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Perturbation and Solvability of Initial Lp

Dirichlet Problems for Parabolic Equations
over Non-cylindrical Domains
Jorge Rivera-Noriega

Abstract. For parabolic linear operators L of second order in divergence form, we prove that the solv-
ability of initial Lp Dirichlet problems for the whole range 1 < p <∞ is preserved under appropriate
small perturbations of the coefficients of the operators involved. We also prove that if the coefficients of
L satisfy a suitable controlled oscillation in the form of Carleson measure conditions, then for certain
values of p > 1, the initial Lp Dirichlet problem associated with Lu = 0 over non-cylindrical domains
is solvable. The results are adequate adaptations of the corresponding results for elliptic equations.

1 Introduction

Let Ω ⊂ Rn+1 be an open bounded set, n ≥ 3, with some additional features that we
will describe later in the paper. Consider operators of the form

Lu = div(A∇u)− ∂u

∂t
(1.1)

where (X, t) ∈ Rn×R, and A(X, t) = (ai, j(X, t)) is a symmetric matrix of real-valued
functions that satisfies a standard ellipticity condition of the form

(1.2) λ1|ξ|2 <
∑

i, j

ai j(X, t)ξiξ j < λ2|ξ|2

for certain 0 < λ1 < λ2 < ∞, and every ξ = (ξ1, . . . , ξn) ∈ Rn. The constants λ1,
λ2 are referred to as ellipticity constants of L.

When Ω is a cylindrical region, solutions to Lu = 0 are taken in the weak sense, as
we now recall from standard literature. First, V (Ω) is defined as the space of functions
u ∈ L2(Ω) such that |∇Xu| ∈ L2(Ω), u( · , t) ∈ L2(Ωt ) for all t , where Ω(t) =
{(Y, s) ∈ Ω : s = t}, and such that the norm on V given by

‖u‖2
V =

∫
Ω

|∇Xu(X, t)|2dXdt + sup
t

∫
Ω(t)

u2(X, t)dX
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is finite. Here∇X denotes the gradient with respect to X variables only.
With this notation and these definitions, a weak solution u associated with Lu = 0

is an element u ∈ V such that

(1.3)

∫
Ω

〈
A(X, t)∇Xu(X, t),∇ϕ(X, t)

〉
dXdt −

∫
Ω

u(X, t)
∂ϕ

∂t
(X, t)dXdt = 0

for every ϕ ∈ C1
0(Ω).

The adjoint of an operator L as described above is given by

(1.4) L∗u = div(A∇u) +
∂u

∂t
,

and adjoint solutions will have a definition similar to (1.3): v ∈ V is a weak solution
of L∗v = 0 if for every ϕ ∈ C1

0(Ω) one has∫
Ω

〈A(X, t)∇Xv(X, t),∇ϕ(X, t)〉dXdt +

∫
Ω

v(X, t)
∂ϕ

∂t
(X, t)dXdt = 0.

As usual, to make sense of boundary values for weak solutions one introduces the
subspace V0 as the closure of C1

0(Ω) (the class of C1 functions vanishing on ∂pΩ) with
respect to the norm of V (Ω).

In our non-cylindrical setting, we may assume that the coefficients are of class C∞

and still obtain estimates depending only on the ellipticity constants of the operator
L and dimension n. This way standard limit arguments may be applied to conclude
estimates that hold when the coefficients are measurable and bounded.

In this work we deal with the questions of perturbation and solvability of initial
Lp Dirichlet problems associated with Lu = 0, 1 < p <∞ on Ω, where Ω is a certain
type of non-cylindrical domains.

In a sense, this work may be viewed as a natural continuation of the research
started in [25], where we aimed to provide an example of a wide class of operators as
L, generalizing the heat operator, and for which one could prove a mutual absolute
continuity of caloric measure and surface measure in the A∞ sense (as described
below), so that the initial Lp Dirichlet problems can be solved.

In that generalization we considered a class L of operators as L described in (1.1),
over a basic parabolic Lipschitz domain Ω(ψ) (defined in the bulk of the paper) and
their pull back operator L̃1 under a parabolic adaptation of the so-called Dahlberg–
Kenig–Stein mapping from Ω(ψ) to Rn+1.

When taking L equal to the heat operator, this pull-back operator has principal
part as in (1.1) and a drift term. Moreover, all the new coefficients satisfy a Carleson
measure condition that allowed the application of a technique introduced for elliptic
operators in [20] through the use of certain square function estimates.

One of our main results in this paper states that under some technical conditions
of Carleson measure type on the oscillation of the coefficients of the matrix A(X, t)
over Ω one can obtain such a solvability (see Theorems 3.2 and 3.3) . Results of
this type have been obtained for the corresponding elliptic equations, for instance, in
[5, 6, 21].
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We also prove a parabolic version of a perturbation result for Lp Dirichlet prob-
lems originally proved in [9] (see Theorem 3.1) that to our knowledge has not been
previously adapted to parabolic equations.

Although details are provided for divergence form linear equations, some ideas
are applicable to non-divergence parabolic linear equations (see Theorems 6.1 and
6.3).

The works on equations of elliptic type provide not only the motivation to study
the corresponding questions for the parabolic equations, but also, to some extent,
some guideline of the techniques that could be applied.

However, it is important to point out some instances in which the parabolic ana-
logues of well-known results for the elliptic case turn out to have non-trivial appli-
cations or adaptations (e.g., the doubling property of parabolic measure [14, 27] or
the elliptic-type Harnack principle [11, 13, 14]); or that some technical issues arise
given the regularity required in time-variable (for instance the need of introducing
a special regularity entailed in the definition of parabolic Lipschitz graphs provided
some paragraphs below, see e.g., [16, 22, 23]). Some of these issues are present in the
results contained in this work.

2 Description of Parabolic Setting and of the Initial Lp Dirichlet
Problem

The precise statement of our main results requires the introduction of some technical
definitions that we provide in this section. In the next paragraphs we have included a
fairly complete description of the non-cylindrical domains as well as of the initial Lp

Dirichlet problem.

Parabolic Homogeneity

There are some pioneering works providing a thorough description of the parabolic
homogeneity associated with Rn+1 (see e.g., [4, 10, 12] and the references therein).
Here we just recall some basic notions used at several stages of this paper.

Within this work, the parabolic distance between (X, t), (Y, s) ∈ Rn+1 is given by
the expression d(X, t ; Y, s) = |X−Y |+ |t− s|1/2 ≡ ‖X−Y, t− s‖. This last expression
defines what we call the parabolic norm of points in Rn+1, and it may also be applied
to points (x, t) ∈ Rn−1 × R.

Given (X, t) ∈ Rn × R ≡ Rn+1, denote by Cr(X, t) the cylinder

{(Y, s) ∈ Rn+1 : |X − Y | < r, |t − s| < r2}.

The parabolic ball of radius r > 0 centered at (X, t) is Qr(X, t) = {(Y, s) ∈ Rn+1 :
|X −Y | + |t − s|1/2 < r}. Given (x, t) ∈ Rn−1 × R we define the parabolic cube in Rn

by

Br(x, t) = {(y, s) ∈ Rn−1 × R : |xi − y1| < r, |t − s|1/2 < r, i = 1, . . . , n− 1}.

The parabolic boundary of an open connected set Ω ∈ Rn+1, denoted by ∂pΩ,
consists of points (Q, s) ∈ ∂Ω (the topological boundary of Ω) such that for every
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r > 0 one has Cr(Q, s) \ Ω 6= ∅. Here the parabolic cylinder of radius r > 0 and
centered at (X, t) is defined as

Cr(X, t) = {(Y, s) ∈ Rn+1 : |X − Y | < r, 0 < t − s < r2}.

