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DEGENERATIONS OF ORBIFOLD CURVES
AS NONCOMMUTATIVE VARIETIES

SHINNOSUKE OKAWA , TARIG ABDELGADIR , DANIEL CHAN and

KAZUSHI UEDA

Abstract. Boundary points on the moduli space of pointed curves cor-

responding to collisions of marked points have modular interpretations as

degenerate curves. In this paper, we study degenerations of orbifold projective

curves corresponding to collisions of stacky points from the point of view of

noncommutative algebraic geometry.

§1. Introduction

A noncommutative projective variety in the sense of Artin–Zhang [5] is the Grothendieck

category QgrA obtained as the quotient of the category GrA of graded right modules over

a graded associative algebra A satisfying the condition χ1 by the full subcategory TorA

consisting of torsion modules.

In [2], a class of AS-regular algebras determined by the quiver in Figure 1 describing

noncommutative cubic surfaces are introduced. The moduli stack of this class of algebras

is an open substack of the quotient of an affine space by a linear action of a torus.

A choice of a stability condition gives an 8-dimensional smooth proper toric stack, which

contains the moduli stack of smooth marked cubic surfaces as a locally closed substack.

An interesting feature of this moduli stack is that Qgr of the algebra associated with the

point on the boundary corresponding to a degenerate cubic surface with a rational double

point is the category of quasi-coherent sheaves not on the singular cubic surface but on a

noncommutative crepant resolution (which is derived-equivalent to the minimal resolution

by the McKay correspondence), and hence is of finite homological dimension.

In this paper, we explore similar phenomena in dimension one. As a direct one-

dimensional analog of (not necessarily commutative) del Pezzo surfaces, we consider orbifold

projective lines studied in depth in [9]. Given a positive integer n, a sequence r= (r1, . . . , rn)

of integers greater than 1, and a sequence

λ= (λ1 =∞,λ2 = 0,λ3 = 1,λ4, . . . ,λn) ∈
((

P
1
)n \Δ)/PGL(2) (1.1)

of pairwise distinct points on P
1 where

Δ :=
{
(λi)

n
i=1 ∈

(
P
1
)n ∣∣∣ λi = λj for some i �= j

}
(1.2)

is the big diagonal, an orbifold projective line is defined by

X=Xr,λ := [(SpecS \0)/L∨] , (1.3)
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2 S. OKAWA ET AL.

Figure 1.

The quiver describing noncommutative cubic surfaces.

where

S = Sr,λ := k[x1, . . . ,xn]
/
(xri

i −xr2
2 +λix

r1
1 )

n
i=3 (1.4)

is the homogeneous coordinate ring of X and L∨ := Speck[L] is the Cartier dual of the

abelian group

L= Lr := Z�c⊕
n⊕

i=1

Z�xi

/
〈�c− ri�xi〉ni=1 (1.5)

of rank one. The coaction S → k[L]⊗S dual to the action L∨×SpecS → SpecS is given by

xi 
→ �xi⊗xi for any i ∈ {1, . . . ,n}. The morphism c : X→ P
1 to the coarse moduli scheme

is the rith root construction at λi in a neighborhood of λi ∈ P
1 for each i, and the Picard

group PicX can be identified with L in such a way that OX (�xi) is the universal bundle

associated with the root construction, so that OX (�c) =OX (ri�xi)�OX(1) := c∗OP1(1). The

dualizing element

�ω := (n−2)�c−�x1−·· ·−�xn (1.6)

corresponds to the canonical sheaf of X. We equip L with a structure of an ordered set so

that �a��b if

�b−�a ∈ L≥0 :=

{
n∑

i=1

ai�xi

∣∣∣∣∣ ai ∈ Z
≥0

}
. (1.7)

Note that one has �a��b if and only if

Hom
(
OX (�a) ,OX

(
�b
))

�= 0. (1.8)

The endomorphism algebra of the full strong exceptional collection

(OX (�a))0��a��c (1.9)
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 3

Figure 2.

The quiver describing orbifold projective lines.

of line bundles given in [9, Proposition 4.1] is described by the quiver Q=Qr in Figure 2

with relations

I = Ir,λ = span{airi · · ·ai1−a1r1 · · ·a11+λia2r2 · · ·a21 | 3≤ i≤ n} , (1.10)

which is a two-sided ideal of the path algebra kQ contained in e1kQe0 as a vector subspace.

From the ideal I of relations of the quiver Q, one can recover the ideal of relations of the

homogeneous coordinate ring (1.4) as the ideal generated by the image of I by the linear

map

e1Qe0 → k [x1, . . . ,xn] airi · · ·ai1 
→ xri
i , i ∈ {1, . . . ,n}. (1.11)

This allows the construction of X as the fine moduli stack of refined representations of the

quiver

Γ = (Q,I) (1.12)

with relations [4].

The moduli stack of relations, discussed more generally in [3], is defined as the stack

quotient

R :=
[
Grn−2 (e1kQe0)

/
G

Q1
m

]
(1.13)

of the Grassmannian of (n− 2)-dimensional subspaces of the n-dimensional vector space

e1kQe0 by the action of the torus G
Q1
m coming from the change of basis of ka for each

arrow a ∈Q1.

Remark 1.1. The stack R has a non-trivial group of generic automorphisms, which

can be rigidified by taking the quotient by (Gm)
n−1 instead of GQ1

m .
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4 S. OKAWA ET AL.

If we write

r =

(
d1︷ ︸︸ ︷

r1, . . . , r1,

d2︷ ︸︸ ︷
r2, . . . , r2, . . . ,

d�︷ ︸︸ ︷
r�, . . . , r�

)
(1.14)

for pairwise distinct integers r1, . . . , r�, then the automorphism group of the quiver Q is

given by

AutQ�Sd :=
�∏

i=1

Sdi . (1.15)

The isomorphism class of an orbifold projective lineX determines the full strong exceptional

collection (1.9), which in turn determines the isomorphism class of the quiver (Q,I) with

relations. Therefore, the subspace I ⊂ e1kQe0 is determined by the isomorphism class of

X up to the action of GQ1
m �AutQ.

