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Abstract. We describe a general method for calculating equivariant Euler characteristics. The
method exploits the fact that the g-¢ltration on the Grothendieck group of vector bundles on
aNoetherian quasi-projective schemehas ¢nite length; it allows us to capture torsion information
which is usually ignored by equivariant Riemann^Roch theorems. As applications, we study the
G-module structure of the coherent cohomology of schemes with a free action by a ¢nite group
G and, under certain assumptions, we give an explicit formula for the equivariant Euler charac-
teristic w�OX � � H0�X ;OX � ÿH1�X ;OX � in the Grothendieck group of ¢nitely generated
Z�G�-modules, when X is a curve over Z and G has prime order.
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1. Introduction

Let R be the ring of integers of the number ¢eld K and suppose X is a £at projective
scheme over Spec�R� that supports an action of a ¢nite group G. If F is a
G-equivariant coherent OX -sheaf, the coherent cohomology groups Hi�X ;F� are
¢nitely generated R�G�^modules. We can consider the equivariant Euler character-
istic

w�F� �
X
i

�ÿ1�iHi�X ;F�

as an element of the Grothendieck group G0�R�G�� of ¢nitely generated
R�G�^modules. The purpose of this paper is to describe a technique for obtaining
information about such equivariant Euler characteristics.

By applying the coherent Lefschetz^Riemann^Roch theorem on the generic ¢ber
XK of X one can calculate the character of the virtual representation w�F� from
data obtained from the ¢xed points of the action on XK (see for example [BFQ]).
The character determines the image of w�F� under the natural homomorphism
r : G0�R�G�� ! G0�K �G��. However, the kernel of r is a ¢nite abelian group and
its elements cannot be detected by the standard (equivariant) Riemann^Roch-type
theorems which usually neglect torsion. Some torsion information can be obtained
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using the Lefschetz^type theorems of [Th2] and the re¢ned equivariant
Riemann-Roch theorems of [CEPT2]. In this paper, we describe an alternative
approach that in some cases allows us to capture a lot more. The idea is to exploit
the fact that the g-¢ltration on the Grothendieck group of vector bundles on a
Noetherian quasi-projective scheme of dimension d terminates after the d � 1-th
step. This implies relations between the classes of vector bundles over Y � X=G
which are obtained from various representations of G using the cover X!Y .
The main observation of this paper is that such relations alone can be used to deduce
information about equivariant Euler characteristics. The argument is described in
Section 3. In fact, in the case that the G-action on X is free or more generally tame,
the method can be applied to the calculation of the ¢ner `projective Euler
characteristics' of Chinburg (see [C]).

As examples, we ¢rst apply the g-¢ltration argument to obtain information on the
Galois module structure of coherent cohomology in the case that the action of G is
free. This extends certain results of [P] from the case of curves to higher dimensional
cases. We then use it to determine the equivariant arithmetic genus w�OX � for a cyclic
prime order cover X ! Y of curves over Z (see Theorem 4.15, also Remark 3). In
both cases, we show that there is a concrete connection between our problem
and the triviality of certain eigenspaces of class groups of prime cyclotomic ¢elds.
In the case of a cover of curves, the answer can be expressed in terms of a `second
Stickelberger element' of the group ringQ�Gal�Q�zp�=Q��. In this case, we also show
how, under some additional hypotheses, our result determines the class in G0�Z�G��
of the Z�G�^lattice of regular differentials of X (Remark 5). When the cover
X ! Y is tamely rami¢ed, this allows us to determine the Z�G�^lattice of regular
differentials up to isomorphism from data obtained from the rami¢cation locus
of the cover (Remark 6).

Results of similar character can be obtained using a combination of various
equivariant Riemann^Roch theorems. However, our approach here is essentially
elementary and provides more precise information. For example, in the case of
a cyclic prime order cover X ! Y of curves over Z these Riemann^Roch theorems
do not suf¢ce to completely determine w�OX � except when the prime is regular.
The result in this paper gives, to our knowledge, the ¢rst instance in which
w�OX � is determined completely for all primes.

2. Grothendieck Groups

Let B be an associative ring with unit, which we assume is left Noetherian.We denote
by G0�B� (resp. K0�B�) the Grothendieck group of ¢nitely generated (resp. ¢nitely
generated projective) left B^modules, and by G0�B�red (resp. K0�B�red) the quotient
of G0�B� (resp. K0�B�) by the subgroup generated by the class �B� of the free
B^module B. If B is commutative, we will denote by Pic�B� the Picard group of B.

If B is commutative and Noetherian, a ¢nitely generated B-module is projective if
and only if it is locally free. In this case, we will often denote K0�B�red by Cl�B�.
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Taking highest exterior powers of locally free B^modules de¢nes in this case a group
homomorphism Cl�B�!Pic�B� which is an isomorphism if B has Krull dimension 1.

In what follows, all the schemes will be separated and Noetherian. For a scheme
Y , we will denote by G0�Y � (resp. K0�Y �) the Grothendieck group of coherent (resp.
coherent locally free) sheaves of OY -modules, and by Pic�Y � the Picard group of
Y . Sometimes we will use the same symbol to denote both a coherent sheaf (resp.
invertible sheaf) and its class in a Grothendieck group (resp. Picard group). This
should not cause any confusion.

In everything that follows, G is a ¢nite group. For a commutative ring A, we
denote by A�G� the group ring of G with coef¢cients in A.

Let S � Spec�A� be an af¢ne Noetherian scheme and suppose that f : X!S is an
S^scheme which supports a right action ofG. A coherent (resp. locally free coherent)
sheaf of OX -G^modules F on X is a coherent (resp. locally free coherent) sheaf of
OX^modules with G action compatible with the action of G on OX in the following
sense: Suppose x 2 X and s 2 G. Let x � s be the image of x under s. The action
of s on OX and on F gives homomorphisms of stalks OX ;x�s!OX ;x and
F x�s ! F x; both of these homomorphisms will also be denoted by s, and the con-
dition is that s�a �m� � s�a� � s�m� for all a 2 OX ;x�s and m 2 F x�s. We will often
use the term G^equivariant coherent (resp. locally free coherent) sheaf instead of
coherent (resp. locally free coherent) OX -G^sheaf.

We denote by G0�G;X � (resp. K0�G;X �) the Grothendieck group of G^equivariant
coherent (resp. locally free coherent) sheaves on X with relations induced by short
exact sequences of G-equivariant morphisms. If X � Spec�R� is af¢ne and G acts
trivially on X there is a natural identi¢cation G0�G;X � � G0�R�G��.

The group K0�G;X � has actually a l^ring structure (see [F-L], I, ½1) via

�F � � �G� � �F 
OX G�; li��F �� � �^iF�;
when F , G are locally free OX -G^modules. Here the tensor product is taken with
diagonal left G^action: s�f 
 g� � �sf 
 sg�. Denote by fFn

gK0�G;X �gnX 0 the
(decreasing) g^¢ltration on K0�G;X � (see [F-L], p. 47).

The group G0�G;X � becomes a K0�G;X �^module with the rule �F � � �G� �
�F 
OX G� for �F � 2 K0�G;X �, �G� 2 G0�G;X �. If X is regular and has an ample
invertible sheaf, then the forgetful homomorphism

cX : K0�G;X � ÿ! G0�G;X �
is an isomorphism ([Th1], 5.7, 5.8). If X � Spec�R� is af¢ne regular and G acts
trivially on X then K0�G;X � � G0�G;X � � G0�R�G��.

For anyG^equivariant S^morphism q : X 0!X between theG^schemes f 0 : X 0!S,
f : X!S, there is a l^ring homomorphism

q� : K0�G;X � ÿ! K0�G;X 0�
given by q���F �� � �OX 0 
OX F� andX!K0�G;X � gives a contravariant functor from
the category of G^schemes over S to the category of l^rings.
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If q is proper, there is an Euler characteristic group homomorphism

q� : G0�G;X 0� ÿ! G0�G;X �

given by

q���F �� �
X
i

�ÿ1�i�Riq��F��

and X!G0�G;X � gives a covariant functor from the category of G^schemes over S
with proper morphisms to the category of abelian groups.

From now on we will assume that f : X!S is quasi^projective. Then by [SGA1],
Prop. 1.8, p. 108, there is a quotient p : X!Y :� X=G. The morphism p is
¢nite. For each coherent sheaf G on X , p�G is a G^equivariant sheaf on Y . If
p : X!Y is £at, then p� de¢nes a group homomorphism p� : G0�Y � ÿ!
G0�G;X �.

