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Abstract. We describe a general method for calculating equivariant Euler characteristics. The
method exploits the fact that the y-filtration on the Grothendieck group of vector bundles on
a Noetherian quasi-projective scheme has finite length; it allows us to capture torsion information
which is usually ignored by equivariant Riemann—Roch theorems. As applications, we study the
G-module structure of the coherent cohomology of schemes with a free action by a finite group
G and, under certain assumptions, we give an explicit formula for the equivariant Euler charac-
teristic 7(Oy) = H(X, Ox) — H'(X, Oy) in the Grothendieck group of finitely generated
Z[G]-modules, when X is a curve over Z and G has prime order.
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1. Introduction

Let R be the ring of integers of the number field K and suppose X is a flat projective
scheme over Spec(R) that supports an action of a finite group G. If F is a
G-equivariant coherent Oy-sheaf, the coherent cohomology groups H'(X, F) are
finitely generated R[G]-modules. We can consider the equivariant Euler character-
istic

1(F) =Y (~D'H(X, F)

as an element of the Grothendieck group Gy(R[G]) of finitely generated
R[G]-modules. The purpose of this paper is to describe a technique for obtaining
information about such equivariant Euler characteristics.

By applying the coherent Lefschetz—Riemann—Roch theorem on the generic fiber
Xk of X one can calculate the character of the virtual representation y(F) from
data obtained from the fixed points of the action on X (see for example [BFQ)]).
The character determines the image of y(F) under the natural homomorphism
r: Go(R[G]) = Go(K[G]). However, the kernel of r is a finite abelian group and
its elements cannot be detected by the standard (equivariant) Riemann—Roch-type
theorems which usually neglect torsion. Some torsion information can be obtained
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using the Lefschetz—type theorems of [Th2] and the refined equivariant
Riemann-Roch theorems of [CEPT2]. In this paper, we describe an alternative
approach that in some cases allows us to capture a lot more. The idea is to exploit
the fact that the y-filtration on the Grothendieck group of vector bundles on a
Noetherian quasi-projective scheme of dimension d terminates after the d + 1-th
step. This implies relations between the classes of vector bundles over ¥ = X/G
which are obtained from various representations of G using the cover X— Y.
The main observation of this paper is that such relations alone can be used to deduce
information about equivariant Euler characteristics. The argument is described in
Section 3. In fact, in the case that the G-action on X is free or more generally tame,
the method can be applied to the calculation of the finer ‘projective Euler
characteristics’ of Chinburg (see [C]).

As examples, we first apply the y-filtration argument to obtain information on the
Galois module structure of coherent cohomology in the case that the action of G is
free. This extends certain results of [P] from the case of curves to higher dimensional
cases. We then use it to determine the equivariant arithmetic genus y(Oy) for a cyclic
prime order cover X — Y of curves over Z (see Theorem 4.15, also Remark 3). In
both cases, we show that there is a concrete connection between our problem
and the triviality of certain eigenspaces of class groups of prime cyclotomic fields.
In the case of a cover of curves, the answer can be expressed in terms of a ‘second
Stickelberger element’ of the group ring Q[Gal(Q({,)/Q)]. In this case, we also show
how, under some additional hypotheses, our result determines the class in Gy(Z[G])
of the Z[G]-lattice of regular differentials of X (Remark 5). When the cover
X — Y is tamely ramified, this allows us to determine the Z[G]-lattice of regular
differentials up to isomorphism from data obtained from the ramification locus
of the cover (Remark 6).

Results of similar character can be obtained using a combination of various
equivariant Riemann—Roch theorems. However, our approach here is essentially
elementary and provides more precise information. For example, in the case of
a cyclic prime order cover X — Y of curves over Z these Riemann—Roch theorems
do not suffice to completely determine y(Oy) except when the prime is regular.
The result in this paper gives, to our knowledge, the first instance in which
2(Oyx) is determined completely for all primes.

2. Grothendieck Groups

Let B be an associative ring with unit, which we assume is left Noetherian. We denote
by Go(B) (resp. Ky(B)) the Grothendieck group of finitely generated (resp. finitely
generated projective) left B-modules, and by Go(B)™ (resp. Ko(B)™") the quotient
of Gy(B) (resp. Ky(B)) by the subgroup generated by the class [B] of the free
B-module B. If B is commutative, we will denote by Pic(B) the Picard group of B.

If B is commutative and Noetherian, a finitely generated B-module is projective if
and only if it is locally free. In this case, we will often denote Ky(B)™® by CI(B).
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Taking highest exterior powers of locally free B—modules defines in this case a group
homomorphism CI(B)—Pic(B) which is an isomorphism if B has Krull dimension 1.

In what follows, all the schemes will be separated and Noetherian. For a scheme
Y, we will denote by Go(Y) (resp. Ko(Y)) the Grothendieck group of coherent (resp.
coherent locally free) sheaves of Oy-modules, and by Pic(Y) the Picard group of
Y. Sometimes we will use the same symbol to denote both a coherent sheaf (resp.
invertible sheaf) and its class in a Grothendieck group (resp. Picard group). This
should not cause any confusion.

In everything that follows, G is a finite group. For a commutative ring 4, we
denote by A[G] the group ring of G with coefficients in A4.

Let S = Spec(A4) be an affine Noetherian scheme and suppose that f : X— S is an
S—scheme which supports a right action of G. A coherent (resp. locally free coherent)
sheaf of Oy-G-modules F on X is a coherent (resp. locally free coherent) sheaf of
Ox—modules with G action compatible with the action of G on Oy in the following
sense: Suppose x € X and ¢ € G. Let x- ¢ be the image of x under ¢. The action
of ¢ on Oy and on F gives homomorphisms of stalks Oy ,, » Oy, and
Fro — Fy; both of these homomorphisms will also be denoted by o, and the con-
dition is that o(a-m) = o(a) - a(m) for all a € Oy ., and m € F,.,. We will often
use the term G—equivariant coherent (resp. locally free coherent) sheaf instead of
coherent (resp. locally free coherent) Oy-G-sheaf.

We denote by Gy(G, X) (resp. Ko(G, X)) the Grothendieck group of G-equivariant
coherent (resp. locally free coherent) sheaves on X with relations induced by short
exact sequences of G-equivariant morphisms. If X = Spec(R) is affine and G acts
trivially on X there is a natural identification Go(G, X) = Go(R[G]).

The group Ky(G, X) has actually a A-ring structure (see [F-L], I, §1) via

[F1-[G] = [F ®o, G, X(F]) =InF],

when F, G are locally free Oy-G-modules. Here the tensor product is taken with
diagonal left G-action: o(f ® g) = (6f ® 6g). Denote by {FKo(G, X)},~, the
(decreasing) y-filtration on Ky(G, X) (see [F-L], p. 47).

The group Gy(G, X) becomes a Ky(G, X)-module with the rule [F]-[G] =
[F ®o, G] for [F] € Ko(G, X), [G] € Go(G, X). If X is regular and has an ample
invertible sheaf, then the forgetful homomorphism

cx 1 Ko(G, X) — Go(G, X)

is an isomorphism ([Thl1], 5.7, 5.8). If X = Spec(R) is affine regular and G acts
trivially on X then Ky(G, X) = Go(G, X) = Go(R[G]).
For any G—equivariant S—morphism ¢ : X'— X between the G—schemes /" : X'— S,
f 1 X—S, there is a A-ring homomorphism
q* . K()(G, X) —> K()(G, X/)

given by ¢*([F]) = [Ox ®0, F]and X— Ky(G, X) gives a contravariant functor from
the category of G-schemes over S to the category of A-rings.
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If ¢ is proper, there is an Euler characteristic group homomorphism
g« - GO(G9 X/) — GO(Gv X)

given by

¢ ([FD =Y (1) [Rig.(F)]

i

and X— Gy(G, X) gives a covariant functor from the category of G-schemes over S
with proper morphisms to the category of abelian groups.

