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Impact of a forward-facing step on the
development of crossflow instability
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The impact of a forward-facing step (FFS) on the development of stationary crossflow
instability is investigated on a swept wing model in a low-turbulence wind tunnel at chord
Reynolds number of 2.3 x 10°. Infrared thermography and particle image velocimetry
measurements are used to quantify the transition location and growth of the crossflow
instability under the influence of FFSs with different heights. Forced monochromatic
stationary crossflow vortices experience an abrupt change in their trajectory as they
interact with the step geometry. As the boundary layer intercepts the step an increase in
the vertical velocity component and an amplification of the crossflow vortices is observed.
Near the step, the vortices reach maximum amplification, while dampening downstream.
The smaller FFS cases, show a local stabilising effect on the primary stationary mode and
its harmonics, while in the higher step cases transition occurs. The analysis of the temporal
velocity fluctuations shows a reduction in the region associated with the type-III travelling
crossflow modes downstream of the step. In contrast, the velocity fluctuations in the region
associated with type-I secondary instabilities increase past the FFS edge. Nonetheless,
in the shortest FFS cases, these velocity fluctuations eventually decay below the clean
configuration (i.e. without an FFS) levels. This behaviour is linked to a novel transition
delay effect for the shortest step height investigated. The findings highlight new physical
aspects driving the interaction between an amplified stationary crossflow vortex and an
FFS and provide insight into possible transition delay mechanisms using such geometries.
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1. Introduction

The rising social awareness of the environmental footprint of commercial aviation is
continuously driving research towards more energy-efficient high-subsonic transport
aircraft. A significant increase in the aircraft aerodynamic performance can be attained
by reducing the skin-friction drag component, owing to its contribution to approximately
half of the total drag budget (Joslin 1998; Schrauf 2005; Arnal & Archambaud 2008;
Saric, Carpenter & Reed 2011). Exploiting the fact that at comparable Reynolds numbers
a laminar boundary layer will produce significantly less skin-friction drag than a turbulent
boundary layer, an attractive solution is to apply laminar flow control (LFC) techniques
to stabilise the boundary layer flow and extend the regions of laminar flow on the outer
surface of the aircraft. An in-depth historical review of these techniques has been compiled
by Joslin (1998), while more recent updates can be found in Arnal & Archambaud (2008)
and Saric et al. (2011).

The idea of LFC pivots on the stabilisation of the boundary layer against the
growth of various instabilities such as Tollmien—Schlichting (TS) waves, attachment-line
contamination (ALC), Gortler vortices and crossflow (CF) vortices. The unstable growth
of any of these instabilities leads to an anticipation of the laminar—turbulent transition.
A comprehensive review of available control strategies for each of these instabilities is
provided by Saric et al. (2011).

Particularly pertinent to swept wings, widely employed by modern transport aircraft, is
the crossflow instability (CFI) which develops as a series of corotating vortices closely
aligned with the external inviscid flow direction. The nature of these vortices (i.e.
stationary or travelling) is highly influenced by the level of external disturbances outside
the boundary layer flow (Downs & White 2013). A thorough review of the efforts and
results in the study of this instability is provided by Bippes (1999) and Saric, Reed &
White (2003). In the last two decades, research efforts resulted in a considerable advance
in the understanding and controlling of the CFI. A summary of different LFC techniques
for CFI cases can be found in Messing & Kloker (2010), Serpieri, Yadala & Kotsonis
(2017) and Saric et al. (2019).

Despite the promising technological advancements in LFC, its performance is
highly dependent on the smoothness of the aerodynamic surface, which in practical
applications is far from ideal. Manufacturing requirements and operational conditions
lead to two-dimensional (i.e. panel joints, seals and seams) and three-dimensional (i.e.
rivets, debris, insect contamination) surface features which reduce the effectiveness of
LFC techniques by perturbing the boundary layer flow and promoting a premature
laminar—turbulent boundary layer transition. This is further exacerbated in swept wings
by the inherent sensitivity of CFI to surface roughness. Consequently, understanding the
impact of surface irregularities on boundary layer transition is of paramount importance
for implementing active/passive LFC techniques in the aviation industry.

Two-dimensional (i.e. spanwise invariant) surface irregularities in the form of
backward-facing (BFS) and forward-facing (FFS) steps and gaps, have been a
long-standing topic of interest for the design of laminar flow components. The need for
a universal method to determine the critical (i.e. transition advancement) step height or
gap geometry has driven numerous research efforts on cases where TS waves dominate
the laminar—turbulent transition. As part of the X-21 A demonstration program (Gerhardt
1967), early wind tunnel experiments on a flat plate model with steps and gaps were
conducted. The results indicate that the geometrical limits of surface irregularities
compatible with laminar flow could be determined through a critical Reynolds number
(Rer) based on the step height or gap width. Subsequent investigations conducted by
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Holmes et al. (1985) on a T34-C aircraft extended the Rey criteria to consider different
step-edge shapes (i.e. rounded edge or chamfered edge) for FFS and BFS. The results
indicate that by modifying the step-edge geometry, an increase in the critical Rex can be
obtained. Additional flight tests by Zuniga et al. (1994) and Drake et al. (1996) studied
the effect of step-gap configurations on the laminar—turbulent boundary layer transition of
an unswept natural laminar flow (known as NLF) leading edge fixture mounted beneath
an F104G aircraft. More recently, Drake, Bender & Westphal (2008) and Drake et al.
(2010) systematically studied the pressure gradient effect on the Rej criterion by using
different unswept models in a low-speed wind tunnel and a novel towing facility. The
results highlight the dependence of the Rey criterion on the pressure gradient and show
the stabilising effect of a favourable pressure gradient on the boundary layer flow in cases
with steps.

An alternative criterion for the determination of manufacturing tolerances for laminar
flow components is the use of AN-factor models. These models aim at incorporating
the influence of surface irregularities in the widely used ¢/ transition prediction method.
Wang & Gaster (2005) conducted wind tunnel experiments on FFS and BES on the surface
of an unswept flat plate model with zero pressure gradient at low turbulence conditions.
The results indicate a correlation between the reduction in the transition N-Factor and
the relative step height (k/8*). Moreover, a distinct laminar—turbulent boundary layer
transition behaviour was observed between FFS and BFS. In these experiments, FFS
showed a less detrimental effect on the boundary layer flow than BES for the same step
height and wind tunnel conditions. Furthermore, Costantini, Risius & Klein (2015, 2018)
experimentally investigated the effect of pressure gradient, surface temperature and Mach
number on the transition behaviour of FFS on an unswept wing model in a cryogenic
Ludwieg-tube wind tunnel.

A number of investigations have been conducted at the French Aerospace Laboratory
(ONERA) to develop AN-factor models based on numerical simulations and experimental
validation. The main results regarding step configurations are presented in Perraud &
Seraudie (2000), Arnal & Archambaud (2008) and Perraud, Arnal & Kuehn (2014).
A comprehensive review and extension of the work dedicated exclusively to gaps is
provided by Beguet et al. (2017). The results presented by Perraud et al. (2014) indicate
that the influence of an FFS on the stability of the boundary layer flow strongly differs
from the one of a BFS of comparable height. Therefore, to account for these differences,
the AN-factor in FFS cases is not modelled with a constant shift of the stability curve, but
instead a more complex AN model is proposed.

In a different strategy, Crouch, Kosorygin & Ng (2006) experimentally determined
AN-factor models based on the change in the laminar—turbulent boundary layer transition
location induced by steps on the surface of an unswept flat plate model under favourable
and adverse pressure gradients. Crouch & Kosorygin (2020) extended these empirical
models to consider variations in the step location, two-dimensional strips (i.e. FFS
followed by BFS) and shallow gaps. In addition, Crouch, Kosorygin & Sutanto (2020)
studied in a similar manner the effects of gaps in the laminar—turbulent boundary layer
transition on TS-dominated cases.

Recent numerical studies by Edelmann & Rist (2015) and Zahn & Rist (2016) have
provided important insight into the boundary layer stability modifications induced by
two-dimensional surface irregularities for the further development of AN-factor models
for unswept geometries. Furthermore, numerical simulations by Rizzetta & Visbal (2014)
on an unswept flat plate geometry with FES and BFS, elucidated important aspects of the
step-induced transition mechanisms dominated by TS waves.
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The limited applicability of the aforementioned studies to swept wing cases dominated
by CFI, led to parametric studies (Perraud & Seraudie 2000; Duncan et al. 2014a;
Rius-Vidales & Kotsonis 2020) and more detailed investigations (Saeed, Mughal &
Morrison 2016; Tufts et al. 2017; Eppink et al. 2018; Cooke et al. 2019; Eppink 2020b)
on the interaction of CF vortices with steps configurations. The results from these studies
highlight a complex interaction, which occurs when surface irregularities in the form of
steps interact with the CFI. Furthermore, previous studies (Perraud & Seraudie 2000; Tufts
et al. 2017) on CFI indicate that configuring a step as a forward-facing arrangement instead
of a backward-facing one will result in a weaker destabilisation of the subsonic boundary
layer. Thereby, the present work encompasses the detailed study of the impact of a surface
irregularity in the form of an FFS on a CFI dominated scenario. Henceforth, the main
efforts in the study of this type of surface irregularity in swept geometries are discussed to
highlight the unresolved aspects which the present study aims to clarify.

In the last decade, the research group at the Flight Research Laboratory and
the Computational Stability and Transition Laboratory of the Texas A&M university
investigated numerically and experimentally (wind tunnel and flight tests) different aspects
of swept wing transition under the influence of step surface irregularities. A summary of
these efforts and their results is provided in Tufts et al. (2017). Duncan et al. (2014a)
conducted experiments on a swept wing boundary layer at low turbulence levels and
demonstrated that the interaction between the FFS and the stationary CFI lead to the
amplification of the CF vortices downstream of the step position. More recently Tufts ef al.
(2017), performed detailed numerical simulations complementary to the flight and wind
tunnel experiments presented by Duncan et al. (2014a,b) and Crawford et al. (2015a). The
numerical investigation confirmed the amplification of the incoming stationary CF vortices
by the FFS for cases above a critical step height. Tufts et al. (2017) suggested that, due to
the spanwise pressure gradients in aft swept wings, the localised recirculation regions
upstream and downstream of the step form helical vortices, which travel along the span
of the wing. The transition advancement and amplification of the stationary CFI modes
were attributed to a constructive interaction between the CF vortices and the downstream
helical vortex (i.e. past the step edge) when the FFS height exceeds the core height of
the CF vortices. Based on this interaction, Tufts et al. (2017) proposed the use of the
unperturbed (i.e. no FFS) CF vortices’ core height as a governing metric to determine a
priori the criticality of a given FFS.