In order to find a well-behaved open substack of the non-separated stack R, replace

Gr(n−2,n) with Gr(2,n) and use the Gelfand–MacPherson correspondence [10]

Gr(2,n)//(Gm)
n−1 � (GL2 \\Mat(2,n))//(Gm)

n−1 (1.16)

� PGL2 \\(Mat(2,n)//(Gm)
n) (1.17)

� PGL2 \\
(
P
1
)n

. (1.18)

A stability condition in the sense of geometric invariant theory [11] is determined by a sta-

bility parameter χ= (χi)
n
i=1 ∈Z

n ∼=Pic
(
P
1
)n

in such a way that a point λ= (λi)
n
i=1 ∈

(
P
1
)n

is χ-semistable if for any I ⊂ {1, . . . ,n} such that λi = λj for i, j ∈ I, one has

∑
i∈I

χi ≤
1

2

n∑
i=1

χi. (1.19)

The point λ is χ-stable if the above inequality is strict. A stability parameter χ is generic if

semistability implies stability. For a generic stability parameter, the open substack Rs ⊂R
consisting of stable points is a principal B(Gm)

|Q1|−n+1-bundle over a smooth projective

scheme.

We now ask if the points on the boundary of Rs (i.e., those which do not come from(
P
1
)n \Δ) have “geometric” interpretations.

To give a “commutative” answer to this problem, first note that the definitions of Sr,λ

and Xr,λ in (1.4) and (1.3) make sense for any (λ4, . . . ,λn) ∈A
n−3, and can be interpreted

as the fine moduli stack of refined representations of Γ in (1.12). The resulting stack is

described as follows:

Theorem 1.2. For any (λ4, . . . ,λn) ∈ A
n−3, one has an isomorphism

Xr,λ �Xr1,λ1 ×P1 Xr2,λ2 ×P1 · · ·×P1 Xrn,λn (1.20)

of stacks.

To search for a “noncommutative” answer to the same problem, note that a stability

condition in geometric invariant theory comes from a choice of a ray in the group of

characters. In the world of stacks, we must specify not only a ray but a submonoid, since

taking the Veronese subring changes Qgr in general. In the noncommutative world, we can
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 5

choose a subset of the group of characters which may not be closed under addition (so that

the resulting “noncommutative scheme” may not be a quotient by a group action).

Consider the k-linear category S = Sr,λ whose set of objects is L and whose space of

morphisms from �a to �b is the space S�b−�a of homogeneous elements of degree �b−�a. For a

subset K ⊂ L containing Z�c and invariant under translation by �c, we set

SK := (the full subcategory of S consisting of K). (1.21)

A right SK-module is a contravariant functor from SK to Modk. An SK-moduleM is said to

be torsion if for anym∈M , there exists �a∈K such thatms=0 for any�b∈K satisfying�b��a

and any s ∈ S�b. The quotient of the Grothendieck category GrSK of right SK-modules by

the localizing subcategory TorSK consisting of torsion modules will be denoted by QgrSK .

As is common in noncommutative algebraic geometry (cf. e.g., [14, Section 3.5]), we write

QcohXK :=QgrSK and talk about quasi-coherent sheaves on XK , although the symbol XK

alone does not make any sense. We write the image in QcohXK of the projective module

e�aSK represented by the object �a ∈ L as OXK
(�a). For K = L, one has

XL �X, (1.22)

and for K = Z�c, one has

XZ�c � P
1. (1.23)

A flag K ′ ⊂ K ⊂ L of subsets gives a full embedding SK′ → SK , the restriction

GrSK →GrSK′ along which induces a functor QgrSK → QgrSK′ since a torsion module

restricts to a torsion module. This functor is exact and can be regarded as the push-forward

along the “noncommutative contraction” XK →XK′ .

Let � : X → P
1 be the noncommutative contraction corresponding to the inclusion

Z�c⊂ L, and

AXK
:=�∗End

⎛
⎝⊕

�a∈K0

OX (�a)

⎞
⎠ , (1.24)

where

K0 := {�a ∈K | 0� �a≺ �c} . (1.25)

We say that K0 is a fundamental domain of the translation by �c if the map

K0×Z→K, (�a,m) 
→ �a+m�c (1.26)

is a bijection.

Theorem 1.3. If K0 is a fundamental domain of the translation by �c, then one has an

equivalence

QcohXK �QcohAXK
(1.27)

of categories.

Let us summarize what we have done so far. For any subset K ⊂ L containing Z�c and

invariant under translation by �c, we have constructed a noncommutative variety XK and

a sheaf of OP1-algebras AXK
on P

1 satisfying (1.27). On the other hand, if λi �= λj for
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6 S. OKAWA ET AL.

all i �= j, then one has Db cohXr,λ is equivalent to DbmodΓ since the path algebra of Γ

is isomorphic to the endomorphism algebra of the full strong exceptional collection (1.9).

Now we ask if there is a choice of K such that the derived equivalence holds for any λ. The

answer is affirmative. Take

I = {m�xi |m ∈ Z and i ∈ {1, . . . ,n}} (1.28)

and write

Y :=XI (1.29)

(or Yr,λ := (Xr,λ)I when we want to make the dependence on r and λ explicit). This choice

is motivated by the fact that for any k ∈ Z, the set {�a ∈ I | k�c� �a� (k+1)�c} can naturally

be identified with the set of vertices of the quiver in Figure 2, and we have the following

theorem.