Time-varying Graphs

We now describe what has become to be known as the “good graphs” for both initial
Lp Dirichlet problems and boundedness of parabolic singular integrals, as considered
in previous works (see e.g., [15, 16, 19, 22] and the references therein).

From now on, we adopt the convention that points in Rn+1 may be denoted by
(x0, x, t) ∈ R × Rn−1 × R, to stress that in graph coordinates x0 is the variable de-
pending on (x, t). This particular way to denote graph coordinates for problems
associated with heat equation goes back at least to [22].

A function ψ : Rn → R is a Lip(1, 1/2) function with constant A0 > 0 if for
(x, t), (x, s) ∈ Rn, |ψ(x, t) − ψ(y, s)| ≤ A0‖x − y, t − s‖. The function ψ is called
a parabolic Lipschitz function with constant A1 if it satisfies the following two condi-
tions:

• ψ satisfies a Lipschitz condition in the space variable

|ψ(x, t)− ψ(y, t)| ≤ A1|x − y| uniformly on t ∈ R;

• for every interval I ⊆ R, every x ∈ Rn,

1

|I|

∫
I

∫
I

|ψ(x, t)− ψ(x, s)|2

|s− t|2
dtds ≤ A1 <∞.

This last condition can be recalled as a BMO-Sobolev scale in the t-variable, by re-
sults in [30]. It roughly states that a half order derivative of ψ(x, t) with respect to t
variable is in BMO. See more details in [16].

A basic parabolic Lipschitz domain is a domain of the form

Ω(ψ) =
{

(x0, x, t) ∈ R × Rn−1 × R : x0 > ψ(x, t)
}

for some parabolic Lipschitz function ψ. This function is often taken with compact
support.

We adopt the notation X, Y, etc. for points in Rn+1 whenever both the time vari-
able t and the graph variable x0 are irrelevant for the argumentation. This notation
becomes particularly handy in Section 5.

Parabolic Starlike Cylinders

To describe domains given locally by parabolic Lipschitz graphs we adapt definitions
from [3], which are also used in [24].

Let Ω ⊂ Rn+1 be an open connected set such that ∂pΩ = ∂Ω and let A1, r0 > 0.
Define the local cylinder with constants A1, r0 as

Z = {(x0, x, t) ∈ R×Rn−1×R : |xi | < r0, i = 1, 2, . . . , n−1, |x0| < 2nA1r0, t ∈ R}.
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Here, x ∈ Rn−1 is viewed as the (n − 1)-tuple x = (x1, x2, . . . , xn−1). We denote
by 2Z the concentric double of Z, and set diamΩ = sups∈R Ω(s), where, as before,
Ω(s) = {(X, t) ∈ Ω : t = s}.

We say that Ω is an infinite starlike parabolic cylinder with constants A1, r0, if there
exist local cylinders {Zi : i = 1, 2, . . . ,N}, with constants A1, r0, that are obtained
from Z through rigid motions in the space variables, and parabolic Lipschitz func-
tions {ψi : i = 1, 2, . . . ,N} with constant A1, defined on the transformation of Rn

through the same rigid motion defining Zi , and such that the following conditions
hold:

• 2Zi ∩ ∂Ω = {(x0, x, t) : x0 = ψi(x, t)} ∩ 2Zi , i = 1, 2, . . . ,N;
• 2Zi ∩ Ω = {(x0, x, t) : x0 > ψi(x, t)} ∩ 2Zi , i = 1, 2, . . . ,N;
• ∂Ω is covered by

⋃N
i=1 Zi ;

• Ω(t) is bounded for every t ∈ R;
• there exists X0 ∈ Rn and ρ0 > 0 such that {X ∈ Rn : |X − X0| < ρ0} × R ⊂ Ω.

If Ω is an infinite starlike parabolic cylinder, then for T > 0 we define the bounded
parabolic cylinder of height T as ΩT = {(X, t) ∈ Ω : 0 < t < T}. The lateral
boundary of ΩT is denoted by ST ≡ ∂pΩT ∩ ∂Ω. Also set Ξ = (X0,T), which will be
recalled as the parabolic center of ΩT .

Suppose (Q, s) = (q0, q, s) ∈ ∂Ω and 0 < r < r0. The Carleson region is defined
as

Ψr(Q, s) ≡
{

(x0, x, t) ∈ Ω : |x − q| + |t − s|1/2 < r, |x0 − q0| < N0)
}
,

and the surface cube is defined as ∆r(Q, s) ≡ Ψr(Q, s) ∩ ∂Ω.
Here N0 is chosen such that, with respect to the corresponding local cylinder, one

has that Ψr(Q, s) contains the set

{(x0, x, t) : ψ(x, t) ∈ ∆r(Q, s), ψ(x, t) < x0 < ψ(x, t) + r}.

This choice guarantees a sort of parabolic starlike property of points in ∆r(Q, s) with
respect of either of the following points:

A(∆) = Ar(Q, s) ≡ (q0 + 2N0r, q, s + 2r2),

A(∆) = Ar(Q, s) ≡ (q0 + 2N0r, q, s− 2r2).

Notice that if ∆ = ∆r(Q, s) is as described before, then the notation Ψ(∆) still
makes sense with an obvious meaning. If ∆ is any surface cube such that its closure
satisfies ∆ ⊂ ST , to shorten notation we write ∆ b ST .

Given (X, t) ∈ Ω we write δ(X, t) = dist(X, t ; ∂Ω), and defining for (Q, s) ∈ ST ,

Γ̃α(Q, s) = {(X, t) ∈ Ω : dist(X, t ; Q, s) ≤ (1 + α)dist(X, t ; ∂Ω)},

we denote by Γα(Q, s) the non-tangential region defined as the truncation of Γ̃α(Q, s)
at height ρ(Q) ≡ |Q − X0| + ρ0/2. Unless we state otherwise, the aperture α > 0 is
chosen such that Γα(Q, s) ⊂ Ω for every (Q, s) ∈ ∂Ω (see [3, p. 572]).
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Parabolic (Caloric) Measure

For ΩT as described above the parabolic measure associated with L, denoted by
ωL( · ; X, t) for (X, t) ∈ ΩT , is the unique Borel measure supported on ST such that

u f (X, t) =

∫
∂pΩ

f (Y, s)dωL(Y, s; X, t)

is the solution, in the Perron–Wiener–Brelot sense (see e.g., [7]), of the Dirichlet-type
of problem Lu = 0 on ΩT , u|ST = f for f continuous and supported on ST . Observe
that in particular u(X, 0) = 0 for every X ∈ Ω(0). We denote by ω the parabolic
measure ωL( · ,Ξ)

Analogous to the case of equations of elliptic type, the key property of caloric
measure in order to solve an initial Lp Dirichlet problem associated with Lu = 0 is a
weight property referred to as reverse Hölder property, which we now recall. Denote
by σ the surface measure defined for any Borel set F ⊂ Rn+1 as

σ(F) =

∫
F

dσt dt,

where σt is the (n − 1)-dimensional Hausdorff measure of Ft ≡ F ∩ Rn × {t}, and
dt denotes integration with respect to 1-dimensional Hausdorff measure.

The caloric measure ωL is in the class A∞(ST , σ) if for every ε > 0 there exists
δ > 0 such that

σ(F)

σ(∆)
< δ implies

ωL(F)

ωL(∆)
< ε

for every Borel set F ⊂ ∆, and every surface cube ∆ b ST .
By the well-known general theory of Muckenhoupt weights, it turns out that this

defines a uniform mutual absolute continuity between ωL and σ. It is also well known
(see e.g., [24]) that ωL ∈ A∞(σ) if and only if the Radon–Nikodým derivative k(Q) =
dωL/dσ(Q) satisfies the following property: there exists 1 < q < ∞ such that ωL is
in the reverse Hölder class RHq(ST), namely there is a constant Cq such that for every
surface cube ∆ ⊂ ST the following reverse Hölder inequality holds

(2.1)

(
1

σ(∆)

∫
∆

kq(Q)dσ(Q)

)1/q

≤ Cq
1

σ(∆)

∫
∆

k(Q)dσ(Q).