Although the idea of using the CF vortices’ core height as a metric provides a first-order
approximation of the critical FFS height (Tufts et al. 2017; Rius-Vidales et al. 2018),
further experimental investigations (Eppink & Casper 2019; Eppink 2018, 20205), which
confirmed the amplification of stationary CFI modes by the FFS, found no evidence
to support the constructive interaction proposed by Tufts et al. (2017). Moreover, these
experiments revealed that the stationary CF vortices experience an amplification at two
distinct locations in the vicinity of the FFS.

More specifically, Eppink (20200) studied the mechanisms involved in the FFS—CFI
interaction and proposed that the first region of linear growth is caused by the adverse
pressure gradient near the step which results in strong inflectional profiles which
destabilise the stationary CFI modes. The second region appears to be nonlinearly
generated due to the modulation of the recirculation region downstream of the FFS
edge, which resulted in streamwise oriented vortices which amplify the harmonics of
the primary mode. In addition, the results showed that a subcritical FFS case could lead
to a premature boundary layer transition if the initial amplitude of the CF vortices was
increased. This effect was attributed to a stronger spanwise modulation of the recirculation
region downstream the step edge for the cases with larger initial amplitude.
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Furthermore, recent experimental investigations conducted by Rius-Vidales & Kotsonis
(2020) indicate that local one-parameter correlations based on the estimated CF vortex
core height or relative step height (/8*) might not be sufficient to universally capture
the influence of an FFS on the laminar—turbulent transition in cases dominated by CFI.
A causal relation was identified between the influence of the FFS on the transition process
and the stability characteristic of the incoming stationary CFI mode. The results revealed
that at fixed ambient conditions (i.e. free stream velocity and turbulence intensity) and
initial amplitude of the CF vortices, a given FES height would result in a subcritical
behaviour when forcing an early growth CFI mode (i.e. shorter wavelength than the most
amplified at the FFS position) and a supercritical one when forcing a late growth CFI
mode (i.e. longer wavelength than the most amplified at the FFS position). In addition, the
results show that the addition of the FFS could result in complex nonlinear interactions.
In agreement with Eppink & Casper (2019) and Eppink (20205) an amplification of the
primary mode harmonics was observed downstream of the FES edge.

Finally, to mitigate the effect of an FFS on transition Eppink & Casper (2019)
successfully applied on a flat plate model dominated by stationary CFI the step-edge
chamfering (i.e. slanted step face) strategy by Holmes ef al. (1985). Eppink & Casper
(2019) showed that a variation in the angle of the FFS face reduced the recirculation region
and CF reversal. This topological change leads to a weaker destabilisation of the primary
CFI mode and a transition postponement with respect to the straight FFS (i.e. vertical step
face). In a different strategy, Rizzetta & Visbal (2017) conducted numerical investigations
to manipulate and control the adverse effects of discrete surface irregularities on the
CFI development using a plasma actuator. More recently, Ivanov & Mischenko (2019)
used a series of two-dimensional strips (i.e. FES followed by a BFS) along the span of a
swept wing to stabilise the CFI following the theoretical analysis and concept presented
by Ustinov & Ivanov (2018). The experiments by Ivanov & Mischenko (2019) showed a
postponement of the laminar—turbulent transition for strips oriented parallel to the leading
edge and at 18 degrees with respect to the leading edge.

The aforementioned studies and the discrepancies between the interaction mechanics
proposed by Tufts et al. (2017) and Eppink (2020b) highlight numerous unresolved aspects
which require further study before the mechanisms of interaction between the FFS and CF
vortices can be fully unveiled. Specifically, the dependence on the initial amplitude of the
CF vortices, nonlinear interactions at the FFS and laminar breakdown mechanisms are
key features, requiring experimental and numerical analysis within a range of governing
parameters. In addition, except for the recent detailed measurements of Eppink (20205),
experimental identification of velocity and instability development in the vicinity of the
step is mostly unavailable, and reconciliation between local to the FFS effects and global
transition location is still absent from the published literature.

The objective of this work is to enable a detailed description of the FFS impact on the
local development and amplification of the CFI and its effects on the global transition
location. Towards establishing a representative interaction scenario, the present study
focuses on cases where stationary CF vortices feature a high amplification level upstream
of the FFS. The interaction mechanics in these conditions are unveiled by characterising in
detail the laminar—turbulent boundary layer transition behaviour and quantifying the local
development of the CFI through an exhaustive flow diagnostics study using infrared (IR)
thermography and particle image velocimetry (PIV), respectively.

The structure of this paper is as follows. Section 2 provides a detailed description of
the wind tunnel facility, swept wing model, the aerodynamic add-ons designed to produce
two-dimensional irregularities on its surface, and the measurement technique. Section 3
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provides a general overview of the laminar—turbulent transition behaviour and topology
induced by the FFS. Section 4 presents an analysis of the impact of an FFS on the
development of the CFI.

2. Experimental set-up and methodology

This section presents the experimental set-up and methodology by providing a brief
overview of the wind tunnel facility, swept wing model and FFS surface irregularities.
A description of the measurement techniques and flow metrics is also provided.

2.1. Wind tunnel facility, swept wing model and surface irregularities

Experiments have been conducted at the atmospheric closed return low-turbulence tunnel
(known as LTT) located at the Delft University of Technology. The wind tunnel features
a contraction ratio of 17: 1. The design and construction of the wind tunnel results in a
low turbulence intensity level (Tu = (1/Ux)+/ (U2 + V'2)/2 < 0.03 %, single hot-wire
measurement, bandpass filtered between 2 and 5000 Hz) at the nominal conditions
employed in this study (Serpieri 2018). All reported measurements were performed on
the pressure side of the wing, for a fixed angle of attack of @ = 3° and a Reynolds number
of Re., =2.3 x 10°, based on the free stream velocity (Uso) and the streamwise chord
length (cx). To be noted, the free stream velocity and corresponding Reynolds number

used throughout the present work refer to a corrected wind tunnel velocity of 26.5 m s~!
based on a calibrated static pressure drop across the tunnel contraction. Due to blockage
effects, the free stream velocity just upstream of the wind tunnel model was measured at

27.5 m s~! using a Pitot-static tube.

The M3J swept wing model designed by Serpieri & Kotsonis (2015), was installed in the
wind tunnel octagonal test section (2.6 m x 1.80 m x 1.25 m; length x width x height).
Extensive research conducted on the development of CFI (Serpieri & Kotsonis 2015,
2016), boundary layer control (Serpieri et al. 2017; Serpieri & Kotsonis 2018; Yadala
et al. 2018) and surface irregularities (Rius-Vidales & Kotsonis 2020) has shown that the
combination of this wind tunnel and model offers the necessary conditions for the study
of the development of stationary CFI and ensuing transition.

The swept wing model features a streamwise chord of ¢y = 1.27 m, a span of b =
1.25 m and a sweep angle of 45°. The airfoil shape, a modified symmetric NACA 66018
(figure 1a) is designed to enhance the amplification of CFI while suppressing TS waves,
Gortler type instabilities and attachment line contamination as shown by Serpieri &
Kotsonis (2016) at mild angles of attack (o =~ 3°). Furthermore, during the experiments,
considerable care was taken to ensure a consistent and polished surface near the leading
edge, due to the extreme sensitivity of CFI to surface roughness. To this end, a Mitutoyo
SJ-310 profilometer was used to examine the swept wing surface. The measured root mean
square surface roughness is R, = 0.20 pum.

The static pressure distribution on the model was measured using a multichannel
scanner connected to two rows of 46 streamwise (X) oriented taps at 24 % and 76 % of
the model span. At the nominal conditions of this study (Re., = 2.3 x 10°, @ = 3°) the
streamwise pressure distribution (pressure side of the wing) shows a favourable gradient
up to X/cx ~ 0.65 as shown in figure 1(b). The nearly invariant pressure along the span,
in agreement with Serpieri & Kotsonis (2016), confirms the adequacy of the infinite swept
wing assumption for the boundary layer and stability calculations in the measurement
region.
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Figure 1. Experimental set-up: (a) swept wing airfoil shape; (b) streamwise pressure coefficient distribution at

two spanwise locations measured on the pressure side at @ = 3° and Re., = 2.3 x 10%; (¢) general schematic
(flow direction from left to right b = 1.25 m) showing the FFS location, the IR analysis regions (IR-A, IR-B),
planar PIV set-up and details of DRE.

The steady and incompressible 2.5D (i.e. spanwise invariant infinite span conditions)
laminar boundary layer equations are solved numerically for the pressure side of the model
along the x component (i.e. orthogonal to the leading edge, figure 1¢) using the measured
pressure distribution for a reference case with no surface irregularity and no artificial
forcing of CFI. The stability of the calculated boundary layer is evaluated by solving
the Orr—Sommerfeld equation using the spatial theory formulation, which is simplified
by assuming a zero spanwise growth rate (8;) due to the infinite swept wing assumption.
Subsequently, the N-factor is calculated for a combination of a given spanwise wavelength
(Br) and frequency w = O (stationary) by integrating the spatial growth rate (c;) along the
x-coordinate (Arnal & Casalis 2000).

As summarised in the previous section, the main objective of the present study is
to elucidate the interaction between an FES irregularity and the incoming stationary
CF vortices. However, the quest for experimentally simulating a representative scenario
raises the question regarding which particular mode is more relevant. Several options are
available; these entail focusing on the CFI mode most amplified (i.e. highest ) at the
step location (Tufts et al. 2017; Rius-Vidales & Kotsonis 2020), or the most unstable mode
(i.e. highest growth rate) at the step. Another option is to investigate the overall most
unstable mode (Tufts et al. 2017; Eppink 20205). Considering the sensitivity of transition
location to step height, the latter option can be further narrowed down to investigating the
transition-inducing mode at clean conditions (i.e. no FFS). Following these considerations,
the present work is indeed focusing on the transition-inducing mode at clean conditions.
Preliminary stability analysis results at the tested conditions, identified a stationary CFI
mode featuring a spanwise wavelength close to 4, = 7.5 mm as the most amplified prior
to transition and exhibiting a monotonic growth upstream and downstream of the step
location (x,/cx = 0.2).