We will say that theG^action onX is tame, if at every point x ofX , the order of the
inertia subgroup Ix � G is relatively prime to the characteristic of the residue ¢eld
k�x�.

We will say that the action of G on X is free when Ix � f1g for every point x of X .
If the action of G on X is free, then p : X!Y is a G^torsor, i.e p : X!Y is

faithfully £at and the morphism

X � G ÿ! X �Y X ; �x; g�7!�xg; x�;

is an isomorphism (see [SGA1], Prop. 2.6 on p. 115). The morphism p is then ¢nite
ëtale. In this case, by descent, each G-equivariant coherent sheaf F on X is of
the form p��G� for G � �p��F ��G a coherent sheaf on Y . Therefore, if the G-action
on X is free, p� : G0�Y � ÿ! G0�G;X � is an isomorphism.

By [Ra], Ch. X, Lemme 1, any action of a ¢nite group on a semilocal strictly
henselian ring is induced from an action of inertia. Therefore, we can see by an
argument as in the proof of Prop. 7.2 of [CEPT1] that the action of G on X is tame,
with the de¢nition given above, if and only if it is `numerically tame' as de¢ned
in loc. cit. If in addition f is projective, then by [CEPT1], Prop. 7.2 and Th. 8.3
(see also [C], Section 2), there is a `cohomologically trivial' Euler characteristic
homomorphism

f CT
� : G0�G;X � ÿ! CT�A�G��

where CT�A�G�� is the Grothendieck group of ¢nitely generated A�G�^modules which
are G^cohomologically trivial.

Denote by n : CT�A�G��!G0�A�G�� the forgetful homomorphism. Then f CT
� re¢nes

f� in the sense that n � f CT
� � f�.

When f : X!S is clear from the context, we will write w instead of f� and wCT

instead of f CT
� .
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3. Galois Modules and the g^Filtration

In this section, we explain the main idea of this paper. We will assume throughout
that S � Spec�R� is an af¢ne Noetherian scheme which is equidimensional of
dimension 1. Let h : Y!S be projective and £at with Y equidimensional of
dimension d � 1. We will consider a G-cover p : X!Y ; i.e the morphism p is ¢nite
and Y is identi¢ed with the quotient X=G. Denote by f the structure morphism
f : X!S, f � h � p. Let V � Y be the largest Zariski open subset such that
pU : U :� pÿ1�V �!V is a G^torsor. The set V is the complement of the the image
p�Z� of the Zariski closed subset Z � X consisting of points with non-trivial inertia
subgroups. Since p is ¢nite, this image is closed. Denote by fU : U!S the restriction
of the morphism f on U .

Consider the l^ring homomorphisms

f � : K0�G;S� ÿ! K0�G;X �; f �U : K0�G;S� ÿ! K0�G;U�:

Using f � (resp. f �U ) we can think of K0�G;X � (resp. K0�G;U�) as K0�G;S�^algebras.

PROPOSITION 3.1. With the above assumptions and notations, we have:

(i) Fd�2
g K0�G;S� � K0�G;U� � �0�,

(ii) Fd�2
g K0�G;S� � G0�G;U� � �0�.

Proof. By descent (see Section 2), the pull^back p�U : K0�V �!K0�G;U� is a
l^ring isomorphism. We deduce that there is a l^ring homomorphism
FU : K0�G;S� ÿ!K0�V � characterized by p�U � FU � f �U . If L is an R^projective
R�G�^module we have FU �L� � �pU ��OU 
R L��G � �pU ��OU � 
R L�G. Since FU is
a l^ring homomorphism, we have FU �a� 2 Fd�2

g K0�V � for a 2 Fd�2
g K0�S;G�. Under

our assumptions, V is quasi-projective and dim�V �W d � 1. By [F-L], Cor. V.3.10,
Fd�2
g K0�V � � �0�. Part (i) follows from now from the relation p�U � FU � f �U and

the de¢nition of the K0�G;S�^algebra structure on K0�G;U�. Part (ii) also follows
since G0�G;U� is a module over the unitary ring K0�G;U�.

COROLLARY 3.2. If p : X!Y is a G^torsor then

(i) Fd�2
g K0�G;S� � K0�G;X � � �0�,

(ii) Fd�2
g K0�G;S� � G0�G;X � � �0�.

Now let I�G;S� � F 1
gK0�G;S� be the augmentation ideal of the ring K0�G;S�. We

have I�G;S�d�2 � Fd�2
g K0�G;S�. Therefore, Proposition 3.1, implies

I�G;S�d�2 � K0�G;U� � �0�; I�G;S�d�2 � G0�G;U� � �0�:
Thus, we obtain the following crucial special case of [CEPT2] Theorem 6.1:

COROLLARY 3.3 (`Segal concentration'). If r is a prime ideal of K0�G;S� and M a
K0�G;S�-module, denote by Mr the localization of M at r. If r does not contain
I�G;S�, then K0�G;U�r � �0�; G0�G;U�r � �0�:
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Now denote by iX : Z � �X ÿU�red!X , iY : �Y ÿ V �red!Y , the natural closed
immersions, and by jX : U!X , jY : V!Y , the natural open immersions.

COROLLARY 3.4. Suppose that a is in Fd�2
g K0�G;S� andF is a G^equivariant coher-

ent sheaf on X. Then there exists a�F� in G0�G;Z� such that a � F � iX� �a�F ��:
Proof. By [Th1], Theorem 2.7, there is an exact sequence

G0�G;Z� ÿ!
iX� G0�G;X � ÿ!

j�X G0�G;U� ÿ! 0:

Using Proposition 3.1 (ii), we obtain that j�X �a � F � � a � j�X �F� � 0 and the proof
follows. &

Given a G^equivariant coherent sheaf F on X our objective is to calculate

f��F� �
X
i

�ÿ1�i�Hi�X ;F�� 2 G0�R�G��:

The strategy for applying the above results to this problem is the following: Let R0 be
a commutative one-dimensional Noetherian £at R^algebra. We set S0 � Spec�R0�; in
general we denote by X 0, Y 0, etc., the base changes X 
R R0, Y 
R R0, etc. Suppose
now that a is in Fd�2

g K0�G;S0�. Then Corollary 3.4 applied to the G^cover
p0 : X 0!Y 0 over S0 together with the projection formula imply that

a � f 0��F 0� � �f jZ0���a�F 0��; �3:5�

for some a�F 0� 2 G0�G;Z0�. Here Z0 � �X 0 ÿU 0�red is the reduced locus of nontrivial
inertia for p0 and

�f jZ0�� : G0�G;Z0� ÿ! G0�R0�G��

is the G-equivariant Euler characteristic. For certain choices of R0 and a in
Fd�2
g K0�G;S0�, an element a�F 0� as above can be determined explicitly. The

calculation of �f jZ0���a�F 0�� is then a problem for a scheme of smaller dimension
and can be often resolved. In fact, in the case of free G^action this scheme is empty.
By £at base change, f 0��F 0� � f��F� 
R R0 in G0�R0�G�� and so, this way, we can obtain
a � �f��F� 
R R0�. The information which is lost is measured by the subgroup of
classes C in G0�R�G�� with the property that for each R0 and a 2 Fd�2

g K0�G;S0�
as above, a � �C 
R R0� � 0 2 G0�R0�G��. &

The above approach can be re¢ned and more precise information can be obtained
if the G-action on X is tame. We will assume that this is the case for the rest of this
section.