Theorem 1.4. For any I ∈Grn−2 (e1kQe0) , one has a quasi-equivalence

Db cohY �DbmodΓ (1.30)

of dg categories, where Γ is defined in (1.12).

Therefore, there are two “geometric” interpretations of the points on the boundary of the

compact moduli space of orbifold projective lines. One is “commutative” and given by the

stack Xr,λ, and the other is “noncommutative” and given by the noncommutative variety

Yr,λ. Both are closely related to the quiver Γ with relations. The former is the fine moduli

stack of refined representations of Γ, and the latter is derived equivalent to Γ. Moreover, any

choice of a subset K of the Picard group L containing Z�c and invariant under translation

by �c produces a noncommutative variety (Xr,λ)K with an equivalence (1.27), and Xr,λ and

Yr,λ are given by K = L and K = I, respectively.

Now we ask if the constructions of Xr,λ and Yr,λ can be generalized to curves which are

not necessarily rational. The right-hand side of (1.20) is the fiber product in the category

of stacks, and makes sense in much greater generality. With the fact that the orbifold

projective line Xr,λ is obtained from P
1 by the root construction of orders r at the points

λ in mind, let C be a smooth curve and Xr be the stack obtained from C ×C by the

rth root construction along the diagonal. For i ∈ {1,2}, let πi : Xr → C be the structure

morphism Xr → C×C of the root construction composed with the ith projection. Now

πr : Xr := Xr1 π1×π1Xr2 π1×π1 · · · π1×π1Xrn
π2×···×π2−−−−−−→ Cn (1.31)

gives a flat (but non-smooth) family of proper orbifold curves, which restricts to a smooth

family

πr|π−1
r (Cn\Δ) : π

−1
r (Cn \Δ)→ Cn \Δ (1.32)

over the complement of the big diagonal. The fiber of πr over λ ∈ Cn will be denoted by

Xr,λ, generalizing the case where C = P
1.

The construction of AY also makes sense in this generality. Set

AYr
:=�∗End

(⊕
a∈I0

OXr
(a)

)
, (1.33)
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 7

where � : Xr → C×Cn is the structure morphism to the coarse moduli scheme,

I0 :=

n⋃
k=1

{(ai)ni=1 ∈ Z
n | ai = 0 for i �= k and 0≤ ak < rk} , (1.34)

and

OXr
(a) :=OXr1

(a1)� · · ·�OXrn
(an) (1.35)

is the exterior tensor product of the aith tensor powers of the universal bundles on the root

stacks Xri . The symbol Yr alone does not make sense, and is meant to denote the family

of noncommutative algebraic varieties over Cn such that QcohYr =QcohAYr
. For λ ∈Cn,

we write the restriction of AYr
to the fiber C×λ over λ as AYr,λ

. It is clear from (1.24)

and (1.33) that this AYr,λ
is a generalization of that in (1.29) to the case where C may

not be P
1.

Theorem 1.5. For any smooth curve C, any positive integer n, and any r ∈
(
Z
>1
)n
,

one has the following:

1. The sheaf AYr
of OC×Cn-algebras is flat over Cn.

2. For any λ ∈ Cn \Δ, one has an equivalence QcohAYr,λ
�QcohXr,λ.

3. For any λ ∈ Cn, the category QcohAYr,λ
has finite homological dimension.

Theorem 1.5 can be compared with the existence of a “degenerate” noncommutative

cubic surface of finite homological dimension whose commutative counterpart is a singular

cubic surface. Unlike a noncommutative crepant resolution of a quotient singularity, the

stack Xr,λ is singular whereas the “noncommutative contraction” Yr,λ, which is “below”

Xr,λ, is smooth.

The existence of distinct flat extensions QcohXr and QcohYr of the family (1.32) of

abelian categories over Cn \Δ illustrates the non-separatedness of the “moduli space of

abelian categories.” When the coarse moduli space of X is P1, these extensions come from

two subsets of L�PicX. While these subsets make sense only when the coarse moduli space

of X is P1, there is a third choice which makes sense for any curve, namely, Z�ω ⊂ L for the

dualizing element �ω. This choice is canonical, and leads to a modular compactification of

the moduli stack of orbifold curves. This is a “purely commutative” story, which is discussed

in a separate paper [1].

This paper is organized as follows: In Section 2, we prove Lemma 2.1, of which

Theorem 1.2 is an immediate consequence. In Section 3, we discuss the sheaves of algebras

AX and AY in the case when C is an affine line to illustrate their definitions and to motivate

the introduction of the path algebra of a quiver labeled by effective divisors in Section 4,

which can describe AY as shown in Section 5. Theorems 1.5, 1.3, and 1.4 are shown in

Sections 6, 7, and 8, respectively.

1.1 Notations and conventions

We will work over an algebraically closed field k of characteristic zero throughout the

paper. In particular, all schemes, stacks, and their isomorphisms are defined over k, and all

(dg) categories and functors are linear over k.
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8 S. OKAWA ET AL.

§2. Fiber products of global quotients

Lemma 2.1. Let Yi = [Xi/Gi] for i = 0, . . . ,n be the stack quotients of schemes Xi

by actions of algebraic groups Gi. Let further Xi → X0 for i = 1, . . . ,n be morphisms of

schemes that are intertwined by group homomorphisms Gi → G0 yielding morphisms of

stacks Yi → Y0. Then one has an isomorphism

Y1×Y0 · · ·×Y0 Yn
∼−→ Y := [X/G] (2.1)

of stacks where X :=X1×X0 · · ·×X0 Xn and G :=G1×G0 · · ·×G0 Gn.

See, e.g., [13, Tag 003O] for the definition of fiber products.

Proof. We begin with defining the morphism (2.1) as a functor between categories

fibered in groupoids over the category of k-schemes.