To study the impact of an FFS on this unstable stationary CFI mode, discrete roughness
elements (DREs) are used (Reibert et al. 1996; Saric, Carrillo & Reibert 1998; Serpieri
& Kotsonis 2016) to force a single fundamental CFI mode featuring a nominal spanwise
wavelength of A, p = 7.5 mm in the vicinity of the leading edge. Motivated by a lack of
experimental or numerical evidence pertaining to interaction of strongly amplified CFI
with steps and in line with previous experiments (Rius-Vidales & Kotsonis 2020), DREs
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ID h(um) oy (wm) Xp/Cx 8 (wm)  ye (um)
Clean — — — 444 1029
Al_4 368 3 0.150/0.175/0.200/0.225 — —
B3 474 3 0.200 — —
C; 579 3 0.200 — —
D3 759 8 0.200 — —

Table 1. Geometrical parameters of tested configurations. For all cases the nominal DRE settings are:
A, p =7.5mm; dp =2 mm; kp = 100 pm; xp/c, = 0.02.

with a relatively large nominal height of kp = 100 pm and a diameter of dp = 2 mm were
manufactured in-house from an adhesive transfer vinyl film using a custom laser cutting
system. The DREs were installed at xp/cy = 0.02, which is just upstream of the forced
mode neutral point according to linear stability theory calculations.

Surface add-ons have been commonly used to create FFS surface irregularities on
existing wind tunnel models (Holmes et al. 1985; Perraud & Seraudie 2000; Rius-Vidales
et al. 2018; Rius-Vidales & Kotsonis 2020). Following a similar approach in this study, a
polyethylene terephthalate (known as PET) foil is used to simulate a sharp edge FFS on
the surface of the existing swept wing model. Foils of different thicknesses were cut to
size using a CNC DCS 2500 Gerber machine, and each was installed on the model, as
illustrated by the grey region in figure 1(c).

The resulting FFS step height was characterised in situ by traversing a Micro-Epsilon
2950-25 laser profilometer (reference resolution of 2 wm) along 200 mm of the spanwise
extent of the surface irregularity, centred at midspan. Table 1 indicates the resulting
average step height (h), standard deviation (07,) and streamwise location (xj, /cx) of the
FFS surface irregularity for all tested configurations. As an indication of the relative size
of the FFS inside the boundary layer flow, the displacement thickness (8;) is computed
based on the aforementioned 2.5D numerical boundary layer solution for the streamwise
velocity (u) at the nominal step location (x,/c, = 0.2). Similarly, from the linear stability
theory analysis the estimated CF vortex core height (y.) based on Tufts et al. (2017) at
the step location (indicated in table 1) is extracted from the v-perturbation eigenfunction
corresponding to the CFI mode featuring the spanwise wavelength enforced by the DREs
(A;,p = 7.5 mm).

Finally, two different coordinate systems are used throughout this study with their
origin at the intersection between the leading edge and the wing midspan. As illustrated
in figure 1(c), the first coordinate system spatial coordinates (X, Y,Z) and velocity
components (U, V, W) are referenced according to the X-coordinate being parallel to
the wind tunnel floor. On the second coordinate system, the spatial coordinates are
given by (x, y, z) and the velocity components (u, v, w). In this case, the x-coordinate is
perpendicular to the leading edge.

2.2. Measurement techniques

2.2.1. Infrared thermography

The well known Reynolds analogy predicts an increase in wall shear stress typically
associated with the laminar breakdown, which leads to an increase in the surface heat
transfer. Therefore, to determine the laminar—turbulent boundary layer transition location
in this study, an IR thermographic system has been used. Due to its non-intrusiveness, this
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measurement technique has been successfully employed for transition identification in the
study of swept wing flows as shown by Zuccher & Saric (2008), Crawford et al. (2015b)
and Rius-Vidales & Kotsonis (2020).

The model was continuously irradiated during the measurements by seven halogen
lamps to increase the thermal contrast on the IR images. Six lamps of 400 W were located
at the optical access ports on the upper and lower parts of the test section and one of
1000 W at mid-test-section height upstream of the model. The overall variation of surface
temperature during the measurements was registered to be less than half a degree, thus
ensuring a minimal influence on the near-wall fluid properties.

Two Optris PI640 IR cameras (640 pixel x 480 pixel, uncooled focal plane array,
7.5-13 pm spectral range, NETID 75 mK), designated as IR-A and IR-B, image the
pressure side of the model through small openings on the vertical wall of the test section.
Camera IR-A equipped with a telephoto lens (f = 41.5 mm) images a region near the step.
Conversely, camera IR-B equipped with a wide-angle lens (f = 10.5 mm) images a larger
portion of the model as illustrated in figure 1(c). The analysis region by camera IR-A has
a dimension of 145 x 200 mm (centred at X/cy = 0.2 and Z/b = 0) and for camera IR-B
1000 x 400 mm (centred at X /cy = 0.37 and Z/b = 0).

The processing and extraction of the transition location from the measurements of
camera IR-B were performed using an in-house pattern recognition code. The camera
acquires 78 images at 3.5 Hz. For each measurement series, a time-averaged temperature
map is calculated, and a physical space transformation and distortion correction is applied
to it. Subsequently, a differential infrared thermography technique (DIT) (Raffel & Merz
2014; Raffel et al. 2015) is applied to consecutive temperature fields with increasing
Reynolds numbers. This minimises the background noise and increases the signal to noise
ratio during the determination of the transition location following previous experiments
by Rius-Vidales & Kotsonis (2020). Finally, the gradient of the binarised DIT image is
calculated, and a linear fit of the transition front is performed for the analysis region. The
confidence bands of the fit are proportional to the transition front uniformity (i.e. jagged
or smooth).

Figure 1(c) shows that camera IR-A captures, in more detail, the thermal footprint of
the flow structures in the vicinity of the FFS. By applying a spatial power spectral density
(PSD) analysis on the thermal intensity values along the spanwise (z) component of these
measurements, the changes in the spatial organisation and direction of the CF vortices
induced by the FFS are examined. The spatial frequency resolution (i.e. smallest resolved
wavelength) stemming from the Nyquist limit of the sensor is 0.86 mm.

2.2.2. Particle image velocimetry

Quantitative measurements of the flow dynamics and instability interacting with the FFS
have been enabled using planar PIV (2C-2DPIV). Measurements on a z—y plane normal to
the surface and parallel to the leading edge (figure 1¢) have been conducted at various
chordwise locations (0.17 < x/cy < 0.25). These planes were imaged in streamwise
increments of 5 mm (0.4 % of cy) for the majority of stations. Additionally, increments of
1 mm were used near the FFS. The translation was enabled using an automated traversing
system mounted outside of the wind tunnel test section capable of simultaneously move
the imaging and laser unit with a positioning accuracy of 6.2 pm.

The laser unit comprises a Quantel Evergreen Nd:YAG dual cavity laser (200 mJ).
Through a set of spherical and cylindrical expansion optics, the laser beam is shaped into a
plane, with a thickness of ~1 mm. The plane propagates along the z direction (i.e. parallel
to the leading edge) as shown in figure 1(c).
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During the measurements, the wind tunnel is homogeneously seeded with water—glycol
droplets (average particle size 1 wm, particle response time 3.54 s and Stokes number of
0.05) using a SAFEX fog generator located in a vent downstream of the test section. The
seeding recirculates in the closed circuit of the wind tunnel. Images of seeding particles as
they cross through the laser plane are recorded by two LaVision Imager sCMOS camera
(sCMOS, 2560 x 2160 pixels, 16-bit, 6.5 pwm pixel pitch) positioned outside the test
section as shown in figure 1(c). Each camera is equipped with a f = 200 mm objective
operated at f3 = 11 and two x 2 teleconverters. This configuration yields a large optical
magnification factor (M = 0.9), necessary for the detailed measurement of the boundary
layer flow near the FFS location. The interframe time (Af) was set to 15 s which resulted
in an average particle displacement in the free stream of 12 pixels.

Each measurement consists of 1200 image pairs acquired at 15 Hz per camera. For each
image pair, a multistage cross-correlation was performed using LaVision Davis 10 with a

final interrogation window of 12 x 12 pixel® and overlap of 75 %. Additionally, the results
of both cameras are stitched together to capture the development of two full CF vortices in
the measurement region. The final analysis at each measurement location has a dimension
of 15 mm x 3 mm (W x H), a vector spacing of 20 pm and a maximum uncertainty in
the time-average results inside the boundary layer for the spanwise Uy = 0.49 % w, and
vertical component Uy = 0.38 % w,.

2.3. Boundary layer flow stability metrics

The changes in the stability of the CF vortices induced by the FFS are studied by analysing
the streamwise evolution of the experimental spanwise steady disturbance profile based on
the time-averaged planar PIV velocity measurements described in § 2.2.2.

The methodology described by White & Saric (2005) and Downs & White (2013)
indicates that the experimental steady disturbance profile is equivalent to the spanwise
root mean square (()) of the time-average perturbation, which for the spanwise component
is given by (W(y)). = ((1/n) X1 (w(y, zj) — w(¥))*)!/%. Subsequently, the streamwise
change in the steady disturbance can be determined by calculating the mathematical
maximum of the profiles along the y-coordinate as Ay; = max({(w(y)),).

It is important to note that according to perturbation analysis used in stability theory,
the velocity perturbation (w’) should be calculated by subtracting a basic state or baseflow
(W) to the mean velocity component (w). Hence, in this context, w #=w’ since the
experimentally measured spanwise average w(y) corresponds to a mean-flow distorted
flow and not to a baseflow. Nevertheless, this approach has been traditionally used as a
metric to determine the growth and decay of CFI modes in experimental conditions and is
accordingly followed in the present study as well.

3. Transition behaviour and topology

This section presents the influence of an FFS on the laminar—turbulent boundary layer
transition. The determination of the transition location and the topology of the developing
CF vortices is based on the IR measurements acquired and processed as indicated in § 2.2.1
for the different configurations indicated in table 1.

3.1. Global influence of the FFS on transition location

The laminar—turbulent boundary layer transition location was determined for each
configuration based on the camera IR-B surface thermal maps. The time-averaged thermal
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(a) xle, 02 03 04 05 06 (b)

Clean

Figure 2. The IR-B thermal maps (flow from left to right) displaying the effect of an FFS (orange line) on
the transition front pattern, dashed white line indicates transition linear fit and (e) marks its projection to the
mid-domain of the measurement: (Ia) clean; (Ib) A3; (Ila) B3; (I1b) C3; (Illa) D3.

maps presented in figure 2(Ia) reveal a jagged transition front pattern which extends along
the span of the wing. The nature of this jagged pattern has been traced to the breakdown
process typical of stationary CF vortices (Dagenhart et al. 1989; Bippes 1999; Saric et al.
2003; Downs & White 2013). As the stationary CF vortices saturate, a rapidly growing
secondary instability leads to a local breakdown of the CF vortices characterised by
contiguous turbulent wedges forming along the span creating the so-called ‘jagged’ or
‘sawtooth’ transition front pattern. Therefore, the appearance of this pattern indicates the
dominance of stationary CFI modes over travelling modes. In contrast, when the latter
dominate, a more smooth (i.e. non-wedged) time-average transition front is observed due
to the movement of CF vortices along the span.

