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The displacement λ-convexity of a non-standard entropy with respect to a non-local trans-

portation metric in finite state spaces is shown using a gradient flow approach. The constant

λ is computed explicitly in terms of a priori estimates of the solution to a finite-difference

approximation of a non-linear Fokker–Planck equation. The key idea is to employ a new

mean function, which defines the Onsager operator in the gradient flow formulation.
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1 Introduction

Displacement convexity, which was introduced by McCann [20], describes the geodesic

convexity of functionals on the space of probability measures endowed with a trans-

portation metric. Geodesic convexity has important consequences for the existence and

uniqueness of gradient flows in the space of probability measures [1, 6, 22]. It may also

provide quantitative contraction estimates between solutions of the gradient flows [5]

and exponential decay estimates [1]. Displacement λ-convexity of the entropy is equival-

ent to a lower bound on the Ricci curvature RicM of the Riemannian manifold M, i.e.,

RicM � λ [17,23]. Furthermore, it leads to inequalities in convex geometry and probability

theory, such as the Brunn–Minkowski, Talagrand and log-Sobolev inequalities [25].

† The first author was partially supported by the Royal Society via a Wolfson Research Merit

Award and the EPSRC Grant EP/P031587/1. The second author acknowledges partial support

from the Austrian Science Fund (FWF), Grants P22108, P24304, F65 and W1245. The last author

acknowledges the support from the São Paulo Research Foundation (FAPESP), Grant 2015/

20962-7.

(2019), vol. 30, pp. 1103–1122 c© Cambridge University Press 2018. 1103

first published online 10         January       2018; )

https://doi.org/10.1017/S0956792517000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000389


J. A. Carrillo et al.

We are interested in the question to what extent the concept of displacement convexity

can be extended to discrete settings, like numerical discretisation schemes of gradient flows.

As one step in this direction, we show in this paper that a certain entropy functional,

related to the finite-difference approximation of non-linear Fokker–Planck equations, is

displacement convex. Before making this statement more precise, let us review the state

of the art of the literature.

The study of discrete gradient flows and related topics is very recent. First, results

were concerned with Ricci curvature bounds in discrete settings [3]. Markov processes

and Fokker–Planck equations on finite graphs were investigated by Chow et al. in [7].

Maas [18] and Mielke [21] introduced non-local transportation distances on probability

spaces such that continuous-time Markov chains can be formulated as gradient flows

of the entropy, and they explored geodesic convexity properties of the functionals. The

concept of displacement convexity was used by Gozlan et al. [12] to derive HWI inequality

(which interpolates the relative entropy H, the Wasserstein distance W and the Fisher

information I) and log-Sobolev inequalities on (complete) graphs. Talagrand’s inequality

was studied in discrete spaces by Sammer and Tetali [24].

Only few results can be found in the literature on convexity properties of functionals

for discretisations of partial differential equations. Exponential decay rates for time-

continuous Markov chains were derived by Caputo et al. [4]. This result was also obtained

for reversible Markov chains as a consequence of the displacement convexity of the

Shannon entropy as first investigated by Mielke [21] and applied to discretisations of one-

dimensional linear Fokker-Planck equations (also see the presentation in [14, Section 5.2]).

While the proof of Caputo et al. [4] is based on the Bochner–Bakry–Emery method,

Mielke [21] employed a gradient flow approach together with matrix estimates. The non-

local transportation metric, needed for the definition of displacement convexity, is induced

by the logarithmic mean:

Λ(s, t) =
s− t

log s− log t
for s �= t, Λ(s, s) = s,

which has some remarkable properties (proved in [21] and summarized in Lemma 7
below). The same mean function has been used for finite volume discretisations of drift-

diffusion equations [2, equation (28)]. The approach of [4] (and [11]) was extended to

general convex entropy densities f(s) in [15] using the mean function:

Λf(s, t) =
s− t

f′(s) − f′(t)
for s �= t, Λf(s, s) =

1

f′′(s)
, (1.1)

which becomes the logarithmic mean for f(s) = s(log s− 1).
Concerning non-linear equations, we are aware only of two results. Erbar and Maas [10]

showed that a discrete one-dimensional porous-medium equation is a gradient flow of

the Rényi entropy function f(s) = sα with respect to a suitable non-local transportation

metric induced by the mean function:

Λα(s, t) =
α− 1

α

sα − tα

sα−1 − tα−1
for s �= t, Λα(s, s) = s.

However, the Rényi entropy fails to be convex along geodesics with respect to this
transportation metric [10]. A weaker notion than geodesic convexity (called convex
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entropy decay), which is strongly related to the Bakry–Emery method, was introduced by

Maas and Matthes [19] to prove exponential decay rates for finite-volume discretisations

of the quantum drift-diffusion equation. Its gradient flow formulation is based on the

Fisher information and the logarithmic mean.

In this paper, we propose a new mean function by composing the logarithmic mean with

a non-linear function (coming from the diffusivity), which is suitable for finite-difference

discretisations of the non-linear Fokker–Planck equation

∂tρ = ∂x
(
∂xφ(ρ) + φ(ρ)∂xV

)
, x ∈ (0, 1), t > 0, (1.2)

supplemented with no-flux boundary conditions and an initial condition. Equations with

non-linear mobility were already treated under the point of view of optimal transport

in [16], and the displacement convexity of equations related to (1.2) was analysed in [6].

Here, φ : [0,∞) → [0,∞) is a continuous function, e.g., φ(ρ) = ρα with α > 0, and V (x) is

a quadratic confinement potential V (x) = γ|x|2/2 with γ � 0. A computation shows that

the entropy

Fc(ρ) =

∫ 1

0

(
f(ρ) + ρV (x)

)
dx, where f′(s) = logφ(s),

is non-increasing along (smooth) solutions to (1.2). Our aim is to analyse the displacement

convexity of a discrete version of the entropy Fc along semi-discrete solutions associated

to (1.2).