To define the action of the functor on objects, fix a test scheme S. An object of the

left-hand side of (2.1) over S is an n-tuple whose ith entry is as follows:

• For i= 1, . . . ,n a principal Gi-bundle

Pi → S. (2.2)

• For i= 1, . . . ,n a Gi-equivariant morphism

fi : Pi →Xi. (2.3)

• An isomorphism of principal G0-bundles

ϕij : Pj ×Gj G0
∼−→ Pi×Gi G0 (2.4)

for i, j = 1, . . . ,n satisfying the following conditions.

ϕii = id (2.5)

ϕijϕjkϕki = id (2.6)

fiϕij = fj . (2.7)

Let e0 ∈G0(k) be the identity. Take P to be the limit of the diagram consisting of ϕij for

i, j = 1, . . . ,n and Pi

idPi
×e0−−−−−→ Pi×Gi G0 for i= 1, . . . ,n. Then P admits a standard structure

of a principal G-bundle over S together with a G-equivariant morphism

f : P →X. (2.8)

Thus we have obtained an object on the right-hand side of (2.1) over S.

We now move on to morphisms. A morphism

(Pi,fi,ϕij)→
(
P ′
i ,f

′
i ,ϕ

′
ij

)
(2.9)

in the fiber category of the left-hand side of (2.1) over S is an n-tuple of Gi-bundle

isomorphisms (ψi : Pi → P ′
i )i=1,...,n such that f ′

iψi = fi.

If we let f : P → X and f ′ : P ′ →X be the images of the source and the target of the

morphism (2.9) under (2.1), then the morphisms ψi induce an isomorphism of principal

G-bundles ψ : P → P ′ satisfying f ′ψ = f .

We now define a morphism which we will show is the inverse of (2.1), based on that the

left-hand side of (2.1) is the limit of a diagram of stacks.
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 9

In order to define the morphism pi : Y→ Yi for i= 1, . . . ,n, take an object of Y over S ;

i.e., a G-bundle P → S together with an G-equivariant morphism f : P →X. To such data,

via the projection G→Gi, we associate the Gi-bundle Pi :=P ×GGi and the Gi-equivariant

morphism defined as follows:

fi : Pi

f×idGi−−−−−→X×GGi →Xi. (2.10)

Thus we have obtained the map Y(S) → Yi(S). It is straightforward to confirm that

morphisms of the category Y naturally induce those of Yi, so we omit the details.

We also have to construct for 1 ≤ i �= j ≤ n a natural isomorphism qipi ⇒ qjpj . This is

obtained from the canonical isomorphism

Pi×Gi G0
∼−→ Pj ×Gj G0. (2.11)

It remains to show that the morphism of stacks we have just constructed is inverse to

(2.1), which is straightforward and hence left to the reader.

Proof of Theorem 1.2. For i∈ {1, . . . ,n} one has Xri,λi � P(1, ri)�
[(
A

2 \0
)/

Gm

]
where

Gm acts on A
2 by Gm � α : (x,y) 
→ (αx,αriy). The morphism Xri,λi → P

1 is given by

(x,y) 
→ (y,xr1) if i= 1 and (x,y) 
→ (xri +λiy,y) if i∈ {2, . . . ,n}. Now we apply Lemma 2.1

to Xi = A
2 \ 0 and Gi = Gm for i ∈ {0, . . . ,n}. The group L∨ is isomorphic to the fiber

product of the morphisms Gm →Gm, α 
→ αri for i ∈ {1, . . . ,n}. It remains to show(
A

2 \0
)
×A2\0 · · ·×A2\0

(
A

2 \0
)
� SpecS \0, (2.12)

where S is defined in (1.4). (2.12) follows from

A
2×A2 · · ·×A2 A

2 � SpecS. (2.13)

The left-hand side of (2.13) is the spectrum of

k[x1,y1]⊗k[x0,y0] · · ·⊗k[x0,y0] k[xn,yn], (2.14)

which is isomorphic to the quotient of k[x1,y1, . . . ,xn,yn] by the ideal

(xr1
1 −y2)+(y1−xr2

2 )+(y1− (xri
i +λiyi),x

r1
1 −yi)

n
i=3 . (2.15)

Note that this ideal also contains yi−xr2
2 for i ∈ {3, . . . ,n}. By eliminating all the yi’s, we

see that this ring is isomorphic to S, and Theorem 1.2 is proved.

§3. Sheaves of algebras on the affine line

In this section, we describe the sheaves of algebras AX and AY for the toy model

C = A
1
z := Speck[z] (3.1)

to illustrate their definitions given in Section 1 and to motivate the construction in Section 4.

Choose r ∈ Z
>1 and λ ∈ k. Consider the group action μr �A

1
x defined by

μr � ζ : x 
→ ζ(x−λ)+λ (3.2)

and let

Xr,λ = [Speck[x]/μr] , (3.3)

AX =AY = k[x]�μr. (3.4)
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10 S. OKAWA ET AL.

The right-hand side of (3.4) is the skew group ring with respect to the action (3.2). The

coarse moduli of Xr,λ is as follows, which at the same time depicts Xr,λ as the root stack

of Speck[z] ramified of order r at the origin.

� : Xr,λ → Speck[z], z 
→ (x−λ)r. (3.5)

Our assumption that k is an algebraically closed field of characteristic zero implies the

isomorphism k [μr]� k×r as k-algebras and

k[x]�μr � k[x]⊕r (3.6)

as k[x]-modules.

One has k[x]� k[z]⊕r as k[z]-modules, so that

k[x]�μr � k[z]⊕r2 (3.7)

as k[z]-modules. If we write the universal bundle on Xr,λ as the root stack as O(1), then

one has

k[x]�μr ��∗End
(

r−1⊕
a=0

O(a)

)
. (3.8)

The k-algebra k[x]�μr is described by a quiver such that vertices are the idempotents

ei ∈ k [μr] for i ∈ Hom(μr,Gm) � Z/rZ and there is one arrow from ei to ei+1 where

1 := deg(x−λ) ∈Hom(μr,Gm).