The transition front location and variance along the span is identified from the surface
thermal maps of camera IR-B following the DIT technique mentioned in §2.2.1 and
employed in Rius-Vidales & Kotsonis (2020). It is particularly noteworthy that the linear fit
of the identified transition front locations (white dashed line in figure 2Ia) forms an angle
with the leading edge, which reduces with increasing step height. This behaviour is related
to the non-uniform wind tunnel blockage along the height of the wind tunnel (i.e. along
the Z-direction in figure 1¢) which leads to slightly stronger favourable pressure gradients
near the outboard side of the wing. Consequently, to quantify the effect of the FFS height
the transition location is extracted from the linear fit at the middle of the measurement
domain (e marker in figure 2Ia). The results presented in figure 3 show that for the clean
configuration (table 1) laminar-turbulent transition occurs at x;/cy ~ 0.42 (solid black line
in figure 3a).

The addition of a moderate FFS (B3 and C3 in figure 3a) results in a critical regime
behaviour, as the boundary layer transition front shifts upstream of the clean configuration
as illustrated in figure 2(Ila—11b). A further increase in step height (D3) leads to a
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Figure 3. Transition location: (a) fixed step (x;,/cx = 0.2) location for different FES; (b) variation of the step
location (0.15 < x5, /¢, < 0.225) for small FES (A).

supercritical regime behaviour with a substantial reduction in the extent of laminar flow
as shown in figure 2(Illa). These results indicate a gradual degradation of the laminar
flow with increasing step height analogous to the behaviour observed by Crawford et al.
(2015a) and Rius-Vidales & Kotsonis (2020), and somewhat different to the one presented
in Duncan et al. (2014a) and Eppink (20205) which showed that with increasing step height
the transition location more abruptly shifts towards the FES location.

An important note must be made regarding the use of the terms critical and supercritical,
which vary significantly in previous works on roughness effects on transition. Throughout
the present study, the term critical is assigned to cases in which the step has an identifiable
effect on transition location, while the term supercritical refers to cases in which transition
location is very near or at the step location. A supercritical behaviour essentially denotes
flow ‘tripping’ due to the step. Therefore, the critical step height definition used in this
work is compatible with the one presented in Tufts e al. (2017).

Notwithstanding the general adverse effects of an increasingly high FFS on transition,
it is remarkable to note that a new transition behaviour is revealed when adding a
small FFS (A3 in figure 3a,b) at these conditions. Counter-intuitively, the addition of
the FFS results in a favourable effect as transition postponement is observed instead
of advancement. At first glance, this unexpected result is in disagreement with most of
previous experimental or numerical observations on surface irregularities, and common
wisdom alike. However, observations recently presented by Ivanov & Mischenko (2019)
based on the concept presented by Ustinov & Ivanov (2018) suggested a transition delay
effect under the influence of rectangular (i.e. FFS followed by a BFS) surface reliefs.
Nonetheless, regarding surface irregularities in the form of only FFS the behaviour
observed in this work contrast with previous studies (Perraud & Seraudie 2000; Duncan
et al. 2014a; Crawford et al. 2015b; Saeed et al. 2016; Eppink 2017; Tufts et al. 2017,
Eppink 2018; Rius-Vidales et al. 2018; Eppink & Casper 2019; Eppink 2020a,b), as to the
best of the authors’ knowledge the present case is the first report of a transition delay in a
boundary layer dominated by CFI in the presence of an FFS.

Given the novelty of this result and the potential such delay behaviour can offer in a LFC
strategy, three additional configurations (A 2 4, table 1) have been tested. The objective of
such variation was to exclude random and systematic measurement errors that might bias
the result, as well as to establish a range of governing parameters for which the transition
delay effect is observed. Figure 3(b), shows the effect of varying the streamwise position
of this small FFS (A) on the laminar—turbulent boundary layer transition. When the FFS
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Figure 4. The IR-B differential thermal maps (flow from left to right) displaying transition advance and
postponement effects by FFS A (orange line): (Ia) Al ; (ID) Ala,; (Ila) Alay; (11b) Aly, .

is located at the most upstream location A a slight transition advancement is measured.
However, as the FFS is translated downstream the detrimental effect of the step reduces
for the case A until a clear transition delay effect is observed for the position of case
A3 (X¢,Clean/Cx — X145/ ¢x = —0.038). The consistent behaviour of transition location with
the location of the step further confirms the validity and physicality of the transition delay
effect. Nevertheless, the non-monotonic trend and rather narrow range of streamwise FFS
locations for which the transition delay effect is observed points to the existence of possibly
conflicting mechanisms governing the observed transition location.

Towards further probing the effect, a subtraction of thermal maps pertaining to
the Aj_s FFS positioned at several streamwise locations from the thermal map of
the clean case (Ala, , = Iciean — Ia,_,) for these conditions are shown in figure 4.
The subtracted thermal maps confirm that the transition delay (dark regions) is not a
localised or outlier-dominated effect but occurs over a considerable spanwise extent of
the measurement region. Note that the differences in the delay effect on the outboard and
inboard section of the wing are again related to the non-uniform blockage along the height
of the wind tunnel (i.e. Z-direction figure 1c).

The global behaviour of transition location with varying FFS height highlights the
intricate flow dynamics, which results from the interaction between the FFS and the
CF vortices, necessitating high-resolution velocity measurements for further analysis.
Notwithstanding the present observations, caution needs to be exercised when interpreting
or generalising these results since, in addition to local parameters (i.e. step height,
boundary layer displacement thickness and CF vortex core height) the influence of the
FES also depends on the stability characteristics of the incoming CFI mode (Rius-Vidales
& Kotsonis 2020).

3.2. Local influence of the FFS on the organisation of the CF vortices

The thermal maps of camera IR-A (figure 1¢) provide a more detailed visualisation near
the step region by showing the thermal footprint of the CF vortices on the surface of the
wing model as alternating streaks of high (i.e. lighter) and low (i.e. darker) temperature
as presented in figure 5(Ia). This particular temperature distribution originates from a
variation in the heat transfer of the near-wall fluid due to a change in the magnitude of
local skin friction coefficient induced by the high and low shear regions on the baseflow
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Figure 5. Comparison of IR-A thermal maps (I and III, flow from left to right) and spatial PSD analysis (II and
1V, 20 levels of ln(P/Pmaxz) from —3 to 1): (Ia—Ila) clean; (16-11b) A3; (Ic-Ilc) B3; (Illa-1Va) Cs; (IIIb-1Vb)
D3; (Illc) CF vortices trajectories; (IVc) change in CF vortices trajectory due to FFS. (Here A, p = 7.5 mm).

modulated by the CF vortices. Therefore, the local influence of the FFS on the CF vortex
thermal footprint is evaluated by calculating the spatial PSD, as indicated in § 2.2.1, from
a series of spanwise (z-direction) temperature profiles extracted at different streamwise
locations.

The results for the clean configuration in figure 5(Ila), identify a series of CF vortices
monotonically spaced at the spanwise wavelength of the forcing DREs (1;/4;p =1,
A, p = 7.5 mm) for the entire measurement region. Upon the addition of a small FFS
(A3, figure 51Ib) a clear peak at the forced wavelength is observed at the step location
(xp/cxy = 0.2 and A;/A; p = 1). In addition, a second peak centred at the wavelength of
the forced mode first harmonic (1;/4; p = 0.5) at the step location is also present. This
behaviour occurs in all step cases in figures S(I1b-Ilc,IVa-1Vb) and is in agreement with
Eppink (2020b) where an amplification of the harmonics of the primary CFI mode has
been reported near the FFS.

A close inspection of the thermal maps for the small (A3) and moderate (B3) FFS
(figure 51IH-Ilc), reveal a non-monotonic amplification pattern which develops along
the x-direction downstream of the FFS step edge at the wavelength of the primary
CFI mode (A;/4; p = 1). This non-monotonic pattern corresponds to the observations
by Eppink & Casper (2019) and Eppink (2020b) where it was found that as the CF
vortices interact with the step they experience a first region of strong amplification,
followed by an equally strong reduction and a second region of amplification thus creating
a growth—decay—growth pattern of the CF vortices. The first maximum in intensity is
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located close to the step for all cases, while the first minimum and second maximum
move closer to the step with increasing step height. Here, it is important to note that for
cases C3 and D3, a different mechanism is responsible for the appearance of the second
maxima. More specifically, in these cases, laminar—turbulent transition occurs within the
measurement domain. The pattern of the transition reveals spanwise modulations at the
same wavelength as the forced CF vortices. At breakdown, the increased thermal contrast
between adjacent laminar and turbulent regions effectively produces the observed second
maxima. Therefore, the analysis of the non-monotonic pattern is restricted exclusively to
the cases A3 and B3 for which the boundary layer flow remains in a laminar condition
for the entire measurement region. In addition, it must be stressed here that although
the IR imaging has been performed in radiometric conditions (i.e. surface temperature
is measured), the non-uniformity of irradiated energy from the halogen lamps as well
as the varying curvature and thermal conductivity of the wing model do not allow for
direct extraction of the surface heat transfer coefficient. Nevertheless, the narrow field
of view of IR-A largely mitigates these effects allowing for a qualitative estimation of
the amplitude of spanwise modulations in the near-wall shear around the step. In order to
draw conclusions on the origin of this behaviour in the thermal maps, quantitative velocity
measurements are essential, as described in the following sections.

The spatial spectral analysis employed here can be further exploited to gain insight into
the organisation of the incoming CF vortices near the step. As previously discussed, the
thermal maps are representative of the local magnitude of the skin friction coefficient,
which in turn is related to the local velocity shear near the wall. In the cases discussed
above, the flow near the step is predominantly laminar and is being actively heated.
As such, regions of high temperature (i.e. brighter colour) represent low shear areas
and vice versa. The characteristic streaky pattern is then qualitatively correlated with
the modulation of the laminar boundary layer typical of stationary CFI. Based on the
aforementioned, by unwrapping the spectral phase angle (¢) of successive (in streamwise
direction) temperature profiles, a reconstruction of the trajectory (d;) of the coherent
structures near the wing surface can be inferred.

Figure 5(Ia) presents for the clean configuration a comparison of the trajectory of the CF
vortices (solid black line) with a reference line (dashed black line) featuring a streamline
angle of ¥* = 45° (i.e. parallel to streamwise X-direction). The results indicate that the
axis of the CF vortices is slightly tilted towards the inboard side of the wing resulting in a
near-wall streamline angle of approximately ¥,; = 42.6°, which closely matches the one
predicted by linear stability theory @L*ST = 41.2° (dash—dotted line in figure 5la). This
behaviour is in agreement with previous experiments by Serpieri & Kotsonis (2016) which
for similar conditions showed that the inclination of the near-wall streamline differs also
by a few degrees from the streamwise X-direction in the measurement region.