For the discretisation of (1.2), let n ∈ �, h = 1/n > 0, and xi = ih, i = 0, . . . , n. Let ρi(t)

approximate the solution ρ(xi, t) and wi approximate the function w(xi) = e−V (xi). Writing

(1.2) in the form

∂tρ = div

(
φ(ρ)∇ log

φ(ρ)

w

)
,

a corresponding finite-difference scheme reads as

∂tρi =
κiΛi

h2

(
log

φ(ρi+1)

wi+1
− log

φ(ρi)

wi

)
− κi−1Λi−1

h2

(
log

φ(ρi)

wi
− log

φ(ρi−1)

wi−1

)
, (1.3)

where h > 0 is the space size and κiΛi is an approximation of φ(ρ) in [xi, xi+1]. To simplify

the notation, let us write ui = φ(ρi)/wi, for i = 0, . . . , n. Our idea is to employ the modified

logarithmic mean

Λi =
ui − ui+1

log ui − log ui+1
, (1.4)

and to set, as in [21], κi =
√
wiwi+1. Since Λi approximates ui, it follows that κiΛi

approximates
√
wi+1/wiφ(ρi). Observe that with this choice, the numerical scheme reduces

to

∂tρi =
κi

h2
(ui+1 − ui) −

κi−1

h2
(ui − ui−1),

which approximates (1.2) written in the form ∂tρ = ∂x(w∂x(φ(ρ)/w)).
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The main result of the paper is as follows. If φ is invertible and φ′◦φ−1 is non-increasing

(an example is φ(s) = sα with 0 < α � 1), then the discrete entropy

F(ρ) =

n∑
i=0

(
f(ρi) + γ

x2
i

2
ρi

)
, where f′(s) = logφ(s), (1.5)

is displacement λh-convex with respect to the non-local transportation metric induced by

(1.4), where

λh = γ

(
2

γh2
(1 − e−γh

2/2) min
i=0,...,n

φ′(ρi) − 2 cosh(γh) max
i=0,...,n

|∇hφ
′(ρi)|

)
∈ �,

and ∇hφ
′(ρi) = h−1(φ′(ρi+1) − φ′(ρi)); see Theorem 3. Notice that γ is the convexity

constant of the quadratic potential V (x) and that λh = 0 for γ = 0.

Our result is consistent with that one in [21]: If φ(s) = s is linear (and V �= 0), λh → γ

as h → 0, and the constant is asymptotically sharp. When γ = 0, our main result shows

that F(ρ) is displacement convex.

For γ > 0, if the minimum of φ′(ρi) is positive and the maximum of |∇hφ
′(ρi)| is

sufficiently small, then λh > 0. We expect that exponential convergence to the steady state

holds for sufficiently small h > 0, but we are unable to prove these a priori estimates for

our numerical scheme in this whole generality. Such bounds in terms of the initial data

can be shown for V = 0 and for small initial data depending on the mesh size h; see

Corollary 1. This is an indication that such a priori estimates might hold true for γ > 0.

The main motivation of this work is to find a family of non-linear drift-diffusion

equations for which the strategy developed in [21] can be carried over. As a byproduct,

we obtain semi-discrete finite difference schemes for equation (1.2) enjoying mass con-

servation, positivity preservation and the natural entropy dissipation property, i.e., F(ρ)

non-increasing.

The paper is organized as follows. In Section 2, we introduce the mathematical setting

and give the definition of displacement λ-convexity. We show that displacement λ-convexity

follows if a certain matrix is positive semi-definite, slightly generalising Proposition 2.1

in [21]. As a warm-up, we consider in Section 3 the semi-discrete heat equation and prove

that the entropy F(ρ) =
∑n

i=0 f(ρi) is displacement convex if f(s) = s(log s−1) or f(s) = sα

for 1 < α � 2; see Theorem 2. This result is a reformulation of Theorem 5 in [15], but our

proof is very simple. Section 4 is concerned with the proof of displacement λ-convexity

of (1.5) and contains our main result. Some properties of mean functions are recalled in

Appendix A, and a priori estimates of solutions to (1.3) with V = 0 and small initial data

depending on the small size are proved in Appendix B.

2 Displacement convexity

In this section, we specify our setting and give the definition of displacement convexity.

Let n ∈ � and introduce the finite state space:

Xn =

{
ρ = (ρ0, . . . , ρn) ∈ �n+1 : ρ0, . . . , ρn > 0,

n∑
i=0

ρi = 1

}
.
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The closure of Xn can be identified with the space of probability measures on a (n+ 1)-

point set. We restrict our attention to Xn in order to have the entropy dissipation term

DF(ρ) well defined independently of the assumptions on φ at the origin. We will denote

by 〈·, ·〉 the Euclidean inner product in �n+1. Let a matrix Q = (Qij) ∈ �(n+1)×(n+1) be

given such that

Qij � 0 for i �= j,

n∑
i=0

Qij = 0 for j = 1, . . . , n.

The value Qij is the rate of a particle moving from state j to i. We assume that there

exists a unique vector w ∈ Xn such that the detailed balance condition

Qijwj = Qjiwi for all i, j = 0, . . . , n

is satisfied. Summing this condition for fixed i over j = 0, . . . , n, we see that Qw = 0. Note

that in Markov chain theory, the detailed balance condition is usually formulated for the

transposed matrix Q�.

Our aim is to show convexity properties of the entropy along solutions t �→ ρ(t) to the

system of ordinary differential equations of the type

∂tρ = Qφ(ρ), t > 0, (2.1)

where φ is some smooth function. This equation can be formulated as a gradient flow.

Indeed, given a (smooth) function f : [0,∞) → �, we define the entropy F : Xn → �,

F(ρ) =

n∑
i=0

fi(ρi), where f′i (s) = f′
(
φ(s)

wi

)
, (2.2)

and the Onsager operator K : Xn → �(n+1)×(n+1),

K(ρ) =
1

2

n∑
i,j=0

QijwjΛ
f

(
φ(ρi)

wi
,
φ(ρj)

wj

)
(ei − ej) ⊗ (ei − ej), (2.3)

where ei = (δi0, . . . , δin)
� ∈ �n+1 is the ith unit vector and ‘⊗’ is the tensor product. By

detailed balance and Qijwj � 0 for i �= j, it follows that K(ρ) is symmetric and positive

semi-definite. With these definitions, we can formulate (2.1) as a gradient system in the

sense that it can be rewritten as

∂tρ = −K(ρ)DF(ρ), (2.4)

where DF(ρ) = (f′0(ρ0), . . . , f
′
n(ρn)).

The space Xn is endowed with the non-local transportation distance

W(ρ0, ρ1)
2 = inf

(ρ,ψ)∈E(ρ0 ,ρ1)

∫ 1

0

〈K(ρ(t))ψ(t), ψ(t)〉dt, (2.5)

where E(ρ0, ρ1) is the set of pairs (ρ(t), ψ(t)), t ∈ [0, 1], such that

ρ ∈ C1([0, 1];Xn), ψ : [0, 1] → �n+1 is measurable,

for all i = 0, . . . , n, t ∈ [0, 1] : ∂tρ(t) = K(ρ)ψ(t), ρ(0) = ρ0, ρ(1) = ρ1.

