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For k>2, t>2, let W(k,t) denote the least integer m such
that in every partition of m consecutive integers into k sets, at
least one set contains an arithmetic progressionof t+1 terms.

This paper presents a construction which improves the best previously
known lower bounds on W(k,t) for small k and large t.

1. Introduction. For k> 2, t>2, let W(k,t) denote the least
integer m such that in every partition of m consecutive into k sets,
at least one set contains an arithmetic progression of t+1 terms.
According to a well-known theorem of van der Waerden (1925),

W(k, t) < co. It is obvious that

(1) Wik, t) < W(k, t+1)

Using random coding arguments, Erdos and Radb (1952) have shown
that

2) wik, 8 > [2t kM2

By a more refined nonconstructive argument, Schmidt (1962) has
shown that
1/2

(3) Wik, t) > k(t+'1) - C[(t+1)log(t +1)]

where ¢ is an absolute constant. The major result of this paper is

v
THEOREM 4. If k is a prime-power, and if W is an integer
such that

(4) W< tk'-1)/k%-1)

for all d which are proper divisors of t, and if

v t
(5) W < t(k-1)/D

for all D< t which are divisors of kt-i, then

v
(6) Wk, t) > W
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The proof consists of a construction, based on the Galois field
t . s v - .
GF(k'), which partitions W consecutive integers into k sets, none

of which contains any arithmetic progression longer than t. In some
cases this construction can be extended by special arguments, to give

THEOREM 2. If t is prime, W(2,t) > tZt.

The bound of Theorem 2 is stronger than equation (3). If t is
the square of a prime or the product of two large primes whose
difference is small, then Theorem 1 again represents a slight
improvement over equation (3). However, for most values of t, the
bound of Theorem 1 can be improved by decreasing t to the next
smaller prime and invoking equation (1). Although this technique
gives the best known bound for small k and large t, the construction
of L. Moser (1960) still gives the best known bound for small t and
large k, namely,

(7) Wik, t) > tk& O8 K

The bound of Theorem 2 is also disappointing for small values
of t. Theorem 2 shows only that W(2,3) > 24, yet J. Folkman (1967)
has shown that W(2, 3) > 34 by the following construction: For
i=0,1,2,...,33, let ie SO if i =0,11, or a quadratic nonresidue

mod 141. It is believed that Folkman's partition is the best possible,
and that W(2,3) = 35. Similar constructions using quadratic
residues modulo certain larger primes may be used to obtain other
lower bounds on W(2,t), but the general form of these bounds is
unknown for large values of t.

2. Proof of Theorem 4. Let o be a primitive element in

t
GF(k ). Then every nonzero element in GF(kt) is a power of «, and

' t
@ =o ifand only if i = jmodk - 1. Let BBy - -1 B, be asetof

t
elements in GF(k ) which are linearly independent over GF (k). Since

these elements form a basis of GF(kt) over GF(k), there exist
elements Ai j ¢ GF(k) such that

The field element a‘) is the root of some irreducible monic

. t . .
polynomial, f(‘])(x) = Z ffj)xn ;,Where fg) ¢ GF(k). The degree of
n=0

f(‘])(x) is a divisor of t.
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For each ¢ ¢ GF(k), we define the set of integers S, by the

3

rule

Vv
ie S‘g if and only if 0<i< W and A1i =£.

Similarly, for each £ ¢ GF(k), we define the set of nonzero field

elements, T by the rule o ¢ T, for each iec S,.

g’ 3 €
We now claim that no Sg contains any arithmetic progression of

length > t. Let us suppose that for some b # 0,
(8) {a,a+b,a+2b,...,attb} ng
Since 0< a< attb< \7IV, we have

t d
(9) b < (k-1)/(k -1)
and

t

(10) b< (k-1)/D

from equations (4) and (5). We now consider separately the cases
£ #0 and £ = 0.

t
Case 1: ¢ # 0. Since aaf(b)(ub) =0, we have 0= = f(b)aa:i-bn =
n=0 n
t (b) t
nE—Ofn 12_31 Aj, a+bn‘3j° Since [31 , 62, ey ﬁt are linearly independent,

this implies that for every j,

t
(b) -
(11) n2=0 fn j,atbn h
In particular, since Ai,a+bn = ¢ for n=0,1,...,t, we may set
Lo
j =1 in equation (11) and obtain § Z f( ) =0. I £ #0, this implies
n=0 n
t b b b
that 0 = = fi) = f( )(1). Therefore, f( )(x) is divisible by x-1.
n=0

(b

Since f(b)(x) is irreducible, f )(x) = x-1, ab =1, and b = 0 mod

kt-i, contradicting both equations (9) and (10).
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Case 2: £ = 0. A weakened form of equation (8) is

(12) {a+b, a+2b,....a+tb}CSO .