We start with a module-theoretic lemma.
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LEMMA 3.6. If R0 is a commutative R^algebra then �L;P� 7! �P 
R L�G de¢nes a
bilinear homomorphism

Q : K0�G;S0� � K0�R�G�� ÿ! K0�R0�:

For simplicity, for a 2 K0�G;S0�, we will denote Q�a; � : K0�R�G��!K0�R0� by Qa.
Proof. It is enough to verify that for a ¢nitely generated R0�G�-module L which is

R0^projective, and a ¢nitely generated projective R�G�-module P, P 
R L �
�P 
R R0� 
R0 L is a projective R0�G�-module and �P 
R L�G is R0-projective. Write
P as a direct summand of a free R�G�-module F and take invariants by G. Then
�P 
R L�G is a direct summand of �F 
R L�G. Therefore, it is enough to show that
F 
R L is projective R0�G�-module and �F 
R L�G is a projective R0-module. By [Sw]
Lemma 5.1, the module R0�G� 
R0 L is R0�G�-free and these statements follow. &

Under our assumption of tame G-action, by [CEPT1], ½8 (see also [C], ½2), for
every G^equivariant coherent sheaf F on X the coherent OY �G�^sheaf p��F� has
G^cohomologically trivial stalks. It follows that the functor F ! p��F�G is exact.
We can conclude that in the case of tameG^action there is a bilinear homomorphism

FY � ; � : K0�G;S� � G0�G;X � ÿ! G0�Y �
given by

FY �L;F� � �p��F 
R L��G � �p��F� 
R L�G:

If p is £at and F is locally free as an OX -sheaf then p��F�G is locally free as an
OY -sheaf. This is shown as follows. Let OY ;y be the local ring of Y at y 2 Y ,
My its maximal ideal and k�y� its residue ¢eld. Under our assumptions, p��F�y
is a free OY ;y-module. Following the arguments of [C] ½2 and [CEPT1] ½8, we
see that the k�y��G�-module p��F�y=Myp��F�y is G-cohomologically trivial and
therefore k�y��G�-projective. By [Se] 14.4, it follows that p��F�y is a projective
OY ;y�G�-module. Using a direct summand argument as in the proof of 3.5, we con-
clude that p��F�Gy is a projective (and therefore) free OY ;y-module. Therefore, if
in addition p is £at, we can de¢ne

FY � ; � : K0�G;S� � K0�G;X � ÿ! K0�Y �:
by the same formula as above.

From here and on, we suppose that R is a Dedekind ring. Then every
G-cohomologically trivial R�G�-module has projective dimension of at most one
as an R�G�-module, and by Schanuel's lemma we see that CT�R�G�� can be identi¢ed
with K0�R�G�� (see [C] 4.1). If R is the ring of integers of the number ¢eld K , we
will say that a R�G�-module M is locally free if for each prime P of R, the tensor
product M 
R RP is a free RP�G�-module. For such an R, by a theorem of Swan
([Sw], see also [C] 4.1), the notions of projective and locally free coincide for ¢nitely
generated R�G�-modules. Therefore, when R is the ring of integers of a number ¢eld,
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we may identifyK0�R�G��red with the class group Cl�R�G�� of ¢nitely generated locally
free R�G�-modules.

PROPOSITION 3.7.Suppose that R is aDedekind ring, R0 a commutative Noetherian
R^algebra and a an element of K0�G;S0�. With the above notations we have:

(a) If F is a G^equivariant coherent OX-sheaf and R0 is £at over R then

cR0 �Qa�f CT
� �F�� � h0��FY 0 �a;F0�� in G0�R0�:

Here F0 is the base change F 
R R0, cR0 : K0�R0�!G0�R0� is the forgetful
homomorphism and h0� is the Euler characteristic for the morphism h0 : Y 0!S0.

(b) If p is £at and F is a G^equivariant coherent locally free OX-sheaf then

Qa�f CT
� �F�� � h0��FY 0 �a;F0�� in K0�R0�;

where we denote by h0� : K0�Y 0�!K0�R0� the `locally free' Euler characteristic for the
projective £at morphism h0 : Y 0!S0.

Proof. Suppose that V is a ¢nite af¢ne cover of Y and that C��V; p��F�� is the
corresponding Cí ech complex that calculates the cohomology of the OY �G�-sheaf
p��F�. Let �P�� be a bounded complex of ¢nitely generated projective R�G�^modules
quasi^isomorphic to C��V; p��F�� (see [C] ½2, [CEPT1] ½8). By de¢nition

f CT�F� �
X
i

�ÿ1�i�Pi�:

Since L is R0^projective, the terms of the complex �P� 
R L� are projective
R0�G�^modules ([Sw], Proposition 5.1, see also the proof of Proposition 3.5).
Denote by V0 the ¢nite af¢ne cover of Y 0 obtained from V by the af¢ne base
change Y 0!Y . Under the assumptions of either (a) or (b) the complex
�P� 
R L� is quasi^isomorphic to the Cech complex C��V0; p0��F 0� 
R0 L� which
calculates the cohomology of the OY 0 �G�^sheaf p0��F 0� 
R0 L � p0��F 
R L�. By
[C] ½2, [CEPT1] ½8, the terms of C��V0; p0��F 0� 
R0 L� are G^cohomologically trivial
R0�G�^modules. The complexes �P� 
R L� and C��V0; p0��F 0� 
R0 L� are quasi-
isomorphic and both have terms which are G^cohomologically trivial
R0�G�^modules. A mapping cylinder argument shows that the complexes of
G^invariants �P� 
 L�G and C��V0; p0��F 0� 
R0 L�G are also quasi^isomorphic. Since
C��V0; p0��F 0� 
R0 L�G � C��V0; �p0��F 0� 
R0 L�G�, the proof now follows by
unraveling the de¢nitions. &

Let V � Y , U � pÿ1�V �, be as in the beginning of the section. For a 2 K0�G;S0�
and F 2 G0�G;X � (resp. F 2 K0�G;X �), the restriction of FY 0 �a;F0� 2 G0�Y 0� (resp.
FY 0 �a;F0� 2 K0�Y 0�) to G0�V 0� (resp. K0�V 0�) is equal to FU 0 �a� � p��F�GjV 0 , where
FU is de¢ned in the proof of 3.1. Hence, by 3.1, if a is in Fd�2

g K0�G;S0� this restriction
is zero. Therefore FY 0 �a;F0� (resp. FY 0 �a;F0�) is supported on the branch locus
Y 0 ÿ V 0. Using 3.7, we see that if a is in Fd�2

g K0�G;S0�, then the calculation of
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cR0 �Qa�f CT
� �F�� (resp. Qa�f CT

� �F��) is a problem for a scheme of smaller dimension.
The information which is lost in this case, is measured by the subgroup of
K0�R�G�� which consists of the classes C such that for each a 2 Fd�2K0�G;S0�
and R0 as in 3.7 (a) (resp. (b)), we have cR0 �Qa�C� � 0 in G0�R0� (resp.
Qa�C� � 0 in K0�R0�). In some cases, this subgroup is trivial and we can completely
determine f CT

� �F � (as for example in the situation of Section 4.b).

Remark: Suppose R are the integers of the number ¢eld K and ¢x an embedding
K � C. Let �K � �Q be an algebraic closure of K in C, and let OK � Gal� �Q=K�. Also
denote by R�G� the Grothendieck group of ¢nite dimensional representations of
G over �Q, which we identify with the group of characters. Let J� �Q� be the direct
limit limK� �Q J�L� of the idele groups J�L�, where L runs over all ¢nite extensions
ofK in �Q. The Galois groupOK acts on R�G� and J� �Q�. Then according to Fro« hlich's
`Hom^description' of the class group, there is a natural surjective homomorphism

m : HomOK �R�G�; J� �Q�� ÿ! Cl�R�G��
with kernel T � HomOK �R�G�; �K�� �Det�U�R�G��� (see [F] I, ½2, Th. 1, for the de¢-
nition of m and Det�U�R�G��� ).

Now consider the homomorphism obtained by restriction

Rd�2 : HomOK �R�G�; J� �Q�� ÿ! HomOK �Fd�2
g R�G�; J� �Q��

and let Td�2 � Rd�2�T �. The above suggest that, when X has dimension d � 1, it
should be possible to determine the image of f CT

� �F �red 2 Cl�R�G�� under the
homomorphism

Rd�2 : Cl�R�G�� ÿ! HomOK �Fd�2
g R�G�; J� �Q��=Td�2:

from data associated to sheaves supported on the rami¢cation locus of the cover
X!Y . We would like to return to this in a subsequent paper.

4. Applications

From here and on, we assume that R � Z and we set S � Spec�Z�. Recall that we
have natural identi¢cations CT�Z�G�� � K0�Z�G�� and K0�Z�G��red � Cl�Z�G��. Sup-
pose thatMG is a maximal Z^order in Q�G� containing Z�G�. The kernel subgroup
D�Z�G�� of Cl�Z�G�� is de¢ned as the kernel of the homomorphism Cl�Z�G�� !
Cl�MG� induced by tensoring modules with MG over Z�G�. It is independent of
the choice of the maximal orderMG ([F], I. ½2).