1107

https://doi.org/10.1017/S0956792517000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000389


J. A. Carrillo et al.

It is well known that the function W is a pseudo-metric on Xn (the space of probability

measures on a (n + 1)-point set) [18, Theorem 1.1] and the pair (Xn,W) defines a

geodesic space [10, Proposition 2.3], i.e., for all ρ0, ρ1 ∈ Xn, there exists at least one curve

ρ : [0, 1] → Xn, t �→ ρ(t), such that ρ(0) = ρ0, ρ(1) = ρ1, and W(ρ(s), ρ(t)) = |s−t|W(ρ0, ρ1)

for all s, t ∈ [0, 1]. Such a curve is called a constant speed geodesics between ρ0 and

ρ1. By [18, Lemma 3.30], any geodesic can be approximated by curves in Xn. If the

pair (ρ, ψ) ∈ E(ρ0, ρ1) attains the infimum in (2.5), then ρ is a geodesic and satisfies the

geodesic equations [10, Proposition 2.5]

{
∂tρ = K(ρ)ψ

∂tψ = − 1
2
〈DK(ρ)[ · ]ψ,ψ〉 , t > 0, (2.6)

where the vector b = 〈DK(ρ)[ · ]ψ,ψ〉 is defined by 〈b, v〉 = 〈DK(ρ)[v]ψ,ψ〉 for v ∈ �n+1.

Definition 1 (Displacement convexity) Let λ ∈ �. We say that a functional E : Xn →
�∪{+∞} is displacement λ-convex on Xn with respect to the metric W if for any constant

speed geodesic curve ρ : [0, 1] → Xn,

E(ρ(t)) � (1 − t)E(ρ(0)) + tE(ρ(1)) − λ

2
t(1 − t)W(ρ(0), ρ(1))2, t ∈ [0, 1].

If λ = 0, E is simply called displacement convex. Moreover, if t �→ E(ρ(t)) is twice differen-

tiable, E is displacement λ-convex if and only if

d2

dt2
E(ρ(t)) � λW(ρ(0), ρ(1))2, t ∈ [0, 1].

We show that displacement λ-convexity of F is guaranteed if a certain matrix is positive

semi-definite. This result is an analog of Proposition 2.1 in [21].

Proposition 1 The entropy F , defined in (2.2), is displacement λ-convex for some λ ∈ � if

and only if, for any ρ ∈ Xn,

M(ρ) � λK(ρ), (2.7)

i.e. M(ρ) − λK(ρ) is positive semi-definite, where

M(ρ) =
1

2
(DK(ρ)[Qφ(ρ)] − QΦ′(ρ)K(ρ) −K(ρ)Φ′(ρ)Q�) (2.8)

and Φ′(ρ) = diag(φ′(ρ1), . . . , φ
′(ρn)).

Proof Let ρ0, ρ1 ∈ Xn and let ρ : [0, 1] → Xn be a geodesic curve with (ρ, ψ) ∈ E(ρ0, ρ1).

Then, (ρ, ψ) satisfies the geodesic equations (2.6), implying that

d

dt
F(ρ) = 〈DF(ρ), ∂tρ〉 = 〈DF(ρ), K(ρ)ψ〉.

Differentiating a second time and using the symmetry of K(ρ) and DK(ρ)[∂tρ], we find
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that

d2

dt2
F(ρ) = 〈D2F(ρ)∂tρ, K(ρ)ψ〉 + 〈DF(ρ), DK(ρ)[∂tρ]ψ〉 + 〈DF(ρ), K(ρ)∂tψ〉

= 〈K(ρ)D2F(ρ)∂tρ, ψ〉 + 〈DK(ρ)[∂tρ]DF(ρ), ψ〉 + 〈K(ρ)DF(ρ), ∂tψ〉.

Inserting the geodesic equation (2.6) yields

d2

dt2
F(ρ) = 〈K(ρ)D2F(ρ)K(ρ)ψ + DK(ρ)[K(ρ)ψ]DF(ρ), ψ〉

− 1

2
〈DK(ρ)[K(ρ)DF(ρ)]ψ,ψ〉. (2.9)

We differentiate K(ρ)DF(ρ) = −Qφ(ρ) with respect to ρ:

K(ρ)D2F(ρ) + DK(ρ)[ · ]DF(ρ) = −QΦ′(ρ).

Thus, we can replace the first bracket on the right-hand side of (2.9) by −QΦ′(ρ)K(ρ)ψ:

d2

dt2
F(ρ) = −〈QΦ′(ρ)K(ρ)ψ,ψ〉 +

1

2
〈DK(ρ)[Qφ(ρ)]ψ,ψ〉

=
1

2
〈
(
DK(ρ)[Qφ(ρ)] − QΦ′(ρ)K(ρ) −K(ρ)Φ′(ρ)Q�)

ψ,ψ〉. (2.10)

We infer from (2.7) that

d2

dt2
F(ρ) � λ〈K(ρ)ψ,ψ〉

for all geodesic curves ρ and vector fields ψ such that (ρ, ψ) ∈ E(ρ0, ρ1). Consequently,

d2

dt2
F(ρ(t)) � λW(ρ0, ρ1)

2, t ∈ [0, 1],

and by Definition 1, F is displacement λ-convex.

For the only if part, given ρ ∈ Xn and ψ ∈ �n, we construct a geodesic starting at ρ

with initial field ψ and the result follows from (2.10). �

3 Semi-discrete heat equation

As a warm-up, we consider the semi-discrete heat equation

∂tρi = h−2(ρi−1 − 2ρi + ρi+1), i = 0, . . . , n, t > 0, (3.1)

where n ∈ � and h = 1/n > 0. The no-flux boundary conditions are realized by setting

ρ−1 = ρ0 and ρn+1 = ρn. We write ρ = (ρ0, . . . , ρn). Equation (3.1) can be written as

(2.1) by setting φ(s) = s and Q = −G�G with the discrete gradient G ∈ �n×(n+1),

Gij = h−1(δij − δi+1,j). By slightly abusing the notation, we set wi = 1 for i = 0, . . . , n and

note that for a function f : [0,∞) → �, the corresponding entropy given in (2.2) reduces

to

F(ρ) =

n∑
i=0

f(ρi). (3.2)
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Then, for the respective Onsager operator given in (2.3) with the mean function Λf , we

claim that the entropy F is displacement convex, under suitable conditions on f.

Theorem 2 Let f be such that Λf , defined in (1.1), is concave in both variables. Then the

entropy (3.2) is displacement convex with respect to the metric (2.5) induced by Λf .