By definition of T equation (12) implies that T,k contains the

0’ 0

a+tb
[°% .

We claim that these t elements

a+b a+2b
elements , o

a+nb +mb t
are distinct, for if o e oza m , then (n-m)b = 0 mod k -1,
contradicting equation (10). Since TO is a subspace of dimension
t-1 over GF(k), any t distinct elements in TO must be linearly

dependent. Therefore, there exist B, ,B_, ..., Bt ¢ GF(k) such that

172
+
= Bnaa bn = 0. This implies that ab is a root of the polynomial
n=1
t n-1
= an . Since the degree of this polynomial is less than t,
n=1

g

b#kd-1)

d
o e GF(k'), where d is a proper divisor of t. Thus, (o =1,

d t
so b(k -1) = 0 mod k-1, contradicting equation (9). We conclude
that equation (12) is possible only if b is larger than the bounds of
equation (9) or equation (10).

Proof of Theorem 2. If p and t are odd primes, then

Fermat's theorem shows that 2(p—1) =1 modp so Zt £ 1 mod p
unless p = 1 mod t. In other words, if D is any divisor of

v
Zt—i, then D>t +1, so Theorem 1 asserts that W(2,t) > W, where

t
W =1t(2 -1). We shall now show that the construction of Theorem 1 can
be extended to include t additional consecutive integers.

The construction of Theorem 1 is valid for any choice of g's,
so we may now choose these basis elements as follows:

(t-1)/2,

(13) [31 = 1, ﬁz = 1+a,. 1+«

"5(t+1)/2

-2 +q—(t—1)/2.

1+a = t4a T, .p = 1

1
Blt+3)/2 Blers)/2

If these B's were linearly dependent, then ¢ would be a root of a
polynomial of degree < t-1, contradicting the assumption that «

t
is a primitive element in GF(2).

With the basis chosen by equation (13), the proof of Theorem 1

\'4
partitions {0,1,2,..., W-1} into disjoint sets SO and Si’ with the

property that
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(14) {0.4,2,...,(t-1)/2) s,

and

v % v
(15) {W-1, W-2,..., W-(t-1)/2} C S,
+_ 1 n
We set S =S, J S, USO where

1
S0

(-1,-2,...,-(t-1)/2}

"
S0

Vv Vv /
{W, W+1, ..., W+(t-1)/2}

+
Any arithmetic progression of length t+1 in SO would have to be

of one of the following types:

1) Including an element in Sb and another element in Sb’. This

is impossible because the difference between any two such numbers is
not divisible by t.

2) Including two or more elements in S'O [ox Sb’] This is

blocked by equation (14) (or equation (15)).

3) Including one element in Sb (or Sb’) and an arithmetic

progression of length t is SO. According to the proof of Theorem 1,

!

0
which b > 2t - 1. The total span of the extension of such a progression

the only arithmetic progressions of length t in S! are those in

would be > t(Zt—i), contradicting equation (15) (or equation (14)).

Therefore, S; and S1 partition the integers from -(t-1)/2 to

v
W + (t-1)/2 into two sets, neither of which contains any arithmetic
progression longer than t. This partition can be translated to a

partition of the integers from 0 to t2" - 1 (or from 1 to tZt) by
adding (t-1)/2 (or (t+1)/2) to each element in Sb" and Si.

The construction of Theorem 1 may also be extended slightly for
other values of t and k, but the improvement is always relatively
small.

~
3. Example. Let k=2, t=3, W=21. Take o as a root of
3 3 -
x +x+1; {31=1, B2=1+a=a/; [33=1+a1=a2. For i=1,2,3;

j=0,1,2,...,20, A, . is given by
i
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1100104111001011100401
010111004011100101110
001014100101110010111

so S, = {0,1,4,6,7,8,11,13,14,15,18,20} ; S, ={2,3,5,9,10, 12, 16,
17,19} ; sg: s, U {-1,21,22} .
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