If f : X!S is a projective S^scheme with tame G^action, we will denote by f P� the
composition of f CT

� : G0�G;X �!CT�Z�G�� � K0�Z�G�� with the stabilization
homomorphism K0�Z�G��!Cl�Z�G��. When f : X!S is ¢xed from the context
we will usually write wP instead of f P� .

GALOIS MODULE STRUCTURE AND THE g^FILTRATION 87

https://doi.org/10.1023/A:1001722414377 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001722414377


4.a. Free Actions

In this section, we will apply the observations of Section 3 to the case of free actions.
In what follows, we will assume that p : X!Y is a G^torsor and that R � Z.

ForNX 1, let zN be a primitiveN-th root of unity. We identify Gal�Q�zN�=Q�with
�Z=NZ�� by sending a, �a;N� � 1, to sa de¢ned by sa�zN� � zaN . Now suppose that
N � p is a prime numer. Consider the Teichmuller character o : �Z=pZ�� ! Z�p
and let Ai

p be the direct summand of the p^primary part of the ideal class group
Cl�Q�zp�� on which sa 2 Gal�Q�zp�=Q� acts via multiplication by oi�a�.

Here is the main result of this section.

THEOREM 4.1. Let p : X!Y be a G^torsor, with Y projective and £at over Spec�Z�
and equidimensional of dimension d � 1. Suppose that for each prime p that divides the
order of G, and each k 2 �2;min�pÿ 2; d � 1��, we have Ak

p � �0�. Then, for every
G^equivariant coherent locally free OX-sheaf F , wP�F� is in the kernel subgroup
D�Z�G��.

Since, by [CR] 49.34, D�Z�G�� is in the kernel of the forgetful homomorphism
Cl�Z�G�� ! G0�Z�G��red, we obtain the following:

COROLLARY 4.2. Under the above assumptions on p : X!Y, F , and on the prime
divisors of jGj, w�F� is equal in G0�Z�G�� to plus or minus the class of a free
Z�G�^module.

let Bn be the n-th Bernoulli number de¢ned by

t
et ÿ 1

�
X1
n�0

Bn
tn

n!
:

Suppose that p is a prime and 1W kW pÿ 1. If p � 2, we set Dk;p � D1;2 � 1. If
p > 2, we set

Dk;p �
1; if k � 1 or k � pÿ 1;
Num�Bk�; if k is even;
Num�Bpÿk�; if k > 1 is odd:

8<:
where `Num' denotes the numerator. It follows from Herbrand's theorem ([Wa],
Theorem 6.17) and [Wa], Theorem 10.9, that if p 6 jDk;p, then Ak

p � �0�. We deduce:

COROLLARY 4.3. Let p : X!Y and F be as in the statement of Theorem 4.1. Sup-
pose that for each prime p that divides the order of G, and each
k 2 �2;min�pÿ 2; d � 1��, we have p 6 jDk;p. Then wP�F� is in D�Z�G��.

We have A0
p � A1

p � �0� ([Wa], 6.16). Therefore, if pÿ 2W d � 1, the condition of
4.1 translates to requiring that the prime p is regular. The result is more effective
for p >> d � 1.
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We have Num�B2� � 1, and so p 6 jD2;p for all primes p. Hence, Corollary 4.3 for
d � 1 � dim�X � � 2, gives that wP�F� is in D�Z�G�� for all G^equivariant coherent
locally free OX -sheaves F . This was also shown in [P] (Theorem 1.1).

Before we give the proof of Theorem 4.1 we digress to consider the case that G is
abelian in a somewhat more general context.

4.a.1. Abelian Groups

In this subsection, G is abelian and R � Z. If n is an integer, denote by
fn : Z�G�!Z�G� the ring homomorphism which is such that fn�g� � gn for g 2 G.
If M is a Z�G�^module, we will denote by �n� �M the Z�G�^module
M 
Z�G�;fn

Z�G�. If gcd�n; jGj� � 1, we can think of �n� �M as having the same under-
lying group as M and with new G^action � satisfying gn �m � gm for g 2 G, m 2M.
We can see that sending the class of M to the class of �n� �M gives actions of
the multiplicative monoid Z on K0�Z�G�� and Cl�Z�G��.

Suppose now that R0 is an R^algebra, c : G!R0� is a character of G, and P a
¢nitely generated projective R�G�^module. The character c de¢nes a structure of
R0�G�^module on R0. We will use the same symbol c to denote this R0�G�^module.
The character c also de¢nes a ring homomorphism ~c : Z�G�!R0. Since P is a pro-
jective R�G�^module, P 
R cÿ1 with diagonal left G^action is a projective
R0�G�-module (see the proof of 3.6) and therefore G^cohomologically trivial. As
a result, the natural homomorphism

�P 
R cÿ1�G!�P 
R cÿ1�G

from G-coinvariants to G-invariants given by multiplication by
P

g2G g is an
isomorphism (see [A-W] ½6). By de¢nition, �P 
R cÿ1�G � P 
Z�G�; ~c R0 and so with
the notations of Proposition 3.5, we have:

Qcÿ1 �P� � P 
Z�G�; ~c R0: �4:4�

Hence, from the above discussion, we obtain:

Qc��a� � P� � Qca �P�: �4:5�

Suppose that R0 � Z�zN �. There is an action of the Galois group Gal�Q�zN �=Q� on
K0�Z�zN ��which, for an idealA, satis¢es s � �A� � �s�A��. With the above notations, if
gcd�a;N� � 1, we have:

Qc��a� � P� � Qca �P� � sa�Qc�P��: �4:6�
Now suppose that R0 � Z�G�. Over R0, we have the character L which corresponds to
Z�G�!Z�G� given by g!gÿ1. If k is an integer, by 4.4 and 4.5, we obtain that

QLk : K0�Z�G��ÿ!K0�R0� � K0�Z�G��
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is given by P 7!�k� � P. For every k 2 Z, the element

V �k; d� � Lk � �Lÿ 1� � � � �Lÿ 1� 2 K0�G;S0�

(with number of factors �Lÿ 1� equal to d � 2), is in Fd�2
g K0�G;S0�. Expanding

V �k; d� we ¢nd

V �k; d� �
Xd�2
i�0

d � 2
i

� �
�ÿ1�d�2ÿiLk�i:

Suppose now that p : X!Y is a G^torsor (G abelian) and Y , F are as in the state-
ment of Theorem 4.1. Using 3.2 and 3.7 (b) applied to R0 � Z�G� ^see the remarks
after the end of the proof of 3.7^ we obtain

QV �k;d��wCT�F��red �
Xd�2
i�0

d � 2
i

� �
�ÿ1�d�2ÿi�k� i� � wP�F� � 0 �4:7�

in Cl�Z�G��.
Now let A be an abelian group (in a moment we will take A to be the classgroup

Cl�Z�G��). We will consider functions f : Z!A. We de¢ne �D1f��n� �
f�n� 1� ÿ f�n� and inductively Dk�1f � Dk�D1f�.

LEMMA 4.8. (a) Suppose that f : Z!A is a function for which Dk�1f � 0. Then we
can write:

f�n� �
Xk
i�0

n
i

� �
ai

with a0; . . . ; ak, elements of A.
(b) For kX 0, we denote by pk : Z!Z the k-th power function pk�n� � nk. Then

Dlpk � 0 for l > k and Dkpk � k!.

(c) For kX 1, Dkf�n� �
Xk
i�0
�ÿ1�kÿi k

i

� �
f�n� i�.

Proof. Part (c) follows directly from the identity

n� 1
i

� �
ÿ n

i

� �
� n

i ÿ 1

� �
:

To prove (a) we apply induction on k. The statement is obviously true for k � 0. By
writing Dk�1f � Dk�D1f� and applying the induction hypothesis we can write

D1f�n� �
Xkÿ1
i�0

n
i

� �
ai�1:
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Also set a0 � f�0�. The above identity shows that the function f de¢ned by

f �n� � f�n� ÿ
Xk
i�0

n
i

� �
ai

satis¢es D1f � 0. We also have f �0� � 0 and so f is identically zero.
Part (b) is left to the reader.
We now de¢ne a function F : Z!Cl�Z�G�� by F�n� � �n� � wP�F�. By 4.7 above, for

each k 2 Z, we have

Xd�2
i�0

d � 2
i

� �
�ÿ1�d�2ÿiF�k� i� � 0:

which, by Lemma 4.4 (c), translates to Dd�2F � 0. By Lemma 4.8 (a) we can write:

F�n� �
Xd�1
i�0

n
i

� �
ai�F�; �4:9�

with ai�F�, i � 0; . . . ; d � 1, in Cl�Z�G��. Set m!! � m!�mÿ 1�! � � � 2!.