If f(s) = s(log s − 1) or f(s) = sα for 1 < α � 2, Λ is concave in both variables (see

Lemma 9), thus fulfilling the assumption of the theorem.

Proof We formulate Qρ = −G�Gρ = −G�L(ρ)Gf′(ρ), where L(ρ) = diag(Λf(ρi, ρi+1))
n−1
i=0

and f′(ρ) = (f′(ρi))
n
i=0. Then, setting K(ρ) = G�L(ρ)G, we can write (3.1) as the gradient

system

∂tρ = Qρ = −K(ρ)DF(ρ),

where we identify DF(ρ) with f′(ρ). Thus, by Proposition 1, it is sufficient to show

that the matrix M(ρ), defined in (2.8), is positive semi-definite. In fact, because of the

special structure of K(ρ), we can simplify this condition. Let ψ ∈ �n+1. Then, using

DK(ρ)[ · ] = G�DL(ρ)[ · ]G and Q = −G�G,

〈M(ρ)ψ,ψ〉 =
1

2

〈(
DK(ρ)[Qρ] − QK(ρ) −K(ρ)Q�)

ψ,ψ
〉

=
1

2

〈
G�(

DL(ρ)[Qρ]G+ GG�L(ρ)G+ L(ρ)GG�G
)
ψ,ψ

〉

=
1

2

〈(
DL(ρ)[Qρ] + GG�L(ρ) + L(ρ)GG�)

Gψ,Gψ
〉
.

Hence, it is sufficient to show that

M̃ := −DL(ρ)[G�Gρ] + GG�L(ρ) + L(ρ)GG�

is positive semi-definite.

We show this claim by verifying that M̃ is diagonally dominant. To this end, we observe

that M̃ is a symmetric tridiagonal matrix with entries

M̃ =
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 · · · 0

b0 a1 b1
. . .

...

0 b1
. . . 0

...
. . . an−2 bn−2

0 · · · 0 bn−2 an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where the coefficients are given by

ai = 4Λf(ρi, ρi+1) − ∂1Λ
f(ρi, ρi+1)(2ρi − ρi−1 − ρi+1)

− ∂2Λ
f(ρi, ρi+1)(2ρi+1 − ρi − ρi+2), i = 0, . . . , n− 1

bi = −
(
Λf(ρi, ρi+1) + Λf(ρi+1, ρi+2)

)
� 0, i = 0, . . . , n− 2.
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We also set b−1 = −Λf(ρ−1, ρ0)−Λf(ρ0, ρ1) � 0 and bn−1 = −Λf(ρn−1, ρn)−Λf(ρn, ρn+1) �
0, where by the non-flux boundary conditions, we have ρ−1 = ρ0 and ρn+1 = ρn.

The matrix M̃ is diagonally dominant if

a0 + b0 � 0, an−1 + bn−2 � 0, (3.3)

ai + bi−1 + bi � 0 for i = 1, . . . , n− 2. (3.4)

We will prove (3.4) for i = 0, . . . , n − 1. The first two conditions (3.3) follow from (3.4)

for i = −1 and i = n− 1, since a0 + b0 = (a0 + b−1 + b0) − b−1 � a0 + b−1 + b0 � 0 and

an−1 + bn−2 = (an−1 + bn−2 + bn−1) − bn−1 � an−1 + bn−2 + bn−1 � 0. Thus, it remains to

prove (3.4). We compute

ai + bi−1 + bi = 2Λf(ρi, ρi+1) − Λf(ρi+1, ρi+2) − Λf(ρi−1, ρi)

− ∂1Λ
f(ρi, ρi+1)

(
2ρi − ρi−1 − ρi+1

)
− ∂2Λ

f(ρi, ρi+1)
(
2ρi+1 − ρi − ρi+2

)
.

Since Λf is assumed to be concave, we may apply Lemma 8, which shows that this

expression is non-negative, and hence, M̃ is positive semi-definite. �

For non-linear functions φ and non-constant steady states (wi), the proof of non-

negativity of ai + bi−1 + bi is, unfortunately, not as simple as above, and we need more

properties of the mean function. It turns out that the logarithmic mean satisfies these

properties. Such a situation is considered in the next section.

4 Semi-discrete non-linear Fokker–Planck equations

We discretise the non-linear Fokker–Planck equation

∂tρ = ∂x(∂xφ(ρ) + φ(ρ)∂xV ) = ∂x

(
φ(ρ)∂x log

φ(ρ)

w

)
,

where w(x) = e−V (x) for V (x) = γ|x|2/2 with γ � 0. Let n ∈ �, h = 1/n > 0, and xi = ih.

Approximating ρ(xi, t) by ρi(t), w(xi) by wi and setting ui = φ(ρi)/wi, the numerical scheme

reads as

∂tρi = h−2κi(ui+1 − ui) − h−2κi(ui − ui−1), (4.1)

where κi =
√
wiwi+1 approximates w(xi+1/2). The no-flux boundary conditions are realized

by u−1 = u0 and un+1 = un. Setting Q = −G� diag(κi)G diag(w−1
i ) and, slightly abusing

the notation, ρ = (ρ0, . . . , ρn), we see that the scheme can be formulated as ∂tρ = Qφ(ρ),

and thus, the framework of Section 2 applies. Hence, (4.1) can be written as the gradient

system

∂tρ = −K(ρ) log u, K(ρ) = G�L(ρ)G,

where log u = (log ui)
n
i=0,

L(ρ) = diag
(
κiΛ(ui, ui+1)

)n−1

i=0
, ui =

φ(ρi)

wi
,

1111
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and Λ is the logarithmic mean. The above system can be written as in (2.4) by choosing

f(s) = s(log s− 1), and therefore, by (2.2), the entropy reads as

F(ρ) =

n∑
i=0

(
f(ρi) +

γ

2
x2
i ρi

)
,

since

f′i (s) = f′
(
φ(s)

wi

)
= logφ(s) − logwi = f′(s) +

γ

2
x2
i , i = 0, . . . , n.

Thus, DF(ρ) = log u. By Proposition 1, we know that the convexity of F is related to the

matrix M(ρ) defined in (2.8). Then, if W is the non-local transportation distance defined

in (2.5), we have the following results.

Theorem 3 Let φ be invertible, φ′ ◦ φ−1 be non-increasing, and γ � 0.

(1) If γ = 0 then M(ρ) � 0, for all ρ ∈ Xn;

(2) If γ > 0 then for each ρ ∈ Xn, there exist λh(ρ) ∈ � such that

M(ρ) � λh(ρ)K(ρ),

where

λh(ρ) = γ

(
2

γh2
(1 − e−γh

2/2) min
i=0,...,n

φ′(ρi) − 2 cosh(γh) max
i=0,...,n

|∇hφ
′(ρi)|

)
∈ �.

