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ABSTRACT

A fully time-continuous approach is taken to the problem of predicting the total
liability of a non-life insurance company. Claims are assumed to be generated
by a non-homogeneous marked Poisson process, the marks representing the
developments of the individual claims. A first basic result is that the total claim
amount follows a generalized Poisson distribution. Fixing the time of consid-
eration, the claims are categorized into settled, reported but not settled,
incurred but not reported, and covered but not incurred. It is proved that these
four categories of claims can be viewed as arising from independent marked
Poisson processes. By use of this decomposition result predictors are con-
structed for all categories of outstanding claims. The claims process may
depend on observable as well as unobservable risk characteristics, which may
change in the course of time, possibly in a random manner. Special attention is
given to the case where the claim intensity per risk unit is a stationary
stochastic process. A theory of continuous linear prediction is instrumental.
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1. INTRODUCTION

A. Objective of the study and relations to existing actuarial literature

In its spirit, the present study is a follow-up of a previous paper by the author
(NORBERG, 1986), where the problem of predicting incurred but not reported
claims is treated for various specifications of the model assumptions and the
available data. In that paper data are invariably assumed to be discretized on
an annual basis, say. The fairly wide framework model allows for fluctuation
of unobservable risk conditions from one year to the next, represented by iid
(independent and identically distributed) latent stochastic variates. The ideas
have been developed further by HESSELAGER and WITTING (1988), who specify
assumptions about stochastic variation in the development pattern from one

1 Based on invited paper presented at the 23rd ASTIN Colloquium, Stockholm, 1991.
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year to another. This issue has been pursued also in a recent paper by
NEUHAUS (1992). The present paper carries on in two directions of increasing
generality.

In the first place it undertakes to construct a continuous time stochastic
process description of the occurrence and development of insurance claims, the
purpose being to gain economy of notation as compared with the discrete time
set-up, and—more important—to look for possibilities of refining the model
apparatus and the statistical methods. A first draft of the ideas was presented
in an earlier paper by the author (NORBERG, 1989). Notable previous works on
prediction of outstanding claims in a time-continuous setting are contributed
by KARLSSON (1976), who discusses the effect of correlation between the claim
amount and the delay time from occurrence to notification in a renewal
process, by ARJAS (1989), who clarifies ideas in a general stochastic process
framework, and by JEWELL (1989), who treats the special problem of predicting
the number of incurred but not reported claims in the case of a homogeneous
Poisson process with random claim intensity, constant in time.

In the second place, fluctuations and trends in risk conditions are accommo-
dated in a more flexible manner than in previous works. Fluctuating unobserv-
able risk conditions are represented by a latent stochastic process, which may
be taken to have a certain inertness, and observable risk characteristics are
accounted for by covariates (explanatory, exogeneously given quantities) that
may change over time. Thus, one is not compelled to lump all varying risk
factors into the unknown and to postulate that risk factors in different years
are independent selections from some common distribution.

B. Outline of the paper

Prediction of liabilities is a major issue in any assessment of the financial
strength of an insurer, whether performed in public supervision or in company
management. The present study adopts the point of view of a regulatory
authority conducting solvency control based on the break-up criterion,
whereby the relevant liabilities are the total outstanding payments in respect of
claims that the insurer is under contract to cover at the time of consider-
ation.