From now on we will assume that /' : X— S is quasi—projective. Then by [SGA1],
Prop. 1.8, p. 108, there is a quotient n: X—Y := X/G. The morphism 7 is
finite. For each coherent sheaf G on X, n*G is a G-equivariant sheaf on Y. If
n:X—Y is flat, then n* defines a group homomorphism z*:Gy(Y) —
Go(G, X).

We will say that the G-action on X is tame, if at every point x of X, the order of the
inertia subgroup I, C G is relatively prime to the characteristic of the residue field
k(x).

We will say that the action of G on X is free when I, = {1} for every point x of X.

If the action of G on X is free, then n: X—Y is a G-torsor, i.e n: X—Y is
faithfully flat and the morphism

A xG— XxyX, (x2—(xg x),

is an isomorphism (see [SGAL1], Prop. 2.6 on p. 115). The morphism = is then finite
¢tale. In this case, by descent, each G-equivariant coherent sheaf 7 on X is of
the form 7*(G) for G = (n,(F))¢ a coherent sheaf on Y. Therefore, if the G-action
on X is free, n* : Go(Y) — Go(G, X) is an isomorphism.

By [Ra], Ch. X, Lemme 1, any action of a finite group on a semilocal strictly
henselian ring is induced from an action of inertia. Therefore, we can see by an
argument as in the proof of Prop. 7.2 of [CEPT1] that the action of G on X is tame,
with the definition given above, if and only if it is ‘numerically tame’ as defined
in loc. cit. If in addition f is projective, then by [CEPT1], Prop. 7.2 and Th. 8.3
(see also [C], Section 2), there is a ‘cohomologically trivial’ Euler characteristic
homomorphism

ST Go(G, X) — CT(A[G])

where CT(A4[G]) is the Grothendieck group of finitely generated A[G]-modules which
are G-cohomologically trivial.

Denote by v : CT(A[G])— Go(A[G)) the forgetful homomorphism. Then /T refines
f. in the sense that v-fCT = f,.

When f : X— S is clear from the context, we will write y instead of £, and y*T
instead of fT.
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3. Galois Modules and the y—Filtration

In this section, we explain the main idea of this paper. We will assume throughout
that S = Spec(R) is an affine Noetherian scheme which is equidimensional of
dimension 1. Let #: Y—S be projective and flat with Y equidimensional of
dimension d + 1. We will consider a G-cover n : X— Y; i.e the morphism 7 is finite
and Y is identified with the quotient X/G. Denote by f the structure morphism
f:X—>S, f=h-n. Let VCY be the largest Zariski open subset such that
ny: U:=n"'(V)—=V is a G-torsor. The set V is the complement of the the image
n(Z) of the Zariski closed subset Z C X consisting of points with non-trivial inertia
subgroups. Since 7 is finite, this image is closed. Denote by fyy : U— S the restriction
of the morphism f on U.
Consider the A-ring homomorphisms

f* . K()(G, S) —> Ko(G, X), fz} : Ko(G, S) —> Ko(G, U)
Using f* (resp. f77) we can think of Ko(G, X) (resp. Ko(G, U)) as Ko(G, S)—algebras.

PROPOSITION 3.1. With the above assumptions and notations, we have:

(i) FITKo(G, S) - Ko(G, U) = (0),
(i) FIPKo(G, S) - Go(G, U) = (0).

Proof. By descent (see Section 2), the pull-back =}, : Ko(V)—Ko(G, U) is a
A-ring isomorphism. We deduce that there is a A-ring homomorphism
Fy : Ko(G, S) — Ko(V) characterized by =}, - Fy = /. If L is an R-projective
R[G}-module we have Fy(L) = (ny.(Oy ®z L))’ = (ny.(Oy) @z L)°. Since Fy is
a J-ring homomorphism, we have Fy(a) € Fi?Ko(V) for a € FITKy(S, G). Under
our assumptions, V' is quasi-projective and dim(V) < d + 1. By [F-L], Cor. V.3.10,
ﬂ?*zKo(V) = (0). Part (i) follows from now from the relation =}, - Fy = f}5 and
the definition of the Ky(G, S)-algebra structure on Ky(G, U). Part (ii) also follows
since Go(G, U) is a module over the unitary ring Ko(G, U).

COROLLARY 3.2. If n: X—Y is a G—torsor then

() FIPKo(G, S) - Ko(G, X) = (0),
(i) FITKo(G, S) - Go(G, X) = (0).

Now let I1(G, S) = F} Koy(G, S) be the augmentation ideal of the ring Ky(G, S). We
have I(G, S)*** c FIT2Ky(G, S). Therefore, Proposition 3.1, implies

I(G, S - Ky(G, U) = (0), I(G, S - Gy(G, U) = (0).
Thus, we obtain the following crucial special case of [CEPT2] Theorem 6.1:

COROLLARY 3.3 (‘Segal concentration’). If p is a prime ideal of Ko(G, S) and M a
Ky(G, S)-module, denote by M, the localization of M at p. If p does not contain
1(G, S), then Ko(G, U), =(0), Go(G, U), =(0).
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Now denote by i¥ : Z = (X — U)X, i¥ : (Y — V) Y, the natural closed
immersions, and by jy : U—X, jy : V— Y, the natural open immersions.

COROLLARY 3.4. Suppose that ais in Fyd“Ko(G, S)and F is a G—equivariant coher-
ent sheaf on X. Then there exists o(F) in Go(G, Z) such that a - F = iX (a(F)).
Proof. By [Thl], Theorem 2.7, there is an exact sequence

X %
Go(G, Z) - Go(G, X) 25 Go(G, U) —> 0.

Using Proposition 3.1 (ii), we obtain that j{(a-F) =a-j3(F) =0 and the proof
follows. O

Given a G-equivariant coherent sheaf 7 on X our objective is to calculate
SuF) =Y (=DH(X, F)] € Go(R[G)).

The strategy for applying the above results to this problem is the following: Let R’ be
a commutative one-dimensional Noetherian flat R—algebra. We set " = Spec(R'); in
general we denote by X', Y/, etc., the base changes X ®g R, Y ®g R/, etc. Suppose
now that a is in Ff*zKo(G, S’). Then Corollary 3.4 applied to the G-cover
' X'—>Y over S’ together with the projection formula imply that

a-fi(F) = (1Z),((F)), (3.5)

for some a(F’) € Go(G, Z). Here Z' = (X' — U’)" is the reduced locus of nontrivial
inertia for 7’ and

(f12)), : Go(G, Z') — Go(R[G))

is the G-equivariant Euler characteristic. For certain choices of R’ and a in
F)‘,’”KO(G, S’), an element «(F') as above can be determined explicitly. The
calculation of (f1Z),(«(F")) is then a problem for a scheme of smaller dimension
and can be often resolved. In fact, in the case of free G—action this scheme is empty.
By flat base change, f/(F') = f.(F) ®r R’ in Go(R'[G]) and so, this way, we can obtain
a- (fu(F) ®r R'). The information which is lost is measured by the subgroup of
classes C in Go(R[G]) with the property that for each R' and a € F'"?K(G, S")
as above, a- (C ®g R') =0 € Gy(R'[G)). O

The above approach can be refined and more precise information can be obtained
if the G-action on X is tame. We will assume that this is the case for the rest of this
section.

