xN has order 6 , if N = 1 , or xN has order 3 (or 1 ) if N

contains z = x . Thus G is not potent. The groups of smaller order

are either p-groups for some prime p , or of order pqr for primes p, q

and r . (it is easily checked that groups of order pqr must be potent:

a cyclic subgroup of order pq is either normal or has a normal

complement.) Notice that the binary tetrahedral group shows that G/Z(G)

and G/Q(G) may be potent without G being potent. Thus the formation of

potent groups is not saturated.

The other two binary polyhedral groups, central extensions of 5, and

A , are also not potent, for similar reasons, even though S, and A

are potent.

THEOREM. A is the only non-abelian simple potent group.

Proof. For a simple group G to be potent, every element must have

prime order, and so G will be a CW-group with elementary abelian Sylow

2-subgroup. Suzuki [4] has shown that if G is non-abelian then it must

be isomorphic to the projective special linear group PSL(2, 2n) . It is

will known that PSL(2, 2n) has elements of orders 2* + 1 and 2 W - 1 ,

and for both of these to be primes we require n = 2 . Thus

G ̂  PSL(2, k) ̂ Ac .
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COROLLARY. A is the only non-abelian composition factor of a finite

potent group.

EXAMPLE. While every nilpotent group is potent, not every super-

solvable group is. The smallest such group

G = (a, b, c, t | c? = b3 = c3 = [a, a] = [b, c] = 1, [a, b] = a,

[a, t] = a, [b, t] = b, t2 = 1>

has centre <e> of order 3 , so ct has order 6 and <t> = G - hence

G is not potent - but (c) c (a, c> c <a, b, c) c G is a supersolvable

series for G .

In order to establish that (finite) metabelian groups are potent, we

collect together the basic conditions on a minimal counterexample, and then

consider the intermediate step of metacyclic groups. This also has natural

implications for Frobenius groups, which we discuss before completing the

proof that metabelian groups are potent.

LEMMA. If G is a finite group containing an element x , in

K = < ar > for some proper prime divisor p of o(x) = pr -so G is not

a potent group - and if N is an elementary abelian normal q-group with

G/N potent, then

(i) p = q y

(ii) gcd(p, r) = 1 3

(iii) o(xN) = r with xr of order p in N ,

(iv) x = yz = zy where o{y) = p 3 o(z) = r and K = <z) ,

(v) the elements xr and y lie in K n N , so K n N # 1 .

Proof. From the given conditions on x , every normal subgroup M

containing N yields o(xM) 4- p and since G/N is potent, this means p

does not divide o(xN) . But 3pT = 1 , and if x™ € N then [xm)q = 1 .

Hence q = p , p does not divide r and o(xN) = r , so xV is an

element of order p in N . Since there exist s and t such that

sp + rt = 1 then putting y = xr and z = op yields the results in
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(iv). Lastly, x € K and x" is a non-trivial element of N so

K n N t 1 .

THEOREM. Every finite metacyalic group is potent.

Proof. Let G be a minimal counterexample. Then G has a unique

minimal normal subgroup N , cyclic of prime order p , and G/N is

potent. Furthermore, there exist commuting elements y and z of orders

p and r , r relatively prime to p , with y in N and yz lying in

As G is metacyclic it is generated by elements a and b of orders

—1 s
n and m , say, with b ab = a for some positive integer s . Because
(a> is normal in G , and G is monolithic, n must be a power of p ,

say n = p , and we may assume y = ar . For similar reasons, <a>

must be the Fitting subgroup, so C(a) = <a> .

i "7
Let z = a b for some integers £ and j . Since

-1 P s^v ^~ k
z~ yz = y = a? then a ^ . Hence p (the order of a ) divides

[s -l)p ~ and p divides (s^-l) . Let us write s - 1 = tp for some

integers ft > 0 and t 2 0 , where t is prime to p if t > 0 .

Now should h > k or t = 0 then p divides 8 - 1 and so

az = za . Then CAa) would contain an element z of order r

relatively prime to p , a contradiction. Hence h < k and t > 0 .

Since s = 1 then a = z az = a so p divides

(s -l) = (l+tp ) - 1 = rtp + p for some integer g . Because

0 < h < k this means p divides rt even though r and t were

relatively prime to p . This final contradiction ensures that the minimal

counterexample cannot exist.