Section 2 explicates the objective of the solvency control and describes the
structure of the observable data. Section 3 presents the basic model, a so-called
marked Poisson process: claims occur in accordance with a non-homogeneous
Poisson process, and to each individual claim is associated a random "mark"
representing its development from occurrence to final settlement. A key result
is that the claims process may be viewed as the outcome of a Poisson number
of claims with independent and identically distributed occurrence epochs and
marks. Consequently, the total claim amount follows a generalized Poisson
distribution. Section 4 provides further useful results on distributional proper-
ties of the process. Fixing the time of consideration, the claims are categorized
into settled, reported but not settled, incurred but not reported, and covered
but not incurred. It is proved that these four categories of claims arise from
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independent marked Poisson processes. From this basic decomposition result
the distribution of the total outstanding liability is easily found, and adequate
reserves can be computed. This is the topic of Section 5. In Section 6 the model
is extended by letting the claim intensity be a stochastic process representing
fluctuating unobservable risk conditions. A linear predictor of the outstanding
liability in respect of not reported claims is obtainable by methods taken from
a recent paper by the author (NORBERG, 1992) — it is an integral with respect
to the process counting the reported claims. Section 7 offers a sketch of how
observable risk factors can be represented by covariates that may change in the
course of time. Section 8 provides some numerical illustrations.

2. THE SOLVENCY CONTROL SYSTEM AND THE DATA
«

A. The break-up point of view in solvency control

Consider an insurer who has been running business in one or more lines of
insurance since time 0, say, and who is subjected to solvency control at some
subsequent time T, henceforth referred to as the present moment. The solvency
assessment is based on the break-up scenario, by which underwriting of new
business is assumed to cease at time T. Thus, only outstandings for which
liability has been assumed prior to time % are relevant, and, since the premiums
for this part of the business have already been collected, the reserve provided at
time r must be adequate to meet these claims. Possible excess of premiums over
claims in the future cannot be counted as available for covering currently
assumed liabilities (no counting of chickens before they are hatched). In this
perspective it is henceforth understood that all quantities introduced are related
to coverages secured by contracts in force prior to or at time T. They could
properly be equipped with an index r, but this is omitted to save notation.

B. Data from policy records

For the time being focus is on one single line of business, a mass branch like
non-industrial fire or automobile insurance. The portfolio is made up of many
small risk units so that a single claim has no significant impact on the size and
the composition of the portfolio and, therefore, need not be related to the
individual risk from which it stems. Thus, the macro viewpoint of the collective
theory of risk is adopted, and it is assumed that the information provided by
the policy records at time / is adequately summarized by:

w(t), the risk exposure per time unit at time t.

The exposure rate w(t) may be a thought of as a simple measure of volume or
size of the business, but later on it will be allowed to depend on covariates
describing the composition of the portfolio. In the break-up context the
function w will typically look as in Figure 1. Future exposure after time x
pertains to contracts that are currently in force. In practice they will expire in
finite time so that w(t) - 0 for t large enough, but it will suffice here to assume
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that the total exposure,

(2.1)

is finite.

RAGNAR NORBERG

Jo
W= I w(t)dt,

'o

FIGURE 1. Exposure of business written up to time T.

C. Data from claims records

The claims statistics is a file of records, one for each individual claim. Associate
with a claim the following quantities, which can be read from the completed
claims record after the claim has been settled:

T, the time of occurrence,
U, the waiting time from occurrence until notification to the insurer,
V, the waiting time from notification until final settlement,
Y(v'), the indemnity paid in respect of the claim during the time interval
[T+ U, T+ U+v'], i.e. within v' time units after its notification,
Y= Y(V),the final claim amount.

Y(v>)

-*. t
T T+U T + U + v' T+U + V
FIGURE 2. Occurrence and development of a claim.
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A typical claims history, as described by these quantities, is depicted in
Figure 2.

It is convenient to assemble the quantities describing the development of the
claim after its occurrence in

Z=(U,V,Y,{Y(v');O<v'<V}),

and to represent the claim as the pair (T, Z). The space of all possible
realizations of a claim is (0, oo) x %, where % is the space of all possible
developments.

The claims for which liability has been assumed by time x is a collection of
points (Tj, Z,) in the claims space. Let the claims (if any) be numbered in
accordance with the chronology of their occurrence, 0 < T{ < T2< ... (imply-
ing that no two claims occur simultaneously). Introduce

N(t) - J^j 1{7\<,}, the number of claims occurred by time t,

and abbreviate

N = l im ,^ N(t), the total number of claims.