PROPOSITION 4.10. With the above assumptions and notations, there are elements
c0�F�; . . . ; cd�1�F� in Cl�Z�G��, such that for every integer n,

�n� � ci�F� � nici�F�; i � 0; 1; . . . ; d � 1;

and

�d � 1�!!�n� � wP�F� �
Xd�1
i�0

nici�F�:

Proof. For simplicity, we set C � wP�F� and ai � ai�F�. Consider the function
Ftop�n� � nd�1ad�1. We will show:

(i) Dd�1��d � 1�!Fÿ Ftop� � 0,
(ii) Ftop�n� � �n� � ad�1.
Set F1�n� � �d � 1�!F�n� ÿ Ftop�n�, C1 � �d � 1�!C ÿ ad�1. Assuming (i) and (ii),

we have Dd�1F1 � 0, F1�n� � �n� � C1, and the proposition will follow by an inductive
argument.

By 4.9, the function n 7!�d � 1�!F�n� ÿ Ftop�n� involves powers nl with d � 1 > l
only and hence (i) follows from 4.8 (b). It remains to show (ii). By 4.9 and Lemma
4.8 (b), ad�1 � �Dd�1F��0�. By 4.8 (c), we have

�Dd�1F��0� �
Xd�1
i�0
�ÿ1�d�1ÿi d � 1

i

� �
�i� � C;
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and so

�n� � ad�1 �
Xd�1
i�0
�ÿ1�d�1ÿi d � 1

i

� �
�ni� � C

�
Xd�1
i�0
�ÿ1�d�1ÿi d � 1

i

� �Xd�1
k�0

ni
k

� �
ak

�
Xd�1
k�0

ak
Xd�1
i�0
�ÿ1�d�1ÿi d � 1

i

� �
ni
k

� �
:

By 4.8 (c), the inner sum is equal to �Dd�1fk;n��0� where

fk;n�m� �
nm
k

� �
:

We see using 4.8 (b), that Dd�1fk;n � 0 if d � 1 > k, while �Dd�1fd�1;n��0� � nd�1. We
conclude that �n� � ad�1 � nd�1ad�1 which is (ii).

4.a.2. Proof of 4.1.

Recall that Cl�Z�G�� is a ¢nite abelian group which is aG0�Z�G��^module (see [Sw]). It
follows from [Sw], Proposition 5.1, and the de¢nition of the cohomologically trivial
Euler characteristic that wP : G0�G;X �ÿ!Cl�Z�G�� is a G0�Z�G��^homomorphism.
By 3.3 applied to U � X , wP�F� is supported on the maximal ideals of G0�Z�G�� that
contain the augmentation ideal I�G;S�. The proof of Prop. 4.5 in [P] shows that
if r � �p� � I�G;S� is such a maximal ideal then the localization Cl�Z�G��r injects
into Cl�Z�Gp�� where Gp is a p^Sylow subgroup of G. This shows that wP�F� is
supported only at ideals �p� � I�G;S� with p dividing the order jGj and therefore
that wP�F� is annihilated by a power of jGj. Now the arguments of the proof of
Prop. 4.5 in [P], show that it is enough to consider the case that G is a p^group,
p a prime. Then wP�F� is p-primary. By the argument in [P] p. 215, we can reduce
the proof to the case in which G is a basic p^group (see loc. cit.). For a 2-group,
Cl�MG� is of odd order by the arguments in [P], p. 216. Since wP�F� is 2-primary
the result follows. It remains to deal with the case that p is odd. Since the only basic
p^groups with p odd are cyclic, we may and will assume in what follows that G
is a cyclic group of order pN . In this case, we have

MG � �0W nWNZ�zpn �:

Hence, it follows that a class c 2 Cl�Z�G�� is in D�Z�G�� if and only if for every char-
acter w : G!Z�zpn ��, Qw�c� is trivial in Cl�Z�zpn ��.

If pW d � 1 the condition of Theorem 4.1 on p implies that p is regular; therefore
Cl�Z�zpn �� has order prime to p for all n ([Wa], 10.5). It follows that Cl�MG� has
order prime to p. Therefore, wP�F� is in D�Z�G��.
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Now assume that p > d � 1. Since wP�F� is p-primary, using Proposition 4.10, we
see that it is enough to show the following:

Fix k, 0W kW d � 1 < p, and consider c in Cl�Z�G�� such that �a� � c � akc for all
integers a. Then, under the condition of Theorem 4.1 on p, c is in the kernel subgroup
D�Z�G��.

We will begin by noticing that the above condition applied to a � pN gives that c is
p-primary. Consider a character of order pn, w : G!Z�zpn ��. We will show that the
class Qw�c� in Cl�Z�zpn �� is trivial. From 4.5 and the above property of c we have

Qwa �c� � Qw��a� � c� � akQw�c�: �4:11�

We apply this relation for a � pn, a � 1� pn. We obtain pnkQw�c� � 0,
��1� pn�k ÿ 1�Qw�c� � 0. If k � 0, the ¢rst equation gives Qw�c� � 0. Assume that
k 6� 0. We have

�1� pn�k ÿ 1 � pn�k� pn
k
2

� �
� � � � � pn�kÿ1��;

Since 0 < k < p, the factor in the parenthesis is prime to p and we obtain pnQw�c� � 0.
If gcd�a; p� � 1, by 4.6 and 4.11, we have

sa�Qw�c�� � akQw�c�: �4:12�

Write (p odd): �Z=pnZ�� � �Z=pZ�� � Z=pnÿ1Z. For f 2 �Z=pZ�� choose a�f � 2 Z
such that a�f � mod pn gives �f ; 0�. Then by the standard property of the Teichmuller
lift we have

o�f � � a�f � mod pn: �4:13�

For simplicity, we set Q � Qw�c�. By 4.12 and 4.13, we obtain

1
pÿ 1

X
f2�Z=pZ��

ok�f �sÿ1a�f ��Q� �
1

pÿ 1

X
f2�Z=pZ��

ok�f �a�f �ÿkQ � Q;

since pnQ � 0. We can conclude that Q is in the eigenspace of the p-primary part of
the classgroup of Q�zpn� on which Gal�Q�zp�=Q� ' �Z=pZ�� � Gal�Q�zpn �=Q� acts
via the k-th power of the Teichmuller character. By a basic result of Iwasawa this
eigenspace is trivial if the corresponding eigenspace Ak

p of the p-primary part of
the classgroup of Q�zp� is trivial (see [Wa] Prop. 13.22, p. 285, together with the
remarks on decomposition into character components on p. 291). Since A0

p � �0�,
A1

p � �0�, and 0 < kW d � 1, this is guaranteed by our assumption. We conclude
that Q is a trivial ideal class. By the above, this completes the proof of Theorem
4.1.
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4.b Groups of Prime Order

In this section, G is cyclic of prime order p. We assume that p : X!Y is a G^cover of
schemes which are regular, projective and £at over Spec�Z� and equidimensional of
dimension 2. Then by [K-M], Notes to Chapter 4, p is £at. For simplicity, we assume
that both X and Y are connected and that G does not act trivially on X .

Our objective is to calculate

w�OX � � �H0�X ;OX �� ÿ �H1�X ;OX �� 2 G0�Z�G��:

(we have Hi�X ;OX � � �0� for iX 2; see [L], Lemma 3.1 on p. 108.) By [Ri], the natu-
ral homomorphism G0�Z�G��!G0�Z�1=p��G�� is an isomorphism. Therefore, we can
base change to R � Z�1=p� without losing information. The G^action on
X �1=p� :� X 
Z Z�1=p� is tame. We will apply the strategy described in Section 3
by taking R0 � Rp :� Z�zp��1=p�. Before we explain the result and its proof we need
to introduce some additional notation.