For every (ρ, ψ) ∈ E(ρ0, ρ1), the entropy F satisfies

d2

dt2
F(ρ(t)) � λh(ρ(t))W(ρ0, ρ1)

2, t ∈ [0, 1].

If φ(s) = s, we have λh = (2/h2)(1 − e−γh
2/2) → γ as h→ 0.

The function φ(s) = sα satisfies the assumptions of the theorem if 0 < α � 1. In the

linear case φ(s) = s, we recover the result of [21]. Increasing non-linearities behaving like

a power law φ(s) = sα, 0 < α � 1, near zero and being linear at infinity also satisfy the

assumptions of our theorem.

Proof First, note that for any γ � 0, we can calculate the derivative of K(ρ) and obtain

DK(ρ)[ · ] = G�DL(ρ)[ · ]G, where

(DL(ρ)[ξ])i = κi∂1Λ(ui, ui+1)
φ′(ρi)

wi
ξi + κi∂2Λ(ui, ui+1)

φ′(ρi+1)

wi+1
ξi+1

for i = 0, . . . , n− 1 and ξ ∈ �n+1. Therefore, for ψ ∈ �n+1,

〈M(ρ)ψ,ψ〉 =
1

2
〈{G�DL(ρ)[Qφ(ρ)]G+ QΦ′(ρ)G�L(ρ)G+ G�L(ρ)GΦ′(ρ)Q�}ψ,ψ〉

=
1

2
〈M̃Gψ,Gψ〉,
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where

M̃ = DL(ρ)[Qφ(ρ)] + diag(κi)G diag(w−1
i )Φ′(ρ)G�L(ρ)

+ L(ρ)GΦ′(ρ) diag(w−1
i )G� diag(κi).

This matrix is symmetric and tridiagonal with entries

M̃ =
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 · · · 0

b0 a1 b1
. . .

...

0 b1
. . . 0

...
. . . an−2 bn−2

0 · · · 0 bn−2 an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where the coefficients are given by

ai = 2κ2
i Λi

(
φ′(ρi)

wi
+
φ′(ρi+1)

wi+1

)
− κi

φ′(ρi)

wi
∂1Λi

(
κi−1(ui − ui−1) + κi(ui − ui+1)

)

− κi
φ′(ρi+1)

wi+1
∂2Λi

(
κi(ui+1 − ui) + κi+1(ui+1 − ui+2)

)
, i = 0, . . . , n− 1

bi = −κiκi+1
φ′(ρi+1)

wi+1
(Λi + Λi+1) � 0, i = 0, . . . , n− 2

and we abbreviated

Λi := Λ(ui, ui+1), ∂jΛi := ∂jΛ(ui, ui+1), j = 1, 2.

Using the non-flux boundary conditions, we can also define b−1 and bn−1 by the same

expression as above. We show now that M̃ − λhL(ρ) is diagonally dominant for some

λ ∈ �. For this, we introduce further abbreviations:

αi = κi
φ′(ρi)

wi
, βi = κi

φ′(ρi+1)

wi+1
.

Since κiαi+1 = κi+1βi, we compute

ai + bi−1 + bi = 2κiΛi(αi + βi) − κiβi−1(Λi−1 + Λi) − κiαi+1(Λi + Λi+1)

− κiαi∂1Λi(ui − ui+1) − κiβi∂2Λi(ui+1 − ui)

− κi−1αi∂1Λi(ui − ui−1) − κi+1βi∂2Λi(ui+1 − ui+2)

= κiΛi(2αi + 2βi − βi−1 − αi+1)

− κiαi∂1Λi(ui − ui+1) − κiβi∂2Λi(ui+1 − ui)

− κiβi−1(Λi−1 − ∂1Λiui−1) − κiαi+1(Λi+1 − ∂2Λiui+2)

− κi−1αi∂1Λiui − κi+1βi∂2Λiui+1

= I1 + · · · + I7. (4.2)
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We estimate these expressions term by term. Using property (ii) of Lemma 7, we find that

I2 = −κiαiΛi + κiαi
Λ2
i

ui
, I3 = −κiβiΛi + κiβi

Λ2
i

ui+1
.

The first terms on the right-hand sides cancel with some terms in I1. By property (iv) of

Lemma 7, it follows that

I4 � −κiβi−1 max
r�0

(
Λ(r, ui) − ∂1Λ(ui, ui+1)r

)
= −κiβi−1ui∂2Λ(ui, ui+1)

= −κiβi−1ui∂2Λi,

I5 � −κiαi+1 max
r�0

(
Λ(ui+1, r) − ∂2Λ(ui, ui+1)r

)
= −κiαi+1 max

r�0
(Λ(r, ui+1) − ∂1Λ(ui+1, ui)r) = −κiαi+1ui+1∂2Λ(ui+1, ui)

= −κiαi+1ui+1∂1Λ(ui, ui+1) = −κiαi+1ui+1∂1Λi.

Finally, because of κiαi+1 = κi+1βi,

I6 = −κiβi−1∂1Λiui, I7 = −κiαi+1∂2Λiui+1.

Inserting these computations into (4.2), we arrive at

ai + bi−1 + bi � κiΛi(αi + βi − βi−1 − αi+1) + κiΛ
2
i

(
αi

ui
+

βi

ui+1

)

− κi(βi−1ui + αi+1ui+1)(∂1Λi + ∂2Λi).

Employing property (iii) of Lemma 7 in the last term, we obtain

ai + bi−1 + bi � κiΛi(αi + βi − βi−1 − αi+1) + κiΛ
2
i

(
αi − αi+1

ui
+
βi − βi−1

ui+1

)

= J1 + J2. (4.3)

The idea is to replace κi±1 in βi−1 and αi+1 by an expression involving only κi. By

definition of αi and βi and since

κi+1

wi+1
=
κi

wi

κi+1

κi

wi

wi+1
=
κi

wi

√
wiwi+2

wi+1
=
κi

wi
e−γh

2/2,

κi−1

wi
=

κi

wi+1

κi−1

κi

wi+1

wi
=

κi

wi+1

√
wi−1wi+1

wi
=

κi

wi+1
e−γh

2/2,

we find that

J1 = κiΛi

(
κi

wi
φ′(ρi) −

κi+1

wi+1
φ′(ρi+1) +

κi

wi+1
φ′(ρi+1) −

κi−1

wi
φ′(ρi)

)

=
κ2
i

wi
Λi

(
φ′(ρi) − e−γh

2/2φ′(ρi+1)
)

+
κ2
i

wi+1
Λi

(
φ′(ρi+1) − e−γh

2/2φ′(ρi)
)
.
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In the same way, since

κi+1
wi

wi+1
= κi

√
wiwi+2

wi+1
= κie

−γh2/2, κi−1
wi+1

wi
= κi

√
wi−1wi+1

wi
= κie

−γh2/2,

we infer that

J2 = κiΛ
2
i

(
κi
φ′(ρi)

φ(ρi)
− κi+1

wi

wi+1

φ′(ρi+1)

φ(ρi)
+ κi

φ′(ρi+1)

φ(ρi+1)
− κi−1

wi+1

wi

φ′(ρi)

φ(ρi+1)

)

= κ2
i Λ

2
i

(
φ′(ρi) − e−γh

2/2φ′(ρi+1)

φ(ρi)
+
φ′(ρi+1) − e−γh

2/2φ′(ρi)

φ(ρi+1)

)
.

