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We study representations of o-orders O, that is, of o-regular O-algebras, in 
the case that o is a Dedekind domain. Our main concern is with those O-
modules, called ^-representation modules, which are regular as o-modules. For 
any O-module M we denote by D(M) the ideal consisting of the elements 
x G o such that x • Ext1 (M, N) = 0 for all O-modules N, where Ext = E x t / ^ \ 

is the relative functor of Hochschild (5). To compute D(M) we need the small 
amount of homological algebra presented in § 1. In § 2 we show that the 
O-representation modules with rational hulls isomorphic to direct sums of 
right ideal components of the rational hull A of O, called principal O-modules, 
are characterized by the property that D(M) j£ 0. The (O, o)-projective 
O-modules are those with D(M) = o. We observe that D(M) divides the 
ideal 1(D) of (2) for every M, and give another proof of the fact that 1(D) 9e 0 
if and only if A is separable. Up to this point, o can be taken to be an arbitrary 
integral domain. 

The results of the remaining sections are largely generalizations of Maranda's 
results for groups (6, 7). In §§ 3-5 ew assume that o is a local domain with 
prime ideal p, and define the depth of an O-module M to be 5 or oo according 
as D(M) = ps or 0. In § 3 we generalize Maranda's Theorem 2 of (6) by 
proving that an O-representation module M of depth s is isomorphic with 
an O-representation module N if and only if M/$S+1M and N/ps+1N are 
isomorphic. In § 4 it is proved, among other things, that for complete 0, an 
O-representation module M has depth 5 if and only if M/$s+lM has depth 5. 
This implies, for example, that M is (O, o)-projective if and only if M/$M 
is (O/pO, o/p)-projective, a slight improvement of a result of Reiner (8), 
since the "only if" part does not require a special hypothesis. In § 5, o is 
assumed complete, and the (O, o)-projective O-representation modules are 
characterized as being isomorphic with direct sums of indecomposable right 
ideal components of O. A generalization of Maranda's Theorem 4 of (7) 
states that if / (D/9Î) = o, two (O, o)-projective O-representation modules 
are isomorphic if and only if their rational hulls are isomorphic. Here 9Î is 
the intersection of O with the radical of A. 

In the final § 6 we apply the local results to the case of a general Dedekind 
domain o, observing that for a principal O-module M, D(M) = IIpps, where 
the product is over all primes p of o, and s is the depth of M in the p-adic 
completion of o. We denote by SM a complete set of non-isomorphic O-repre-
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•sentation modules N with rational hulls isomorphic to t h a t of M, and such 
t h a t D(N) = D(M). Although simple examples show t h a t there m a y be 
infinitely m a n y non-isomorphic D-representat ion modules with rat ional hulls 
isomorphic to a given indecomposable r ight ideal component of A, i t seems 
possible t h a t the cardinal r(M) of SM, which we call the class number of M, 
is finite if the class number h of o is finite. As was pointed out in (2), M a r a n d a ' s 
method for the group case (7) can be extended to prove this if A is separable 
and the rat ional hull of M is absolutely irreducible. Two members of SM are 
placed in the same genus if they are isomorphic in the p-adic completion of 
o for all primes p of o. We denote the number of genera in SM by g(M), and 
the number of classes in SM under isomorphism in the p-adic completion of 
o by r$(M). T h e final result of this paper is t h a t g{M) < I lr^(i lf) , the produc t 
extending over the prime divisors of D(M) C\ / ( D / 3 Î ) , with the consequence 
t h a t g{M) is finite when o has finite residue class rings. 

1. T h e idea l s D(M) a n d C(M). W e need a small amoun t of homological 
algebra. For the basic notat ions and definitions of this subject we refer the 
reader to (1 and 5) . Throughou t this paper, rings will be assumed to have 
ident i ty elements, ident i ty elements of rings and subrings will be assumed to 
coincide, and modules will be r ight un i ta ry unless otherwise specified. 

Let Q be a K-subalgebra of a .K-algebra P , where K is a commuta t ive ring 
with ident i ty element. For a P-module M, we define ideals D(M) = D(PQ) (M) 
and C(M) = C{P,Q){M) by 

D{M) = {x e Klx-Ext^M, N) = 0 for all P-modules N} 

and 

C(M) = {x e K\x-Extl(N, M) = 0 for all P-modules X}, 

where Ex t = Ext(P;Q) is the relative functor introduced by Hochschild (5) . 
According to (5), M is (P , ©-project ive (injective) if and only if E x t ^ M , N) 
= 0 (Ext 1 (2V, M) = 0) for all P-modules N, hence 

L E M M A 1. D(M) = K, (C(M) = K) if and only if M is, (P , Q) -projective 
(injective). 

T h e result we use for comput ing D(M) in the applications to orders is the 
following. 

L E M M A 2. An element x G K belongs to D(M) if and only if there exists a 
P-Jwmomorphism ft : M —» M® QP such that fir = x • IM, where r : M® QP —> M 
is the natural homomorphism, and IM is the identity map of M. 

Before proving this we recall t h a t Ex t 1 (M, N) can be computed as the first 
cohomology group of the i^-complex H o m P ( X , N) where X is the left P -
complex determined by the s tandard (P , ©-projec t ive resolution of M. T h i s 
resolution is the (P , Q)-exact sequence 
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obtained by composing the na tura l (P , Q) -exact sequences 

0^K1%M®QP^M^0,0^K2
v^K1®QPT^K1-+0.... 

In particular, xi = 2̂̂ 72, so xi^i = 0, and hence r\ is a 1-cocycle for 
H o m p l I , ^ ) . 

We shall now prove the following lemma, and then derive Lemma 2 as a 
Corollary. 

LEMMA 3. 

D{M) = {x e Klx-ExViM, KJ = 0} 

= {x G K\x-Ti is a coboundary}. 