Denote by b0 � Y 0 � Y 
 Rp the reduced branch locus of p0 : X 0!Y 0. Under our
conditions, by purity of branch locus (see for example [SGA2], X 3.4), b0 is purely
1^dimensional. The branch locus b0 coincides with the reduced locus of points of
Y 0 over which the cover p0 is not a G^torsor. The inertia subgroup of a point x
of X 0 which maps to b0 is non^trivial and therefore equal to G. Denote by X 0G

the largest closed subscheme of X 0 which is ¢xed by the action of G. By [Th2], Prop-
osition 3.1, X 0G is regular. The morphism p0 induces an isomorphism between
X 0G and b0 � Y 0. Therefore, b0 is also regular. Denote by T an index set for the
irreducible components of b0. For t 2 T denote by b0t the corresponding irreducible
component of b0 and by k�b0t� the function ¢eld of b0t. Set B0t � �p0ÿ1�b0t��red � X 0;
denote by N 0t the conormal (line) bundle NB0tjX 0 . The morphism p0 induces an
isomorphism B0t!b0t and we have k�B0t� � k�b0t�.

The structural morphism Y 0!Spec�Rp� provides us with a ring homomorphism
Rp!k�b0t� and therefore with a distinguished primitive p-th root of unity
zp 2 k�b0t�. Now choose a uniformizer $t for the maximal idealMt of the local ring
OX 0;B0t of X

0 at the generic point of B0t. There is a canonical homomorphism

ft : Gÿ!fx 2 k�b0t� j xp � 1 g; g 7! g �$t

$t
mod �$t�;

which is independent of the choice of $t. The homomorphism ft is injective and
therefore an isomorphism. This injectivity can be shown as follows: If ft�g� � 1
for g 6� 1, then G acts trivially on Mt=M2

t and so

MG
t =�M2

t �G � �Mt=M2
t �G �Mt=M2

t

(taking G-invariants is an exact functor since p � jGj is invertible on Y 0). Using
Nakayama's lemma we conclude thatMG

t �Mt. SinceG acts trivially on the residue
¢eld k�B0t� � k�b0t�, G acts trivially on OX 0;B0t . This contradicts our assumptions.
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Denote by st the element of G that corresponds to zp 2 k�b0t�, i.e which satis¢es
ft�st� � zp.

We have G0�Z�G�� � G0�Z�1=p��G�� � K0�Z�1=p��G��. As in the beginning of the
Section 4.a.1, we can see that there is an action of the multiplicative monoid Z
on K0�Z�1=p��G��. This action factors through an action of End�G� � Z=pZ and then
extends to an action of the monoid ring Z�End�G��. Consider also the group ring
Z�Aut�G��. Sending

P
x nx�x� to

P
pj=x nx�x� de¢nes a ring homomorphism

Z�End�G��!Z�Aut�G��. For simplicity, we will denote Aut�G� by A.
Let us ¢x a non^trivial character w0 : G!R�p. We haveG0�Z�G�� � G0�Z�1=p��G�� �

K0�Z�1=p��G��. Using 3.6 we obtain a homomorphism

Q :� Qwÿ10
: G0�Z�G�� � K0�Z�1=p��G��!G0�Rp� � K0�Rp�:

If M is a ¢nitely generated Z�G�^module and pjx, Q��x� �M�red � 0 in Cl�Rp�.
Therefore, using 4.6, we see that

Q��
X
x

nx�x�� �M�red � �
X
p6jx

nxsx��Q�M�red�: �4:14�

For a rational number x, we denote by fxg the unique rational number 0W fxg < 1,
for which xÿ fxg 2 Z. We will consider the `Stickelberger elements'

Y1 �
X
x2A

x
p

� �
�x�ÿ1 2 Z�1=p��A�;

Y2 � 1
2

X
x2A
� x
p

� �2

ÿ x
p

� �
��x�ÿ1 2 Z�1=2p2��A�:

For a, b, c 2 Z, we set:

�a; b; c� � �a� b� c� ÿ �a� b� ÿ �b� c� ÿ �c� a� � �a� � �b� � �c� 2 Z�A�:

where �x� � 0 if pjx.
The group A � Aut�G� � Gal�Q�zp�=Q� (�x� corresponds to sx) acts on

Y 0 � Y � Spec�Z�1=p��zp�� via the second factor, and the branch locus b0 � Y 0 breaks
into a disjoint sum of A-orbits. Each orbit corresponds to one irreducible component
of the branch locus b � Y . For x 2 A, stx � sxt . Therefore, in each orbit, there is a
unique b0t such that w0�st� � zp. Denote by wt : G0�b0t�!G0�Rp� � K0�Rp� the Euler
characteristic for the structure morphism b0t!Spec�Rp�. We will think of
N 0t � NB0tjX 0 as a line bundle on b0t via the identi¢cation B0t ' b0t given by the covering
p0.

THEOREM 4.15.Assume that G is cyclic of prime order and that p : X!Y is as in the
beginning of the section. Consider the ideal I of Z�A� generated by �a; b; c� for all
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a; b; c 2 Z. If x is in I, we have

x �Q�w�OX ��red �
X
t2T=A

xpY2 � wt�Ob0t ÿN 0t�red

in Cl�Rp� � Cl�Z�zp��. Here the sum is over the set of representatives t of the orbits
T=A for which w0�st� � zp (see above).

Remarks: (1) We will see (Lemma 4.22 (d)) that p�a; b; c�Y2 is in Z�A�, and so the
expression in the right hand side of the equation makes sense.

(2) We will in fact show that

x �Q�w�OX ��red � ÿ
X
t2T=A
�xY1 � wt�Ob0t �red � xpY2 � wt�N 0t ÿOb0t �red� �4:16�

Here �a; b; c�Y1 is also in Z�A� (Lemma 4.22 (d)). By Stickelberger's theorem ([Wa],
Theorem 6.10), xY1 annihilates the class group Cl�Z�zp��. Hence, the identity of
Theorem 4.15 follows from the one above.

(3) Before we give the proof, let us show that the above result provides enough
information to completely determine w�OX � 2 G0�Z�G�� from the genus of X , the
genus of Y and the classes wt�Ob0t ÿN 0t�red in Cl�Z�zp��.

By [Ri] (see also [CR], 39.21), a class C 2 G0�Z�G�� � K0�Z�1=p��G�� is determined
by Q�C� � Qwÿ10

�C� 2 K0�Rp� and Q1�C� 2 K0�Z�1=p�� � Z. On one hand, we have
Q1�w�OX �� � rankZ�w�OY �� � 1ÿ g�Y � where g�Y � is the genus of generic ¢ber of
Y . On the other hand, a class Q 2 K0�Rp� is determined by its Rp-rank and the
stabilized class Qred in Cl�Rp� � Cl�Z�zp��. The Rp-rank of Q�C� is equal to

rankZ�w�OX � ÿ w�OY ��
pÿ 1

� g�Y � ÿ g�X �
pÿ 1

and it remains to show that Theorem 4.15 completely determines Q�C�red 2 Cl�Rp�.
This will follow from:

PROPOSITION 4.17. Suppose that Q 2 Cl�Z�zp�� is such that x �Q � 0 for all x 2 I .
Then Q � 0.

Proof. We can assume that p 6� 2. We have

�k� 1; 1;ÿ1� � 2�k� 1� ÿ �k� 2� ÿ �k� � 1� �ÿ1� 2 I

Using this and an inductive argument we can see that for any a 2 Z,

�a� ÿ a�a� 1�
2
ÿ a�aÿ 1�

2
�ÿ1� 2 I : �4:18�

Using 4.18 and our assumption, we ¢nd

�a��Q� �ÿ1�Q� � a2�Q� �ÿ1�Q�; �a��Qÿ �ÿ1�Q� � a�Qÿ �ÿ1�Q�:
From the second equation we obtain that Qÿ �ÿ1�Q is p^torsion and that it belongs
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to the eigenspaceA1
p of Cl�Z�zp��. Therefore,Qÿ �ÿ1�Q � 0. Now apply 4.18 again to

get

�a�Q � a�a� 1�
2

Q� a�aÿ 1�
2

Q � a2Q:

By an argument as in the proof of Theorem 4.1 we can conclude that Q is p^torsion
and belongs to the eigenspace A2

p. Since p 6 jB2, Apÿ2
p � �0�, and by [Wa], Theorem

10.9, we also have A2
p � �0�. Hence, Q � 0 and this completes the proof.