The collected trajectories for all cases are presented in figure 5(Illc). As a reference
for all cases, the clean configuration is given as a solid black line. Evidently, the
interaction with the FFS results in a modification of the trajectory of the CF vortices
given by the colour-coded lines. Figure 5(IVc), shows the relative trajectory changes
(A; =d; s1 — d;.c) between the clean (d; c) and the FFS (d; s;) cases. For the small
FES case (A3), as the vortices reach the FFS, their trajectory strongly curves towards the
outboard side of the wing (i.e. positive z direction). Shortly downstream of the step edge,
the trajectory shows a very sharp turn towards the inboard side of the wing (i.e. negative
z direction) before bending outboard again and relaxing to a direction almost parallel to
the trajectory pertaining the clean configuration. Qualitatively, the observed behaviour
is similar for all the tested FFS cases, albeit intensifying with increasing step height.
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A similar behaviour has been reported by Eppink (2018) when analysing the inviscid and
near wall streamlines. In addition, Eppink (2018) showed that near the FFS the bending
of the near-wall streamline is more pronounced than the one experienced by the inviscid
streamline.

The outboard—inboard—outboard trajectory near the step can be traced to a local
modification of the pressure gradient by the FFS. Numerical simulations by Tufts et al.
(2017) and experimental measurements by Duncan et al. (2014a) showed that the addition
of an FFS results in strong modification of the pressure gradient near the step. Hence,
as the laminar boundary layer and developing CF vortices approach the step, they will
first encounter an adverse pressure gradient upstream of the step, followed by a localised
favourable pressure gradient at the step position and a second region of adverse pressure
gradient as the flow recovers downstream of the step. The influence of the FFS on the
near-step development and the modification to the structure of the CF vortices will be
further analysed in § 4.

4. Streamwise development of CFI

The global and local influence of the FFS on the transition behaviour and topology
discussed in § 3 suggest that complex flow dynamics occur when CF vortices interact
with the FFS. This section explores the impact of an FFS on the development of the
CFI by comparing and contrasting the planar-PIV measurements for the clean baseline
configuration and the FFS cases as indicated on table 1.

4.1. Impact of the FFS on the spanwise-averaged flow

As discussed in the previous section, the numerical simulations by Tufts et al. (2017) and
experimental measurements by Duncan e al. (2014a) indicate that the addition of the
FFES results in a local modification of the pressure field which results in strong regions of
adverse and favourable pressure gradient. In this work, limitations on the experimental
set-up (figure 1) restrict the static pressure measurements to the clean configuration.
Nevertheless, the effects of the pressure gradient near the step are well captured in the
change of the near-wall flow trajectories (figure 51llc,IVc) and the streamwise evolution of
the boundary layer investigated using PIV measurements of the spanwise (w) and vertical
(v) velocity components presented in this section.

The velocity measurements are conducted in z—y planes (i.e. parallel to the leading edge
and normal to the wing surface, figure 1) at various x/c, stations. The mean flow w, and
v, is calculated by averaging the time-average velocity components along the spanwise
direction at each x/c, station. Note, that based on the experimental set-up (see figure 1c¢)
a positive w, value indicates an average outboard (i.e. from the root towards the tip of
the wing) flow movement. For clarity, the vertical y*-coordinate is referenced to the clean
baseline model surface, while the y-coordinate offsets the step height at its location. In
addition, the vertical coordinates are non-dimensionalised with the displacement thickness
8, = 514 wm, extracted from the w spanwise velocity PIV measurements at the most
upstream plane (x/cy = 0.176) for the clean baseline case.

A comparison of the FFS cases with the clean configuration at selected stations
(figure 6) reconciles the existence of an adverse pressure gradient upstream of the step
which causes a deceleration in the boundary layer flow and a reduction in the spanwise
w, average velocity component (figure 6Ib). This effect intensifies as the step height
increases, and results in growth of the boundary layer displacement (&) and momentum
(6,y) thickness upstream of the FFS location, as shown in figure 6(c). Conversely, due to
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Figure 6. Selected profiles of spanwise mean flow velocity w, (a,b) upstream and downstream of the FFS and
(c) boundary layer properties (Here & . = 514 um). The dashed black line in (a) and (b) denotes the numerical

w,r
boundary layer solution calculated from the pressure distribution in the clean configuration.

the favourable pressure gradient downstream of the FFS edge at x/c, = 0.204 (figure 61la)
there is an acceleration of the boundary layer flow which leads to a reduction in &, and
0,,. Farther downstream, at x/c, = 0.239 (figure 6110), the velocity profiles collapse to the
clean baseline condition except for the case D3 (i.e. highest FES), not shown in the figure
since it transitions to turbulent flow around x;/c, ~ 0.22 (figure 3a).

Experimental observations by Eppink (2020b) in the streamline-oriented reference
frame, indicate a decrease in the velocity component tangent to the streamline (i) and a
decrease in the CF component (wy) upstream of the FFS, which leads to a strong reversal of
the CF velocity profile. These observations are in agreement with the near-wall trajectories
presented in figure 5(Illc,IVe), which shows that an outboard spanwise motion occurs
upstream of the FFS. In the present work, it becomes evident that the face of the FFS forms
the equivalent of an attachment line. As expected, due to the sharp FFS geometry near the
step location, the incoming boundary layer experiences a deceleration in u,. Although
no surface irregularity or pressure gradient can form in the z direction, the modification
of u, directly couples to changes of w,, through momentum coupling. As such, a strong
conversion of wall tangent velocity components (explicitly #, and by consequence w;)
into a wall normal velocity component (v;) is occurring. Evidence of this behaviour
is shown in figure 7(Ila—Ile) in which all FFS cases lead to a considerable increase in
the spanwise-averaged time-averaged vertical velocity v, at the step. For the highest FFS
case D3, the maximum vertical velocity reaches a value of approximately 10 per cent of
the external spanwise velocity. These results are in agreement with Eppink (20205) where
similar levels of amplification are reported. This rigorous upward flow movement by the
FFS which affects the boundary layer flow will be analysed in more detail on the following
sections.

4.2. Impact of the FFS on the time-averaged total flow

As elaborated in § 2.1, the investigation of the influence of an FFS on the development
and breakdown of CFI is facilitated using DREs near the leading edge to condition the
wavelength and amplitude of the disturbances. This conditioning allows for a highly
periodic and uniform amplitude distribution for the ensuing CF vortices (figure 5), which
further facilitates the extraction of pertinent information from the velocity fields in terms
of spanwise spectral modes.
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Figure 7. Contours of spanwise mean flow velocity (flow direction from left to right) w, (I) and v, (1I):
(a) clean; (b) A3z; (¢) B3; (d) C3; (e) D3. The solid black line denotes 899 ,, (Here 8:} , =514 um).

More specifically, for the analysis of the PIV measurements, the time-average and
standard deviation of the velocity components have been spatially filtered using Fourier
transformations. As indicated on the diagram in figure 8, at each wall-normal position
in the measurement plane, a fast Fourier transform (FFT) has been applied on extracted
velocity profiles along the z-direction. Subsequently, a pertinent set of Fourier modes are
selected to reconstruct the velocity through the inverse fast Fourier transform (IFFT).
In addition to enhancing the velocity fields by reducing the measurement noise (which
typically appears at small wavelengths), this technique offers the possibility to isolate the
effect of the FFS on a particular harmonic of the CFI mode. Hence, for the remainder
of the analysis, the reconstructed velocity fields (subscript R) are used unless otherwise
noted. Moreover, the notation m(0, n) (Bippes 1999; Wassermann & Kloker 2002) is
used to indicate the Fourier modes used during the reconstruction. Note that the first
index in parenthesis corresponds to the frequency of the mode, which for the present
study is zero, and indicates a stationary CFI mode while the second index (n) denotes
multiples of the spanwise wavenumber of the CF vortices forced by the DRE. In addition,
when indicated by the summation convention (Zi m(0, n)), the velocity fields have been
partially reconstructed using the wavelengths contained between the primary force CFI
mode (4, p = 7.5 mm) and its fifth harmonic (4; p = 1.5 mm).

Figures 9 and 10 show the reconstructed fields for the spanwise (wg) and vertical
(vr) time-average velocity, respectively, for the clean and FFS cases at selected locations
upstream and downstream of the step. Note that the z*-coordinate features a shift with
respect to the z-coordinate origin such that the CF vortices align between presented
streamwise stations. In the clean configuration, the spanwise velocity contours wg
presented in figure 9(Ia), show a pair of stationary corotating vortices. These stationary
vortices are evenly spaced at the forced wavelength (1;p = 7.5 mm) for the entire
measurement region as shown by the spatial spectral analysis on the thermal maps
presented in figure 5(Ila). These CF vortices develop inside the boundary layer, where they
transfer high momentum flow towards the wall (downwelling region, @ in figure 91a) and
low momentum flow away from it (upwelling region, © in figure 91a). As these structures
evolve downstream, their amplitude and inherent distortion they impart on the mean flow
increases (Wassermann & Kloker 2002; White & Saric 2005; Downs & White 2013). For
the condition under study, the initial amplitude provided by the DREs results in a set of
nonlinearly amplified vortices when reaching the step location.
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The interaction of the stationary CF vortices with the FFS results in topological
modifications within the boundary layer as shown in figure 9. As the CF vortices reach
the FFS (x/c, = 0.196, figure 91b-Ic) there is an evident increase of the transfer of low
momentum flow away from the wall (i.e. upwelling region). This corresponds well with
the general upward deflection and streamwise deceleration of the incoming flow evident
in figures 6 and 7, as well as the observations of Eppink (2020b) which indicate an
amplification of the vertical velocity component near the FFS. At the same streamwise
location, the vertical velocity contours (vg) in figure 10(I>—Ic) indicate a strong increase,
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especially on the inner section of the upwelling region. Henceforth, the overall increase
of vertical velocity at the step location is suggestive of the underlying amplification of the
instabilities as a result of the flow modifications incurred by the step.

The near-wall structures trajectory identified in §3 revealed an outboard—inboard—
outboard motion near the wall. In contrast to IR imaging, the PIV measurements
facilitate the inspection of this flow deflection away from the wall. Specifically, profiles
of spanwise velocity perturbation (Wg) are extracted along the z-direction at the height
of the stationary disturbance profile maxima (calculated as described in § 2.3) for each
measurement plane. Successive spanwise profiles are compared using a vector convolution
(i.e. cross-correlation). The result of this analysis is referenced to the most upstream
measurement plane and yields the relative location (d;) along the z-direction assumed
by the CF vortices as they evolve downstream. Figure 9(d) shows the relative change of
trajectory (A; = dzgy — dz¢) between the FFS cases (dzsy) and the clean configuration
(dzc), confirming that the outboard—inboard—outboard motion described by the near-wall
trajectory also occurs away from the wall, in proportional intensity to the FFS height.