Proof. For a > 0, Ka ® Q P is (P , ©-project ive, hence there corresponds 
to each g Ç H o m P ( i £ a 0 QP, Ki) an element gf Ç HomP(Ka 0 Q P , i£i 0 QP) 
such t h a t g ' n = g. If g'ri = 0, then Im gf C Ker r i = Im%2. Hence for a 
1-cocycle/ of HomP( .X, TV), N a P-module, we have g'/ = 0. Therefore mapping 
g onto g'f defines a map M/,« • HomP( i£« ® QP, K^ —> HomP(Ka 0 Q P , i\7)-
These maps are readily seen to define a i£-map H o m P ( X , i £ i ) —> H o m P ( X , N). 
Since nri = 0, /*/,<* (r/) = / . Since / can be taken as an arb i t rary 1-cocycle 
of H o m P ( X , iV), the lemma follows. 

Proof of Lemma 2. For P-modules A and 5 , we shall denote by * the na tura l 
^ - i somorphism Horn Q ( / I , B) ~ Hom P ( ,4 ®QP,B). 

Let 

0 - > i l f - ^ M ® < ? P - ^ . K i - - » ( ) 

be a Q-homotopy for the sequence 

O-*K1-XM®QP-^M-*O, 

K being the natural homomorphism. 
If now x G D(M), there exists by Lemma 3 an element g Ç H o m P ( l f , K^ 

such t h a t x - r = xog*. Then , since K* is the identi ty map of M ®QP, and 

to)* = £**7> 

0 = [x-r - Xog*h = xrrj - Xog*V = Xo[x/c* - g*r}] = XO[(X-K) - to)]*. 

I t follows t ha t 13 = x-K — grj is an element of HomP(ÂT, M ®QP). Further,, 
/5r = [(X-KT) — gvr] = X-IM. 

On the other hand, suppose such a 0 exists. Let g = [X-K — /3]7r G 
Horn Q (if, J^i). Since [X-K — /3]T = 0, grj = X-K — f3. Fur ther , xo£* = Xor/3 = 0. 
Hence 

Xog*?7 = Xoto)* = XO[X-K* - /3*] = (x-r)ri, 

so t ha t xog* = x-T and x d D(M) by Lemma 3. 
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The result corresponding to Lemma 2 for C(M) is 

LEMMA 2'. An element x G K belongs to C(M) if and only if there exists a 
P-homomorphism y £ HomP(HomQ(P, M), M) such that £y = x-IMj where 
£ : M —>HomQ(P, M) is the natural homomorphism. 

This can be proved in the same way as Lemma 2 by first proving the result 
corresponding to Lemma 3, using the standard (P, Q)-injective resolution of 
M in place of the projective one. In the following when we state a property of 
C(M) we shall omit the proof if it is similar to a proof of a corresponding 
property of D(M). 

To tie in the present work with (2) we will need the following remarks. Let 
R = P ®KP', and let 5 be the natural image in R. of Q 0 ^ ? ' , where the ' 
denotes reciprocal ring. For an P-module W, Hochschild (5) defines Hl(P, Q;W) 
to be Ext(B,S)(P, W), P being considered naturally as an P-module. If 
K = Q, Hl(P, <2; W) = Hl(P, W), the right-hand group being taken in the 
sense of cohomology of i^-algebras (1 ). If M and N are P-modules, Hom x (M, N) 
is given the structure of an P-module, and it is proved that there exists a 
natural isomorphism 

IP(P, <2; H o m ^ M , N)) - E x t ^ p ^ A f , N) 

which is readily seen to be a i£-isomorphism (5). 
We define P>(P, Q) = {x £ K\x-Hl(P, Q; W) = 0 for all P-modules W\. In 

other words, D(P, Q) = D(R7s) (P). As a consequence of the above isomorphism 
we have 

LEMMA 4. D(P, Q) C D(M) C\ C(M). for any P-module M. 

We remark finally that it is natural to define 

D\M) = {x e K\x-ExV(M, N) = 0 for all P-modules N}, 

and to define C\M) and Di(PJ ©similarly (i = 1, 2, . . . ,). Then the reduction 
theorem (5) gives D1(M) Ç D2(M) C . . . , and similar inclusions for the 
others. Moreover, Lemmas 3 and 4 hold for arbitrary D \ not just for D = Dl. 
The applications in this paper are restricted to the case i = 1. 

Results equivalent to Lemmas 1-4 were established in (3), but in a form 
not so convenient for our present purposes as the above. 

2. Orders and principal modules. In this section, o will denote an 
integral domain, and © will denote an o-order, that is, an o-algebra which is 
regular as an o-module. Here an o-module is called regular if it is finitely 
generated and torsion free. It will be convenient to refer to an o-regular 
©-module as an ^-representation module. We shall in particular determine 
the ©-representation modules M such that D(M) ^ 0 or C(M) ^ 0, where 

D(M) = Z> ( 0 i o)(M) and C(M) = C{^ Q)(ikf) 

as defined in § 1. 
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First we introduce some notations useful here and in the later sections. If 
L is an integral domain containing o as subdomain, we shall refer to the 
L-order 

O L = O 0 L 
o 

as the L-hull of D. The L-hull of an O-module M is denned to be the Dé­
module 

M ®^£)z , = M (g) L. 
2J 0 

If k is the quotient field of o, &-hulls are referred to as rational hulls. Two 
D-modules M and N will be called rationally equivalent if their rational hulls 
are isomorphic. We shall also say that M is rationally equivalent to an A-rnodule 
V, A = £)/t, if the rational hull of M is isomorphic to V. 

The L-hull ML of an ©-representation module M is an D 2,-representation 
module, and, moreover, the natural homomorphisms M —> ML and 

M ® D - * [ M ® 0]L = ML®L£)L 

are O-monomorphisms. Hence the following lemma is an almost obvious con­
sequence of Lemma 2. 

LEMMA 5. If Lis a ring of quotients of o and M is an ^-representation module, 
then 

Similarly 

kl) ( I t )=W(O,0) ( I )' 
An O-representation module M will be called a principal £)-module if it is 

rationally equivalent to a direct sum of right ideal components of the rational 
hull A of £). On the other hand, M will be called coprincipal if it is rationally 
equivalent to a direct sum of A -module components of the A -module 
Horn* (4 ,* ) . 