(4) In view of the above remarks, we could think of 4.15 as stating

Q�w�OX ��red � pY2 �
X
t2T=A

wt�Ob0t ÿN 0t�red

in Cl�Z�zp��. However, the right hand side of this equation does not make sense since
pY2 does not have integral coef¢cients. The equation makes sense, and is true, for the
images of both sides on the prime-to-p part of Cl�Z�zp��. This result -in the prime-to-p
part of Cl�Z�zp��- can also be derived using the Lefschetz^Riemann^Roch theorems
of [Th2] and [CEPT2].

(5) If L is aZ�G�-lattice (i.e aZ�G�^module which is a ¢nitely generated free abelian
group) then the same is true for the group L� :� HomZ�L;Z� with G-action given by
�g � f ��l� � f �gÿ1l�. Sending the class of the lattice L to the class of L� extends to an
involution � on G0�Z�G��. For c 2 G0�Z�G�� we have

Q�c�� � ÿQ�c�; �4:19�
whereQ � Qwÿ10

: G0�Z�G��!G0�Rp� is the map de¢ned above and the bar denotes the
effect of complex conjugation (cf. [F] I. ½2, (2.22)). By 4.6, we have Q � �ÿ1�Q.

Denote by oX=Z the invertible dualizing sheaf for X!Spec�Z� (recall that X is
regular). There is a canonical, hence G-equivariant, isomorphism

H0�X ;oX=Z� ' HomZ�H1�X ;OX �;Z�:
Assume now that X is geometrically connected and that H1�X ;OX � is Z^free. Then
H0�X ;OX � ' Z with trivial G^action and

�H0�X ;oX=Z�� � �H1�X ;OX ��� � �Z� ÿ �w�OX ���:
Therefore, using Remark 3, we see that the result of Theorem 4.6 also determines the
class of H0�X ;oX=Z� in G0�Z�G��. In fact, by the above and 4.19, we have, for any
x 2 I ,

x �Q��H0�X ;oX=Z���red � xp�ÿ1�Y2 �
X
t2T=A

wt�Ob0t ÿN 0t�red:

(6) When the cover X ! Y is tamely rami¢ed, under the assumptions of Remark
5, there is an exact sequence (see [P], Lemma 5.1)

0!H0�X ;oX=Z�!P!F!Z!0
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with F a free Z�G�-module and P a projective Z�G�-module. We have

Q��P��red � Q�H0�X ;oX=Z��red in Cl�Rp� � Cl�Z�zp��:

By the argument of [P], proof of Cor. 5.6, this implies that

H0�X ;oX=Z� ' Z�A� Z�G�g�Y �ÿ2

where A is an ideal of Z�G� such that

x �Q�A�red � xp�ÿ1�Y2 �
X
t2T=A

wt�Ob0t ÿN 0t�red; for all x 2 I :

By 4.17, Q�A�red 2 Cl�Z�zp�� is uniquely determined by the above equation. Since by
[R], Qred gives an isomorphism between Cl�Z�G�� � Pic�Z�G�� and Cl�Z�zp�� this
determines A up to Z�G�-isomorphism. Therefore, H0�X ;oX=Z� is also determined.

Proof of 4.15.First of all let us remark that it is enough to show the identity for the
generators x � �a; b; c�, a, b, c 2 Z, of I . By 4.6 and 4.14, we have

�a; b; c� �Q�w�OX ��red � Q�wÿa0 ÿ1��wÿb0 ÿ1��wÿc0 ÿ1��w�OX ��red: �4:20�

We will apply the strategy described before the Remark at the end of ½3. Denote by
i0 : b0!Y 0 the natural closed immersion. By 3.1 (i), FY 0 ��wÿa0 ÿ 1��wÿb0 ÿ 1�
�wÿc0 ÿ 1�;OX �1=p�� restricts to the zero class in G0�Y 0 ÿ b0�. Therefore, it is equal
to i0��g� with g �Pt gt an element of G0�b0� � K0�b0� � �tK0�b0t�. In what follows,
for simplicity, we will omit OX �1=p� from the notation.

Suppose that w : G!R�p is a character ofG. If w�st� � zkp, we set< w >t� k=p
� 	

. We
can linearly extend < >t to an additive homomorphism

< >t: RQ�zp��G� � G0�Q�zp��G�� ÿ! Q

from the character ring. Note that if w, w0 : G!R�p are any two characters with
w�st� � k=p

� 	
, w0�st� � k=p

� 	
, then

< ww0 ÿ wÿ w0 >t� k� k0

p

� �
ÿ k

p

� �
ÿ k0

p

� �
� 0 or ÿ 1:

PROPOSITION 4.21. Let w, f, c be characters of G with values in R�p. We have

FY 0 ��wÿ1 ÿ 1��fÿ1 ÿ 1��cÿ1 ÿ 1�� � i0��
X
t2T

gt�
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with gt in K0�b0t� given as follows:

gt � ÿh�wÿ 1��fÿ 1��cÿ 1�itOb0t �
� p�ÿhwfcithwfcÿ wfÿ cit ÿ
ÿ hwf� cithwfÿ wÿ fit �
� hwfithwfÿ wÿ fit �
� hfcithfcÿ fÿ cit �
� hwcithwcÿ wÿ cit��N 0t ÿOb0t �:

We will postpone the proof of the Proposition to give a lemma that explains the
nature of the complicated expressions for the elements gt above.

Set

y1�n� � n
p

� �
; y2�n� � 1

2
n
p

� �2

ÿ n
p

� � !
;

and for i � 1, 2,

yi�a; b; c� � yi�a� b� c� ÿ yi�a� b� ÿ yi�b� c�ÿ
ÿ yi�c� a� � yi�a� � yi�b� � yi�c�:

LEMMA 4.22. (a) y1�a; b; c� is an integer.
(b) py2�a; b; c� is an integer. We have

ÿy2�a; b; c� � ÿ a� b� c
p

� �
a� b� c

p

� �
ÿ a� b

p

� �
ÿ c

p

� �� �
ÿ

ÿ a� b
p

� �
� c

p

� �� �
a� b
p

� �
ÿ a

p

� �
ÿ b

p

� �� �
�

� a� b
p

� �
a� b
p

� �
ÿ a

p

� �
ÿ b

p

� �� �
�

� b� c
p

� �
b� c
p

� �
ÿ b

p

� �
ÿ c

p

� �� �
�

� c� a
p

� �
c� a
p

� �
ÿ c

p

� �
ÿ a

p

� �� �
:

(c) For i � 1, 2,

�a; b; c�Yi �
X
x2A

yi�ax; bx; cx��x�ÿ1:

(d) We have �a; b; c� �Y1 2 Z�A� and p�a; b; c� �Y2 2 Z�A�.

Remark: Note that the expression in (b) resembles the complicated term in the
statement of Proposition 4.21.
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Proof. Let us ¢rst consider parts (a) and (b). We will only discuss the case that
0W aW bW c < p. (The other cases are similar; in fact, for part (a) we can always
reduce to this case by symmetry). We then distinguish several possibilities:

(I) a� b� c < p.
(II) a� bW a� cW b� c < p, a� b� cX p,
(III) a� b < p, b� cX a� cX p,
(IV) a� bW a� c < p, b� cX p,
(V) a� bX p, but �a� bÿ p� � c < p,
(VI) a� bX p, �a� bÿ p� � cX p.

In case I, y1�a; b; c� � y2�a; b; c� � 0, while the right hand side of the equation in (b)
is also equal to 0. In case II, y1�a; b; c� � ÿ1, y2�a; b; c� � ÿ �a� b� c�=p� 	

, while the
right hand side of (b) is visibly equal to �a� b� c�=p� 	

. The remaining cases are
similar; in each case, parts (a) and (b) can be veri¢ed by a straightforward calculation
which is left to the reader. Part (c) follows directly from the de¢nition. Part (d)
follows from (c) and the fact that y1�a; b; c�, py2�a; b; c� are integers.