Eppink (2018) reported an abrupt change of the near-wall streamline angle as the
boundary layer flow intercepts the FFS. Henceforth, to evaluate the spanwise motion
effect as a function of the distance from the wall, figure 11(Ia—I1b) shows a set of
wall-parallel wg and vg planes extracted away from the wall (400 wm above the height
of the stationary disturbance profile maxima). The dashed lines in figure 11(c) indicate
the relative shift (A;) along the z direction calculated for each configuration. Additionally,
wall-parallel planes extracted at a vertical location closer to the wall (200 pm below the
height of the stationary disturbance profile maxima) are presented in figure 11(I1lla—1Vb)
with A; in figure 11(d). A comparison of the A, above and below (figure 11c¢,d) the
stationary disturbance profile maxima confirm that the outboard—inboard—outboard motion
intensifies closer to the wall.

Summarising up to this point, the observed influence of the FFS on the developing
boundary layer reveal topological changes in both spanwise averaged flow as well
as stationary CF vortices. As the incoming flow approaches the step, a strong
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Figure 11. Wall-parallel contour maps of time-averaged spanwise and vertical velocity spatially filtered
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outboard—inboard—outboard spanwise motion of the CF vortices is evident. This reflects
the non-monotonic changes in pressure imposed by the step (Duncan et al. 2014a; Tufts
et al. 2017). This effect is stronger near the wall, where the deceleration in the base
flow is larger. Consequentially, an intense ejection of vertical velocity is documented at
the vicinity of the step in agreement with Eppink (20200), resulting from the upward
deflection of incoming wall-tangent flow as the latter engages with the step. The role of
the spanwise motion on the overall transition scenario cannot be conclusively inferred by
the presented measurements. However, potential candidate mechanisms can be proposed.
A simple interpretation of this motion can be traced simply on the underlying changes of
the base flow, which in turn can lead to modifications of the wavenumber vector of an
incoming instability. A different effect could be the potential appearance of non-modal
effects, in a mechanism similar to the well known lift-up effect (Landahl 1980; Marxen
et al. 2009; Brandt 2014) active in regions of strong shear changes. Notwithstanding
the active mechanism, the relation between the outboard—inboard—outboard motion
and the growth of the instability remains a point of interest. To elucidate this, fully
three-dimensional velocity measurements or detailed numerical simulations of these flows
are deemed necessary.

4.3. Impact of the FF'S on the primary stationary CFI and harmonics

As described in §2.3, the experimentally measured mode-shape of the stationary
disturbance profile is equivalent to the spanwise root mean square ((),) of the time-average
perturbation (g or Ug). Previous experimental studies on CFI (White & Saric 2005;
Downs & White 2013; Serpieri & Kotsonis 2016) have used this metric in the analysis
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of the Euclidean sum of the vertical and streamwise velocity components measured by
hot-wire anemometers. By merit of the chosen imaging planes in the present study,
the disturbance profiles have been calculated independently for each measured velocity
component.

Figure 12 presents contour plots of the stationary disturbance profiles (wg), and (Ug),
calculated on the partial reconstructed fields (i.e. 2,51 m(0, n)) for all FFS cases. The results
for the spanwise disturbance profiles ((wg)) in figure 12(Ia—Ie) show a distinguishable
lower lobe upstream of the FFS at x/c, = 0.18, situated near the wall at y/d;, . ~ 1, which
corresponds to the wall-normal maxima of these profiles (e markers in figure 12Ia-Id).
In addition, a second upper lobe is also identified (A markers in figure 12Ia-Id). The
appearance of this feature has been linked to the mean flow distortion typical in the
nonlinear stages of stationary CFI development (Haynes & Reed 2000; White & Saric
2005). Near the step location at x/cy = 0.2 there is an evident amplification of the
spanwise disturbance profiles ({(Wwg).) followed by a decay (x/c, > 0.21) in all measured
cases. Moreover, for x/c, > 0.22 the second upper lobe (A markers in figure 12la—Id)
becomes increasingly evident, indicating a strong mean flow distortion as shown in
figure 9(IVa-1Vc).

Previous studies (Tufts er al. 2017; Cooke et al. 2019; Eppink 20205) have reported the
development of a strong peak near the wall in the disturbance profiles downstream of the
step location (see figure 10 in Eppink (2020b) and figure ASa in Tufts et al. (2017)). In
this work, a second peak near the wall is not evident in the spanwise perturbation profiles
(WR);, since as shown in figure 12(Ia—Ie) only one lower lobe is present upstream and
downstream of the FFS for all the configurations. The lack of the near-wall structure in the
present study can be attributed to unresolved regions in the PIV planes, originating from
wall reflections. Nevertheless, the vertical perturbation profiles (), (figure 1211a—Ild) for
the highest step case D3 do reveal a clear peak near the wall at the location of the FFS in
agreement with Eppink (2020b).

Figure 13 presents the spanwise disturbance (Wwg), profiles extracted at selected
streamwise locations upstream and downstream of the FES for the partial reconstructed

field (Zim(O, n), figure 13la-IVa), primary forced mode (m(0, 1), figure 1316-1Vb)
and first harmonic (m(0, 2), figure 13Ic—IVc). In all FFS cases there is a considerable
upstream effect which leads to a substantial increase in the profiles maxima (max({(Wg),),
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figure 13Ila). It is noteworthy that the amplitude increase coincides with the localised
increase in the vertical velocity component (v), the region of outboard spanwise motion of
the CF vortices (figures 94 and 5IVc) and possible reversal of the CF velocity component
(Eppink 20200, figures 8 and 9).

Figure 13(d), shows the streamwise evolution of the wall-normal location of the lower
lobe (i.e. closer to the wall) maxima (ya,,) of the spanwise steady disturbance profiles
(Wg) for the partial reconstructed field. Note that the y-coordinate reference is the model
surface and therefore it has been offset by the step height. In agreement with Eppink
(2018, 2020b) as the CF vortices approach the step they experience an increase in ya,,,
essentially lifting off the surface before reaching the FFS edge. Just downstream of the
step edge (x/cy = 0.204, figure 131lla) there is a decrease in yg4,, as there is a reduction in
the boundary layer displacement thickness (87, in figure 6¢) and a sudden sharp increase
in the maximum amplitude of the primary stationary disturbance (m(0, 1), figure 131110).
The highest step height (D3) is responsible for the maximum amplification. Similarly, the
(W), profiles corresponding to the reconstructions using only the first harmonic (m(0, 2),
figure 131c—IVc) show a considerable amplification at the step location.

In addition to changes in disturbance amplitude, the strong amplification of the primary
disturbance mode m (0, 1) near the FFS edge results in a significant mean flow distortion
and saturation of the CF vortices. This mean flow distortion is evident in the change of
the shape of the mode which leads to the development of two clearly distinguishable local
maxima, as shown in figure 13(IVb). In a smooth wing CFI development, the appearance
of this second upper lobe signals a typical nonlinear development of stationary CFI which
results in a strong mean flow distortion and the onset of secondary instability modes
(Haynes & Reed 2000; White & Saric 2005). Nevertheless, in this case, breakdown of

924 A34-23


https://doi.org/10.1017/jfm.2021.497

https://doi.org/10.1017/jfm.2021.497 Published online by Cambridge University Press

A.F. Rius-Vidales and M. Kotsonis

(@) Clean _3 _3 _3 53 (b)
) ‘ [ ' 5 o 5 4016
020} A > mO,n) | S "m0, n)
A " : n Jo.14
v /}/‘ j’j\:\\\ L)
12 A4 \\\\\\'\‘ =
<, 0050 e NN It , 1012
=%= NN e — N
< .=:~.-~—»-—-..-.-~.‘,_,;:‘3F\4,\:_r N <
NN Se - B 7’ // \\ \\\
RN Sl Ensgzeroie) SETTTT T T TN N 10.10
0 10 \\‘ * “"ﬁhf{:‘—‘.\.— \:‘:u\\‘\
‘ FFS ‘ L FFS 7Tt Joos
) 020f I, ' m(0, 1) 8 =75mmi, o
< 0.15¢} et I~ 1\\‘\:;\~\ | SRR e e ¥
= =R e e IS 3R e e ARSI e e e S=2oe=3 -
= 010 R ’ =
. r ~
‘ , , 2
T T T T T T 3
(1) — 0.2 | oD <(><10) =
v 0.06] I ] i 8 &
1= : [V ‘\\\\\“\ h 6 x
\E 4 \\ \c:t - Ed=t=ra- _.‘_.:\*\1\\‘\ e 1 =
< 0.04} .=l=’..i:",‘ . *'\\—”'—\:bs‘:’ ‘_—*::\:::::\::‘\ T4 %
0.02L— ! s s s s 2
0.18 0.20 0.22 0.24 0.18 0.20 0.22 0.24
x/cx x/cx

Figure 14. Steady disturbance profile amplitudes: (Ia) lower lobe amplitude (A;); (Ib) upper lobe amplitude
(Ay); (Ia) primary CFI mode (m(0, 1)) maximum amplitude; (Ila) first harmonic (m(0,2)) maximum
amplitude; (I1I») IR-B PSD extracted at A, = 7.5 pm; (III») primary CFI mode (m(0, 1)) standard deviation
along the span direction of the wall-normal gradient at y/3y, , = 0.68.

the CF vortices only occurs for the case C3 at x;/c, & 0.27 and D3 at x;/cy ~ 0.22 as
indicated on figure 3(a).

Based on the partial reconstruction (i.e. 2,51 m(0, n)), the amplitudes of the disturbance
profile (Wg), lower (A7) and upper (Ay) lobes are presented in figure 14(Ia—1b). The results
for the FFS cases indicate that the amplitude of the lower lobe (Ar) intensifies rapidly
upstream of the step and reaches a maximum value just downstream of the step edge.
Hereinafter, as the amplitude of the upper lobe increases (Ay) (i.e. stronger mean flow
distortion), there is a steep decay in Ay which leads to values below the clean baseline
case (black line in figure 14a). Once this minimum is reached a second region of growth is
observed for the cases A3 and B3, which do not undergo laminar breakdown in the region
0.18 < x/cy < 0.25 as indicated by the IR thermal maps on figure 5(Ib-Ic).