THEOREM 1. An ^-representation module M is principal {coprincipal) if and 
only if D(M) ^ 0 (C(M) 9* 0). 

Proof. According to Lemma 5, D(M) 9e 0 is equivalent to DUjk)(Mk) = k, 
which in turn is equivalent by Lemma 1 to the (A, &)-projectiveness of Mk. 
But {A, &)-projectiveness coincides with ^4-projectiveness since k is a field, 
and it is well known that the A -projective modules are isomorphic with 
direct sums of right ideal components of A. 

COROLLARY 1. D{M)^ 0 (C(M) 9e 0) for every ^-representation module M 
if and only if the rational hull A of O is semi-simple. 
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Proof. Every A -representation module is the rational hull of some ©-repre­
sentation module. Hence by Theorem 1, D{M)^ 0 for every D-representation 
module M if and only if every A -representation module is isomorphic with a 
direct sum of right ideal components of A. The latter condition is equivalent 
to the semi-simplicity of A. 

The ideal / (D) defined in (2) coincides with the ideal D(£), o) as we see 
from the last part of § 1. The following theorem was proved more directly 
in (2). 

THEOREM 2. A necessary and sufficient condition for D to have separable 
rational hull is that / (D) be non-zero. 

Proof. By a theorem of Hochschild, A = D/< is separable if and only if 
Hl(A, W) = 0 for all A ®k ^'-modules W. But H^A, W) = Hl(A, k; W), 
so A is separable if and only if 1 Ç D(A, k). Using Lemma 2 we readily obtain 
that D(A,k) = k-D(£),o) = Jfe•/(£)). Hence 1 Ç D(A,k) if and only if 
/ (D) * 0. 

According to Lemma 4, / (D) Q D(M) for every D-module M. Hence it is 
a consequence of Theorem 2 that for separable A, C\ D{M) ^ 0, wThere the 
intersection extends over all D-modules M (o regular or not). The result of 
(4) implies the existence of non-separable but semi-simple A such that for 
every A -representation module V, C\D(M) 9^0, where the intersection 
extends over all D-representation modules rationally equivalent to V. In 
fact, the Theorem of (4) implies the existence of such A for which every 
A -representation module has finite class number. It is of interest that Pi D{M) 
may be zero when the intersection extends over the D-representation modules 
M rationally equivalent to a given right ideal component of A. For example, 
if D is taken to be the Z-order of all matrices 

x - (' y) 

with x, y y and z in the ring Z of rational integers, the D-representation module 
Mn corresponding to the matrix representation mapping X onto 

(x ny\ 

for fixed rational integer n has D(Mn) = nZ, as is readily seen using Lemma 2. 
Hence C\ D(Mn) = 0. Further, every Mn (n = 1, 2, . . . ,) is rationally equiva­
lent to the same indecomposable right ideal component of the rational hull A 
of D. Of course A is not semi-simple. 

The following additional remarks may be in order here. We noted at the 
end of § 1 that the ideal / (D) = D(£), o) is merely the first member of an 
ascending chain of ideals of o: / (D) = J1 (CO Q /2(D) Ç . . . , /"(D) = 
Dn(£), o). If o satisfies the ascending chain condition, there is a first n such 
that In(D) = /W+1(D) = . . . , and it may be of interest to ask what is the 
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significance of this n for separable A. It follows from a result of (3) that 
n = 1 for a group ring O. Similar remarks apply to D(M) and C(M). It may 
also be of interest to look in the set T of O-representation modules rationally 
equivalent to a given right ideal component of A for those such that D(M) 
is maximal for M £ T. When can we find D(M) = o, that is, M (O, o)-pro­
jective? In this regard see Theorem 11 following. 

3. The local case. In this and the next two sections we assume that 
o is a local domain, that is, that 0 is a principal ideal domain in which the 
non-units constitute the unique prime ideal p = wo. As always, O denotes 
an o-order. 

For an integer s > 0, o(s) will denote 0/71-*-o, and 0(*} will denote the 
o(s)-algebra £)/ws-£). It is the main purpose of this and the next section to 
study relations between the representation theory of O, 0 ( s ) , and the rational 
hull of O The results are largely generalizations of results obtained by 
Maranda (6; 7) for the group case, and extensions of some results of Reiner 
(8) also arise. 

The o-module M/irs-M will be denoted by M(s\ and can be considered as 
an o(s)-module. If M is an O-module, so is M(s}, and M(s) may be considered 
as an 0 (s)-module. F o r / £ Homf (M, N),f(s) will denote1 the natural image 
in Homf (ilf(s), 2V(S)); if / is an D-homomorphism, so is / ( s ) . We shall say 
that O-modules M and N are isomorphic modulo ps if M(s) and A7(s) are iso­
morphic as D-modules or, what is the same thing, as 0(s)-modules. 

As in § 1, we may use the standard (O, 0)-projective resolution of an 
O-module M to compute Ext^Af, N). Taking into account the natural O-
isomorphisms 

[ I 0 o S ] W - M(s) 0 O O - M{S) ®0w£(s)> 

we see that if 

. . . H>Kx ® 0 O ~^> M 0O O -» 0 

is the standard (O, 0)-projective resolution of M, then 

(s) (s) 

. . . —'-> [ i^ i® 0 O] ( s ) —°-> [M(g) 0 O] ( s ) -^0 

may be identified with the standard (O, 0)-projective resolution of M(s) 

considered as an O-module, or with the standard (0 ( s ) , o(s))-projective 
resolution of M(s) considered as an 0 (s)-module. We shall denote by X(S) the 
left O-complex determined by this resolution, and by X the left O-complex 
determined by the standard (O, 0)-projective resolution of M. Then 

lA dagger on the homomorphism (Homf) indicates that the homomorphism is taken with 
respect to the domain 0. 
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E x t 1 ^ o){MM,NU)) 

is the 1-dimensional cohomology group of H o m J (X(s\ N(s)), and 

is the 1-dimensional cohomology group of 

Homo(s)(X
u\NU)), 

which is merely Homf (X ( s ) , N(s)) considered as an o(s)-complex.2 T h u s 

is simply 

Extort ^ ( ^ ' U ' * ' ) 

E r t l ( O , 0 ) ( M < , U W ) 

considered as an o ( s )-module. I t follows t h a t 

2 J ( O w , o w ) ( M ( , ) ) = [Z ,(O fo) ( J l f ( , ) ) + p( , ) ] / , ) ( ,> ' 

a fact t h a t is also readily seen from L e m m a 2. 
We now prove the following generalization of Maran d a ' s Theorem 2 of (6) . 