The occurrence epochs 7j determine the counts {N(t)}t>0, and vice versa;

(2.2) 7; = inf{/;iV(0>/}.

The claims data that will eventually be observable is

(2.3)

3. THE BASIC MODEL

A. Review of some properties of Poisson distributions

Proofs of the standard results to be listed here can be looked up in e.g. BEARD
et al. (1984).

A non-negative integer-valued random variable N is Poisson distributed with
parameter W(> 0), written N ~ Po{W), if

W"
(3.1) P{N = n} = e~w, « = 0, 1,...

n\
Let Yj, i = 1, 2 , . . . , be iid selections from a distribution PY, all independent

of N~ Po(W). Then the random variable
N

(3.2) X= £ Y,
1=1

(interpreted as 0 if N = 0) is said to have a generalized Poisson distribution
with frequency parameter W and jump size distribution PY, abbreviated
X~ Po{W, PY). This distribution is given by

J2. W
(3.3) Px= £ —e-»P?,

n = Q n\
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where the topscript n* signifies w-th convolution. Its first three central moments
are

(3.4) m f = W I / Pr(dy), k = 1, 2, 3,J
provided that the first three moments of PY exist.

If Xu), j = 1,.. . , k, are independent and Xu) ~ Po(Wu\ Pru,) for each ./,
then

(3.5) X =

with
k

(3.6) W =

(3.7)

Putting all jump sizes equal to 1, (3.4)-(3.7) specialize to results for Poisson
distributions.

There are at least two reasons why the generalized Poisson distribution plays
an important role in risk theory. First, it is widely held to be a reasonable
description of claims generated by a large and fairly homogeneous portfolio of
risks and, second, it is computationally feasible. In particular, the moments are
given by simple explicit formulas, confer (3.4), and there exist a number of
techniques for computing tail probabilities and fractiles in such distributions,
see e.g. BEARD et al. (1984).

B. Basic model assumptions for the claims process

The starting point is the process of occurrences of claims. It is assumed that
claims occur in accordance with a non-homogeneous Poisson process with
intensity w(t) at time / > 0. In short,

(3.8)

This means precisely that the process {N(t)},>0 has independent increments
and N(t) — N(s) ~ Po{\'sw{t') dt') for each interval (s, t]. In particular, since
the total exposure in (2.1) is finite, the total number of claims is finite with
probability 1 and is a Poisson variate; N ~ Po{W). The claims epochs are
constructed from the counting process by (2.2). Let {Z(?)},>o be a family of
random elements in % which are mutually independent and independent of
{N(t)}t>0, and denote the distribution of Z(t) by Pzu. The individual claim
developments are constructed as Z, = Z(7]), i = I,..., N. Phrased less pre-
cisely, the claim developments Z, are assumed to be mutually independent,
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and the conditional distribution of Z,, given {N(t)}t>0, depends only on Tt.
Adopting standard terminology, the random element Z, is called the mark
associated with the occurrence epoch Tt, and the process is called the marked
Poisson process with intensity {w(0}<>o a n d position-dependent marking by

o- I" short,

(3.9) m, ZthmN-Poiwit), Pzu; t>0).

C. An alternative construction of the process

Let the statement Te dt signify that T takes its value in a neighbourhood of
extension dt around t. The meaning is clear if T is real- or vector-valued, and
the device can be adopted also in more general spaces. The joint probability
distribution of the observables is given by

(3.10) P{N = n, (Tt, Z,) 6 (dt,, dZi), i = 1, . . . , « }

= e Jo » ( / , ) * ! . . . e V , w{tn)dtn

1=1

(3.11) =e£wm'
1=1

W "
(3.12) = e-^

n\ ; i

where W is the total exposure defined by (2.1) and

(3.13) PT>z(dt, dz) = ^ ^ PZ\t(dz).
W

It is seen that PTZ is the joint distribution of a random pair (T, Z), where T
has a marginal distribution PT with density w (t)/ W, t > 0, and Z has
conditional distribution Pzu for fixed T—t. The expression (3.12) serves to
prove the following result.