The overall amplification trend is in good agreement with the detailed experimental
work presented by Eppink & Casper (2019) and Eppink (2020b), where a similar
amplification—decay—amplification pattern has been observed on the (i), perturbation
peak amplitude. Moreover, the results presented in figure 14 in Eppink (20206) indicate
that the slope of the second region of growth becomes steeper with increasing step height.

Evidence of this amplification—decay—amplification pattern was previously presented
in the spectra of the IR thermal maps (figure 5) for the small (A3) and moderate (B3)
cases. As noted before, for cases Cz and D3, the second amplification maxima in the
IR maps are instead related to the laminar—turbulent transition front. Therefore, the
analysis of this pattern is restricted to the cases Az and B3 for which the boundary
layer flow remains in a laminar condition for the entire measurement region. To further
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probe the correlation between the growth of the CF vortices and the pattern observed
in the spectral analysis of IR-A thermal maps, the power content (P) pertaining to
the primary forced mode (4;/1; p = 1) is shown in figure 14(IIb). At each streamwise
location P is normalised with the value corresponding to the most upstream (x/cy =
0.176) location (Pgp). In addition, figure 14(I11b) presents the standard deviation along the
span direction of the velocity gradient in y (dwg/dy) at y/dy, . = 0.68 above the wall.
The results presented in figure 14(11,I11h) show a striking correlation, reconciling the
amplification—decay—amplification pattern in the spectra of the IR thermal maps to local
changes in the surface heat transfer properties due to variations in wall shear (i.e. changes
in dwg/0dy) related to the amplification of the CFI by the step.

Figure 14(Illa) suggests a similar amplification trend for the harmonic (m(0, 2)) past
the step location, displaying a similar amplification—decay—amplification pattern. These
results are in agreement with previous observations (Eppink 2020b; Rius-Vidales &
Kotsonis 2020) and support the spatial analysis of the IR measurements in figure 5,
which showed an amplification of the first harmonic at the step location for all the FFS
cases. However, it is striking to note the relatively ‘delayed’ amplification of this first
harmonic compared with the primary mode. For each FFS case, the peak of m(0, 2)
occurs downstream of the corresponding peak of m(0, 1). This behaviour further suggests
a (partially) indirect influence of the higher harmonics by the FFS. More specifically, the
primary CFI increases in amplitude due to interaction with the FFS, inherently forcing
nonlinear amplification of higher harmonics as well as of mean flow distortion. In addition,
future fully three-dimensional measurements in this region are deemed necessary to
characterise a possible deformation of the recirculation region downstream of the FFS
location.

Eppink (20200) proposed that the first region of growth is linearly caused by a
destabilisation of the stationary CFI modes due to the strong inflectional profiles caused
by the adverse pressure gradient near the step. In turn, the second region is attributed to
a nonlinear development due to the modulation of the recirculation region downstream of
the FFS edge, which resulted in streamwise oriented vortices which amplify the harmonics
of the primary mode. The behaviours observed by Eppink (20205) and the ones explained
in this work, highlight the sensitivity and complexity of the FFS—CFI interaction.

Based on the findings presented so far, the steady interaction of the CF vortices with
the FFS can be summarised as follows. As the CF vortices travel towards the FES they
experience an adverse pressure gradient which results in an outboard spanwise motion
(figures 5IVc and 9d), a decrease in the wall-tangent velocity components (figure 61b)
and an increase in the amplitude of the spanwise (w) disturbance profile (figure 131la)
when compared with the clean configuration. In addition, at the step a portion of the
wall-tangent velocity component converts into a strong vertical (v) velocity component
due to the upward deflection (figure 71la—Ile). This vertical component is very localised
and appears to reach a maximum on the inner side of the upwelling region of the CF
vortices. Downstream of the step, there is a further amplification of the spanwise (w)
disturbance profile (figure 14la at x/c, ~ 0.205) and a sudden inboard spanwise motion
(i.e. favourable pressure gradient). This strong amplification drives a further increase of
mean flow distortion and rise of nonlinear interactions (figures 9 and 14). This leads to a
saturation of the primary CF vortices (figure 14la at x/c, ~ 0.21), and subsequent increase
in harmonic amplitude. Farther downstream, the stationary CFI decay and the CF vortices
experience an outboard spanwise motion (i.e. adverse pressure gradient). Finally, a second
region of growth enhanced by the nominal favourable pressure distribution of the wing
develops for the smaller FFS cases.
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One of the most significant outcomes of the aforementioned observations is the apparent
mismatch between the transition location behaviour evaluated using the IR imaging maps
(figure 3) and the amplitude growth of the stationary CFI as evaluated in figure 14. In
fact, for all cases of FFS investigated in this work, the partial reconstructed (Zfl m(0, n))
amplitude at the downstream end of the PIV domain is lower than the clean case. This is
certainly expected for the two highest step case (C3 and D3), as the imminent breakdown
of the vortices downstream of the step effectively breaks the spanwise modulation,
‘smoothening out’ the apparent amplitude. However, for the two smaller step cases (A3 and
B3), the laminar boundary layer survives the passage over the step and emerges apparently
stabilised in the downstream vicinity of the step. Naturally this effect is localised, as
the CF vortices start growing again, as evident in figure 14(Ia) as well as from the
appearance of the second maxima in the thermal maps spectra (figure 511b,I1¢). In addition,
figure 6 confirms the spanwise averaged flow recovery to the clean case at x/c, &~ 0.24.
In combination, it becomes apparent that the drastic effects of the FFS on the transition
location cannot be traced solely to the evolution of stationary instabilities, highlighting the
importance of temporal fluctuations. Henceforth, the following discussion focuses on the
effect of the FFS on the unsteady disturbances.

4.4. Impact of the FFS on the unsteady disturbances

The analysis of temporal velocity fluctuations in specific regions within the CF vortices
provides important information regarding steady and unsteady instability development and
eventual laminar breakdown. Within the highly distorted boundary layer subject to primary
stationary CFI, several regions of coherent fluctuations have been identified, typically
corresponding to either primary travelling modes or secondary high-frequency instabilities
of Kelvin—-Helmholtz type. The first region of fluctuations has been classified as a type-I
mode (Wassermann & Kloker 2002, 2003) or z-mode (Malik et al. 1999). This region
coincides with the local minimum of the spanwise gradient located at the outer side of
the upwelling region of the CF vortices (area B in figure 151lla). The second region of
fluctuations has been classified as type-II mode (Wassermann & Kloker 2002, 2003) or
y-mode (Malik ef al. 1999). This region coincides with higher levels of the wall-normal
gradient and manifests near the top of the CF vortices (area C in figure 151a). Finally, the
third region of fluctuations known as type-III mode (Wassermann & Kloker 2002; Bonfigli
& Kloker 2007) has been observed near the wall on the inner side of the upwelling region
and coincides with the local maxima of the spanwise gradient (area A in figure 1511la).

The origin of the velocity fluctuations in the region pertaining to type III has been
traced to the interaction between travelling and stationary CFI modes (Wassermann &
Kloker 2002, 2003; White & Saric 2005; Serpieri & Kotsonis 2016). The type III instability
can be considered as a primary CF instability with non-zero frequency. Nevertheless, in
the environment of enhanced stationary CFI modes relevant to the present study, type
III instability is identified through the ‘footprint’ of the nonlinear interaction between
stationary and travelling modes.

Conversely, the velocity fluctuations in the regions pertaining to type-I and type-II
differ entirely in nature from the type-III, as they have been associated with secondary
instabilities which emerge on the strong velocity shears as the CF vortices reach saturation.
These high frequency, rapidly amplifying instabilities are extremely sensitive to small
changes in the developing shears and lead to the breakdown of the CF vortices and
transition to turbulent flow (Wassermann & Kloker 2002; White & Saric 2005; Serpieri &
Kotsonis 2016). Previous studies on the mechanisms of these instabilities have shown the
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(d) D3. (Here Sv*v’r =514 pm and A, p = 7.5 wm). Areas A and B are defined in figure 16.

appearance of a secondary set of finger vortices which develop along the shear layer on
the outer side of the upwelling region (Wassermann & Kloker 2002; Serpieri & Kotsonis
2016).

Due to the inherent relation between unsteady secondary instabilities and mean velocity
gradients, the latter are first inspected. The interaction of the stationary CFI with the
FFS results in a topological modification of the structure of the CF vortices which
further manifests as alterations in the vertical and spanwise velocity gradients presented in
figure 15. As already shown, downstream of the FFS edge (x/c, = 0.204, figure 911»-Ilc)
the sudden and abrupt increase in w. leads to a substantial decrease in the boundary layer
momentum thickness (&}, figure 6¢) when compared with the clean configuration. This
transfer of high-momentum fluid towards the wall increases the vertical gradient (dwg/0dy)
near the wall in the downwelling region of the CF vortices as shown in figure 15(11o-11d).
In addition, a localised region of negative vertical gradient (dwg/dy) is found at the centre
of the upwelling region near the wall for the moderate (C3) and high (D3) steps. While
the inclusion of the steps produces notable effects on the vertical gradient near the wall,
the effect is largely minimal at the cusp of the stationary CFI (area C), where type-II
secondary instability is expected to grow. This behaviour reconciles with the observations
in § 4.2 where the major deflection and shearing motion experienced by the stationary CF
vortices was identified to be largely oriented in the spanwise direction.
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The strong changes in amplitude as well as spanwise shearing motion of the stationary
CF vortices past the step edge, results in noticeable changes in the spanwise velocity
gradients, which are predominantly located at the outer and inner sections of the upwelling
regions. In contrast to the vertical gradient, changes in the spanwise gradient are global
and affect both positive (i.e. inner, area A in figure 151lla) and negative (i.e. outer, area B
in figure 151lla) gradients. Particularly the outer spanwise gradients have been typically
associated with the growth of type-I secondary instability. In all monitored FFS cases,
the step induces higher gradient levels than in the clean configuration near the step
(figure 15IVa-IVd). This influence is already evident slightly upstream of the step as
shown in figure 15(Illa—I11d).

While the intensification of the spanwise gradient is consistently observed for all cases
at the vicinity of the step, the downstream development of dwg/dz is highly dependent
on the step height. In the case of the highest FFS (D3), the interaction of the stationary
CFI with the step leads to an abrupt amplification, saturation and breakdown of the CF
vortex structure as shown in figure 15(Vd). The interaction of the stationary CFI with
the moderate step case (Csz) follows a similar trend as the CF vortices experience a
strong amplification near the step followed by saturation. This leads to a loss in spanwise
coherence and decrease in the intensity of the spanwise gradients (figure 15IVc—Vlc) prior
to laminar breakdown, which occurs at x/c, ~ 0.27 (figure 3a).