We start with a module-theoretic lemma.
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LEMMA 3.6. If R is a commutative R—algebra then (L, P) — (P ®gr L)’ defines a
bilinear homomorphism

Q: Ko(G, §') x Ko(R[G]) — Ko(R).

For simplicity, for a € Ko(G, S"), we will denote Q(a, ) : Ko(R[G])— Ko(R') by Q..
Proof. It is enough to verify that for a finitely generated R'[G]-module L which is
R'—projective, and a finitely generated projective R[G]-module P, P®r L =
(P®g R) Qg L is a projective R[G]-module and (P Qg L) is R'-projective. Write
P as a direct summand of a free R[G]-module F and take invariants by G. Then
(P®g L)¢ is a direct summand of (F ®z L)®. Therefore, it is enough to show that
F ®g L is projective R[G]-module and (F ® L)? is a projective R'-module. By [Sw]
Lemma 5.1, the module R[G] ®g L is R'[G]-free and these statements follow. []

Under our assumption of tame G-action, by [CEPT1], §8 (see also [C], §2), for
every G-equivariant coherent sheaf F on X the coherent Oy[G]-sheaf n,.(F) has
G—cohomologically trivial stalks. It follows that the functor F — m,(F)“ is exact.
We can conclude that in the case of tame G—action there is a bilinear homomorphism

Fy(, ):Ko(G,S) x Go(G, X) — Go(Y)
given by
Fy(L, F) = (n(F ®r L)° = (n(F) ®r L)°.

If 7 is flat and F is locally free as an Oy-sheaf then 7,(F)C is locally free as an
Oy-sheaf. This is shown as follows. Let Oy, be the local ring of Y at ye Y,
M, its maximal ideal and k(y) its residue field. Under our assumptions, m.(F),
is a free Oy ,-module. Following the arguments of [C] §2 and [CEPT1] §8, we
see that the k(y)[G]-module m.(F),/M,n.(F), is G-cohomologically trivial and
therefore k(y)[G]-projective. By [Se] 14.4, it follows that m.(F), is a projective
Oy ,[G]-module. Using a direct summand argument as in the proof of 3.5, we con-
clude that n*(]-")yG is a projective (and therefore) free Oy ,-module. Therefore, if
in addition 7 is flat, we can define

Fy(.):Ko(G,S) x Ko(G, X) — Ko(Y).

by the same formula as above.

From here and on, we suppose that R is a Dedekind ring. Then every
G-cohomologically trivial R[G]-module has projective dimension of at most one
as an R[G]-module, and by Schanuel’s lemma we see that CT(R[G]) can be identified
with Ky(R[G]) (see [C] 4.1). If R is the ring of integers of the number ficld K, we
will say that a R[G]-module M is locally free if for each prime P of R, the tensor
product M ®g Rp is a free Rp[G]-module. For such an R, by a theorem of Swan
([Sw], see also [C] 4.1), the notions of projective and locally free coincide for finitely
generated R[G]-modules. Therefore, when R is the ring of integers of a number field,
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we may identify Ko(R[G])™® with the class group CI(R[G]) of finitely generated locally
free R[G]-modules.

PROPOSITION 3.7. Suppose that Ris a Dedekindring, R' a commutative Noetherian
R-algebra and a an element of Ky(G, S’). With the above notations we have:

(a) If F is a G—equivariant coherent Ox-sheaf and R’ is flat over R then

cr - QufSY(F)) = H(Fy(a, F))) in Go(R).

Here F' is the base change F Qr R, cr : Ko(R)—Go(R) is the forgetful
homomorphism and I, is the Euler characteristic for the morphism ' : Y'—§'.
(b) If m is flat and F is a G—equivariant coherent locally free Ox-sheaf then

QST (F) = K (Ey(a, F) in Ko(R),

where we denote by I, : Ko(Y')—Ko(R') the ‘locally free’ Euler characteristic for the
projective flat morphism i : Y'—S'.

Proof. Suppose that V is a finite affine cover of Y and that C*(V, n.(F)) is the
corresponding Cech complex that calculates the cohomology of the @y[G]-sheaf
7+(F). Let (P*) be a bounded complex of finitely generated projective R[G]-modules
quasi-isomorphic to C*(V, n.(F)) (see [C] §2, [CEPTI] §8). By definition

SEF) =3 DTP

Since L is R'-projective, the terms of the complex (P°® ®g L) are projective
R'[G]-modules ([Sw], Proposition 5.1, see also the proof of Proposition 3.5).
Denote by V' the finite affine cover of Y’ obtained from V by the affine base
change Y'—Y. Under the assumptions of either (a) or (b) the complex
(P* ®r L) is quasi-isomorphic to the Cech complex C*(V', 7, (F') ®g L) which
calculates the cohomology of the Oy[G]-sheaf 7, (F')®r L = n*(F ®r L). By
[C] §2, [CEPT1] §8, the terms of C*(V', 7, (F') g L) are G—cohomologically trivial
R[G]-modules. The complexes (P*®gL) and C*(V, 7 (F)Q®r L) are quasi-
isomorphic and both have terms which are G-cohomologically trivial
R'[G}-modules. A mapping cylinder argument shows that the complexes of
G-invariants (P* ® L)® and C*(V, T (F) ®r L)° are also quasi-isomorphic. Since
CV, 7 (F)®r L)’ = C*(V, (@.(F)®r L)°), the proof now follows by
unraveling the definitions. O

Let V c Y, U =nr"!(V), be as in the beginning of the section. For a € Ky(G, S')
and F € Go(G, X) (resp. F € Ko(G, X)), the restriction of Fy:(a, F') € Go(Y’) (resp.
Fy(a, F) e Ko(Y') to Go(V') (resp. Ko(V")) is equal to FUr(a)-n*(]-')lGV,, where
Fy is defined in the proof of 3.1. Hence, by 3.1, if a is in Fyd“Ko(G, S’) this restriction
is zero. Therefore Fy/(a, F') (resp. Fy.(a, F')) is supported on the branch locus
Y’ — V'. Using 3.7, we see that if a is in E/’,”’LZKO(G, S’), then the calculation of
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cr - Qu(fET(F)) (resp. Qu(fET(F))) is a problem for a scheme of smaller dimension.
The information which is lost in this case, is measured by the subgroup of
Ko(R[G]) which consists of the classes C such that for each a € F™*?Ky(G, S')
and R as in 3.7 (a) (resp. (b)), we have cgp-Q,(C)=0 in Gy(R') (resp.
0.,(C) =0 1in Ky(R')). In some cases, this subgroup is trivial and we can completely
determine fCT(F) (as for example in the situation of Section 4.b).