T H E O R E M 3. Let M and N be ^-representation modules, and assume that 

7 r s - E x t ' AM,N) = 0. 
(£), o) 

Then M and N are isomorphic if and only if they are isomorphic modulo p s + 1 . 

Proof. An D-isomorphism M{s+1) ~ N(s+1) is induced by an o-isomorphism 
(3 : M ~ N, for M and N have free o-module bases since o is a principal 
ideal domain. Then for u £ M, co Ç £), p(uœ) - P(u)œ Ç 7rs+1-iV. Le t 

*: Horn (M, N) « H o r n - ( M ® D, N) 

be the na tura l isomorphism, then this ident i ty means t h a t xo,#* = 0 (mod (7rs+1)). 
Hence there exists 

/ e Horn ( M ® O, A0 
o o 

such t h a t 

X o (3*= i r s + 1 - / . 

Since x 0 and ft* are D-homomorphisms, so is / . And 

0 = X*Xo/3* = i r * V , 

2A double dagger on the homomorphism (HomJ) indicates that the homomorphism is taken 
with respect to the order O . 
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so xif = 0 and / is a 1-cocycle. The assumption of the theorem therefore 
implies t h a t wsf is a coboundary, and hence t ha t there exists g Ç Homf (M, N) 
such t ha t 7Ts-f = xog*. Let a = p — wg, then xoa* = xo£* — TXog* = 

ws+i mj _ T çTs^ _ Q^ w m * c h implies t h a t a is an element of Homf (M, N). Since /3 
induces an isomorphism M(s+1) = iV ( ,+1), de t (3 i p. But det a = det 0 (mod p), 
so det a $ p. Hence det a: is a uni t in o and a : ikT ~ N. 

Since the converse is immediate, the proof of Theorem 3 is complete. 

We now define the depth (codepth) of an D-module M to be s if D(M) = ps 

(C(U) = ps) and oo if D(M) = 0 (C(Af) = 0). T h u s by Theorem 1, the 
principal O-modules are the D-representation modules of finite depth (co-
depth) . 

An immediate consequence of this definition of depth and Theorem 3 is 

COROLLARY 1. A principal (coprincipal) £)-module of depth s (codepth s) is 
isomorphic with an &-representation module N if and only if M and N are 
isomorphic modulo ps+1. 

Simple examples of the sort given a t the end of § 2 show t h a t the number 
of non-isomorphic ©-representation modules rationally equivalent to a given 
SX-représentation module V may be infinite, even if V is an indecomposable 
right ideal component of Ok and o has finite residue class rings. But we do 
have 

COROLLARY 2. If o ( s+1) is finite, the number of non-isomorphic O-representa-
tion modules of depth (codepth) s and given rank is finite. 

Proof. Corollary 1 implies t ha t the isomorphism class of M is determined 
by the isomorphism class of M(s+1). Bu t 0 ( s + 1 ) and M(s+1) have only finitely 
many elements as finitely generated modules over the finite ring o ( s + 1 ) . 

If the rational hull of O is separable, I(O) = D(0, o) is non-zero b y 
Theorem 2, hence 1(0) — pl. We call t the depth of O. By Lemma 4, 
1(0) C D(M) for every D-module M, hence 0 < depth M < t for every 
D-module M. Hence in this case Corollary 2 implies 

COROLLARY 3. If O has separable rational hull and o has finite residue class 
rings, then the number of non-isomorphic O-representation modules of given rank 
is finite. 

We now show t h a t depth is preserved under the transition to the complete 
case. Let k* denote the completion of the quotient field k of o with respect 
to the valuation determined by p. Let o* be the valuation ring of &*, and let 
p* = TO* be the valuation ideal. We denote by D* and M* the o*- hulls of 
O and M respectively. 

T H E O R E M 4. For an O-representation module M, 

V») ( I ) = V,o.)(tfi)no* 
and 
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C ( 0 , » ) ( M ) = C ( 0 M . ) ( l ! ) n f e 

Proof. W e use L e m m a 2, according to which x f o belongs to D(M) if and 
only if there exists an O^-homomorphism 

/ 3 : M * - > [ A f ® o O ] * 

such t ha t 

(i) f3rk = X'l, where 

r , : [ M ® £>]*-> Af* 

is induced by the natura l homomorphism 

T \M ® © -> M, 
o 

and / is the ident i ty map of Mk, and 

(ii) /3(Af) Ç M ®o O, where Jkf and M®0O are identified with their 
na tura l images in Mk and [M ®o Ol/t respectively. 

Since 0 is a principal ideal domain, there exist free o-module bases U\, . . . , um 

and vi, . . . , vn of Af and TkT ®o © respectively. If we write (3(ui) = ^ f l j ^ j , 
then for given x ^ o, (i) may be expressed as a system of linear equat ions 
in the unknowns aih with coefficients in o. T h e condition t h a t x be in D(M*) 
means t h a t the system has a solution in o*. B u t a solution exists in o* if and 
only if one exists in o, t h a t is, if and only if x Ç D(M), proving Theorem 4. 

According to the definition of depth given above, Theorem 4 can be re­
stated as 

COROLLARY 1. The depth of an ^-representation module M is equal to the 
depth of its o*-hull M*. 