Thus, (4.3) becomes

ai + bi−1 + bi � κ2
i Λi

(
φ′(ρi) − e−γh

2/2φ′(ρi+1)

wi
+
φ′(ρi+1) − e−γh

2/2φ′(ρi)

wi+1

)

+ κ2
i Λ

2
i

(
φ′(ρi) − e−γh

2/2φ′(ρi+1)

φ(ρi)
+
φ′(ρi+1) − e−γh

2/2φ′(ρi)

φ(ρi+1)

)

= κ2
i Λi

(
φ′(ρi) − φ′(ρi+1)

)[
Λ(ui, ui+1)

(
1

φ(ρi)
− 1

φ(ρi+1)

)
+

1

wi
− 1

wi+1

]

(4.4)

+ κ2
i Λi

(
1 − e−γh

2/2
)[φ′(ρi)

wi+1
+
φ′(ρi+1)

wi

+ Λ(ui, ui+1)

(
φ′(ρi)/wi+1

ui+1
+
φ′(ρi+1)/wi

ui

)]

= K1 +K2. (4.5)

At this point, let us assume that γ = 0. Then, K2 = 0. For K1, note that in this case

wi = 1 for all i = 0, . . . , n and

(
φ′(ρi) − φ′(ρi+1)

)( 1

φ(ρi)
− 1

φ(ρi+1)

)
� 0. (4.6)

since φ′ ◦ φ−1 is non-increasing. This implies K1 � 0 and therefore, M(ρ) is diagonally

dominant.

Now, let us assume that γ > 0. We estimate K2 using property (v) of Lemma 7:

K2 � 2κ2
i Λi

(
1 − e−γh

2/2
)(φ′(ρi)

wi+1
+
φ′(ρi+1)

wi
+ 2

√
φ′(ρi)φ′(ρi+1)

wiwi+1

)

� 2κiΛi
(
1 − e−γh

2/2
)√

φ′(ρi)φ′(ρi+1) � 2κiΛi
(
1 − e−γh

2/2
)

min
j=0,...,n

φ′(ρj).
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By (4.6), since Λ(ui, ui+1) � 0 and sinh(s) � s cosh(s) for s � 0,

K1 � κ2
i Λi

(
φ′(ρi) − φ′(ρi+1)

)( 1

wi
− 1

wi+1

)

= κiΛi
(
φ′(ρi) − φ′(ρi+1)

)(√
wi+1

wi
−

√
wi

wi+1

)

= −κiΛi
(
φ′(ρi) − φ′(ρi+1)

)(
eγ(x

2
i+1−x2

i )/4 − e−γ(x
2
i+1−x2

i )/4
)

� −2κiΛih max
j=0,...,n

|∇hφ
′(ρj)| sinh

(
γ

4
(2i+ 1)h2

)

� −2κiΛih max
j=0,...,n

|∇hφ
′(ρj)|

(
γ

4
(2i+ 1)h2

)
cosh

(
γ

4
(2i+ 1)h2

)

� −2κiΛih
2 max
j=0,...,n

|∇hφ
′(ρj)|γ cosh(γh),

where we recall that |∇hφ
′(ρi)| := h−1|φ′(ρi) − φ′(ρi+1)| and we used ih � 1. Then, (4.5)

yields

h−2(ai + bi−1 + bi) � γκiΛi

(
2

γh2
(1 − e−γh

2/2) min
j=0,...,n

φ′(ρj)

− 2 cosh(γh) max
j=0,...,n

|∇hφ
′(ρj)|

)

= λhκiΛi.

This proves that M̃ − λhL(ρ) is positive semi-definite, finishing the proof. �

From numerical analysis and the expected large-time asymptotics of the equations

involved, we expect that mini=0,...,n φ
′(ρi) and maxi=0,...,n |∇hφ

′(ρi)| are independent of h

and bounded only by discrete norms of ρ(0) under suitable assumptions on φ. In Appendix

B, we provide these a priori estimates for the case γ = 0 and very small initial data, as an

indication that they might hold true for the case γ > 0.

In the case γ > 0, since λh(ρ) depends on ρ, we need to be careful with the definition of

displacement convexity. As explained in the previous paragraph, it is expected that λh(ρ)

can be bounded in terms of ρ(0) = ρ0. Thus, if |ρ0| � C for some constant C > 0, λh(ρ)

does not depend on ρ and the standard notion of displacement convexity makes sense.

Another issue arises since the space Xn is not complete. However, it is shown in [8] that

a geodesically λ-convex gradient system on Xn can be extended to the completion Xn,

which is again a geodesically λ-convex gradient system. We refer to [21, Section 3.3] for

a detailed discussion on this issue.

Remark 4 In the case γ = 0, the previous result implies that the entropy

F(ρ) =

n∑
i=0

f(ρi) with f′(s) = logφ(s)
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is convex along solutions of the semi-discrete diffusion equation

∂tρi =
φ(ρi−1) − 2φ(ρi) + φ(ρi+1)

h2
, i = 0, . . . , n,

where ρ−1 = ρ0 and ρn+1 = ρn and φ(s) = sα for 0 < α � 1.

The following remark, based on an idea of [10], shows that the standard entropy for

the diffusion equation is not displacement convex along the solutions.