Theorem 1: The marked Poisson process in (3.9) can be viewed as the outcome
of a two-stage procedure: first generate N~Po(W), then select a random
sample of N pairs from the distribution PT z given by (3.13), and order them
by the size of the first entry to obtain {(7),

D. The distribution of the total liability

Let X denote the total liability assumed by the insurer up to time r. It is of the
form (3.2), with ./V* and the Yt distributed as specified in Paragraph B above.
Being a symmetric function of the Yt, the sum on the right of (3.2) does not
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depend on the chronological order of the claims. Thus, by virtue of Theorem 1,
the Yj can be replaced by iid selections from the marginal distribution PY

obtained from the joint distribution in (3.13) upon integrating out the other
variates:

(3.14) PY(dy) = l>

w(t)PY\t{dy)dt
o

W

(The notational device employed in PY and PY\, is selfexplaining and will be
used throughout: the marginal distribution of a variate is denoted by the
symbol of the joint distribution equipped with the appropriate subscript.) This
together with (3.3) and (3.4) proves the following result:

Corollary to Theorem 1: The total claim amount is a generalized Poisson
variate, X~ Po{W,PY), with W and PY given by (2.1) and (3.14). Its
distribution is given by (3.3), and the three first moments are

(3.15) mf= f io(0 f ykPYlt(dy)dt, * = 1 ,2 ,3 .
J r>0 J y>0

Remark: A heuristic motivation of the result is obtained from (3.5)-(3.7) upon
writing X = Ĵ ° X(dt), the " sum" of claim amounts in small intervals dt, t > 0.
Each X(dt) is a sum of individual claim amounts, the number of claims N{dt)
being Po(w(t) dt) and the individual claim amounts being iid selections from
pYU. a

4. FOUR CATEGORIES OF CLAIMS

A. Paid and outstanding claims

As seen at time x, the claims may be categorized as settled (s), reported-
not-settled (rns), incurred-not-reported (inr), or covered-not-incurred (cni). For
each t > 0 and g = s, rns, inr, cni, let X,B denote the set of all possible
developments that make a claim occurred at time / belong to category g. These
sets are defined precisely as

(4.1) Zt
s = { z ; t + u + v < x } ,

(4.2) -T,™ = {z;t + u<x< t + u + v } ,

(4.3) Zr ={z;t<x<t + u},

(4.4) Xt
cni ={z;t>x}.

By definition, %'t
9 = 0 for t > z and g = s, rns, inr, 3"t

cm = X for t > x, and
Zt

cm = 0 for t < x. For each t the sets Xt
g form a partition of the space Z,

that is,

(4.5) u%? = %\ %? n %'f = <t>,g±g'.
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The acronyms inr and rns are shorthand for the commonly used ibnr and
rbns, the redundant "bu t" being dropped in incurred but not reported and
reported but not settled. The term cni (NORBERG, 1989) represents claims
related to what is usually called the unearned premium reserve.

In accordance with the categorization (4.1)-(4.4) the process in (2.3) decom-
poses into the component processes

(4.6) {(Tf, Zf)}ls,sAr,, g = s, rns, inr, cni.

The construction is obvious: for each g the process counting the g-claims is
defined by Ng (t) = £,- l{T<t ze%T

a)>tne epoch of occurrence of the i-th g-claim
is Tf = inf {t; Ng(t) > i}, 'and 'its 'development is Zf = Z(Tf).