Remark: Suppose R are the integers of the number field K and fix an embedding
K c C. Let K = Q be an algebraic closure of K in C, and let Qx = Gal(Q/K). Also
denote by R(G) the Grothendieck group of finite dimensional representations of
G over Q, which we identify with the group of characters. Let J(Q) be the direct
limit limg g J(L) of the idele groups J(L), where L runs over all finite extensions
of K in Q. The Galois group Qg acts on R(G) and J(Q). Then according to Frohlich’s
‘Hom-description’ of the class group, there is a natural surjective homomorphism

u : Homg, (R(G), J(Q)) — CI(R[G])

with kernel T = Homg, (R(G), K*) - Det(U(R[G))) (see [F] I, §2, Th. 1, for the defi-
nition of y and Det(U(R[G])) ).
Now consider the homomorphism obtained by restriction

Rys2 - Homg (R(G), J(Q)) — Homg, (F{*?R(G), J(Q))

and let T;y2 = Ry2(T). The above suggest that, when X has dimension d + 1, it
should be possible to determine the image of f*CT(]-')red € CI(R[G]) under the
homomorphism

Ryy2 : CI(R[G)) — Homgq (F**R(G), J(Q))/ Tuya.

from data associated to sheaves supported on the ramification locus of the cover
X—Y. We would like to return to this in a subsequent paper.

4. Applications

From here and on, we assume that R = Z and we set S = Spec(Z). Recall that we
have natural identifications CT(Z[G]) = Ko(Z[G]) and Ko(Z[G])™® = CI(Z[G]). Sup-
pose that Mg is a maximal Z-order in Q[G] containing Z[G]. The kernel subgroup
D(Z]G]) of CI(Z[G]) is defined as the kernel of the homomorphism CI(Z[G]) —
Cl(M) induced by tensoring modules with Mg over Z[G]. It is independent of
the choice of the maximal order Mg ([F], 1. §2).

If f : X— S is a projective S-scheme with tame G-action, we will denote by f the
composition of [T : Gy(G, X)—CT(Z[G]) = Ko(Z[G]) with the stabilization
homomorphism Ky(Z[G])—CI(Z[G]). When f: X—S is fixed from the context
we will usually write y” instead of f.
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4.a. Free Actions

In this section, we will apply the observations of Section 3 to the case of free actions.
In what follows, we will assume that = : X— Y is a G—torsor and that R = Z.

For N > 1, let {,y be a primitive N-th root of unity. We identify Gal(Q({y)/Q) with
(Z/NZ)" by sending a, (a, N) = 1, to g, defined by g,({y) = {%. Now suppose that
N =p is a prime numer. Consider the Teichmuller character o : (Z/pZ)" — Z,
and let 4, be the direct summand of the p—primary part of the ideal class group
CI(Q(,)) on which ¢, € Gal(Q({,)/Q) acts via multiplication by «'(a).

Here is the main result of this section.

THEOREM 4.1. Let n : X— Y be a G—torsor, with Y projective and flat over Spec(Z.)
and equidimensional of dimension d + 1. Suppose that for each prime p that divides the
order of G, and each k € [2, min(p — 2,d + 1)], we have A’; = (0). Then, for every
G—-equivariant coherent locally free Ox-sheaf F, y*(F) is in the kernel subgroup
D(Z[G)).

Since, by [CR] 49.34, D(Z[G]) is in the kernel of the forgetful homomorphism
CI(Z[G]) — Go(Z[G])™, we obtain the following:

COROLLARY 4.2. Under the above assumptionsontn : X— Y, F, and on the prime
divisors of |G|, y(F) is equal in Go(Z[G]) to plus or minus the class of a free
Z[G}-module.

let B, be the n-th Bernoulli number defined by

00

t . B "
e’—l_X(; "l
n=

Suppose that p is a prime and 1 <k <p—1. If p=2, we set Dy, =D, =1.If
p > 2, we set

1, if k=lork=p—1,
Dy, = { Num(By), if k is even,
Num(B,—x), if k> 1 is odd.

where ‘Num’ denotes the numerator. It follows from Herbrand’s theorem ([Wa],
Theorem 6.17) and [Wa], Theorem 10.9, that if p fDy ,, then A’; = (0). We deduce:

COROLLARY 4.3. Let n : X— Y and F be as in the statement of Theorem 4.1. Sup-
pose that for each prime p that divides the order of G, and each
k €2, min(p — 2,d + 1)], we have p Dy ,. Then y*(F) is in D(Z[G)).

We have 4) = 4) = (0) ([Wa], 6.16). Therefore, if p — 2 < d 4 1, the condition of

4.1 translates to requiring that the prime p is regular. The result is more effective
forp>>d+1.
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We have Num(B,) = 1, and so p fD,, for all primes p. Hence, Corollary 4.3 for
d + 1 =dim(X) = 2, gives that y*(F) is in D(Z[G]) for all G-equivariant coherent
locally free Ox-sheaves F. This was also shown in [P] (Theorem 1.1).

Before we give the proof of Theorem 4.1 we digress to consider the case that G is
abelian in a somewhat more general context.

4.a.1. Abelian Groups

In this subsection, G is abelian and R=Z. If n is an integer, denote by
¢, 1 Z[G]—Z[G] the ring homomorphism which is such that ¢,(g) = g" for g € G.
If M is a Z[G]l-module, we will denote by [n]-M the Z[G]-module
M Qzq1,4, ZIG]. If ged(n, |G|) = 1, we can think of [#] - M as having the same under-
lying group as M and with new G—action - satisfying g" -m =gm for g e G, m € M.
We can see that sending the class of M to the class of [n]- M gives actions of
the multiplicative monoid Z on Ky(Z[G]) and CI(Z[G]).

Suppose now that R’ is an R-algebra, ¥ : G—R"™* is a character of G, and P a
finitely generated projective R[G]-module. The character y defines a structure of
R'[G]-module on R'. We will use the same symbol ¥ to denote this R'[G]-module.
The character y also defines a ring homomorphism z} : Z|G]—R'. Since P is a pro-
jective R[G]-module, P®zy~' with diagonal left G-action is a projective
R[G]-module (see the proof of 3.6) and therefore G-cohomologically trivial. As
a result, the natural homomorphism

PRy =Py

from G-coinvariants to G-invariants given by multiplication by dec g is an
isomorphism (see [A-W] §6). By definition, (P ®z lp*l)G =P ®z161.0 R’ and so with
the notations of Proposition 3.5, we have:

ler‘ (P)=P Bzi61.0 R. (4.4)
Hence, from the above discussion, we obtain:
Qy(la] - P) = Qy(P). (4.5)

Suppose that R" = Z[{y]. There is an action of the Galois group Gal(Q({y)/Q) on
Ko(Z[{x]) which, for an ideal A, satisfies ¢ - [A] = [6(A)]. With the above notations, if
gcd(a, N) = 1, we have:

Qy(ld] - P) = Qy+(P) = 4(Qy(P)). (4.6)

Now suppose that R = Z[G]. Over R’, we have the character L which corresponds to
Z[G]—Z[G] given by g—g~!. If k is an integer, by 4.4 and 4.5, we obtain that

Op : Ko(Z[G))— Ko(R') = Ko(Z[G])
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is given by P—[k]- P. For every k € Z, the element
Vik,dy=LF-(L-1)---(L—1) € Ky(G, S")

(with number of factors (L — 1) equal to d +2), is in Ey‘,’*zKo(G, S"). Expanding
V(k,d) we find

d+2
V(k’ d) _ Z (d ‘:— 2)(_1)d+2iL/C+i.

i=0

Suppose now that 7 : X— Y is a G—torsor (G abelian) and Y, F are as in the state-
ment of Theorem 4.1. Using 3.2 and 3.7 (b) applied to R' = Z[G] —see the remarks
after the end of the proof of 3.7- we obtain

d+2

d+2
., CT red __

0viea (ST = 3 ( ,-

)(—D”’“-"[k il F) =0 @)
i=0

in CI(Z[G)).