In fact, we can assume that the surface cubes have radii way smaller than r0, de-
pending on A1, where these two constants are from the definition of the local cylin-
ders of Ω.

Initial Lp Dirichlet Problem

We say that the initial Lp Dirichlet problem associated with Lu = 0, 1 < p < ∞, is
solvable, with L as described in (1.1), if for any f ∈ C(ST), the solution u(X, t) of the
initial Dirichlet problem Lu = 0 over ΩT , u = f on ST , satisfies the estimate

‖Nu‖Lp(ST ) ≤ C‖ f ‖Lp(ST ),
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with a constant C > 0 not depending on f . Here the non-tangential maximal function
of u defined for (Q, s) ∈ ∂Ω is defined as

Nu(Q, s) = sup{|u(X, t)| : (X, t) ∈ Γα(Q, s)}.

Standard real-variable techniques and some well-known properties of parabolic
measure and solutions associated with Lu = 0 (see e.g., [24]) imply that the initial
Lp Dirichlet problem, 1 < p < ∞, is solvable if and only if ω ∈ RHq(ST), with
1/p + 1/q = 1.

From this viewpoint, the main goal in order to solve an initial Lp-Dirichlet prob-
lem is to obtain the corresponding reverse Hölder property (2.1) of caloric measure
ωL with respect to surface measure σ. This is the reason that in previous work (see
e.g., [16, 25]) the results are stated on basic parabolic Lipschitz domains Ω(ψ) with
compactly supported ψ.

Another useful and fundamental result on the classes of weights we mentioned
before, is that when log dω/dσ ∈ VMO(dσ), ω ∈ RHq(ST) for every 1 < q <∞ (see
e.g., [29]). Here VMO(dσ) can be recalled as the closure of the space of continuous
functions on ST with respect to the BMO(dσ) norm (see [28]).

Throughout this work we make use at several stages of some basic properties of
solutions and parabolic measure for divergence form operators, and at each occur-
rence we will provide the pertinent references. In subsequent sections we retain the
notation introduced above.

3 Description of the Results

Now we introduce notation to describe the perturbation results in this paper. Given
two operators L0 and L1 as in (1.1) with associated matrices A0(X, t) and A1(X, t)
respectively, and (X, t) ∈ Ω, we define C(X, t) = Cδ(X,t)/4(X, t) and set

E(X, t) = A0(X, t)− A1(X, t),

A(X, t) = sup
{
|A0(Y, s)− A1(Y, s)|2 : (Y, s) ∈ C(X, t)

}
.

The following theorem may be referred to as the main perturbation result of this
paper. For its proof (included in Section 5) we use a result from [24].

Theorem 3.1 Fix T > 0, and let Ω be an infinite starlike parabolic cylinder with
constants A1, r0, and with A1 appropriately small. Let L0 and L1 be two operators as in
(1.1) defined over Ω, and assume that

lim
diam∆→0

[ 1

σ(∆)

∫
Ψ(∆)

A(X, t)

δ(X, t)
dXdt

]
= 0,

where ∆ b ST denotes any surface ball on ST . Suppose further that log(dω0/dσ) ∈
VMO(dσ). Then log(dω1/dσ) ∈ VMO(dσ).

The smallness assumption of A1 is included in view of the result in [16, Corol-
lary 1.18].
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Now we refer to the following theorems as the solvability results for easy reference
within this work. The arguments to prove them are given in Section 6.

Theorem 3.2 Fix T > 0, and let Ω be an infinite starlike parabolic cylinder with
constants A1 and r0, with A1 so small that (4.2) holds. Let L be any operator as described
in (1.1), with matrix coefficients A, defined over ΩT . Suppose that there exists a constant
C > 0 such that for every (Q, s) ∈ ST and every r > 0 such that ∆r(Q, s) b ST :

(3.1)∫
Ψr(Q,s)

(
sup

(Z,τ )∈C(X,t)
δ(Z, τ )|∇A(Z, τ )|2 + sup

(Z,τ )∈C(X,t)
δ(Z, τ )3

∣∣∣ ∂A

∂τ
(Z, τ )

∣∣∣ 2)
dXdt

< Cσ
(

∆r(Q, s)
)
.

Then k = dω/dσ ∈ RHp(ΩT) for some p > 1.

The proof of this theorem actually uses the main theorem in [25]. Also, the result
addressed in Theorem 3.2 has a version in which certain oscillation property on the
coefficients replaces the one on the gradient |∇A|, as we now describe.

Let

O(X, t) = sup
{
|A(Y, s)− avg((Y, s); A)|2 : (Y, s) ∈ C(X, t)

}
,

where avg((Y, s); A) is the matrix given by

avg((Y, s); A) =
1

|C(Y, s)|

∫
C(Y,s)

A(Z, τ )dZdτ ,

and where for any n × n matrix A the quantity |A| denotes the Euclidian magnitude
of the n× n dimensional vector given by the entries of A.

Theorem 3.3 Fix T > 0, and let Ω be an infinite starlike parabolic cylinder. Let L
be an operator as described in (1.1) defined over Ω. Suppose that there exists a constant
C > 0 such that for every (Q, s) ∈ ST and every r > 0 such that ∆r(Q, s) ⊂ ST

(3.2)

∫
Ψr(Q,s)

O(X, t)

δ(X, t)
dXdt < Cσ(∆r(Q, s)).

Then k = dω/dσ ∈ RHp(ΩT) for some p > 1.

The proof of Theorem 3.3 follows from Theorem 3.2 and the perturbation result
in [24], through the technique explained in detail in [5, pp. 377–378]. For complete-
ness, we provide some details of the adaptation of this argument in Section 6.

In the next section we describe the main result in [25] and define the class L of
operators as in (1.1) considered in some arguments proving the main theorems of
this paper. It contains the motivation and initial point of the research reported here.
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4 Operators with Drift Term and the Class L

We start by describing the parabolic version of Dahlberg–Kenig–Stein mapping. Let
P ∈ C∞0 , supported in Σn−1 = {(y, s) ∈ Rn : |y, s| < 1} with

∫
Rn P(x, t)dxdt = 1,

and for λ > 0 set

Pλ(y, s) = λ−n−1P(yλ−1, sλ−2),

Pλ f (x, t) =

∫
Rn

Pλ(x − y, t − s) f (y, s)dyds.

Note that limλ→0 Pγλψ(x, t) = ψ(x, t) for any γ > 0. Let

R̃n+1
+ = {(λ, x, t) : λ > 0, x ∈ Rn, t ∈ R},

and define the parabolic version of Dahlberg–Kenig–Stein mapping ρ : R̃n+1
+ → Ω(ψ)

by

(4.1) ρ(λ, x, t) =
(
λ + Pγλψ(x, t), x, t

)
, ρ(0, x, t) =

(
ψ(x, t), x, t

)
,

where γ > 0 is chosen appropriately small.
As observed in [16, p. 364], if one takes parabolic Lipschitz functions with small

constant A1, then one can also choose γ sufficiently small so that

(4.2)
1

2
< 1 +

∂

∂λ
Pγλ <

3

2
,

which incidentally also guarantees that ρ : R̃n+1
+ → Ω(ψ) defined by (4.1) is one-to-

one.
We will now record a part of [16, Lemma 2.8] for easy future reference.