In contrast, for the small FFS cases A3z and B3 (not shown in figure 15) the CF
vortices do not experience breakdown in this streamwise region. Yet, the spanwise
gradient experiences a significant decay farther downstream of the step. Particularly for
the shallowest case A3z, the spanwise gradient at x/c, = 0.239 (figure 15VIb) is in fact
rendered lower than the corresponding clean case at the same streamwise location. This is
a direct consequence of the stabilisation and decrease in amplitude of the stationary CFI,
as identified in figure 14.

The significant changes on both vertical and spanwise velocity gradients due to the
step can further be associated with the development and growth of unsteady shear
layer instabilities, widely acknowledged to play an important role in the breakdown of
CFI-dominated flows. Figure 16 presents a set of contour plots of spanwise temporal
velocity fluctuations (o wp) at selected streamwise locations upstream and downstream of
the FFS location. Time-resolved hot-wire anemometry (known as HWA) measurements,
on the same configuration as the present clean case and similar flow conditions by Serpieri
& Kotsonis (2016, 2018), identified type-I/type-II instabilities in the frequency range
between 3.5 and 8 kHz and type-III modes in the range between 350 and 550 Hz, albeit for
a lower DRE amplitude. Considering the low repetition-rate of PIV acquisitions employed
in the present study (i.e. 15 Hz), spectral analysis and frequency filtering are not applicable.
Nevertheless, the long sampling time (i.e. 80 s) ensures that the fluctuating velocity
field represents an ensemble of both low- and high-frequency disturbances, which can be
considered temporally uncorrelated. Furthermore, these instabilities are strongly localised
within the structure of the stationary CFI, allowing direct evaluation of the development
of each type.

The results for the clean baseline case in figure 16(la—Vla), show a local maximum
of fluctuations at the location corresponding to a type-IIl mode (A in figure 16la).
Monitoring a downstream location (figure 16Va) indicates a decaying interaction between
weak travelling CF modes and the forced stationary CF vortices, as the magnitude of the
fluctuations in this region decrease. To better illustrate this decaying behaviour, figure 17
presents average values of spanwise velocity gradient and temporal fluctuation amplitude
extracted within areas A and B indicated in figures 15 and 16. The two extraction areas are
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Figure 16. Contours of spanwise temporal velocity fluctuations and spanwise velocity (grey line 10 levels from

0 to 1), z* positive direction outboard spatially filtered between Zz m(0, n): (a) clean; (b) As; (c¢) C3; (d) D3.
(Here 8, , = 514 pm and 4, p = 7.5 um). Extraction areas A and B are defined as isolines of 85 % of the local
maximum amplitude of unsteady fluctuations on the inner and outer side of the upwelling region.

defined for each plane and step case as isolines of 85 % of the local maximum amplitude
of unsteady fluctuations on the inner and outer side of the upwelling region. Naturally,
values corresponding to area A refer to positive spanwise gradients and type-III dominated
fluctuations, while values corresponding to area B refer to negative gradients and type-I
dominated fluctuations.

Figure 17(b) confirms the decay in the temporal velocity fluctuations (o wg) in region
A corresponding to type-III instabilities in the clean baseline case (black line) in the
range of x/cy > 0.2. The addition of small (A3) to moderate (C3) steps result in a further
reduction of velocity fluctuations (owg) in this region. Evidently, the addition of the
FFS leads to a reduction in the interaction between travelling and stationary CF modes.
Furthermore, it is striking to note that this stabilising effect is already active upstream of
the FFS (compare figure 16Ia—Id). This behaviour strongly suggests a change in stability
characteristics of the incoming boundary layer. Considering the findings described in
figure 14, for the same streamwise range (0.18 < x/c, < 0.2), the primary stationary CFI
appears to destabilise and increase in amplitude. The concurrent dampening of type-III
modes can then be associated with a combination of (possibly conflicting) linear effects
(i.e. change of the stability of the mean boundary layer due to the FFS modification) and
nonlinear interaction between stationary and travelling modes. The exact identification of
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Figure 17. Streamwise evolution of averaged extracted values in areas A and B (defined in figures 15 and
16): (a) positive (area A) and negative (area B) averaged spanwise velocity gradients; (b) averaged velocity
fluctuations in area A; (¢) averaged velocity fluctuations in area B.

the relative significance of these two effects requires a combination of parameter variations
in high-resolution experiments as well as accurate numerical simulations in the near-step
region.

Considering the development of secondary instabilities, detailed experimental studies
(White & Saric 2005; Serpieri & Kotsonis 2016) have shown that as the stationary
vortices saturate, the strong mean flow distortion results in the development of streamwise
and spanwise velocity shears. These give rise to high-frequency inviscid instabilities of
Kelvin—Helmholtz type. In the present study, the primary CFI arrives at the FFS location
at a relatively high and constant amplitude of approximately 13 % of the local free stream
(figure 14), signalling saturation levels. Consequently, a noticeable increase in the velocity
fluctuations in the region corresponding to the type-I mode (area B in figure 16la) is
registered. The clean baseline case in figure 17(c) shows an increase in the velocity
fluctuations (owg) in this region. Moreover, the addition of an FFS appears to affect
the development of these fluctuations considerably. The results in figure 17(c) show an
increase in velocity fluctuations (o wg) with respect to the clean configuration in the region
associated with the type-I secondary instability. This is consistent for all step cases in
the region directly downstream of the FFS location (x/c, =~ 0.21). For the highest step
height (D3) this increase correlates well with the breakdown of the CF vortices presented
in figure 16(IVd). For the moderate step height (C3), the velocity fluctuations (o wg) in
the region associated with the type-I mode increase even further for x/c, > 0.22 with
respect to the clean configuration as shown in figure 16(Vc and VIc). This amplification
of the secondary instability correlates well with the anticipation of the laminar—turbulent
transition, presented in figure 3 for the respective cases.
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In contrast, for the smaller FFS cases (A3 and B3) the velocity fluctuations (owg)
associated with the type-I mode decrease downstream of the FFS location (x/c, > 0.22)
to a level lower than the corresponding level in the clean baseline configuration, compare
figure 16(V1a—VI1b). Moreover, the reduction in o wg presented in figure 17(c) correlates
well with a decrease in the spanwise gradients in region B as shown in figurel7(a).
High-resolution and time-resolved measurements are required to identify the spectral
content and further confirm the origin of the observed velocity fluctuations. In addition,
such future dedicated studies will indicate the connection, if any, to the vortex-shedding
mechanisms proposed by Eppink (20205). The unsteady behaviour reconciles sufficiently
with the overall delay of transition presented in § 3.1 for the small FFS (A3) and provides a
first-order insight into the possible transition delay mechanisms pivoting on the reduction
of the spanwise gradients and the stabilisation of the type-I secondary instability.

5. Concluding remarks

The attainment of extended regions of laminar flow in the boundary layer of high subsonic
commercial transport aircraft is highly susceptible to the mechanical smoothness of
aerodynamic surfaces. Previous research in CFI-dominated flows revealed a significant
influence on the laminar—turbulent transition behaviour by two-dimensional surface
irregularities in the form of steps and gaps.

This work focuses exclusively on FFSs. Most published studies on this type of surface
irregularity have focused on formulating appropriate criteria to determine the critical step
height, which do not result in premature transition. Nevertheless, a few recent studies
have highlighted unresolved physical aspects governing the FFS—CFI interaction which
necessitate detailed flow diagnostics before a universal model or criterion can be used for
the design of practical laminar flow components and application of LFC techniques.

In particular, Eppink (20200) and Rius-Vidales & Kotsonis (2020) associated the impact
of the FFS on the development and transition of the CFI with the amplitude of the
incoming CF vortices. Consequently, the present work extends the current investigation
of the FFS—CFI interaction to cases where the CF vortices arrive with high amplification
to the step location.

The main findings of this work indicate strong topological changes on swept wing flows
due to FFS, manifesting in a pronounced outboard—inboard—outboard motion which can be
potentially linked to the streamwise development of the CFI instability. When comparing
with the clean baseline configuration, as the boundary layer flow approaches the step there
is a clear deceleration in the boundary layer flow (i.e. adverse pressure gradient) and
the stationary CF vortices experience an outboard spanwise motion. Reaching the FFS,
the boundary layer flow is redirected by the FFS resulting in a strong vertical velocity
ejection. This behaviour correlates well with the measured amplification of the stationary
CF vortices upstream of the FFS location.

Downstream of the FFS edge, the stationary CF vortices experience an abrupt inboard
spanwise motion, linked to the localised favourable pressure gradient, reaching their
maximum amplification and strong mean flow distortion. Farther downstream, as the flow
recovers to nominal pressure conditions, the CF vortices experience a gradual outboard
spanwise motion (i.e. adverse pressure gradient) and a substantial amplitude reduction,
even below the level pertaining to the clean configuration. For the smaller step cases,
a second region of growth of the CF vortices is observed, enhanced by the nominal
favourable pressure distribution of the wing.

In agreement with previous studies (Eppink 2020b; Rius-Vidales & Kotsonis 2020),
an amplification of higher spanwise harmonics of the stationary CF mode at the step
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location has been observed. The observed behaviour suggests the dominance of indirect
harmonic growth due to nonlinear forcing of the primary mode at the step location. For
the smaller FFS cases studied in this work, the step has a local stabilising effect on the
primary stationary mode and its harmonics. For the higher step case transition occurs
shortly downstream of the step location.

The analysis of the unsteady disturbances revealed a reduction in spanwise velocity
temporal fluctuations (o wg) due to the step, in the region associated with type-III travelling
instabilities. The amplification experienced by the primary CFI mode due to the step
is sufficient to minimise the nonlinear interaction between the stationary and travelling
CF vortices. On the other hand, for all the FFS cases, the spanwise velocity temporal
fluctuations (owg) in the region associated with type-I secondary instability, show a
substantial increase past the step edge as the primary stationary CFI mode and its
higher harmonics reach their maximum amplification. This is strongly correlated with
the modifications imparted on the spanwise gradients of time-averaged velocity, widely
acknowledged as the driver for type-I instabilities. Downstream of this location, the
behaviour strongly differs, depending on the considered step height. For the largest step
height, an immediate breakdown of the CF vortices and onset of turbulent flow occurs,
likely related to the explosive growth of type-I fluctuations. For the moderate FFS case,
the owpg fluctuations slightly decrease before rapidly amplifying, reaching higher levels
than the clean baseline configuration by the end of the measurement domain.

In contrast, for the smallest FFS case, a substantial decrease in the spanwise velocity
gradient and owg fluctuations in the region associated with type-I secondary instability
is achieved, reaching levels lower than the clean baseline configuration by the end of the
PIV measurement domain. This behaviour reflects an unprecedented transition delay effect
due to a small FFS, holding potential for understanding and facilitating the future design
of laminar flow components.
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