Now let 4 be an abelian group (in a moment we will take A4 to be the classgroup
CI(Z[G])). We will consider functions ¢ :Z—A. We define (Aj¢p)(n) =
¢(n+ 1) — ¢p(n) and inductively A1 = Ar(A1¢).

LEMMA 4.8. (a) Suppose that ¢ : Z— A is a function for which Az 1¢ = 0. Then we
can write:

k

oo =3 (")a

i=0

with aq, ..., ai, elements of A.
(b) For k > 0, we denote by py : Z—Z the k-th power function pi(n) = nX. Then

Aipr =0 for [ > k and Akpkk: k!.

(c) For k =1, Arp(n) = Z(—l)k’i (]f>¢(n + ).

=0 !
Proof. Part (c) follows directly from the identity

n+1 n n
( i >_<i)_<i—1)'
To prove (a) we apply induction on k. The statement is obviously true for £ = 0. By
writing Ag1¢ = Ax(A1¢) and applying the induction hypothesis we can write
k=1

Ap(n) = Z (?)am.

i=0
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Also set ap = ¢(0). The above identity shows that the function f defined by

k

Sy == (")a

i=0

satisfies Ajf = 0. We also have f(0) = 0 and so [ is identically zero.

Part (b) is left to the reader.

We now define a function @ : Z— CI(Z[G]) by ®(n) = [n] - ¥*(F). By 4.7 above, for
each k € Z, we have

d+2
i (d * 2)(—1)‘”2—%1)(1« +1i)=0.

i=0 i
which, by Lemma 4.4 (c), translates to Ay ,® = 0. By Lemma 4.8 (a) we can write:

d+1

om) =Y ()ap. (4.9)

i=0

with @;(F), i=0,...,d+ 1, in CI(Z[G]). Set m!! = m!(m — 1)!...2!.

PROPOSITION 4.10. With the above assumptions and notations, there are elements
co(F), ..., car1(F) in CUZ[G)), such that for every integer n,

- c(F)=n'c(F), i=0,1,....,d+1,

and

d+1

(d + D) - 1"(F) = > e F).
i=0

Proof. For simplicity, we set C = y*(F) and a; = a;,(F). Consider the function
®°P(n) = n?*lay,,. We will show:

(i) Ag1((d + 1)!® — @'P) =0,

(i) @°P(n) = [n] - aay1.

Set @(n) = (d + 1)!®(n) — D*°P(n), C; = (d + 1)!C — ag41. Assuming (i) and (ii),
we have Ay 1@ = 0, ®((n) = [n] - Cy, and the proposition will follow by an inductive
argument.

By 4.9, the function ni—(d + 1)!®(n) — ®'°P(n) involves powers n’ with d +1 > [
only and hence (i) follows from 4.8 (b). It remains to show (ii). By 4.9 and Lemma
4.8 (b), azi1 = (Ay41D)(0). By 4.8 (c), we have

d+1
(Ad41®)(0) = Z(—l)‘””(df. l)m -,

i=0
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and so
d+1
Lfd+1Y
[n]-adH:;(—l)“‘ ( . )[m]-c

d+1 del
=S (TN (Ve
— i k

k=0
d+1  d+1 .
_ifd+ 1\ (ni
_ _1\d+1-i
-z ()0
By 4.8 (c), the inner sum is equal to (Agy1¢; ,)(0) where

dinm = ().

We see using 4.8 (b), that Ay, 1¢ , =0if d + 1 > k, while (Agy1$4,1,)(0) = nitl We
conclude that [n] - az41 = n%la,, which is (ii).

4.a.2. Proof of 4.1.

Recall that CI(Z[G]) is a finite abelian group which is a Go(Z[G])-module (see [Sw]). It
follows from [Sw], Proposition 5.1, and the definition of the cohomologically trivial
Euler characteristic that y* : Go(G, X)— CI(Z[G]) is a Gy(Z[G])~homomorphism.
By 3.3 applied to U = X, 4*(F) is supported on the maximal ideals of Gy(Z[G]) that
contain the augmentation ideal /(G, S). The proof of Prop. 4.5 in [P] shows that
if p = (p) +1(G, S) is such a maximal ideal then the localization CI(Z[G]), injects
into CI(Z[G,]) where G, is a p-Sylow subgroup of G. This shows that y”(F) is
supported only at ideals (p) + I(G, S) with p dividing the order |G| and therefore
that y¥(F) is annihilated by a power of |G|. Now the arguments of the proof of
Prop. 4.5 in [P], show that it is enough to consider the case that G is a p—group,
p a prime. Then y”(F) is p-primary. By the argument in [P] p. 215, we can reduce
the proof to the case in which G is a basic p—group (see loc. cit.). For a 2-group,
Cl(My) is of odd order by the arguments in [P], p. 216. Since y”(F) is 2-primary
the result follows. It remains to deal with the case that p is odd. Since the only basic
p-groups with p odd are cyclic, we may and will assume in what follows that G
is a cyclic group of order pV. In this case, we have

Mg = @0 <n< NLI ]

Hence, it follows that a class ¢ € CI(Z[G]) is in D(Z[G]) if and only if for every char-
acter y : G=Z[{,]", Q,(c) is trivial in CI(Z[{,]).

If p < d + 1 the condition of Theorem 4.1 on p implies that p is regular; therefore
CI(Z[{,»]) has order prime to p for all n ((Wa], 10.5). It follows that CI(M¢) has
order prime to p. Therefore, y*(F) is in D(Z[G]).
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Now assume that p > d + 1. Since y”(F) is p-primary, using Proposition 4.10, we
see that it is enough to show the following:

Fix k, 0 <k <d+1 < p, and consider ¢ in CI(Z[G]) such that [a] - ¢ = d¥c for all
integers a. Then, under the condition of Theorem 4.1 on p, ¢ is in the kernel subgroup
D(Z[G)).

We will begin by noticing that the above condition applied to a = p" gives that ¢ is
p-primary. Consider a character of order p", y : G—Z[{,,]*. We will show that the
class Q,(c) in CI(Z[{,]) is trivial. From 4.5 and the above property of ¢ we have

00(0) = Qy(la] - ©) = d* Q(¢). (4.11)

We apply this relation for a=p", a=1+p". We obtain p"Q,(c)=0,
(14 p"Y - 1)0,(c) = 0. If k=0, the first equation gives Q,(c) = 0. Assume that
k #0. We have

k
(1 —|—pn)k — 1 :pn(k +pn (2) 4+ +pn(k—l))’

Since 0 < k < p, the factor in the parenthesis is prime to p and we obtain p"Q,(c) = 0.
If ged(a, p) =1, by 4.6 and 4.11, we have

0.(Q,(0)) = d“Q,(0). (4.12)

Write (p odd): (Z/p"Z)* = (Z/pZ)* x Z/p"'Z. For f € (Z/pZ)* choose a(f) € Z
such that a(f) mod p" gives (f, 0). Then by the standard property of the Teichmuller
lift we have

o(f) = a(f) mod p". (4.13)
For simplicity, we set O = Q,(c). By 4.12 and 4.13, we obtain

Y d0eh@=t ¥ dante=o

P =1 re@pay = ey

since p"Q = 0. We can conclude that Q is in the eigenspace of the p-primary part of
the classgroup of Q({,») on which Gal(Q({,)/Q) ~ (Z/pZ)" C Gal(Q({,»)/Q) acts
via the k-th power of the Teichmuller character. By a basic result of Iwasawa this
eigenspace is trivial if the corresponding eigenspace Allj of the p-primary part of
the classgroup of Q((,) is trivial (see [Wa] Prop. 13.22, p. 285, together with the
remarks on decomposition into character components on p. 291). Since Ag = (0),
A]]7 =(0), and 0 < k < d + 1, this is guaranteed by our assumption. We conclude
that Q is a trivial ideal class. By the above, this completes the proof of Theorem
4.1.
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4.b Groups of Prime Order

In this section, G is cyclic of prime order p. We assume that 7 : X— Y is a G—cover of
schemes which are regular, projective and flat over Spec(Z) and equidimensional of
dimension 2. Then by [K-M], Notes to Chapter 4, « is flat. For simplicity, we assume
that both X and Y are connected and that G does not act trivially on X.