An impor tan t consequence for our purposes is the following extension of 
Corollary 1 to Theorem 1 of Maranda ' s paper (7). 

COROLLARY 2. A principal (coprincipal) £)-module M is isomorphic with an 
^-representation module N if and only if M* and N* are isomorphic. 

Proof. Suppose M has depth s, then D(M*) = 7rso* by Corollary 1. Now 

0(*+i) ^ o* (s+1), and, as o ( s + 1 )-algebras, £) ( s + 1 ) « D* ( s + 1 ) . Fur ther , as £)(5+i>-
modules, M(s+1) ~ M* ( s + 1 ) . T h e result now follows by Corollary 1 to Theorem 
3. 

We remark t h a t a similar application of Lemma 2 proves t h a t / ( O ) = 
I (D*) (^ o, and hence t h a t the depth of £) is equal to t h a t of £)*. 

4. T h e c o m p l e t e case . W e retain the nota t ion of § 3, and assume in 
addit ion t h a t k is complete, t h a t is, t h a t k = k*. 
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We need the following remark, which depends only on the fact t h a t o is 
a principal ideal domain. 

LEMMA 6. Given ^-representation modules M and N, and s > 0, every O-
homomorphism 

[Af® £)] (S)-+7V (S) 

is induced by an D-homomorphism M ® Q O —> N. 

Proof. Denote by * the natura l isomorphism 

Horn (J7, V) « Hom^(£7 ® £), V) 
o D o 

for any two D-modules U and V. If 

g eHomo([M®0£>]U),N{s)), 

then g = h* for some h Ç Homf (ikf(s), N(s)). Since o is a principal ideal 
domain, there exists / £ Homf (Af, iV) inducing h. Bu t then 

/ * € H o m 0 ( A f ® D, iV) 

induces //* = g. Here we have used the natural identification of 

Af ( s )® £> with [AT® D ] ( s ) . 

A homological extension of a result of Reiner (8) is the following. 

T H E O R E M 5. If M and N are ^-representation modules, then 

TT^-Ext1 (Af<8+1\ W+») = 0 

implies T^Ext^M, N) = 0. 

Proof. Suppose t ha t 7r s -Ext 1 (M ( s + 1 ) , A7(s+1)) = 0, and let X be the left 
©-complex determined by the s tandard (D, o)-projective resolution of M. If 
/ : Ki ®o O —> N is a 1-cocycle for H o m J ( X , N), then /( s + 1) is a 1-cocycle 
for H o m î ( X ( s + 1 \ N^s+1)). (The notat ions X and X<s+1) refer to the left O-
complexes obtained from the s tandard (O, o)-projective resolutions of M and 
Af(s+1) respectively, cf. the third paragraph of § 3.) Hence 7rs-/ (s+1) is a co-
boundary , which means, using Lemma 6, t h a t there exists an D-homomorphism 
go : M ® 0 O - » N such t h a t 

*"*•/ = Xogo (mod (TTS + 1)) , 

t h a t is, there exists an o-homomorphism / i : i£i ®o £) —> N such t h a t 

* ' • / = X0g0 + ^ + 1 ' / l . 

Since / and xogo are O-homomorphisms, so is fi. Since / is a cocycle, 

7 T S + 1 ' X l / l = 7TS 'Xljf - XlXogO = 0 , 
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s o / i is a cocycle. Hence, repetit ion of the above produces an D-homomorphism 

gi : Af (g>o D —* iV and an o-homomorphism f2 : Ki ®o O —> N such t h a t 

**'fi = Xogi + 7rs+1-/2. Then 

KS'f = Xo(gO + TT'gl) + 7TS+2-/, 

and again we see t h a t / 2 is a cocycle. Cont inuing in this way we obtain D-
homomorphisms 

gi'.K^^-^Nii^ 0 , 1 , . . . , ) 

such t ha t 

*''f = Xo(go + T-gi + . . . + ir'-gi) (mod p'+'+O-

Since & is complete, we may define g = go + TT-gi + . . • + ir1-gt -\- . . . , and 
conclude t h a t 7rs-/ = xog is a coboundary. Hence ^ - E x t ^ A f , .V) = 0, proving 
Theorem 5. 

COROLLARY I. An ^-representation module M has depth (codepth) s if and 
only if M(s+1) has depth (codepth) s (as an O-module). 

Proof. By Theorem 5, if M(s+1) has dep th s, M has dep th < 5. Bu t it follows 
a t once from Lemma 2 and the existence of the natura l isomorphism 

[M <g> D ] ( s ) - M(s) ® £> 
0 0 

t h a t the depth of M is < the depth of M{t) for any t. 
Since by Lemma 1 the D-modules of dep th 0 (codepth 0) are precisely 

the (D, o)-projective (injective) ones, the case s = 0 of Corollary 1 gives 

COROLLARY 2. An ^-representation module M is (£), 0)-projective (injective) 
if and only if M/ir-M is (£), 0)-projective (injective). 

This is a slight improvement of a result of Reiner (8) since the "only if" 
pa r t does not require special hypotheses. Note the (£), o)-projectiveness and 
( D / T T - O , o/7r-o)-projectiveness coincide for an £5/7r • D-module. 

We observe, wi thout including the details, t h a t essentially the same argu­
ment used to prove Theorem 5 and Corollary 1 proves 

T H E O R E M 6. £) has depth t if and only if D(^t+l\ 0) = p'(£) ( H _ 1 ) being 
considered as an o-algebra). 

T h e case t = 0, combined with Hochschild 's characterizat ion of separable 
algebras gives the 

COROLLARY: £) has depth 0 if and only if D/V • O is a separable O/T • o-algebra. 

For application in § 5 we need 

T H E O R E M 7 (Brauer) . If H is an (O, o)-projective (injective) ^-representa­
tion module, and if U is an £)-module direct summand of H/wH, then there 
exists an £)-module direct summand M of H such that M/wM ~ U. 
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We will derive this theorem here as a corollary to an extension of a var ian t 
of Maranda ' s Theorem 3 of (6). 