For n≥ 1 the k-algebra

AX �Ar1,λ1 ⊗k[z] · · ·⊗k[z]Arn,λn (3.9)

is described by a quiver with vertices ei for i ∈
∏n

k=1Z/rkZ and arrows ai,j for

(i, j) ∈
∏n

k=1Z/rkZ×{1, . . . ,n}, equipped with relations. The arrow ai,j goes from ei to

ei′ where i′ is obtained from i by increasing the j th component by 1. The algebra AY

is described by the full subquiver consisting of vertices ei where i = (i1, . . . , in) runs over

the subset of
∏n

k=1Z/rkZ such that ik is non-zero for at most one k ∈ {1, . . . ,n}. In order

to describe AY not as a k-algebra but as a k[z]-algebra (or a sheaf of OC-modules), we

introduce the notion of the path algebra of a Diveff C-labeled quiver in Section 4 below.

§4. Path algebras of quivers with arrows labeled by effective divisors

A quiver Q = (Q0,Q1, s, t) consists of a set Q0 of vertices, a set Q1 of arrows, and two

maps s, t : Q1 → Q0 called the source and the target. The quiver Q is said to be finite if

the sets Q0 and Q1 are finite. The path category of the quiver is the category with objects

Q0 freely generated by Q1. A path is a morphism of the path category. The set of paths is

denoted by P.

We consider only finite quivers unless otherwise specified.

Definition 4.1. A labeling of a quiver Q= (Q0,Q1, s, t) by a set S is a map

D• : Q1 → S, ρ 
→Dρ (4.1)

of sets.
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 11

If S is a monoid, then an S -labeling D• induces a functor from the path category of Q

to the category with one object and the set S of morphisms. The resulting map P → S of

sets will be denoted by D• again by abuse of notation.

We henceforth restrict ourselves to labeling by the monoid G = Diveff C of effective

Cartier divisors on a scheme C.

Definition 4.2. A cycle is a non-identity endomorphism of an object of the path

category, i.e., a product an · · ·a2a1 of arrows ai ∈ Q1 such that s(ai+1) = t(ai) for

i= 1, . . . ,n−1 and s(a1) = t(an). It is simple if s(a1), s(a2), . . . , s(an) are mutually distinct

elements of Q0.

The set P of paths is partitioned into the disjoint union of the set Pa of acyclic (cycle-free)

paths and the set Pc of paths containing at least one cycle;

P = Pa�Pc. (4.2)

Given a simple cycle ρ, permuting the arrows cyclically naturally gives another simple

cycle.

Definition 4.3. The path algebra of a Diveff C-labeled quiver Q= (Q,D•) is the sheaf

OCQ :=

⎛
⎝⊕

ρ∈P
OC(−Dρ)ρ

⎞
⎠/I (4.3)

of OC-algebras, where the multiplication is given by the concatenation of paths, and the

ideal I is generated by the following relations: For any vertex v ∈Q0 and any simple cycle

ρ at v, we identify OC(−Dρ)ρ with OC(−Dρ)ev ⊆Oev, where ev is the trivial path at v.

Since any simple cycle can be removed by the relation I in (4.3), the inclusion and the

projection gives a surjection ⊕
ρ∈Pa

OC(−Dρ)ρ→OCQ (4.4)

of OC-modules. The assumption that a quiver is finite implies that the set Pa and hence

the sheaf OQ of OC-algebras is also finite.

§5. The labeled quiver describing AY

Fix a smooth curve C, a positive integer n, a sequence r = (ri)
n
i=1 of positive integers,

and a sequence λ = (λi)
n
i=1 of points on C. Let AY = AYr,λ

be the fiber over λ ∈ Cn of

the family (1.33) of sheaves of OC-algebras. Let further Q be the quiver obtained from the

quiver in Figure 2 by identifying the leftmost vertex 0 with the rightmost vertex 1, equipped

with the Diveff(C)-labeling defined by

Daij =

{
λi j = ri,

0 otherwise.
(5.1)

Note that for each 1≤ i≤ n and 1≤ j ≤ ri there is a standard isomorphism of line bundles

OCaij
∼−→�∗O (�xi)

canonical� �∗Hom(O ((j−1)�xi) ,O (j�xi)) (5.2)
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12 S. OKAWA ET AL.

which sends aij to the tautological section of the line bundle O (�xi). Lemma 5.1 below is

an immediate consequence of the definition of OCQ in Definition 4.3.

Lemma 5.1. The isomorphisms (5.2) induce the following isomorphism of OC-algebras.

OCQ ∼−→AY. (5.3)

Example 5.2. To illustrate the above constructions, we give an example of a family

of algebras over P1 parametrized by the points of A1. Consider the labeled quiver Q as in

(5.4), where D1,D2 ∈Diveff

(
P
1
[u0:u1]

×A
1
λ

)
are defined by s1 := u0−λu1, s2 := u0−2λu1 ∈

H0 (OP1(1)�OA1) .

01 2

0

D1 0

D2

(5.4)

The path algebra OQ can be described as the matrix algebra⎡
⎣O O (−D1) O (−D2)

O O O (−D2)

O O (−D1) O

⎤
⎦ , (5.5)

which gives a flat family of finite P
1
[u0:u1]

-algebras over A
1
λ. If λ �= 0, then D1 and D2 give

distinct points on P
1, so that cohOQ is equivalent to the category of coherent sheaves on a

smooth rational orbifold projective curve with two stacky points of order 2. If λ= 0, then

both D1 and D2 gives the point p= [0 : 1] ∈ P
1
[u0:u1]

. The resulting path algebra⎡
⎣O O(−p) O(−p)

O O O(−p)

O O(−p) O

⎤
⎦ (5.6)

has a right module e0Op of homological dimension two by Proposition 6.9.