Lemma 4.1 Let σ, θ be non-negative integers and φ = (φ1, φ2, . . . , φn−1) a multi
index, where, as usual, |φ| = φ1 + · · · + φn−1. Set ` = σ + |φ| + θ. Suppose that ψ is a
parabolic Lipschitz function with constant A1.

(i) The measure

dν =
( ∂`Pγλψ

∂λσdxφ∂tθ

) 2
λ(2`+2θ−3)dxdtdλ

is a Carleson measure on R̃n+1
+ whenever either σ + θ ≥ 1 or |φ| ≥ 2; namely, the

estimate
ν(Br(x, t)× (0, r)) ≤ Crn+1

holds for sufficiently small r > 0, and with constant C > 0 depending on `, γ,
and A1.

(ii) If ` ≥ 1, then ∥∥∥ ∂`Pγλψ

∂λσdxφ∂tθ

∥∥∥
∞
≤ C(`, γ,A1)λ1−`−θ.
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Given u defined on a basic parabolic Lipschitz domain Ω(ψ) we consider the pull-
back function u1 = u ◦ ρ defined on R̃n+1

+ . A fundamental observation in [18] (see
also [16, 17]) is that if H denotes the heat operator ∆ − ∂/∂t , and u is a solution to
Hu = 0, then the pull-back u1 of u is a weak solution to H1ũ = 0, where the operator
H1 is defined by

H1u1 ≡ divA1∇u1 −
(

1 +
∂

∂λ
Pγλψ

) ∂v

∂t
+
( ∂

∂t
Pγλψ

) ∂

∂λ
u1,

and the (n× n) matrix A1(X, t) = (ãi j(X, t)) is given by

ã j, j = 1 +
∂

∂λ
Pγλψ, ã0, j = ã j,0 = − ∂

∂x j
,Pγλψ, 1 ≤ j ≤ n− 1

ã0,0 =
1 + |∇xPγλψ|2

1 + ∂
∂λPγλψ

, ãi, j = 0 1 ≤ i, j ≤ n− 1.

By this observation, a weak solution to H1u1 = 0 is also a weak solution to
H̃u1 = 0, where

(4.3) H̃v ≡ divÃ∇v + ~B · ∇v − ∂v

∂t
,

and where Ã(X, t) is a new matrix of coefficients, and ~B(X, t) is an n-dimensional
vector of functions.

With (4.2) at hand, and using Lemma 4.1, the following result can be established
(see e.g., [18, pp. 10–11]).

Proposition 4.2 If H denotes the heat operator ∆ − ∂/∂t and u is a solution to
Hu = 0 on a basic parabolic Lipschitz domain Ω(ψ), ψ compactly supported, then the
pull-back u1 of u is a weak solution to H̃u1 = 0, where the operator H̃ has the form
(4.3). Moreover, for the coefficients Ã(X, t) and ~B(X, t) of H̃ we have:

• Ã(X, t) satisfies the ellipticity condition (1.2),
• Ã(X, t) and ~B(X, t) satisfy the following estimates:

∫ r

0

∫
∆r

(∣∣∇λ,xÃ(λ, x, t)
∣∣ 2

+
∣∣~B(λ, x, t)

∣∣ 2
)
λ dxdt dλ ≤ C1|∆r|,(4.4)

∫ r

0

∫
∆r

∣∣∣ ∂Ã

∂t
(λ, x, t)

∣∣∣ 2
λ3dxdt dλ ≤ C1|∆r|.(4.5)

Here and in the future we adopt the notation of |∇λ,xA(λ, x, t)| for the euclidian
magnitude of the vector containing the derivatives (with respect to λ and x) of all the
entries of A. Similarly an integral or a derivative of the matrix A(λ, x, t) is the matrix
whose entries are respectively the derivative or integral of the corresponding entry
of A.
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Let L denote the class of operators L as in (1.1), and such that the coefficients of
corresponding pull-back operator L̃ as in (4.3) satisfy (4.4)–(4.5). By Proposition 4.2
this class is nonempty, as the heat operator belongs to L.

One of our goals in [25] was to prove that for L ∈ L one can solve an initial
Lp Dirichlet problem associated with Lu = 0 on a basic parabolic Lipschitz domain
Ω(ψ). In [25, Theorem 1.3] we proved the following theorem.

Theorem 4.3 ([25, Theorem 1.3]) Let ψ : Rn → R be a nonnegative compactly sup-
ported parabolic Lipschitz function with small constant A1 such that (4.2) holds. Then
for any operator L ∈ L the Lp Dirichlet problem associated with Lu = 0 over Ω(ψ) is
solvable for certain p > 1.

A result like Theorem 4.3 was developed for operators of elliptic type in [21],
where a condition related to (4.4) and (4.5) was considered. A parabolic adaptation
of the statement of [21, Theorem 2.6] is precisely Theorem 3.2.

5 Proof of Theorem 3.1

In this section we include an adaptation of an idea from [9], which, along with es-
timates and results from [24], yield Theorem 3.1. Recall that we are given L0 and
L1 two operators as in (1.1) with associated matrices A0(X, t) and A1(X, t) respec-
tively. For (X, t) ∈ Ω we have defined C(X, t) = Cδ(X,t)/4(X, t), and we have set
E(X, t) = A0(X, t)− A1(X, t) and

(5.1) A(X, t) = sup
{∣∣A0(Y, s)− A1(Y, s)

∣∣ 2
: (Y, s) ∈ C(X, t)

}
.

By assumption we know that

(5.2) lim
diam∆→0

[ 1

σ(∆)

∫
Ψ(∆)

A(X, t)

δ(X, t)
dXdt

]
= 0,

where ∆ ⊂ ∂Ω denotes any surface ball on ST .
We will describe the proof working locally in R̃n+1

+ , where the next constructions
are easier to describe. Then the adaptations to any basic parabolic Lipschitz domain
can be implemented as in [24, Section 6]. In fact, by using estimates proven on basic
domains above a Lip(1, 1/2) graph in [24] (see also [13]) we avoid losing generality
in our reasonings.

In this new setting of R̃n+1
+ , for R0 > 0 and (x0, t0) ∈ Rn−1 × R fixed, we let

∆̃ ≡ ∆̃R0 (x0, t0) = CR0 (0, x0, t0) ∩ {λ = 0} and Ψ̃ ≡ CR0 (0, x0, t0) ∩ R̃n+1
+ .

Also let SΨ̃ = ∂R̃n+1
+ ∩ ∂Ψ̃.

We will simply use the notation RHq(dσ), VMO(dσ) or A∞(dσ) to refer to weight
classes in this new environment.

For 0 < θ ≤ 1 the matrix Aθ = (aθi, j) is defined by aθi, j = (1− θ)a0
i, j + θa1

i, j . Note

that the coefficients Aθ satisfy (1.2), with new ellipticity constants that depend on λ1,
λ2, and the smooth approximate identity P.
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Assuming that the coefficients in A are smooth, define

Lθu = divAθ∇u− ∂t u,

and let ωθ denote the parabolic measure associated with Lθ on Ψ̃ with pole at Ã0 =
(R0/2, x0, t0 + R2

0).

Given (λ, x, t) ∈ Ψ̃ denote by C(λ, x, t) = Cλ/2(λ, x, t). In this new setting (5.1)
is translated into

A(λ, x, t) = sup
{∣∣A0(ζ, y, s)− A1(ζ, y, s)

∣∣ 2
: (ζ, y, s) ∈ C(λ, x, t)

}
,

with similar adjustment to define E(λ, x, t). Hypothesis (5.2) now becomes

(5.3) lim
diam∆→0

[ 1

σ(∆)

∫
Ψ(∆)

A(λ, x, t)

λ
dλdxdt

]
= 0.