Let us now see how, assuming the truth of Proposition 4.21, we can complete the
proof of Theorem 4.15. Apply 3.7 (a) to the tame G^cover X �1=p�!Y �1=p�,
�wÿa0 ÿ 1��wÿb0 ÿ 1��wÿc0 ÿ 1� and F � OX �1=p�. Using 4.20 and 4.21 we obtain:

�a; b; c� �Q�w�OX ��red �
X
t2T

wt�gt�red �4:23�

where gt 2 G0�b0t� is the element given in Proposition 4.21 for w � wa0, f � wb0, c � wc0.
Suppose that t 2 T corresponds to the distinguished element of the orbit tA for
which w0�st� � zp. Then < w0 >t� 1=p. If x 2 A, then wtx�Ob0tx� � �x�ÿ1wt�Ob0t �,
wtx�N 0tx ÿOb0tx � � �x�ÿ1wt�N 0t ÿOb0t �, and < w0 >tx� fx=pg. We have

< wa0w
b
0 ÿ wa0 ÿ wb0 >tx� �a� b�x

p

� �
ÿ ax

p

� �
ÿ bx

p

� �
; etc:

By 4.23, Lemma 4.22, Proposition 4.21 and the above we get:

�a; b; c� �Q�w�OX ��red � ÿ
X
t2T=A

X
x2A
�y1�xa; xb; xc��x�ÿ1wt�Ob0t �red�

� py2�xa; xb; xc��x�ÿ1wt�N 0t ÿOb0t �red�:
Theorem 4.15 for x � �a; b; c� follows now from the above equation, Lemma 4.22 (c)
and Stickelberger's theorem (see Remark 2).

Proof of 4.21. A character w : G!R0� � R�p gives a (projective) R0�G�^module which
we will denote again by w. By the discussion before the statement of Proposition
3.7, �p��OX � 
 wÿ1�G is a locally free OY 0-sheaf which is a subsheaf of the sheaf
of algebras p0��OX 0 �. We can see that it has rank 1; it is therefore a line bundle over
Y 0 which we will denote by Lw. According to our notations of Section 3 the class
of Lw in K0�Y 0� is equal to FY 0 �wÿ1;OX �1=p��.
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LEMMA 4.24. (i) We have p0��OX 0 � �
M

0W aW pÿ1
Lwa0

.

(ii) The ring structure on p0��OX 0 � induces a morphism of line bundles

aw;w0 : Lw 
 Lw0 ÿ! Lww0 :

(iii) For each irreducible component b0t we have

Lwjb0t ' N 0t

p<w>t :

(iv) Recall that for each t 2 T, < w� w0 ÿ ww0 >t� 0 or 1. There is an exact
sequence:

0 !Lw 
 Lw0 !
aw;w0

Lww0!
M
t2T

< w� w0 ÿ ww0 >t N 0t

p<ww0>t! 0

Proof. The subsheaf Lw � �p0��OX 0 � 
 wÿ1�G � p0��OX 0 � is the w^isotypic component
of p0��OX 0 �. Therefore the decomposition of (i) is the isotypic decomposition of
p0��OX 0 � for the characters of G. Part (ii) follows. To show parts (iii) and (iv) we
argue as follows. By Kummer theory, the function ¢eld K�X 0� of X 0 is obtained
by adjoining the p-th root of a non-zero element f of the function ¢eld K�Y 0� of
Y 0. Let OY 0;y be the local ring of Y 0 at a point y; by multiplying f by a p-th power
in K�Y 0� we can assume that f is in OY 0;y. Then the semi-localization
X 0 �Y 0 Spec�OY 0;y� is the normalization of Spec�OY 0;y�U �=�Up ÿ f ��. In fact, since
X 0 is regular, this normalization has to be a regular scheme. Using the fact that
OY 0;y is a regular local ring and therefore a UFD, we can see that this happens exactly
when f is of the form gpheuwith g, h, u 2 OY 0;y, h a regular papameter of the maximal
ideal ofOY 0;y, u a unit ofOy0;y, and e either relatively prime to p or equal to zero. Then
this normalization is equal to Spec�OY 0;y�T �=�Tp ÿ hu�� in the case that e is relatively
prime to p and to Spec�OY 0;y�T �=�Tp ÿ u�� if e � 0. We conclude that the pull-back of
the cover p0 : X 0!Y 0 by Spec�OY 0;y�!Y 0 is isomorphic to

Spec�OY 0;y�T �=�Tp ÿ z�� ÿ! Spec�OY 0;y�: �4:25�

Here the element z � hu of OY 0;y has divisor equal to the local branch locus
b0 \ Spec�OY 0;y�. Therefore, if y is not on b0, then T is a unit; if y is on b0t then
T gives a local uniformizer for B0t. By the de¢nitions of st and < >t the action
of G satis¢es s � Tp<w0>t � w0�s�Tp<w0>t . We conclude that for 0W aW pÿ 1, the
element Tp<wa0>t � Tap<w0>t gives a local generator of Lwa0

� p0��OX 0 � over y. Part (iii)
now follows since T mod �z� is a local generator for N 0t. Part (iv) also follows in
a similar fashion after comparing the local generators of the three sheaves in the
exact sequence.
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Let us now proceed with the proof of Proposition 4.21. We have

FY 0 ��wÿ1 ÿ 1��fÿ1 ÿ 1��cÿ1 ÿ 1�� �
� Lwfc ÿ Lwf ÿ Lfc ÿ Lwc � Lw � Lf � Lc ÿ 1:

�4:26�

Note that any two line bundlesN1 andN2 on the 1-dimensional scheme b0t, the class
�N1 ÿOb0t ��N2 ÿOb0t � is in F 2

gK0�b0t�. This group is trivial by [F-L] Cor. V. 3.10, and so
we have N1 
N2 ÿOb0t � �N1 ÿOb0t � � �N2 ÿOb0t �. We can conclude that for any
integer m, we have

N 0
mt � Ob0t �m�N 0t ÿOb0t �: �4:27�

For simplicity, we set 1t � i0t��Ob0t �, nt � i0t��N 0t� in K0�Y 0�. By 4.24 (iv) and 4.27 we
obtain the following relations in the ring K0�Y 0�:

Lwf � LwLf ÿ
X
t2T

< wfÿ wÿ f >t �1t � p < wf >t �nt ÿ 1t��; �4:28�

Lwc � LwLc ÿ
X
t2T

< wcÿ wÿ c >t �1t � p < wc >t �nt ÿ 1t��; �4:29�

Lfc � LfLc ÿ
X
t2T

< fcÿ fÿ c >t �1t � p < fc >t �nt ÿ 1t��: �4:30�

We also have:

Lwfc � LwfLc ÿ
X
t2T

< wfcÿ wfÿ c >t �1t � p < wfc >t �nt ÿ 1t��:

This combined with 4.28 gives

Lwfc � LwLfLc ÿ
X
t2T

< wfÿ wÿ f >t �1t � p < wf >t �nt ÿ 1t��Lc

ÿ
X
t2T

< wfcÿ wfÿ c >t �1t � p < wfc >t �nt ÿ 1t��:
�4:31�

By [F-L] Cor. V. 3.10, we have �N 0t ÿOb0t ��Lcjb0t ÿOb0t � � 0 in K0�b0t�. We obtain

�nt ÿ 1t�Lc � �i0t��N 0t ÿOb0t ��Lc � i0t���N 0t ÿOb0t �Lcjb0t � � i0t��N 0t ÿOb0t � � nt ÿ 1t:

Using this, 4.24 (iii), and 4.27 we obtain

�1t � p < wf >t �nt ÿ 1t��Lc � 1t � p < c� wf >t �nt ÿ 1t�:
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By combining the above relation with 4.31 we can now conclude

Lwfc � LwLfLc ÿ
X
t2T

< wfcÿ wÿ fÿ c >t 1t

ÿ p
X
t2T
�< c� wf >t< wfÿ wÿ f >t �

� < wfc >t< wfcÿ wfÿ c >t��nt ÿ 1t�:

�4:32�

Combining now 4.26 with 4.28, 4.29, 4.30 and 4.32 gives that

FY 0 ��wÿ1 ÿ 1��fÿ1 ÿ 1��cÿ1 ÿ 1�� � �Lw ÿ 1��Lf ÿ 1��Lc ÿ 1� �
X
t2T

i0t��gt�;

with gt as in the statement of Proposition 4.21. Now note that �Lw ÿ 1��Lf ÿ 1�
�Lc ÿ 1� is in F 3

gK0�Y 0�. Since dim�Y 0� � 2, F 3
gK0�Y 0� � �0�. Hence, �Lw ÿ 1�

�Lf ÿ 1��Lc ÿ 1� � 0 in K0�Y 0� and the Proposition now follows.
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