If M is a primitive o-submodule of an O-representation module H ( tha t 
is, an o-module direct summand) , we may identify M{s) = M/ir-M with the 
o-submodule (M + TTS-H)/TTS-H of H(s\ and then we may identify [H/MYS) 

with HW/M<8\ Then ikf(s) is an O-submodule of H^ if and only if MO Ç 
M + irs-H, and every o-primitive O-submodule of H(s) is obtained in this way 
from a primitive o-submodule of H. 

T H E O R E M 8. Let M be a primitive o-submodule of an ^-representation module 
H, such that MO C M + TTS+1-H and M^s+l) has depth s as an O-module. 
Then there exists an O-submodule M* of H of depth s, and primitive as an 
o-submodule, such that M"*(s+1) « M{s+l\ 

Proof. We construct a sequence M0, Mu . . . , Mi} . . . , of primitive o-sub-
modules of H such t h a t MtO Ç Mt + TSi-H, s0 = s + 1, si+i = st + 1, and 
Mi+i(s+1) ~ Mt

{s+l\ The existence of an o-primitive O-submodule M* of H 
with ikf*(s-H) = M^s+l) then follows by the completeness of k. Since Af(s+1) 

has depth s, Corollary 1 to Theorem 5 implies t ha t M* also has depth s. 
T h e Mt are constructed inductively. Let Mo = M, and assume t h a t Mt has 

been constructed. Since Mf is primitive, there exists an o-submodule N of 
H such t ha t H = Mt® N. Then 

MtO Ç M { + TSi-H = Mt® T8*-N. 

Thus , for u Ç Mi and co G O, there exist unique elements a(u, co) Ç M* and 
r(w, co) £ 7^ such t h a t 

uo) = o-(w, co) + irSi-T(u, co). 

We denote by J" the O ®o O'-module 

Uomo(M\s+1\ [H/Mi]is+l)), 

and by r + the element of Homf (O, T) such t ha t r+(co){û} is the residue class 
modulo 7rs+1'[H/Mi] of Mt + T(U, CO) £ H/Mu where i2 is the residue class 
modulo irs+1'Mi of u £ M*. From the associative law w(£rç) = (w£)rç we get 
the identi ty 

T ( « , £77) = r(cr(w, £), 7?) + T ( M , £)Î?, 

which means t h a t r + is a 1-cocycle for the complex with homogeneous com­
ponents Cn(0, 0; T) described in (6, § 3) . Since the 1-dimensional cohomology 
group of this complex is Ext1 (Mi<s+1\ [i?/Af,]<'+1)), and since M / ' + 1 ) « Af<*+1> 
has depth 6% it follows t h a t 7TS-T+ is a coboundary. Hence there exists 
g e Hom0(H, N) such t h a t for u G Aff, co G O, 

r(w, co) = g(wco) — g(w)co + irs+1-jj,(u, co), 

with /z(w, co) Ç i7. Let M i + i = \u + 7rSl'~-s-gO)|w G Mi}, then Mi+1 is a 
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primitive o-submodule of H since H = Mi+i®N. Since 2s i — s>Sj + l = si+i, 
we have for w Ç O and w G ikT̂  that 

[u + 7TS*'~S-g(w)]cO = UO) + 7TS i _ Sg(^)cO 

= o-(w, co) + irSi-T(u, co) + wSi~s{g(uœ) — TS-T(U, co) 

+ 7TS+1-IJL(U, CO) 

= (T(« , CO) + 7TS*'-S-g(>0, Co)) + 7T2 S i-S-g(r(w, CO)) 

+ TT^+VO, CO) Ç M , + 1 + T°i+1H. 

Hence M m O Ç Mi+1 + irSi+1-H. 
Now we define an o-module automorphism (/> of H by mapping w Ç Af ̂  

onto w + 7r**-sg(w), and z> G AT onto v, so t h a t in part icular <f>(Ml) = ikfi+1. 
For u G M"i and co Ç O. 

<t>(uu>) = <j>(<r(u, co) + TrSi-T(U, CO)) = o-(w, co) + wSi~sg(a(u, co)) + TrSi-r(u, co) 

= o-(w, co) + 7rSt"~s-g(o-(w, co)) = <t>(u)co (mod (7rs+1)). 

We may conclude t ha t ikT i+i(s+1) ~ M / s + 1 ) , which means t h a t the induct ive 
construction of the Mf is complete. 

We can deduce Theorem 7 from Theorem 8 and Corollary 2 to Theorem 5 
as follows: Since H is (£), o)-projective, so is H/ir-Hby Corollary 2 to Theorem 
5, hence so is the O-module direct summand U. Theorem 8 (with s = 0) 
therefore implies the existence of an (©, o)-projective O-submodule M such 
t h a t M/TTM ~ U. 

Another application of Theorem 8 is the following 

COROLLARY. Let U be an £)(s+l)-module, that is, an O-module such that 
7rs+1 • U = 0. If U has depth (codepth) s as an O-module, and is finitely generated 
and projective as an o ( s+1)-module, there exists an ^-representation module M* 
of depth (codepth) s such that M* ( s + 1 ) =* U. 

Proof. Since U is a projective and finitely generated 0 ( s + 1 )-module, it is 
an o ( s + 1 )-module direct summand of a finitely generated free o ( s + 1 )-module 
V. Now there exists a regular o-module TV such t h a t N{s+1) = V. Moreover, 
there exists an ©-isomorphism Homf (O, V) ~ [Horn (£), iV)] ( s + 1 ) , and an 
O-monomorphism U—>Hom| [£), V), namely, the composite U —>Homf (£), U) 
—» Homf (£), V). I t follows t h a t there exists a primit ive O-submodule M 
of H = Homf (O, N) such t h a t ¥ D Ç ¥ + TTS+1H and Af̂ »+1> - C7. T h e 
existence of M* now follows from Theorem 8. 