Since log(dω0/dσ) ∈ VMO(dσ), ω0 ∈ RH2(dσ). Using [24, Theorem 6.5] we
conclude that ωθ ∈ RH2(dσ) for 0 ≤ θ ≤ 1 with uniform constants.

Now for 0 < θ < 1 consider the auxiliary functions vθ defined as the solutions
of the following initial Dirichlet problem associated with L∗θ , the formal adjoint of Lθ
(see (1.4)): {

L∗θ vθ = −ϕ on Ψ̃,

vθ = 0 on ∂pΨ̃,

with ϕ ∈ C∞0 (Ψ̃) satisfying ϕ = 1 on Ψ̃(δ0/2), ϕ = 0 on Ψ̃ \ Ψ̃(δ0/4), where

Ψ̃(τ ) =
{

Y ∈ Ψ̃ : d(Y; ∂pΨ̃) > τ
}

for τ > 0. The δ0 > 0 is chosen as a fixed small fraction of R0, say δ0 = R0/100.
Denoting by gθ(X,Y) the Green’s function of Lθ on Ψ̃ with pole at X, we have

vθ(Y) =

∫
Ψ̃

gθ(X,Y)ϕ(X)dX.

Set the notation Kθ(Q) = dvθ/dN(Q) for the co-normal derivative of vθ at Q =
(0, q, s), namely

Kθ(Q) =
〈

A(Q)∇vθ(Q),N(Q)
〉
,

which is well defined for Q ∈ SΨ̃.
Recall that

(5.4)
dωθ
dσ

(Q) =
∂gθ(Ã0,Q)

∂N
for σ-almost every Q ∈ SΨ̃,

where this time the co-normal derivative of the Green’s function is defined as

∂gθ(Ã0,Q)

∂N
=
〈

A(Q)∇gθ(Ã0,Q),N(Q)
〉
.
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Next we note that the following estimates also hold:

vθ(X) ≈ gθ(Ã0,X) for every X ∈ Ψ̃ \ Ψ̃(δ0),(5.5)

∂vθ
∂N

(Q) ≈ ∂gθ(Ã0,Q)

∂N
for σ-almost every Q ∈ SΨ̃.(5.6)

The estimates in (5.5) follow from the comparison principle in [24, Lemma 2.10]
and an elliptic type Harnack principle (see e.g., [13, Theorem 3], [24, Corollary 3.1]).
Since the inner normal vector in R̃n+1

+ coincides with the λ direction, we can obtain
(5.6) again by the comparison principle and an elliptic type Harnack principle.

Now the key step to prove Theorem 3.1 is the following proposition.

Proposition 5.1 There exists a real-valued function Φ(ρ) defined for ρ > 0 satisfying
limρ→0 Φ(ρ) = 0 and such that for any surface cube ∆ρ ⊂ ∆̃ with ∆8ρ b ∆̃,( 1

σ(∆ρ)

∫
∆ρ

K2
1 dσ
) 1/2

.
(

1 + Φ(ρ)
) 1

σ(∆ρ)

∫
∆ρ

K1dσ.

Armed with this proposition, Theorem 3.1 follows by the arguments in [9, p. 358]
(see also [8, p. 190]). These arguments are adaptable, as they rely on a measure
theoretic lemma of [28] and an adequate version of the John–Nirenberg Lemma, and
both results hold in our parabolic setting.

To prove Proposition 5.1 we need more definitions and another auxiliary result.
Fix the surface ball ∆ρ ⊂ ∆̃, ρ > 0, with ∆8ρ b ∆̃. For f ∈ L2(SΨ̃), f ≥ 0,
supported in ∆ρ with

1

σ(∆ρ)

∫
∆ρ

f 2dσ ≤ 1,

and for 0 ≤ θ ≤ 1 set Kθ(E) =
∫

E Kθdσ, where E ⊂ SΨ̃ is a Borel set. Define

Υ(θ) =
1

Kθ(∆ρ)

∫
∆ρ

f Kθdσ.

Proposition 5.2 There exist constants 0 < β < 1 and 0 < α̃ < 1 such that∣∣∣ dΥ

dθ

∣∣∣ . [ρα̃ + sup
Q∈SΨ̃

s<ρβ

( 1

σ(∆s(Q))

∫
Ψs(Q)

A(X)
dX

δ(X)

) 1/2
]

The proof of this proposition is given below. Proposition 5.2 implies Proposi-
tion 5.1 by the following argument. Using the fundamental theorem of calculus we
first obtain the estimate

1

K1(∆ρ)

∫
∆ρ

f K1dσ − 1

K0(∆ρ)

∫
∆ρ

f K0dσ ≤

ρα̃ + sup
Q∈SΨ̃

s<ρβ

( 1

σ(∆s(Q))

∫
Ψs(Q)

A(X)
dX

δ(X)

) 1/2
.
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Now duality and the fact that log(ω0/dσ) ∈ VMO(SΨ̃) implies

1

σ(∆ρ)

∫
∆ρ

( dω0

dσ

) 2
dσ .

(
1 + Φ(ρ)

) 1

σ(∆ρ)

∫
∆ρ

dω0

dσ
dσ

(see [9, p. 357]). This and (5.3) together imply Proposition 5.1.
It only remains to prove Proposition 5.2. After proving it we will have finished the

proof of Theorem 3.1. To proceed with the proof of Proposition 5.2 we define

f∆ρ,Kθ
=

1

Kθ(∆ρ)

∫
∆ρ

f Kθdσ and hθ =
( f − f∆ρ,Kθ

)χ∆ρ

Kθ(∆ρ)
,

and denote by uθ the solution of{
Lθuθ = 0 on Ψ̃,

uθ = hθ on ∂pΨ̃.

Lemma 5.3 There exists β > 0 such that for Q0 ∈ SΨ̃ and X ∈ Ψ̃ such that
‖X−Q0‖ > 2r

(5.7) |uθ(X)| .
( r

‖X−Q0‖

) β 1

ωθ(∆d(X,Q0))
.

The proof of Lemma 5.3 follows along the lines of [9], and we include some details
of this adaptation.

Proof Define for X ∈ Ψ̃ and Q ∈ SΨ̃,

Gθ(X,Q) = lim
Q ′→Q

gθ(X; Q ′)

vθ(Q ′)
, 0 < θ < 1.

This limit exists by [13, Theorem 6]. Moreover the following result holds.

Lemma 5.4 The function uθ can be represented by

(5.8) uθ(X) =

∫
Gθ(X,Q)hθ(Q)Kθ(Q)dσ.

Also, if Q0 ∈ ST , then for X ∈ Ψ̃ and r > 0,

(5.9) |Gθ(X,Q)− Gθ(X,Q0)| .
( r

‖X−Q0‖

)α 1

ωθ(∆d(X,Q0))

whenever ‖X−Q0‖ > 2r, and Q ∈ ∆r(Q0).
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Before proving this result we explain how to finish the proof of Lemma 5.3 using
Lemma 5.4. Since hθ has zero average with respect to Kθ we use (5.8) to write

uθ(X) =

∫
∆̃

[
Gθ(X,Q)− Gθ(X,Q0)

]
hθ(Q)Kθ(Q)dσ.

Now since hθ is supported in ∆ρ, we can apply Hölder’s inequality and (5.9) to obtain

|uθ(X)| ≤
( r

‖X−Q0‖

)α 1

ωθ(∆d(X,Q0))

σ(∆ρ)

Kθ(∆ρ)

( 1

σ(∆ρ)

∫
∆ρ

K2
θdσ
) 1/2

.

As observed above, [24, Theorem 6.5] implies that kθ = dωθ/dσ ∈ RH2(dσ) with
uniform weight constants, and by (5.4) we conclude the proof of Lemma 5.3.