Our objective is to calculate

1(0x) = [H(X, Ox)] = [H'(X, Ox)] € Gy(ZI[G)).

(we have H'(X, Oy) = (0) for i > 2; see [L], Lemma 3.1 on p. 108.) By [Ri], the natu-
ral homomorphism Gy(Z[G])— Go(Z[1/p][G]) is an isomorphism. Therefore, we can
base change to R =Z[1/p] without losing information. The G-action on
X[1/p] := X ®z Z[1/p] is tame. We will apply the strategy described in Section 3
by taking R' = R, := Z[{,][1/p]. Before we explain the result and its proof we need
to introduce some additional notation.

Denote by &' C Y’ = Y ® R, the reduced branch locus of n’ : X’— Y’. Under our
conditions, by purity of branch locus (see for example [SGAZ2], X 3.4), b’ is purely
I-dimensional. The branch locus ' coincides with the reduced locus of points of
Y’ over which the cover 7’ is not a G-torsor. The inertia subgroup of a point x
of X’ which maps to »' is non-trivial and therefore equal to G. Denote by X'¢
the largest closed subscheme of X’ which is fixed by the action of G. By [Th2], Prop-
osition 3.1, X’¢ is regular. The morphism 7’ induces an isomorphism between
X'¢ and b’ C Y'. Therefore, b is also regular. Denote by T an index set for the
irreducible components of »'. For ¢ € T denote by b, the corresponding irreducible
component of &' and by k(b)) the function field of #/. Set B, = (x'~'(b)))* c X’;
denote by N; the conormal (line) bundle Np x.. The morphism 7' induces an
isomorphism B}— b, and we have k(B;) = k(b)).

The structural morphism Y’—Spec(R,) provides us with a ring homomorphism
R,—k(b;) and therefore with a distinguished primitive p-th root of unity
{, € k(b;). Now choose a uniformizer @, for the maximal ideal M, of the local ring
Oy of X" at the generic point of B;. There is a canonical homomorphism

¢, G—{x e k®) | " =1}, gHgl'Uw’

t

mod (@),

which is independent of the choice of @,. The homomorphism ¢, is injective and
therefore an isomorphism. This injectivity can be shown as follows: If ¢,(g) =1
for g # 1, then G acts trivially on M[/Mf and so

MO JMDT = (M, )M = M, M?

(taking G-invariants is an exact functor since p = |G| is invertible on Y’). Using
Nakayama’s lemma we conclude that M¢ = M,. Since G acts trivially on the residue
field k(B;) = k(b;), G acts trivially on Oy p. This contradicts our assumptions.
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Denote by g, the element of G that corresponds to {, € k(b}), i.e which satisfies
¢i(o)) = §p.

We have Go(Z[G]) = Go(Z[1/p][G]) = Ko(Z[1/p][G]). As in the beginning of the
Section 4.a.1, we can see that there is an action of the multiplicative monoid Z
on Ky(Z[1/p][G]). This action factors through an action of End(G) = Z/pZ and then
extends to an action of the monoid ring Z[End(G)]. Consider also the group ring
Z[Au(G)]. Sending )  mx] to >, m(x] defines a ring homomorphism
Z[End(G)]—Z[Aut(G)]. For simplicity, we will denote Aut(G) by 4.

Let us fix a non-trivial character 7, : G— R;. We have Go(Z[G]) = Go(Z[1/p][G]) =
Ko(Z[1/p][G]). Using 3.6 we obtain a homomorphism

0 := 0,1 : G(Z[G]) = Ko(Z[1/p][G])— Go(R,) = Ko(R,).

If M is a finitely generated Z[G]-module and plx, O(x]- M) =0 in CI(R)).
Therefore, using 4.6, we see that

D malx]) - MY = (D nea)(Q(M)™Y). (4.14)
X 4

For a rational number x, we denote by {x} the unique rational number 0 < {x} < 1,
for which x — {x} € Z. We will consider the ‘Stickelberger elements’

© = Z{g}[xr‘ € Z[1/p)lA],

xeA

1 2
©2= §Z<{§ } —{;—j})ml € Z[1/2p°)[4].

xeAd

For a, b, c € Z, we set:
la,b,cl=la+b+c]—[a+b]l—[b+c]—[c+al+[a] + [b] + [c] € Z[A].

where [x] = 0 if p|x.

The group A4 = Aut(G) = Gal(Q({,)/Q) ([x] corresponds to o) acts on
Y’ =Y x Spec(Z[1/pl[,]) via the second factor, and the branch locus b’ C Y’ breaks
into a disjoint sum of A-orbits. Each orbit corresponds to one irreducible component
of the branch locus b C Y. For x € 4, 6, = o}. Therefore, in each orbit, there is a
unique b; such that y(c,) = {,. Denote by y, : Go(b;)— Go(R,) = Ko(R,) the Euler
characteristic for the structure morphism b,—Spec(R,). We will think of
N; = Np)x as a line bundle on 5] via the identification B; ~ b; given by the covering

7.

THEOREM 4.15. Assume that G is cyclic of prime order and thatw : X— Y is asin the
beginning of the section. Consider the ideal I of Z[A] generated by [a, b, c] for all
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a,b,ceZ. If ¢ is in I, we have

& 0O = > &p®; - 1, (Op — N

teT/A

in CI(R,) = CUZ[{,]). Here the sum is over the set of representatives t of the orbits
T/A for which yy(a,) =, (see above).

Remarks: (1) We will see (Lemma 4.22 (d)) that p[a, b, ¢]®; is in Z[A], and so the
expression in the right hand side of the equation makes sense.
(2) We will in fact show that

£ 0(OX)™ = = ) (€01 £(On)"™ + EpO2 - £/(N] = Oy)™) (4.16)
1T/ A
Here [a, b, c]®, is also in Z[A4] (Lemma 4.22 (d)). By Stickelberger’s theorem ([Wa],
Theorem 6.10), £O; annihilates the class group CI(Z[{,]). Hence, the identity of
Theorem 4.15 follows from the one above.

(3) Before we give the proof, let us show that the above result provides enough
information to completely determine y(Oy) € Go(Z[G]) from the genus of X, the
genus of Y and the classes y,(Op — Nt/)red in CI(Z[{,)).