§6. Homological dimension of the path algebra

Definition 6.1. A quiver is said to have transverse cycles if any pair of simple cycles

intersect either at most one vertex or are cyclic permutations of each other.

The following result is well-known. Lacking a good reference, we provide the short proof.

Proposition 6.2. If Q= (Q,D•) is a Diveff C-labeled quiver as in Definition 4.3 such

that Q has transverse cycles, then the morphism (4.4) of OC-modules is an isomorphism.

Proof. First we study the map at the generic point of the curve C. For this, let K be

the function field of C. The ideal IK 
KQ of relations at the generic point is generated by

elements of the form ρ−ev where ρ ranges over all simple cycles and v is the starting vertex

of ρ. Given any path ρ∈Pc, we let ρ̄ be a cycle-free path obtained from ρ by contracting all

simple cycles so that ρ≡ ρ̄ modulo IK. Furthermore, our assumption that Q has transverse

cycles ensures that ρ̄ is uniquely determined by ρ. In fact, to see the elements ρ− ρ̄ form a

K-basis for IK, we use Bergman’s diamond lemma as follows (see [6, Theorem 1.2] for its

statement and associated terminology. Generalization to path algebras has been settled in,

say, [8, Section 2.2]). We view KQ as an algebra over the semi-simple algebra KQ0 freely
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 13

generated by the bimodule KQ1. We partially order monomials in edges by their length.

The reduction system we use replaces each monomial of edges a1a2 . . .al corresponding

to a simple cycle ρ beginning at v with ev. Furthermore, given a ∈ Q1, it replaces eva

and aew with a whenever v is the target of a and w is its source, and to 0 otherwise.

We need to check the overlap m = ai . . .ala1 . . .al which can be reduced using ρ to give

ai . . .alev = ai . . .al. If w is the source of ai, then the monomial m can also be reduced

using the cycle ai . . .ala1 . . .ai−1 to ewai . . .al = ai . . .al. The two reductions are the same so

the overlap ambiguity is resolved. Now the transverse cycle condition ensures that the only

other overlaps to check involve idempotents ev, and these are easily resolved. This proves

Proposition 6.2 at the generic point. As the source of the map (4.4) is torsion free, this

already implies the assertion.

Given a simple cycle ρ on a quiver Q, we can construct a new quiver Q′ by contracting the

cycle ρ as follows. The set of vertices is defined by Q′
0 =Q0/∼, where ∼ is the equivalence

relation which identifies all vertices of ρ but leaves all other vertices distinct. The set of

arrows Q′
1 is the subset of Q1 consisting of arrows not contained in ρ. A labelingD• : Q1 →S

restricts to a labeling D′
• :=D•|Q′

1
, and we write Q′ = (Q′,D′

•) for Q= (Q,D•).

Proposition 6.3. If Q is a Diveff C-labeled quiver having transverse cycles and Q′ is

the DiveffC-labeled quiver obtained by contracting a simple cycle ρ with Dρ = 0, then one

has an equivalence

QcohOCQ�QcohOCQ′ (6.1)

of categories.

Proof. Let v,w ∈Q0 and consider the local projectives Pv = evOCQ and Pw = ewOCQ.

If v,w are in ρ, as Dρ = 0, multiplication by the “arc” of ρ from the vertex w to v induces

an isomorphism Pw
∼−→ Pv. Thus the direct sum P =⊕vPv over all vertices of Q outside ρ

and one vertex of ρ gives a local progenerator of OCQ.

It thus suffices to show that OCQ′ � EndC P . From Proposition 6.2, we know that for

each pair (v,w) of vertices of Q

HomOCQ(Pw,Pv) = evOCQew =
⊕
γ

OC(−Dγ)γ, (6.2)

where γ runs over all cycle-free paths from w to v. Since Q has transverse cycles, the path of

Q′ which is obtained from an cycle-free path of Q in the obvious manner is again cycle-free.

Moreover this yields a bijection between cycle-free paths from w to v and cycle-free paths

in Q′ from the image of w to the image of v. The assumption Dρ = 0 ensures that this

bijection respects the labeling, and Proposition 6.3 is proved.

Definition 6.4. A Diveff C-labeling D• of a quiver Q is said to be reduced if for every

simple cycle ρ on Q, the divisor Dρ is reduced.

Lemma 6.5 below is an immediate consequence of the definition of having transverse

cycles.

Lemma 6.5. If Q has transverse cycles, then any two simple cycles which intersect in

more than one vertex are cyclic permutations of each other.

The proof of Lemma 6.6 below is straightforward.
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14 S. OKAWA ET AL.

Lemma 6.6. Let ρ be a simple cycle on Q with Dρ = 0 and Q′ be the labeled quiver

obtained by contracting ρ. If Q has transverse cycles, then so does Q′. If D• is reduced,

then so is D′
•.

The condition of transverse cycles has the following nice consequence.

Lemma 6.7. For a DiveffC-labeled quiver Q with transverse cycles and an arrow a∈Q1,

the left multiplication by a map es(a)KQ a·−→ et(a)KQ over the function field K of C is

injective.

Proof. Suppose to the contrary that a
∑

i riρi = 0, where ri ∈ K× and ρi are distinct

cycle-free paths ending at s(a). If aρi are cycle-free for all i, then the assertion is obvious. For

the contrary, suppose that aρi contains a cycle for some i. By the transversality assumption

there exists a unique simple cycle γ = aγ′ at the vertex t(a). Let ρ′i be the unique acyclic

path such that ρi = γ′ρ′i. Now

0 = a
∑
i

riρi =
∑

aρi∈Pc

riaρi+
∑

aρi∈Pa

riaρi =
∑

aρi∈Pc

rietaρ
′
i+

∑
aρi∈Pa

riaρi. (6.3)

As ρ′i for those i such that aρi ∈ Pa are all distinct and do not contain the edge a, the

equality (6.3) implies ri = 0 for all i.