Proof of Lemma 5.4 To prove (5.8) we start by using the representation formula

uθ(X) =

∫
hθ(Q)dωX(Q) =

∫
hθ(Q)

dωX

dσ
(Q) dσ(Q) ≈

∫
hθ(Q)

dgθ(X,Q)

dN
dσ(Q),

where in the last estimates we used (5.6).
We now use results in [13, Section 3], on Hölder continuity of quotients of solu-

tions vanishing on a portion of the boundary. More precisely, for X ∈ Ψ̃, Q,Q0 ∈ SΨ̃

satisfying ‖Q−Q0‖ ≤ r/2, 2r ≤ ‖X−Q0‖, take Q ′,Q ′ ′ ∈ Ψ̃, with Q ′ approaching
Q0, and Q ′ ′ approaching Q

∣∣∣ gθ(X,Q ′ ′)

vθ(Q ′ ′)
− gθ(X,Q ′)

vθ(Q ′)

∣∣∣ . ( ‖Q ′ −Q ′ ′‖
‖X−Q0‖

)α gθ(X,Aδ(X;Q0)(Q0))

vθ(Aδ(X,Q0)(Q0))
.

Taking limits and using (5.5) and the comparison between Green’s function and
parabolic measure (see e.g., [24, Lemmata 2.8 and 2.9]) we conclude (5.9), after ap-
plying a Backward Harnack inequality near the boundary [13, Theorem 4].

Proof of Proposition 5.2 Given a real valued function F let dF/dθ = Ḟ denote the
derivative with respect to θ, whenever this derivatives makes sense. Also, for the vθ
already defined above, we set v̇θ to be the weak limit in V0(Ψ̃) (see page 430) of the
ratio (vθ−vθ+η)/η as η → 0. Similarly, K̇θ is the weak limit in L2(SΨ̃) of (Kθ−Kθ+η)/η
as η → 0. Incidentally, observe that actually ‖Kθ‖L2(SΨ̃) . 1 uniformly on 0 < θ < 1.

In order to estimate |Υ̇(θ)|, first we note that for f ∈ L2(∂pΨ̃) supported in ∆ρ

we have

(5.10) Υ̇(θ) =
1

Kθ(∆ρ)

∫
∆ρ

K̇θ( f − f∆ρ,Kθ
)dσ =

∫
∆ρ

K̇θhθ dσ.

On the other hand

(5.11) K̇θ =
d

dθ
〈Aθ∇vθ, ~N〉 = 〈A∇v̇θ, ~N〉 =

dv̇θ
dN

σ-almost everywhere in SΨ̃,
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since the coefficients Aθ coincide in SΨ̃, for 0 < θ < 1.
Next observe that

(5.12) Lθ v̇θ + div(E∇vθ) = 0, v̇θ = 0 on ∂pΨ̃.

Recalling that hθ is supported in ∆ρ, integration by parts and (5.10)–(5.12) imply

(5.13)
∣∣ Υ̇(θ)

∣∣ . ∫
Ψ̃

|E(X)||∇vθ(X)||∇uθ(X)|dX.

The proof now follows the lines of the one in [9, pp. 362–365]. For completeness we
include some details of the adaptation of that argument.

We handle the integral in (5.13) by considering the part close to Q0 ∈ SΨ̃ and its
complement:

(5.14)

∫
Ψ̃

|E(X)||∇vθ(X)||∇uθ(X)|dX =

∫
C(ρβ ′ )

|E(X)||∇vθ(X)||∇uθ(X)|dX

+

∫
Ψ̃0\C(ρβ ′ )

|E(X)||∇vθ(X)||∇uθ(X)|dX,

where β ′ is a number to be determined, and for any M > 0 we have adopted the
notation C(M) ≡ CM(Q0) ∩ Ψ̃0.

Fix k0 > 1 such that ρβ
′ ≈ 2k0+1 and write the first integral as∫

C(ρβ ′ )
|E(X)||∇uθ(X)||∇vθ(X)|dX

≤
∫

C(8ρ)
|E(X)||∇uθ(X)||∇vθ(X)|dX

+
k0∑
j

∫
C(2 j+1ρ)\C(2 jρ)

|E(X)||∇uθ(X)||∇vθ(X)|dX

≡ I +
∑

j

I j .

(5.15)

Let Λ be a parabolic dyadic decomposition (see e.g., [26]) of ∆8ρ. That is, ∆8ρ is
decomposed in parabolic cubes in Rn of diameters that are dyadic fractions of 8ρ. Let
R( J) be the rectangle associated with J ∈ Λ defined as

R( J) =
{

X = (λ, x, t) ∈ Ψ̃ : (x, t) ∈ J, diam( J)/2 ≤ λ ≤ diam( J)
}
.

In particular R( J) has a volume comparable to (diam J)n+2 ≈ δ(X)n+2, σ( J) ≈
(diam J)n+1 ≈ δ(X)n+1, and δ(X) ≈ diam J ≈ diamR( J) for X ∈ R( J). In all the
previous definitions the diameter is defined using the parabolic metric, and cubes
are parabolic cubes.
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By Cauchy’s inequality, Caccioppoli’s inequality, and (5.5),

I .
∑
J∈Λ

sup
R( J)
|E|
(∫

R( J)
|∇vθ(X)|2δ(X)ndX

) 1/2(∫
R( J)

|∇uθ(X)|2

δ(X)n
dX
) 1/2

≈
∑
J∈Λ

sup
R( J)
|E|
(∫

R( J)
δ(X)n−2|gθ(Ã0,X)|2dX

) 1/2(∫
R( J)
|∇uθ(X)|2δ(X)−ndX

) 1/2
.

(5.16)

Now we use the comparison between parabolic measure and Green’s function (see
[24, Lemma 2.8]) and the fact that

sup
R( J)
|E| .

(∫
R( J)

[
sup

Z∈C(X)
|E(Z)|

] 2 dX

δ(X)n+2

) 1/2
,

and we obtain by (5.3)

I .
∑
J∈Λ

(∫
R( J)

|A(X)|
δ(X)n+2

|Hθ(X)|2dX
) 1/2(∫

R( J)
|∇uθ(X)|2δ(X)−ndX

) 1/2
σ( J),

where

Hθ(X) =
ωθ(∆δ(X))

δn+1(X)

and where ∆δ(X) is a surface cube centered at Q0 of diameter δ(X) ≈ diamR( J).
Let

a J =
(∫

R( J)

|A(X)|
δ(X)n+2

|Hθ(X)|2dX
) 1/2

, b J =
(∫

R( J)
|∇uθ(X)|2δ(X)−ndX

) 1/2
.

Consider F(Q) = a Jχ J(Q) and G(Q) = b Jχ J(Q), functions defined for Q ∈ ∆̃0,
taking values in the space of sequences in `2(Λ). In fact one has

‖F(Q)‖`2(Λ) .
(∫

Γα(Q)

|A(X)|
δ(X)n+2

|Hθ(X)|2dX
) 1/2

, ‖G(Q)‖`2(Λ) . Sαuθ(Q).

Here α > 0 is an appropriately chosen aperture.
Hence, by Cauchy’s inequality and Fubini’s theorem, since σ( J) ≈ δ(X)n+1, we

obtain

I .
∑
J∈Λ

a Jb Jσ( J) .
∫

F(Q)G(Q)dσ(Q)

.
(∫

Ψ(∆2ρ)

|A(X)|
δ(X)

|Hθ(X)|2dX
) 1/2(∫

∆2ρ

S2
α(uθ)dσ

) 1/2
.
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Now we continue observing that the non-tangential maximal function of Hθ

is bounded by the Hardy–Littlewood maximal function of (dωθ/dσ)χ∆ρ
with re-

spect to σ. This Hardy–Littlewood maximal function has L2 norm bounded by
ωθ(∆2ρ)/σ(∆2ρ)1/2, hence we obtain, by a property of Carleson measures [29, p. 59],

I .
( ωθ(∆2ρ)

σ(∆2ρ)1/2

)
sup

Q∈SΨ̃

s<ρβ
′

( 1

σ(∆s(Q))

∫
Ψs(Q)

|A(X)|
δ(X)

dX
) 1/2(∫

∆2ρ

S2
α(uθ)dσ

) 1/2
.