5. Project ive m o d u l e s i n t h e c o m p l e t e case . W e assume, as in the 
preceding section, t h a t the quot ient field k of o is complete. Applying Theorems 
3 and 7 we obtain 

T H E O R E M 9 (Brauer) . Up to isomorphism and order of summands, every 
(O, ^-projective £)-representation module has a unique decomposition into a 
direct sum of indecomposable O-modules. If O = ^2 © ©a, where the €)a are 
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indecomposable right ideals, then £)/T£) ~ Y, © D«/7rDa is a decomposition 
of the o/iro-algebra £)/wD into indecomposable right ideals, and any indecom­
posable (D, ^-projective ^-representation module is isomorphic with one of the 

Proof. Since £)/ir£) is a finite dimensional algebra over the field o/Vo, 
D/VD = 2^ © D« with the D« indecomposable right ideals unique up to 
order and isomorphism. By Theorem 7, there exist right ideals D« of D such 
that D = S © £)« and Da/w!Da ~ D«. Since the Oa are indecomposable, 
Theorem 7 implies that the D« are too. 

If M is an (D, o)-projective D-module, so is M/TTM by Corollary 2 to 
Theorem 5, and hence M/TTM is (DArD, o/7ro)-projective. As is well known, 
this implies that M/irM = ]T © M^, where each ilï^ is isomorphic to some 
D«. Hence by Theorem 7, ikf = ]T © ikT̂ , where each TkT̂  is isomorphic to 
some D«. 

Suppose that AT = ]£ © ^y> with each Ny indecomposable. Then Ny/irNy 

is indecomposable by Theorem 7 and M/TTM = X) © Ny/wNy. Hence by the 
Krull-Schmidt theorem, the Mp and Ny/irNy are equal in number and iso­
morphic in pairs. Corollary 1 to Theorem 3 (with s = 0) implies therefore 
that the Mp and Ny are isomorphic in pairs. 

There is a similar result for (D, o)-injective D-representation modules, 
which may be proved similarly. 

We now generalize Maranda's Theorem 4 of (7). It will be convenient 
to begin with two lemmas, the second of which is a special case of our thorem. 

LEMMA 7. If D has depth 0, and the ^-representation module M has irreducible 
rational hull, then M/TTM is an irreducible £)/ir£)-module. 

Proof. If D has depth 0, every D-module is (D, o)-projective, and by the 
Corollary to Theorem 6, !D/ir£) is a separable o/xo-algebra. Hence M/wM is 
fully reducible, and Theorem 7 implies that it is irreducible. 

LEMMA 8. If D has depth O, two ^-representation modules M and N with 
irreducible rational hulls are isomorphic if and only if their rational hulls are 
isomorphic. 

Proof. If M and N have isomorphic rational hulls, we may assume that 
M Ç N. By Lemma 7, N/TTN is irreducible, hence M/wM « M + wN/irN 
= N/TN. Corollary 1 to Theorem 3 implies therefore that M ~ N. The 
converse is immediate. 

We let R denote the radical of the rational hull A of D. Then D/9Î is an 
o-order with rational hull isomorphic to A/R, where 9Î = D C\ R. 

THEOREM 10. If D/9Î has depth 0, then two (D, o)-projective ^-representation 
modules are isomorphic if and only if their rational hulls are isomorphic. 

Proof. Only the "if" part requires proof, and by Theorem 9 we have only 
to consider indecomposable D-representation modules. 
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Let M be an indecomposable (O, o)-projective D-representat ion module, 
and let V = Mk. Then V = Vx © . . . © Vu where the Vt may be taken to 
be indecomposable r ight ideal components of A according to Theorem 1. Let 

wt = xt+J2 vjt 

where Xt is the unique maximal A -submodule of Vt. Then V/Wt ~ Vi/Xt> 
the irreducible A -submodule determining the isomorphism class of Vu which 
we shall denote by Ft. We show now t h a t Ft ~ F (i = 1, 2, . . . , £), F = Fi. 

We note first t h a t g* = M/M C\ Wt is an ©-representat ion module with 
rat ional hull isomorphic to Ft. Since %t can be considered as an D/9 î -module , 
Lemma 7 implies t h a t %i/ir%i is an irreducible D/VD-module . Theorem 7 
implies t h a t M/TTM is an indecomposable £)/7rD-module, hence, since \§i/ir%i 
is isomorphic with a quot ient module of M/TTM, it follows t h a t S^/71"?^ is 
uniquely determined by M/wM. T h a t is, g i / x g * = g A S (i = 1 , 2 , . . . , / ) , 
where % = gi- Hence %t ~ % by Corollary 1 to Theorem 3, which certainly 
implies Ft ~ F. 

Now let À7 be a second indecomposable (D, o)-projective O-representat ion 
module such t h a t Nk ~ F, and let © correspond to N as g does to M. Then 
we mus t have ®k ~ F, which implies @ ~ $ by Lemma 8. Hence ®/w® = S A S » 
which implies N/wN = M/irM. Hence M « iV by Corollary 1 to Theorem 3. 

An immediate consequence of the above proof is the following. 

COROLLARY. If D / 9 Î /^as de^/z 0, then the rational hull of an indecomposable 
^-representation module M is isomorphic with a direct sum of isomorphic 
indecomopsable right ideal components of A. 

I t mus t be remarked t h a t the completeness of 0 is inessential for Theorem 
10 and its Corollary, for, by Corollary 1 to Theorem 4, and the remark a t 
the end of § 3, the hypotheses survive transi t ion from the local to the complete 
case, and by Corollary 2 to Theorem 4, if the conclusion holds relative to 
the completion of a local domain o, it holds relative to o. 

6. T h e D e d e k i n d case . In this final section we assume t h a t o is a Dede-
kind domain, and denote by Op the ring of quot ients of o with respect to the 
complement of the prime ideal p of o, t h a t is, the ring of p-integers in the 
quot ient field k of o. By Dp we denote the Op-hull of the o-order O , and by 
Mp the Op-hull of an o-module M. A subscript * refers to the p-adic completion 
as a t the end of § 3. 