Theorem 6.8 below is a consequence of Proposition 6.9 and Proposition 6.10

Theorem 6.8. The path algebra OCQ of a reduced Diveff C-labeled quiver Q on a smooth

curve C with transverse cycles has homological dimension at most two.

Proposition 6.9. Theorem 6.8 holds if C is the spectrum of a discrete valuation ring.

Proof. Let O be a discrete valuation ring with the closed point p and a uniformizing

parameter t. Each vertex v ∈ Q0 gives rise to the indecomposable projective module

Pv = evOQ and the simple module Sv = Pv/radPv. It suffices to show that pdSv ≤ 2.

Suppose first that there are no cycles through v. Then Proposition 6.2 and Lemma 6.7

imply that

0→
⊕

t(a)=v

Ps(a)

(−t
a )−−−→

⊕
t(a)=v

Ps(a)⊕Pv
(a t)−−−→ Pv → Sv → 0 (6.4)

gives a projective resolution of Sv = evO/(t), so that pdSv ≤ 2 in this case.

Suppose now that there exists a simple cycle ρ starting at v. If Dρ = 0, then we may

contract ρ to obtain a new Diveff C-labeled quiver, whose path algebra is Morita equivalent

to the original one by Proposition 6.3, and which still satisfies the hypotheses of Theorem 6.8

by Lemma 6.6. By repeating this operation if necessary, we may assume that there exist

exactly r+1 simple cycles ρ0, . . . ,ρr starting at v and that Dρi = p for all i. Lemma 6.5

implies that ρi and ρj for i �= j intersect only at the vertex v. Set

ρi = aiρ
′
i (6.5)

and

Ξv := {a ∈Q1 | t(a) = v}\{a0, . . . ,ar} . (6.6)
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DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 15

Since Dρi = p �= 0 for all i, we again have Sv = evO/(t). We claim that we have a projective

resolution

0→
r⊕

i=1

Pv⊕
⊕
a∈Ξv

Ps(a)
φ−−→

⊕
t(a)=v

Ps(a)
(a)−−→ Pv → Sv → 0, (6.7)

where φ is defined by the following block matrix (we think of the elements of the source

and the target as column vectors):

⎡
⎢⎢⎢⎢⎢⎣

−ρ′0 · · · −ρ′0
(
ρ′0a

)
a∈Ξv

ρ′1
. . .

ρ′r

0

0 (−t)a∈Ξv

⎤
⎥⎥⎥⎥⎥⎦ :

⎡
⎣

⊕r
i=1Pv

⊕
a∈Ξv

Ps(a)

⎤
⎦→

⎡
⎢⎢⎢⎢⎣

Ps(a0)⊕r
i=1Ps(ai)⊕
a∈Ξv

Ps(a)

⎤
⎥⎥⎥⎥⎦ . (6.8)

It is easy to check that (6.7) is a complex and φ is injective. What remains to check is

the inclusion ker(a)⊆ imφ. Take an element of ker(a); namely, a column vector⎡
⎢⎢⎢⎢⎢⎣

σ0

σ1

...

σr

(σa)a∈Ξv

⎤
⎥⎥⎥⎥⎥⎦ ∈ ker(a) (6.9)

such that

0 = (a)

⎡
⎢⎢⎢⎢⎢⎣

σ0

σ1

...

σr

(σa)a∈Ξv

⎤
⎥⎥⎥⎥⎥⎦= a0σ0+

r∑
i=1

aiσi+
∑
a∈Ξv

aσa. (6.10)

Without loss of generality, we assume all entries of (6.9) are linear combinations of cycle-free

paths. By a direct analysis one can confirm that it can be modified by an element of imφ

so that all entries of (6.9) but σ0 are zero. Exactness now follows from Lemma 6.7, which

ensures that ker(a0 : Ps(a0) → Pv) = 0, and Proposition 6.9 is proved.

Proposition 6.10. Let A be a coherent sheaf of algebras on a smooth curve C such

that at any point p ∈C the homological dimension of the stalk Ap is at most two. Then the

homological dimension of A is at most two.

Proof. It suffices to show that Ext3A(F ,−) = 0 for every coherent A-module F . If F
has dimension 0 as a sheaf on C, then this immediately follows from our assumption as the

local-to-global Ext spectral sequence degenerates for the obvious reason.

Since the torsion part of F as anOC-module is automatically anA-submodule, it remains

to show the assertion under the assumption that F is torsion free as a sheaf on C. In this

case, if we can show that locally at every closed point F has projective dimension at most

one, then the assertion follows from the local-to-global Ext spectral sequence. To this end,

https://doi.org/10.1017/nmj.2025.10067
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 05 Oct 2025 at 11:43:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/nmj.2025.10067
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


16 S. OKAWA ET AL.

suppose that O is a discrete valuation ring with a uniformizing parameter t. Consider the

following part of the long exact sequence of Ext groups.

Ext2A(F ,−)
t−−→ Ext2A(F ,−)→ Ext3A(F/tF ,−). (6.11)

The last term is zero by what we have already confirmed, as F/tF is torsion. Hence the

first map of (6.11) is always surjective. By the structure theorem for finitely generated

modules over a discrete valuation ring or Nakayama’s lemma, we see Ext2A(F ,−) = 0. Thus

we conclude the proof.