To estimate the factor containing the area integral, we recall that dω/dσ ∈ RH2,
and so by the area integral estimates in [24, Theorem 5.1],∫

∆2ρ

S2
α(uθ)dσ .

∫
∆2ρ

|hθ|2dσ.

And now it is not hard to see that(∫
∆2ρ

|hθ|2dσ
) 1/2

≤ σ(∆2ρ)1/2

ωθ(∆2ρ)
.

Therefore,

(5.17) I . sup
Q∈SΨ̃

s<ρβ
′

( 1

σ(∆s(Q))

∫
Ψs(Q)

|A(X)|
δ(X)

dX
) 1/2

.

To estimate the terms I j in (5.15), we let Λ j denote a parabolic dyadic decompo-
sition of ∆2 j+1ρ(Q0) \∆2 jρ(Q0). Since the set

(
Ψ2 j+1ρ(Q0) \Ψ2 jρ(Q0)

)
\
⋃

J∈Λ j
R( J)

is contained in a cylinder C j whose diameter is proportional to its distance to the
boundary and in turn proportional to 2 jρ,

I j .
∑
J∈Λ j

∫
R( J)
|E(X)||∇vθ(X)||∇uθ(X)|dX +

∫
C j

|E(X)||∇vθ(X)||∇uθ(X)|dX

≡
∑
J∈Λ j

I j( J) + II j .

We estimate each of the terms above independently.
To estimate the terms I j( J) we use the device used to handle (5.16) to obtain

I j( J) . ωθ( J)diam( J)−(2n+1)/2
(∫

R( J)

|E(X)|2

δ(X)
dX
) 1/2(∫

R( J)
|∇uθ(X)|2dX

) 1/2

. ωθ( J)diam( J)−(2n+3)/2
(∫

R( J)

|E(X)|2

δ(X)
dX
) 1/2(∫

R̃( J)
|uθ(X)|2dX

) 1/2
,
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where R̃( J) is a small dilation of R( J). By the same token

II j . ωθ(∆2 j−1ρ)diam(C j)
−(2n+3)/2

(∫
C̃ j

|E(X)|2

δ(X)
dX
) 1/2(∫

C̃ j

|uθ(X)|2dX
) 1/2

.

We can now apply Harnack’s inequality and (5.7) in either term, obtaining for
instance for X ∈ C̃ j

u(X) . u
(
A2 jρ(Q0)

)
.
( ρ

2 jρ

)α 1

ωθ(∆2 jρ)
.

Hence by the doubling property of ω

II j .
(2 jρ)−(2n+3)/2(2 jρ)(n+2)/2

2α j

(∫
C̃ j

|E(X)|2

δ(X)
dX
) 1/2

.
1

2α j

( 1

σ(π(C j))

∫
C̃ j

|E(X)|2

δ(X)
dX
) 1/2

.
1

2α j
sup

Q∈SΨ̃

s<ρβ
′

( 1

σ(∆s(Q))

∫
Ψs(Q)

|E(X)|2

δ(X)
dX
) 1/2

.

(5.18)

Similarly,

(5.19) I j( J) . 2−α j sup
Q∈SΨ̃

s<ρβ
′

( 1

σ(∆s(Q))

∫
Ψs(Q)

|E(X)|2

δ(X)
dX
) 1/2

.

Estimates (5.17), (5.18), and (5.19) clearly imply the desired bound for the first term
in (5.14).

To handle the second term in (5.14) we first observe that 0 ≤ |vθ(X)| . 1 and
O(X) . 1. Hence, applying Caccioppoli’s inequality, using that uθ ≡ 0 on SΨ̃ \
∆ρ(Q0), and by (5.7) we have that(∫

Ψ̃\B(ρβ)
|∇uθ(X)|2dX

) 1/2
.

1

ρβ

(∫
C(2ρβ)\C(ρβ/2)

|uθ(X)|2dX
) 1/2

. ρ−β(1−(n+1)/2)ρ(1−β)α 1

ωr(∆ρβ )
.

As in [9, p. 363], by a well-known property of RH2(dσ) weights, ωr(∆ρβ ) ≈ ρβ ′ ′ , and
we conclude that ∫

Ψ̃\C(ρβ)
|E(X)||∇vθ(X)||∇ur(X)|dX . ρα̃,

where α̃ > 0 after choosing β small (see [9]). This concludes the proof of the propo-
sition.
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6 Arguments to Prove the Solvability Results

Proof of Theorem 3.2 By Theorem 4.3 it suffices to prove that any operator L as in
(1.1) with coefficients satisfying (3.1) lies in the class L.

Let (Q, s) ∈ ST and r > 0 such that ∆r(Q, s) ⊂ ST . Suppose with no loss of
generality that (Q, s) lies on the graph of the parabolic function ψ, supported on
ST ∩ Z, where Z is the local cylinder of constants A1, r0 corresponding to ψ.

Set Â(X, t) = (âi, j)i, j , where âi, j = ai, j ◦ ρ are the corresponding pull-back map-
ping of the coefficients ai, j . We start by noting that if u is a weak solution to Lu = 0
on Z, then ũ = u ◦ ρ is a weak solution to

(6.1) L̃1ũ ≡ divÃ∇ũ + ~B · ∇ũ− ∂u

∂t
= 0

where ~B(X, t) is the same as defined in Proposition 4.2, and Ã = (ãi, j)i, j is a new
matrix of coefficients given by

ã00 =
( 1

1 + ∂
∂λPγλψ

)(
â0,0 − 2

n∑
j=1

â0, j
∂

∂x j
Pγλψ +

〈
Â∇Pγλψ,∇Pγλψ

〉)
,(6.2)

ã j j = â j, j

(
1 +

∂

∂λ
Pγλψ

)
,

ã0 j = ã j0 = â0, j −
n∑

i=1

âi, j
∂

∂xi
,Pγλψ, 1 ≤ j ≤ n− 1

ãi, j = âi, j

(
1 +

∂

∂λ
Pγλψ

)
, 1 ≤ i, j ≤ n− 1,(6.3)

Notice that the ellipticity condition (1.2) for Ã is actually a consequence of the
corresponding one for A and of Lemma 4.1.

On the other hand, if the coefficients of A(X, t) = (ai, j(X, t)) satisfy (3.1), then

the coefficients of Ã satisfy the right estimates, as we outline now.

First note that for (X, t) = (x0, x, t) ∈ Ψr(Q, s), if we denote by δ̃(X, t) the vertical
distance from (X, t) to ∂ST , one has for r > 0 sufficiently small

δ(X, t) ≈ δ̃(X, t) = |ψ(x, t)− x0| ≈ |Pγλψ(x, t), x, t)− x0|

by the Lip(1, 1/2) property of ψ, and geometric considerations. Therefore, δ ◦
ρ(λ, x, t) ≈ λ.