THEOREM. Every Frobenius group with metacyclic Frobenius complement

is potent (this includes all Frobenius groups with non-abelian kernels),

but there exist both solvable and non-solvable Frobenius groups that are

not potent.

Proof. A Frobenius group G is the disjoint union of the Frobenius
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kernel K and its Frobenius complements (which are all conjugate in G ).

If a Frobenius complement H is metacyclic it is potent: if x € H and

m divides the order of x there is a normal subgroup N of H so xN

has order m . But then xNK has order m and NK < G . So we need only

consider y € K . The following lemma suffices to complete this case.

LEMMA. If K is nilpotent, y 6 K , and m divides the order of y

then there exists a characteristic subgroup C of K such that yC has

order m .

Proof. It suffices to prove this in the case K is a p-group. Then

K has a series 1 = C < C < C < ... < C, = K of characteristic
U -L c K.

subgroups C. such that C. /C. is elementary abelian, of exponent p .

8 S S+l Q

If yP € C. then / ( C. or / E C . , Since yC. has order p

and yCn has order p somewhere in "between yC. has the required order

m .

The group PSL(2, 31) contains copies of 4, , S, , and A , so

SL(2, 31) contains each of the binary polyhedral groups. As described in

Huppert ([/], p. 500) each of these can serve as the (solvable or non-

solvable) Frobenius complement by acting in the natural way as fixed-point-

free automorphism groups of, say, C * C . Since the binary polyhedral

groups are not potent, these Frobenius groups cannot be potent either.

THEOREM. Every metabelian group is potent.

Proof. Let G be a minimal counterexample. Since quotients of

metabelian groups are metabelian, G must have a unique minimal normal

subgroup N of prime order p , and G must contain a p '-element x

that centralizes a generator y of N such that (x) contains xy

that is, in no quotient does xy have order p . We will call x the

witnessing element of G , witnessing that G is not potent.

Since the derived group G' of G is abelian, any p'-elements it

contains must form a Hall p'-subgroup characteristic in G' and hence

normal in G ; because G is monolithic we are forced to conclude G' is

a p-group, lying in a normal Sylow p-subgroup P of G , and for similar
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reasons, P must be the Fitting subgroup of G . This means P cannot be

cyclic, for otherwise G/P , as a group of automorphisms of P , would have

to be cyclic and G would be metacyclic - contradicting that G is

supposed not to be potent.

Let H denote a Hall p '-subgroup of G that contains the witnessing

element x and put K = HG' . Note that H is abelian because it is

embeddable in G/G' and K is normal in G . By a theorem of Zassenhaus

(Huppert [I], p. 350), we then have

G' = [C, K] x [C n Z(K)) .

Since G is monolithic one of these direct factors must be trivial. Now

if [ C , K] = 1 and G' £ Z(K) then [(?', H] = 1 and so

[C, G] = [G', P] , and the nilpotence of P would force G to be

nilpotent, a contradiction since nilpotent groups are potent. Therefore

Z(K) = 1 (and hence N n Z = 1 , meaning Z(G) = 1 ) , and

G> = [C, K] = [C, B] .

With Z(C) = 1 it is now a straightforward application of Maschke's

Theorem to show that P cannot be abelian. For if P were abelian, G

would have an elementary abelian normal subgroup £L (P) , properly

containing N as P is not cyclic, with a nontrivial p'-group of

automorphisms G/CG[U (P)) , so Q (P) = N x M with M < G - a

contradiction.

Our aim at this point will be to show that K is not a potent group.

Since we have shown that G' is a proper subgroup of P , K is a proper

subgroup of G and this will contradict the minimality of G .

Notice that if L is a Carter subgroup of G then G = LG' and

L n G'=l (Schenkman [3], p. 227). Without loss of generality L

contains the witnessing element x that centralized a generator y of N
si

with (x) containing xy (and hence demonstrated that G was not

potent). Recall that x also lies in H and in K . Now if g is any

element of G = LG' then g = uw for some u in L , u in G' . Since

L is isomorphic to G/G' , L is abelian, and x& = x410 = xW . In fact,

C Cf K
=<x> =<x> . Hence K contains a p'-element x and a

https://doi.org/10.1017/S0004972700006936 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006936


120 John P o l a n d

p-element y with the property that <x> contains xy , so K i s not

potent , yielding the desired contradiction.

The examples of non-potent groups presented ear l ie r show the centre-

by -metabelian, metabelian-by-cyclic, and abelian-by-nilpotent f in i t e groups

need not be potent.
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