Proof of Theorem 1.5. Theorem 1.5.3 is a special case of Theorem 6.8. Theorem 1.5.1

is clear since AYr
is OC×Cn-locally-free. In order to prove Theorem 1.5.2, take Zariski

open subsets Ui of C such that λi ∈ Ui, λj �∈ Ui for j �= i, and
⋃n

i=1Ui = C, which is

possible since λ ∈ Cn \Δ. Then the restriction of AYr,λ
to Ui is Morita equivalent to

OUiQi by Proposition 6.3, where Qi is the labeled quiver associated with n = 1, r = ri
and λ = λi. Recall from Section 5 that the quiver Qi is introduced in such a way that

QcohOUiQi �Qcoh(Xr,λ×C Ui). These equivalences on Ui glue together to give the desired

equivalence on C, and Theorem 1.5.2 is proved.

§7. Graded algebras and I -algebras

Definition 7.1 [5, Conditions (4.2.1)]. Let C be an abelian category and A be an

object of C . An autoequivalence s of C is ample if

(a) for every object M of C , there exist positive integers l1, . . . , lp and an epimorphism⊕p
i=1A(−li)→M, and

(b) for every epimorphism f : M→N , there exists an integer n0 such that for every n≥n0,

the map H0(M(n))→H0(N (n)) is surjective,

where H0(M) := Hom(A,M) and M(l) := sl(M) for l ∈ Z.

Lemma 7.2 below is an immediate consequence of Definition 7.1.

Lemma 7.2. If A is a coherent sheaf of algebras on a polarized scheme (C,L), then the

tensor product by L gives an ample autoequivalence of (cohA,A).

Theorem 7.3 below is one of the main results of [5].

Theorem 7.3 [5, Theorem 4.5(1)]. Let (C ,A, s) be a triple consisting of

• an abelian category C ,

• an object A of C , and

• an autoequivalence s of C

satisfying the following three conditions:

1. A is noetherian.

2. A0 :=H0(A) is a right noetherian ring and H0(M) is a finite A0-module for all M.

3. s is ample.

Then the graded ring A :=
⊕∞

i=0H
0(A(i)) is right noetherian satisfying χ1, and (C ,A, s) is

isomorphic to (qgrA,π(A),(1)).

https://doi.org/10.1017/nmj.2025.10067
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 05 Oct 2025 at 11:43:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/nmj.2025.10067
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


DEGENERATIONS OF ORBIFOLD CURVES AS NONCOMMUTATIVE VARIETIES 17

Given a set J, an J-algebra is a category whose set of objects is identified with J.

A Z-algebra is a generalization of Z-graded algebra [7]. A Z-algebra analog of Theorem 7.3

is given in [12, Theorem 2.4].

Let A=OCQ be the path algebra of a quiver Q= (Q,D•) labeled by effective divisors on

an integral polarized scheme (C,L). The graded ring associated with the triple (cohA,A,

L⊗ (−)) as in Theorem 7.3 will be denoted by A.

Define a J -algebra for J :=Q0×Z by

B(v,m)(w,n) :=H0
(
evAew⊗OC

L⊗(n−m)
)
, (7.1)

whose multiplication is induced from that of A through the morphism(
euAev⊗OC

L⊗(m−l)
)
⊗OC

(
evAew⊗OC

L⊗(n−m)
)
→ euAew⊗OC

L⊗(n−l). (7.2)

One can collapse the J -structure to a Z-structure by

B′
mn :=

⊕
v,w∈Q0

B(v,m)(w,n) (7.3)

without changing the categories gr and qgr;

grB � grB′, qgrB � qgrB′. (7.4)

As the index set K = I satisfies the assumption of Theorem 1.3, it follows that the

Z-algebra B′ is related to A by B′
mn =An−m, so that

grA� grB′, qgrA� qgrB′. (7.5)

If Q is the labeled quiver introduced in the beginning of Section 5, then the resulting

J -algebra B coincides with the category SI appearing in (1.21), where the index set K is

taken to be the set I defined in (1.28), so that Theorem 7.3 gives

cohAY � qgrA� qgrB � qgrSI . (7.6)

This proves the equivalence (1.27) for K = I. The equivalence for general K is proved

similarly by using the K -algebra S= SK , and Theorem 1.3 is proved.

§8. A full strong exceptional collection on Y

In this section, we always assume C = P
1.

Theorem 8.1. The sequence (OY (�a))0��a��c of objects of cohY := qgrSI is a full strong

exceptional collection of Db cohY whose total morphism algebra is the path algebra of the

quiver in Figure 2 with relations (1.10).

Proof. Under the equivalence with cohAY, the object OY (a�xi) for 0 < a < ri corre-

sponds to the AY-module ei,aAY, and the objects OY(0) and OY(�c) correspond to e0AY

and e0AY(1), respectively. Since they are sheaves of projective AY-modules, Ext-groups
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between them can be computed without taking further local projective resolutions as

AY-modules. Namely, we have

Hom•
cohAY

(
e�aAY,e�bAY

)
�RΓ

(
Y,Hom•

AY

(
e�aAY,e�bAY

))
(8.1)

�RΓ
(
Y,HomAY

(
e�aAY,e�bAY

))
(8.2)

�RΓ
(
Y,OY

(
�b−�a

))
(8.3)

�RΓ
(
P
1,�∗OY

(
�b−�a

))
. (8.4)

It then follows that (OY (�a))0��a��c is a strong exceptional collection whose total morphism

algebra is the path algebra of the quiver in Figure 2 with relations (1.10). In order to show

that the collection is full, one can use the exact sequences

0→OY(0)→OY (a�xi)⊕OY (�c)→OY (a�xi+�c)→ 0 (8.5)

and their translates by Z�c to show that AY(i) for any i ∈ Z is contained in the full

triangulated subcategory generated by the collection.

Theorem 1.4 is an immediate consequence of Theorem 8.1.
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