Now note that the left-hand side of (3.1) is larger than

∫
Ψr(Q,s)

[
δ(X, t)|∇A(X, t)|2 + δ(X, t)3

∣∣∣ ∂A

∂t
(X, t)

∣∣∣ 2
]

dXdt &∫
Ψ̃r(Q̃,̃s)

[
λ|∇λ,x(A ◦ ρ)(λ, x, t)|2 + λ3

∣∣∣ ∂(A ◦ ρ)

∂t
(X, t)

∣∣∣ 2]
Jρ(λ, x, t) dλdxdt.
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Here (Q̃, s̃) = ρ−1(Q, s) and Ψ̃r(Q̃, s̃) = ∆̃Ñr(Q, s) × (0, Ñr), with ∆̃Ñr(Q̃, s̃) =

{(X̃, t̃) : ‖X̃ − Q̃, x̃ − s̃‖ < Ñr}, and where 0 < Ñ < 1 depends only on dimension
n and on the constant of ψ (as a parabolic Lipschitz function), and it makes possible
that

ρ−1
(

Ψr(Q, s)
)
⊇ Ψ̃r(Q̃, s̃).

Also Jρ = (1 + (∂/∂λ)Pγλ) denotes the determinant of the Jacobian matrix of the
mapping ρ.

Using (4.2) and the chain rule, one can conclude that the assumption (3.1) implies
that the following estimates hold:∫

Ψ̃r(Q̃,̃s)
λ

[∣∣∣∣∇λ,x,t Â ·

(1 + (∂/∂λ)Pγλ)
~0
0

∣∣∣∣ 2

+
n∑

j=1

∣∣∣∣∇λ,x,t Â ·

(∂/∂x j)Pγλ

~1 j

0

∣∣∣∣ 2
]

dλdxdt . rn+1,

(6.4)

∫
Ψ̃r(Q̃,̃s)

λ3

[∣∣∣∣∇λ,x,t Â ·

(∂/∂t)Pγλ

~0
1

∣∣∣∣ 2
]

dλdxdt . rn+1(6.5)

Here~0 denotes the (n − 1)-dimensional zero vector,~1 j denotes the (n − 1)-dimen-
sional vector with zeroes everywhere except in the j-th place, where there is a 1
(1 ≤ j ≤ n− 1).

Hence using (6.2)–(6.3) to evaluate |∇Ã(λ, x, t)|2 and |∂t Ã(λ, x, t)|2, one may use
Lemma 4.1, (4.2) and the estimates in (6.4)–(6.5), to conclude (4.4)–(4.5) holds for
the coefficients of L̃1 in (6.1). This suffices to prove Theorem 3.2 by Theorem 4.3.

One can actually prove a similar theorem for non-divergence operators of the
form

(6.6) Hu =

n∑
i, j=1

ai, j(X, t)
∂2u

∂xi∂x j
− ∂u

∂t
,

where the matrix is again symmetric and satisfies an ellipticity condition as in (1.2).
In this case the solutions are taken as strong solutions, and assuming the smoothness
of the coefficients A(X, t), we can only use limiting arguments to make the same
conclusions for A(X, t) ∈ VMO (see details e.g., in [2]).

Theorem 6.1 Fix T > 0, and let Ω be an infinite starlike parabolic cylinder. Let H be
any operator as described in (6.6) defined over ΩT . Suppose that there exists a constant
C > 0 such that for every (Q, s) ∈ ST and every r > 0 such that ∆r(Q, s) ⊂ ST ,∫

Ψr(Q)

(
sup

(Z,τ )∈C(X,t)

[
δ(Z, τ )|∇A(Z, τ )|2 + δ(Z, τ )3

∣∣∣ ∂A

∂τ
(Z, τ )

∣∣∣ 2])
dXdt

< Cσ
(

∆r(Q)
)
.
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Then k = dω/dσ ∈ RHp(ΩT) for some p > 1.

The key observation is that a non-divergence operator of the form
∑

ai, j∂i, ju can
be written as a divergence form operator with drift terms divA∇u + ~B · ∇u, with ~B
satisfying the adequate Carleson measure condition. To prove Theorem 6.1 one uses
Theorem 3.2 and the following result proved in [17, Chapter III].

Theorem 6.2 Let L1u = divA∇u− ∂u/∂t and L2u = divA∇u− ∂u/∂t +~B · ∇u be
two operators defined on Ω, where A satisfies the ellipticity condition (1.2) and suppose
that there exists C > 0 such that ~B satisfies

(6.7)

∫
Ψr(Q)

(
sup

(Y,s)∈C(X,t)
δ(Y, s)|~B(Y, s)|2

)
dXdt < Cσ

(
∆r(Q)

)
for every r > 0 and (Q, s) ∈ ST such that ∆r(Q, s) ⊂ ST . Then ωL1 ∈ A∞(ST , σ)
implies ωL2 ∈ A∞(ST , σ).

Sketch of proof of Theorem 3.3 It has been observed before that the parabolic ver-
sion of Dahlberg–Kenig–Stein mapping is a bijection between R̃n+1

+ and a basic para-
bolic Lipschitz domain Ω(ψ), where ψ is a function associated with a local cylinder
defining Ω. Also the Jacobian of this mapping is Jρ ≈ 1 for an appropriate choice of
the parameter γ in its definition.

It has also been observed that an operator L as decribed in Theorem 3.3 is mapped
to an operator with drift terms as in (6.1), and in particular the drift coefficients ~B
satisfy a Carleson measure condition as in (6.7). Hence, by Theorem 6.2, in order to
prove the theorem it suffices to prove it for an operator as in (6.1), defined on R̃n+1

+ ,
without the drift term ~B.

We assume then that the matrix A(λ, x, t) is defined on R̃n+1
+ . Denote by a(λ, x, t)

any of its entries and define

a∗(λ, x, t) =

∫
Pλ(λ− ς, x − z, t − τ )a(ς, z, τ )dς dzdτ

where P ∈ C∞0 supported on Σn = {(λ, x, t) : λ2 + |x|2 + t2 < 1}, with∫
P(λ, x, t)dλdxdt = 1

and Pλ(ς, z, τ ) = λ−n−2P(ςλ−1, zλ−1, τλ−2).
By applying the gradient to Pλ and adding, then subtracting, the constant

avg((Y, s); A), one can check that

λ|∇A∗(λ, z, τ )|2 + λ3
∣∣∣ ∂A∗

∂τ
(λ, z, τ )

∣∣∣ 2
.

O(λ, z, τ )

λ
,

and hence by (3.2) and Theorem 3.2 the caloric measure associated with the operator
as in (1.1) with matrix A∗(X, t) is in A∞(dσ).
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Notice that for (ξ,Y, s) ∈ C(λ, x, t),

|a(ξ,Y, s)− a∗(λ, x, t)| ≤
∫

Pλ(λ− ς, x − z, t − τ )|a(ς, z, τ )− a(ξ,Y, s)|dς dzdτ

and therefore by assumption (3.2), the perturbation result [24, Theorem 6.4] can be
invoked. This implies the theorem.

A consequence of the proof just presented is a sort of stability property of the class
L. In fact the following corollary states that a (non-empty) sub-class of L is stable
with respect to certain perturbations.

Corollary Define L0 as the class of operators as described in (1.1) such that their
coefficients satisfy (3.1). Let L0, L1 be operators as described in (1.1). Suppose that
L0 ∈ L0 and that L1 is a perturbation of L0 in the sense that (5.2) holds. Then L1 ∈ L0.

Theorem 3.3 has another consequence for non-divergence operators of the form
(6.6). In fact the proof of the following theorem follows the lines of the proof of
Theorem 3.3 sketched above, only this time using Theorem 6.1 and the perturbation
result [1, Theorem 1.1].

Theorem 6.3 Fix T > 0, and let Ω be an infinite starlike parabolic cylinder. Let H
be an operator as described in (6.6) defined over Ω. Suppose that there exists a constant
C > 0 such that for every (Q, s) ∈ ST and every r > 0 such that ∆r(Q, s) ⊂ ST ,∫

Ψr(Q,s)

O(X, t)

δ(X, t)
dXdt < Cσ

(
∆r(Q, s)

)
.

Then k = dω/dσ ∈ RHp(ΩT) for some p > 1.
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