By [Ri] (see also [CR], 39.21), a class C € Gy(Z[G]) = Ko(Z[1/p][G]) is determined
by O(C) = Qxal(C) € Ko(Ry,) and Q1(C) € Ko(Z[1/p]) = Z. On one hand, we have
01(x(Oy)) = rankz(7x(Oy)) = 1 — g(Y) where g(Y) is the genus of generic fiber of
Y. On the other hand, a class Q € Ky(R),) is determined by its R,-rank and the
stabilized class 0™ in CI(R,) = CI(Z[{,)). The R,-rank of Q(C) is equal to

rankz(y(Ox) — x(Oy)) _ g(¥) — g(X)
p—1 o p—1

and it remains to show that Theorem 4.15 completely determines Q(C)™ e CI(R,).
This will follow from:

PROPOSITION 4.17. Suppose that Q € CIZ[{,)) is such that & - Q =0 for all ¢ € 1.
Then Q = 0.
Proof. We can assume that p # 2. We have

k+1,1,-1]=2k+1]-[k+2] - [k]+1+[-1] €[
Using this and an inductive argument we can see that for any a € Z,

a(a+1) ata—1)
22

Using 4.18 and our assumption, we find

[a(Q +[-110) = (@ +[-1]Q), [al(Q —[-1]Q) = «(Q — [-1]O).

From the second equation we obtain that Q — [—1]Q is p—torsion and that it belongs

[d] [—1] el (4.18)
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to the eigenspace A,l, of CI(Z[{,]). Therefore, Q — [-1]Q = 0. Now apply 4.18 again to
get

a@+1) a(a—1)
2 2
By an argument as in the proof of Theorem 4.1 we can conclude that Q is p—torsion
and belongs to the eigenspace AIZ,. Since p [B,, A§*2 = (0), and by [Wa], Theorem
10.9, we also have A; = (0). Hence, Q = 0 and this completes the proof.
(4) In view of the above remarks, we could think of 4.15 as stating

QO™ =pOs- Y 7,(Oy — N)™

teT/A

(a0 = 0+ 0=da0Q.

in CI(Z[{,]). However, the right hand side of this equation does not make sense since
PO, does not have integral coefficients. The equation makes sense, and is true, for the
images of both sides on the prime-to-p part of CI(Z[{,]). This result -in the prime-to-p
part of CI(Z[{,])- can also be derived using the Lefschetz-Riemann-Roch theorems
of [Th2] and [CEPT2].

(5) If Lis a Z[G]-lattice (i.e a Z[G]-module which is a finitely generated free abelian
group) then the same is true for the group L* := Homz(L, Z) with G-action given by
(g-/)I) = f(g~'). Sending the class of the lattice L to the class of L* extends to an
involution * on Gy(Z[G]). For ¢ € Go(Z[G]) we have

(c*) = —0(o), (4.19)

where Q = Qxal : Go(Z[G])— Gy(R,) is the map defined above and the bai denotes the
effect of complex conjugation (cf. [F] 1. §2, (2.22)). By 4.6, we have Q =[-1]Q.

Denote by wy,z the invertible dualizing sheaf for X—Spec(Z) (recall that X is
regular). There is a canonical, hence G-equivariant, isomorphism

H'(X, wy,z) ~ Homz(H'(X, Ox), Z).

Assume now that X is geometrically connected and that H'(X, Oy) is Z—free. Then
H(X, Oy) ~ Z with trivial G-action and

[H'(X, 0x/2)] = [H'(X, Ox)]" = [Z] - [x(Ox)I".

Therefore, using Remark 3, we see that the result of Theorem 4.6 also determines the
class of H(X, wy,z) in Go(Z[G]). In fact, by the above and 4.19, we have, for any
cel,

£ QUHYX, wx))™ = Ep[—1102 - Y 1(On — N)™.
teT/A

(6) When the cover X — Y is tamely ramified, under the assumptions of Remark
5, there is an exact sequence (see [P], Lemma 5.1)

0—H(X, wyx;z)—~>P—>F—7—0
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with F a free Z[G]-module and P a projective Z[G]-module. We have

O(P) = QH(X, wy/z))* in CIU(R,) = CI(ZIL,)).

By the argument of [P], proof of Cor. 5.6, this implies that

H(X, wx/z) ~ Z® A& Z[GF)

where A is an ideal of Z[G] such that

& QA = ¢p[—110, - Z 2Oy — Nt’)red, for all £ e 1.

1eT/A4

By 4.17, Q(A)™ € CI(Z[{,)) is uniquely determined by the above equation. Since by
[R], 0™ gives an isomorphism between CI(Z[G]) = Pic(Z[G]) and CI(Z[{,) this
determines A up to Z[G]-isomorphism. Therefore, H(X, wyx,z) is also determined.

Proofof4.15. First of all let us remark that it is enough to show the identity for the
generators & =[a, b, c], a, b, c € Z, of I. By 4.6 and 4.14, we have

[a. b, €] - QO™ = Qe 1yt -1y KO, (4.20)

We will apply the strategy described before the Remark at the end of §3. Denote by
i":b'=Y' the natural closed immersion. By 3.1 (i), Fy((x;* — 1)(;(51’ )
(1o¢ — 1), Oxq1yp)) restricts to the zero class in Go(Y’ — b'). Therefore, it is equal
to 7.(y) with y = >y, an element of Gy(b") = Ko(d') = ®,Ko(b}). In what follows,
for simplicity, we will omit Oxy/,) from the notation.

Suppose that y : G— R} is a character of G. If y(a,) = Cjﬁ, weset < y >,= {k/p}. We
can linearly extend < >; to an additive homomorphism

< > Ro,)(G) = Go(QIG) — Q

from the character ring. Note that if y, 7' : G—R; are any two characters with
2o = {k/p}, ¥ (0,) = {k/p}. then

<X — L= X == —3—t—3—1 =0 or —1.
P 4 p

PROPOSITION 4.21. Let y, ¢, Y be characters of G with values in R;. We have

Fy(( ' = D@ =Dy = 1) =40 7)

teT
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with vy, in Ko(b)) given as follows:

—((r = (¢ — D = 1)),0, +
+p(= () (x ¥ — 29 — V), —
—d+)ilxp — 2 —b) +

+ D) xp — 1 — &) +

+ () (Y — =), +

+ () — 1 = V) )N, = Opy).

We will postpone the proof of the Proposition to give a lemma that explains the
nature of the complicated expressions for the elements y, above.
Set

son={t). oon=3(2f L))

and for i =1, 2,

0:(a, b, &) = O:(a+ b+ ¢) — 0@+ b) — 0,(b + c)—
— 0i(c + a) + 0(a) + 0:(b) + 0:(c).

LEMMA 4.22. (a) 0,(a, b, ¢) is an integer.
(b) pOa(a, b, ¢) is an integer. We have

SR i (R MR B )

(e -l
EENE -
LD
-

(c) Fori=1, 2,

[a, b, c]®; = Z 0;(ax, bx, cx)[x]_1

xeAd

(d) We have [a, b, c] - Oy € Z[A] and pla, b, c] - O, € Z[A].

Remark: Note that the expression in (b) resembles the complicated term in the
statement of Proposition 4.21.
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Proof. Let us first consider parts (a) and (b). We will only discuss the case that
0 < a<b<c<p. (The other cases are similar; in fact, for part (a) we can always
reduce to this case by symmetry). We then distinguish several possibilities:

(I) a+b+c<p.

(Il) a+b<a+c<b+c<p,at+tb+c=p,
(Ilha+b<p,b+c=a+c=p,
IVya+b<a+c<p, b+c=p,

(V) a+b=p,but (a+b—p)+c<p,
(V)a+b=p, (a+b—p)+c=p.

Incasel, 0i(a, b, ¢) = 03(a, b, ¢) = 0, while the right hand side of the equation in (b)
is also equal to 0. In case I1, 0y (a, b, ¢) = —1, 03(a, b, ¢) = —{(a +b+ c)/p}, while the
right hand side of (b) is visibly equal to {(a + b + ¢)/p}. The remaining cases are
similar; in each case, parts (a) and (b) can be verified by a straightforward calculation
which is left to the reader. Part (c) follows directly from the definition. Part (d)
follows from (c) and the fact that 0(a, b, ¢), pO2(a, b, ¢) are integers.