Remark 5 Erbar and Maas [10] considered the diffusion equation in the form

∂tρ = Δφ(ρ) = div(ρ∇U′(ρ)),

where U satisfies sU′′(s) = φ′(s). The corresponding numerical scheme becomes

∂tρ = −K(ρ)U′(ρ), K(ρ) = G�L(ρ)G,

where U′(ρ) = (U′(ρ0), . . . , U
′(ρn)) and the operator L(ρ) is again defined by L(ρ) =

diag(Λ(ρi, ρi+1)), but with the mean function

Λ(ρi, ρi+1) =
φ(ρi) − φ(ρi+1)

U′(ρi) −U′(ρi+1)
. (4.7)

The associated entropy is F(ρ) =
∑n

i=0U(ρi). We show next that F(ρ) is not displacement

convex in general. Indeed, if ρ is a geodesic curve on Xn with respect to the non-linear

transportation metric W induced by (4.7), then,

d2

dt2
F(ρ) =

1

2
〈M̃(ρ)Gψ,Gψ〉, (4.8)

where M̃ = DL(ρ)[Qφ(ρ)] +GΦ′(ρ)G�L(ρ) + L(ρ)GΦ′(ρ)G�. In fact, M̃ is the tridiagonal

matrix

M̃ =
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d0 c0 0 · · · 0

c0 d1 c1
. . .

...

0 c1
. . . 0

...
. . . dn−2 cn−2

0 · · · 0 cn−2 dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

with the matrix coefficients

di = 2Λ(ρi, ρi+1)
(
φ′(ρi) + φ′(ρi+1)

)
+ ∂1Λ(ρi, ρi+1)

(
φ(ρi−1) − 2φ(ρi) + φ(ρi+1)

)
+ ∂2Λ(ρi, ρi+1)

(
φ(ρi) − 2φ(ρi+1) + φ(ρi+2)

)
, i = 1, . . . , n− 1,

ci = −φ′(ρi+1)
(
Λ(ρi, ρi+1) + Λ(ρi+1, ρi+2)

)
, i = 1, . . . , n− 2.
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If φ(s) = s2, we have Λ(s, t) = (s+ t)/2 and the second principal minor equals

d0d1 − c20 =
1

2
ρ2

0ρ
2
1 +

3

2
ρ2

0ρ
2
2 + 4ρ2

0ρ2ρ3 +
3

2
ρ2

0ρ
2
3 +

1

2
ρ2

0ρ
2
4 + ρ0ρ

3
1 + 3ρ0ρ1ρ

2
2

+ 8ρ0ρ1ρ2ρ3 + 3ρ0ρ1ρ
2
3 + ρ0ρ1ρ

2
4 +

1

4
ρ4

1 + 2ρ2
1ρ2ρ3 +

3

4
ρ2

1ρ
2
3 +

1

4
ρ2

1ρ
2
4

− 4ρ1ρ
3
2 − 2ρ1ρ

2
2ρ3 −

13

4
ρ4

2 − 2ρ3
2ρ3 −

1

4
ρ2

2ρ
2
3 +

1

4
ρ2

2ρ
2
4.

The coefficient −13/4 of the highest power in ρ2 is negative and therefore, the second

principal minor may be negative. According to Sylvester’s criterion, M̃ is not positive semi-

definite. By choosing as initial data a vector of positive densities and the direction ψ such

that the right-hand side of (4.8) is negative at t = 0, we achieve that d2

dt2
F(ρ) < 0 for a

small time interval. Therefore, the entropy fails to be convex at time t = 0.

Remark 6 We point out that showing the convergence of the numerical scheme could be done

by looking at the convergence of the metric structures from the discrete to the continuum set-

ting. A result in this direction was obtained in [10, Theorem 5.1] using Gromov–Haussdorff

convergence arguments. It is an open problem to generalise it to the present setting.
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[15] Jüngel, A. & Yue, W. (2017) Discrete Beckner inequalities via the Bochner–Bakry–Emery

approach for Markov chains. Ann. Appl. Probab. 27, 2238–2269.

[16] Lisini, S., Matthes, D. &, Savar, G. (2012) Cahn-Hilliard and thin film equations with

nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Diff. Eq. 253(2),

814–850.

[17] Lott, J. & Villani, C. (2009) Ricci curvature for metric-measure spaces via optimal transport.

Ann. Math. 169, 903–991.

[18] Maas, J. (2011) Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261,

2250–2292.

[19] Maas, J. & Matthes, D. (2016) Long-time behavior of a finite volume discretization for a

fourth order diffusion equation. Nonlinearity 29, 1992–2023.

[20] McCann, R. (1997) A convexity principle for interacting gases. Adv. Math. 128, 153–179.

[21] Mielke, A. (2013) Geodesic convexity of the relative entropy in reversible Markov chains.

Calc. Var. Partial Diff. Eqs. 48, 1–31.

[22] Otto, F. (2001) The geometry of dissipative evolution equations: The porous medium equation.

Commun. Partial Diff. Eqs. 26, 101–174.

[23] von Renesse, M.-K. & Sturm, K.-Th. (2005) Transport inequalities, gradient estimates, entropy,

and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940.

[24] Sammer, M. & Tetali, P. (2009) Concentration on the discrete torus using transportation.

Combin. Prob. Comput. 18, 835–860.

[25] Villani, C. (2009) Optimal Transport, Old and New, Springer, Berlin.

Appendix A Properties of mean functions

We need some properties of the mean function

Λf(s, t) =
s− t

f′(s) − f′(t)
for s �= t, Λf(s, s) =

1

f′′(s)
, (A 1)

which we recall here. First, we are concerned with the logarithmic mean, i.e., f′(s) = log s,

for which we write simply Λ.

Lemma 7 (Properties of the logarithmic mean) For all s, t > 0, we have

(i) Λ(s, t) = Λ(t, s), ∂1Λ(s, t) = ∂2Λ(t, s),

(ii) ∂1Λ(s, t) =
Λ(s, t)(s− Λ(s, t))

s(s− t)
, s �= t,

(iii) ∂1Λ(s, t) + ∂2Λ(s, t) =
Λ(s, t)2

st
,

(iv) max
r�0

(
Λ(r, t) − ∂1Λ(t, s)r

)
= t∂1Λ(s, t),

(v) Λ(s, t)

(
a

s
+
b

t

)
� 2

√
ab for a, b > 0.
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Proof Properties (i)–(iii) can be easily verified by a calculation. Properties (iv)–(v) are

shown in [21, Appendix A]. �

Lemma 8 Let Λ ∈ C1([0,∞)2) be any function being concave in both variables, and let

u0, u1, u2, u3 � 0. Then,

−Λ(u0, u1) + 2Λ(u1, u2) − Λ(u2, u3)

� ∂1Λ(u1, u2)(−u0 + 2u1 − u2) + ∂2Λ(u1, u2)(−u1 + 2u2 − u3). (A 2)

Proof Since Λ is concave in both variables, we have

Λ(u0, u1) − Λ(u1, u2) � ∂1Λ(u1, u2)(u0 − u1) + ∂2Λ(u1, u2)(u1 − u2),

Λ(u2, u3) − Λ(u1, u2) � ∂1Λ(u1, u2)(u2 − u1) + ∂2Λ(u1, u2)(u3 − u2),

and adding both inequalities gives the conclusion. �

Lemma 9 (Concavity of mean functions) Let Λf : [0,∞)2 → � be given by (A 1) and let

either f(s) = s(log s−1) or f(s) = sα, where 1 < α � 2. Then Λf is concave in both variables.