According to Theorems 1 and 4, we have for any O-representat ion module 
M t h a t 

°> • D(0, o ) ( M ) » P ( D „ 0 , ) ^ = DiS», , * ) < " " > n °>-

Therefore, if we define dp(M) to be dep th M$ = dep th ikfp*, we have 

D(M) = n pdp(M)-
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Similarly we have 

C(M) = n pcpW 

P 

where c$(M) is defined to be codepth Mp = codepth ikfp*. Some consequences 
of these formulas are summarized in 

THEOREM 11. An ^-representation module is principal {coprincipal) if and 
only if its Op-hull M$ is principal {coprincipal) for every prime p of o. If M is 
principal {coprincipal), then M$ is (Dp, ^-projective {infective) for all but the 
finitely many primes p dividing D{M) (C(M)), and M is (D, o)-projective 
{injective) if and only if Mp is (Dp, op)-projective {injective) for all p. 

These results, together with Corollary 2 of Theorem 5 contain results of 
Reiner (8). 

We obtain in the same way that 7(D) = Upp
d^\ where d„(D) is defined 

to be depth Dp = depth Dp*. From this, Theorem 2, and Corollary 2 to 
Theorem 2 we conclude that 

THEOREM 12. If D has separable rational hull, D/pD is a separable o/p-
algebra for all but the finitely many primes p dividing / (D) . 

Finally we apply our results to the question of class numbers. Let S be a 
complete set of non-isomorphic, rationally equivalent D-representation 
modules. Then there exists an A -representation module U, A = D^, such 
that Mk ~ U for all M in S (and we may in fact assume that M is an D-
submodule of U for every M 6 S). The cardinal r = r{U) of the set 5 is 
called the class number of U {with respect to D). 

As was pointed out in (2), Maranda's method (7) can be extended to 
prove that if A is separable, every absolutely irreducible A -representation 
module has finite class number, the ideal 7(D) T6- 0 playing the role played 
by the group order in his arguments. On the other hand, the result of (4) 
shows the existence of non-separable semi-simple A for which every ^-repre­
sentation module has finite class number. 

In the example of § 2, o = Z, the ring of rational integers, and the Mn 

{n = 1 , 2 , . . . , ) are readily seen to constitute a complete set of non-isomorphic 
D-representation modules rationally equivalent to a fixed indecomposable 
right ideal component of A. Hence U has infinite class number. But the fact 
that D{Mn) = nZ {n = 1 ,2 , . . . , ) suggests the following definition for the 
general case: The class number r{M) of a principal D-module M is defined 
to be the cardinal of the set SM, where SM is a complete set of non-isomorphic 
D-representation modules N rationally equivalent to M and such that 
D{N) = D{M). We cannot prove here that r{M) is finite when o has finite 
ideal class number, but we reduce the problem somewhat, along the lines 
of the first main result of (7). 
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Note that for an A -representation module U, 

r(U) = E r(M) 

where the sum is over a set of M G S such that D(M) takes on exactly once 
each possible value. In the case of separable A, / (©) ^ 0, and hence, since 
D(M) divides / (©) for every M, the number of summands is finite. That the 
sum need not be finite in the general case is shown by the example mentioned 
in the preceding paragraph. 

We shall say that two ©-representation modules M and N are equivalent 
at a prime p of o if their Op-hulls are isomorphic, or what is the same thing 
by Corollary 2 to Theorem 4, if their Op*-hulls are isomorphic. We shall say 
that M and N belong to the same genus if they are equivalent at all primes 
p of o. If AT is a principal ©-module, we let 

rp(Jkf) = the number of classesin SM under equivalence at p, 

and 

g(M) = the number of genera in SM-

From the definitions, we have g (in) < Uprp(M). By Theorems 10 and 11 we 
have that rp(M) = 1 when p X D(M) H / (£>/$) , where 9? = © H R, R 
being the radical of A. Corollary 2 to Theorem 3 implies that r$(M) is finite 
when o has finite residue class rings. Hence 

THEOREM 13. Assume that A/R is separable. Then for a principal ^-module 
M, g(M) < Ur$(M), the product extending over the primes p dividing 
D(M) C\ J T ( 0 / 9 Î ) , and g(M) is finite if o has finite residue class rings. 

For an A -module U, let g(U) denote the number of genera of ©-representa­
tion modules with rational hull isomorphic to U, and for a prime ideal p of 
0, let r$(U) denote the number of classes under equivalence at p of such 
©-representation modules. As was pointed out in (2), if A is separable and 
U is absolutely irreducible, Maranda's method's (7) can be extended to 
prove that 

(1) g(U) = I l r»(U) 

where the product extends over all prime ideals p of 0, and 

(2) r(U) = h-g(U) 

where h is the ideal class number of o. We leave open the general questions 
of when equality holds in the formula of Theorem 13, and when r(M) = h-g(M) 
for an ©-representation module M. (See also (9) in this regard.) 

Taking M to be a coprincipal ©-module instead of principal, and replacing 
D(M) by C(M) in the above definitions, we obtain numbers s(M), Sp(M), 
and h(M), between which relations hold analogous to those for r(M), rp(M), 
and g(M). 

https://doi.org/10.4153/CJM-1960-010-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-010-1


ORDERS OVER DEDEKIND DOMAINS 125 

There are also some relations between left and right which should be 
mentioned. If M is an ©-representation module, M+ = Homf (M, o) is a 
left ©-representation module, and since o is a Dedekind domain, Homj (M+,o) 
~ M and Homt (M, N) ~ Homj (N+, M+) for ©-representation modules 
i f and N. Now it can be verified that Ext^M, N) « Ext1(Ar+, M+), and hence 
that D(M) = C(M+) and C(M) = D{M+). Moreover, relations such as 
r(M) = s(M+) and g(M) = h(M+) hold. 
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