Let us now see how, assuming the truth of Proposition 4.21, we can complete the
proof of Theorem 4.15. Apply 3.7 (a) to the tame G-cover X[1/p]— Y[1/p],
(o — 1)(1517 —D(g¢—1) and F = Oxq1/p). Using 4.20 and 4.21 we obtain:

[a. b, c]- Q((Ox)* = > 7,(3)" (4.23)
teT
where y, € Gy(b}) is the element given in Proposition 4.21 for y =y, ¢ = 18, = x5
Suppose that ¢ € T corresponds to the distinguished element of the orbit 74 for
which yy(a,) ={,. Then <y, >=1/p. If xe 4, then y, (Op )= [x]fl;{,((’);,;),
LN — Oy ) = [x] 7 5, (N] — Op), and < x4 >,v= {x/p}. We have

a+ b)x ax bx
< }{818 - XS - Xg >ix= {%} - {?} — {?}, etc.

By 4.23, Lemma 4.22, Proposition 4.21 and the above we get:
[a,b, ] - Q(Ox))* == D" Y (Oi(xa, xb, x)[x] ™" £ (Op) "+

teT/A xeA
+ pOa(xa, xb, x)[x] " 1, (N] — Oy )'e).

Theorem 4.15 for £ = [a, b, c] follows now from the above equation, Lemma 4.22 (¢)
and Stickelberger’s theorem (see Remark 2).

Proofof4.21. A character y : G—R* = R; gives a (projective) R'[G]-module which
we will denote again by y. By the discussion before the statement of Proposition
3.7, (m(Ox) @ y~ )Y is a locally free Oy--sheaf which is a subsheaf of the sheaf
of algebras 7, (Ox-). We can see that it has rank 1; it is therefore a line bundle over
Y’ which we will denote by L,. According to our notations of Section 3 the class
of L, in Ko(Y’) is equal to Fy/(x~', Oxqi/p)-
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LEMMA 4.24. (i) We have ©(Ox)= €D Ly
0<a<p-1
(i1) The ring structure on m,(Oy) induces a morphism of line bundles

a,; L, L, — L,,.
(iit) For each irreducible component b, we have

~ N/OP<Y>:
Ly, = N/,

(iv) Recall that for each te€ T, <y+ ) —yy >=0 or 1. There is an exact
sequence:

a, ., BV
0L, L, = Lxxfa@ <y+7 = > N0
teT

Proof. The subsheaf L, = (7, (Ox) ® 71 C 7.(Oy) is the y—isotypic component
of 7/ (Ox). Therefore the decomposition of (i) is the isotypic decomposition of
7, (Oy) for the characters of G. Part (ii) follows. To show parts (iii) and (iv) we
argue as follows. By Kummer theory, the function field K(X’) of X’ is obtained
by adjoining the p-th root of a non-zero element f of the function field K(Y’) of
Y’. Let Oy, be the local ring of Y’ at a point y; by multiplying /" by a p-th power
in K(Y') we can assume that f is in Oy ,. Then the semi-localization
X’ xy Spec(Oy,) is the normalization of Spec(Oy ,[U]/(UP —f)). In fact, since
X’ is regular, this normalization has to be a regular scheme. Using the fact that
Oy, isaregular local ring and therefore a UFD, we can see that this happens exactly
when fis of the form g”h°u with g, h, u € Oy, h a regular papameter of the maximal
ideal of Oy ,, ua unit of Oy ,, and e either relatively prime to p or equal to zero. Then
this normalization is equal to Spec(Oy ,[T]/(T? — hu)) in the case that e is relatively
prime to p and to Spec(Oy ,[T1/(T? — u)) if e = 0. We conclude that the pull-back of
the cover n’' : X'—= Y’ by Spec(Oy,)— Y’ is isomorphic to

Spec(Oy ,[T1/(T? — z)) — Spec(Oy ). (4.25)

Here the element z = hu of Oy, has divisor equal to the local branch locus
b' N Spec(Oy ). Therefore, if y is not on &', then T is a unit; if y is on b} then
T gives a local uniformizer for B;. By the definitions of ¢, and < >, the action
of G satisfies g - TP<%>' = y,(g)TP=<%>'. We conclude that for 0 <a <p—1, the
element TP<%>1 = T9<X>: gives a local generator of LyuC 7, (Oyx) over y. Part (iii)
now follows since 7" mod (z) is a local generator for N;. Part (iv) also follows in
a similar fashion after comparing the local generators of the three sheaves in the
exact sequence.
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Let us now proceed with the proof of Proposition 4.21. We have

Fy(('=D@ ' =Dy =1) =

(4.26)
:le"// _LX¢ _Ld)n// —L1¢+LX+L¢+L¢, —1.

Note that any two line bundles Ny and N, on the 1-dimensional scheme 5/, the class
(N1 — Op)(N2 — Op) isin FyzKo(b;). This group is trivial by [F-L] Cor. V. 3.10, and so
we have Ny ® Ny — Oy = (N1 — Op) + (N2 — Op). We can conclude that for any
integer m, we have

Nt@m = O/,; + m(N,’ - O/,;). 4.27)

For simplicity, we set 1, = i (Op), n, = i, (N;) in Ko(Y’). By 4.24 (iv) and 4.27 we
obtain the following relations in the ring Ky(Y’):

Ly=LLy—Y <z$p—r2—¢> (Li+p<yp> (n—1)), (4.28)
teT

Ly =L,Ly — Z <w—yx—v¥> 0 +p<yh>(n—1)), (4.29)
teT

Loy =LsLy =Y <y —¢— > (L +p < > (n,—1,)). (4.30)
teT

We also have:

Lypy = LygLy = > < 1% — 2 — ¥ > (I, +p < 1V > (0, — 1,)).
teT

This combined with 4.28 gives

Lypy = LyLyLy — Z <xp—1—¢>Li+p<ydp> (n—1)Ly
teT

=Y <a¥ —xd =¥ > (L +p <y > (n,— 1,)).

teT

(4.31)

By [F-L] Cor. V. 3.10, we have (N, — Op) Ly —Op) =0 in Ko(b;). We obtain

(n; — 1)Ly = (l;*(N[, — Oh;))Ll/, = l;*((NI/ — Ob;)Ll//lbg) = l;*(N[, - 0/,;) =n;—1,.
Using this, 4.24 (iii), and 4.27 we obtain

Li+p<yp> =1Ly =1,+p <Y+ yp > (n,—1,).
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By combining the above relation with 4.31 we can now conclude

Lygpy =L LoLy =Y <y¢y—y—d—¢ > 1,
teT

—pY (<y+ap=<yp—r1—¢>+ (4.32)

teT

+ < xQY =< Y — 2P — ¥ >)(n — 1,).
Combining now 4.26 with 4.28, 4.29, 4.30 and 4.32 gives that

Fy((7' =D~ =D = 1) = (L, = DLy = DLy = D+ Y_ir, (),

teT

with y, as in the statement of Proposition 4.21. Now note that (L, — 1)(Ly — 1)
(Ly —1) is in ES’KO(Y/). Since dim(Y’) =2, FfKo(Y’) = (0). Hence, (L, —1)
(Ly —1)(Ly —1)=01in Ko(Y’) and the Proposition now follows.
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