Proof For f(s) = s(log s − 1), we refer to [9, Section 2]. The statement for f(s) = sα is

proved in [15, Appendix]. �

Appendix B a priori estimates

Lemma 10 (a priori estimates) Let φ be non-decreasing, h > 0 and let ρ = (ρ0, . . . , ρn) ∈
C1([0, T ∗]; �n+1) for some T ∗ > 0 be the solution to

h2∂tρi = φ(ρi−1) − 2φ(ρi) + φ(ρi+1), i = 0, . . . , n, (B 1)

where ρ−1 = ρ0 and ρn+1 = ρn. Then, for all i = 0, . . . , n and t > 0,

min
i=0,...,n

ρi(0) � ρi(t) � max
i=0,...,n

ρi(0), (B 2)

max
i=0,...,n

|∇hφ(ρi(t))| � h−1/2|∇hφ(ρ(0))|2, (B 3)

where ∇hφ(ρi(t)) = h−1(φ(ρi+1(t)) − φ(ρi(t))) and

|∇hφ(ρ(0))|2 :=

( n∑
i=0

h|∇hφ(ρi(0))|2
)1/2

. (B 4)
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Proof We multiply (B 1) by (ρi −M)+ = max{0, ρi −M} and sum over i = 0, . . . , n:

h2

2
∂t

n∑
i=0

(ρi −M)2+

=

n∑
i=0

(
φ(ρi−1) − φ(ρi)

)
(ρi −M)+ −

n∑
i=0

(
φ(ρi) − φ(ρi+1)

)
(ρi −M)+

=

n∑
j=0

(
φ(ρj) − φ(ρj+1)

)
(ρj+1 −M)+ −

n∑
i=0

(
φ(ρi) − φ(ρi+1)

)
(ρi −M)+

= −
n∑
i=0

(
φ(ρi) − φ(ρi+1)

)(
(ρi −M)+ − (ρi+1 −M)+

)
� 0,

since φ is non-decreasing. This shows that

n∑
i=0

(ρi(t) −M)2+ �
n∑
i=0

(ρi(0) −M)2+.

Thus, if M = maxi=0,...,n ρi(0), the upper bound in (B 2) follows. The lower bound is proved

analogously.

For the proof of (B 3), we compute

h2

2
∂t

n−1∑
i=0

(
φ(ρi+1) − φ(ρi)

)2
= h2

n−1∑
i=0

(φ(ρi+1) − φ(ρi)
)(
φ′(ρi+1)∂tρi+1 − φ′(ρi)∂tρi

)

=

n−1∑
i=0

(φ(ρi+1) − φ(ρi)
)
φ′(ρi+1)

(
φ(ρi) − 2φ(ρi+1) + φ(ρi+2)

)

−
n−1∑
i=0

(
φ(ρi+1) − φ(ρi)

)
φ′(ρi)

(
φ(ρi−1) − 2φ(ρi) + φ(ρi+1)

)
.

Making the change of variables i �→ i− 1 in the first sum and rearranging the terms, we

find that

h2

2
∂t

n−1∑
i=0

(
φ(ρi+1) − φ(ρi)

)2
= −

n∑
i=0

φ′(ρi)
(
φ(ρi−1) − 2φ(ρi) + φ(ρi+1)

)2
� 0.

Consequently, for any j = 0, . . . , n− 1 and t > 0,

(
φ(ρj+1(t)) − φ(ρj(t))

)2
�

n−1∑
i=0

(
φ(ρi+1(t)) − φ(ρi(t))

)2

�
n−1∑
i=0

(
φ(ρi+1(0)) − φ(ρi(0))

)2
= h|∇hφ(ρ(0))|22.

Taking the maximum over j = 0, . . . , n− 1 shows (B 3). �
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Corollary 11 Let φ be non-decreasing and invertible, h > 0, and let ρ = (ρ0, . . . , ρn) be the

solution to (B 1). We assume that m := mini=0,...,n ρi(0) > 0 and set M := maxi=0,...,n ρi(0).

Then,

max
i=0,...,n

|∇hφ
′(ρi)| � h−1/2 max

s∈[φ−1(m),φ−1(M)]

∣∣∣∣φ
′′(s)

φ′(s)

∣∣∣∣|∇hφ(ρ(0))|2, (B 5)

where |∇hφ(ρ(0))|2 is defined in (B 4).

Proof First, note that m � ρi(t) � M for all i = 0, . . . , n and t > 0, by Lemma 10. Then

the result follows from the mean value theorem. Indeed, we have for some ξ between ρi+1

and ρi,

h−1|φ′(ρi+1) − φ′(ρi)| =
1

h
|(φ′ ◦ φ−1)(φ(ρi+1)) − (φ′ ◦ φ−1)(φ(ρi))|

=
1

h

∣∣∣∣φ
′′(φ−1(ξ))

φ′(φ−1(ξ))

∣∣∣∣|φ(ρi+1) − φ(ρi)|

�
1

h
max

s∈[φ−1(m),φ−1(M)]

∣∣∣∣φ
′′(s)

φ′(s)

∣∣∣∣ max
j=0,...,n

|φ(ρj+1) − φ(ρj)|,

and we conclude after applying (B 3). �

Example 1 Let φ(s) = sα for α ∈ (0, 1), h > 0 and let ρ = (ρ0, . . . , ρn) be the solution to

(B 1) with m := mini=0,...,n ρi(0) > 0 and M := maxi=0,...,n ρi(0). We claim that

min
i=0,...,n

φ′(ρi) � αMα−1, max
i=0,...,n

|∇hφ
′(ρi)| � (1 − α)m−1/αh−1/2|∇hφ(ρ(0))|2,

where |∇hφ(ρ(0))|2 is defined in (B 4). Indeed, the first statement follows from α < 1 and

(B 2):

min
i=0,...,n

φ′(ρi) = α
(

max
i=0,...,n

ρi

)α−1

� αMα−1,

and the second statement is a consequence of Corollary 11 evaluating the right-hand side of

(B 5).
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