The total liability in (3.2) decomposes accordingly into

(4.7) X = Xs + Xrns + Xim + Xcni,

where the components on the right are the total liabilities in respect of claims in
the different categories;

(4.8) *9 = Z

g = s, rns, inr, cni.
By time x the s-part is paid, the /w-part splits into a paid part,

\rprns \ "\rrns / rj-irns rrrns\
A — /_, *i VT Ii ui )>

and an outstanding part,

(4.9) Xorns =
1 < ( < AT™

and the inr- and cnz'-parts are outstanding. The last-mentioned two components
can conveniently be lumped into

(4.10) Xnr = Xinr + Xcm'= £ Y,m,
l<i<N"

the liability in respect of not reported (nr) claims defined in accordance with
(4.1).(4.4) by

(4.11) JiT = Zlnr\J%r = {z; t + u>T}.

The process of nr-claims is well defined by (4.6) for g = nr.
The total outstanding liability at time x is

(4.12) X° = Xorns + Xnr,

and a major issue in the solvency assessment is the prediction of this
quantity.
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B. The joint probability distribution of the component claims processes

The following result is basic in the sequel.

Theorem 2: The component processes in (4.6) are independent, and for each
g = s, rns, inr, cni,

{(77, Z/%<,-<„„ ~ Po(wg(t), P9
zll; t > 0),

with

(4.13) wg(t) = w(t)Pzlt{^,g},

(4.14) PZit(dz)=P

P

Proof: The component processes in (4.6) are determined by the aggregate
process in (3.9) and vice versa, and so the event appearing in (3.10) can be
equivalently stated in terms of the component processes. From (4.5) it follows
that Y,g Pz\A%t) = 1 f° r e a c n t. Thus, the likelihood in (3.12) is easily rewritten
as

(4.15) P{ng {Ng = ng, ( 7 / , Zf) e (dtf, dzf), / = ! , . . . , n9}}

where
/•OO

(4.16) W9 = wg{t)dt,
Jo

with wg(t) defined by (4.13), and

(4.17) «,<**) - F"""dz) 'Wl
Wg W9

The result now follows by the product form of (4.15) and comparison with
(3.1O)-(3.13) and Theorem 1. •

The result says that ^-claims occur with an intensity which is the claim
intensity times the probability that the claim belongs to the category g, and the
development of the claim is governed by the conditional distribution of the
mark, given that it is in category g. Accordingly, the quantity Wg in (4.16) may
be termed the total exposure in respect of claims of category g or just the
g-exposure. The distribution PjZ is just the conditional distribution of (T, Z),
given that it is a g-claim.
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5. PREDICTION IN THE BASIC MODEL

A. The prediction problem

A reserve must be provided at time z to meet the outstanding liability. Let 3~t

denote the statistical information available by time z. It consists of the histories
up to time z of all individual claims that have been reported (r) by that time,
that is, occurred at some time t< z and with development in

(5.1) %[ = 3

The problem of providing an adequate reserve amounts to predicting X" in
(4.12) on the basis of its conditional distribution, given J?~x.

B. Predicting the eras-liability

As for the term Xorns on the right of (4.12), the ras-claims are conditionally
independent, given Sfz. Thus, the predictive distribution of Xorns is the
convolution of the conditional distributions of the individual terms in (4.9).
Now, the conditional distribution of the size of an individual claim Y[ns may
depend in a complex manner on its development up to time z. Matters may
be simplified greatly by discarding the detailed information {Y[ns(v');
0<v' <z~Yf"-Uim}, and conditioning only on T[m = tt, U-ns = «,-, and
Y["s> Y[ns(z-Tr-U[ns) = yi. This operation involves only the bivariate
distribution of (U, Y) for fixed T= th and the relevant predictive distribution
of Y[ns is given by

(5.2) Prriti^y.idy) = '—^ , J >>-,••

Thus, the non-central predictive moments of Y[m- Y[ns(z- T,rns- U-ns) are

I 0

and the first three central moments are

(5.3) m)>-a)>,
(5.4) m) ' = a\ ' - {a}'y

(5.5) m) ' — at '

Since the terms in (4.9) are independent, the three first predictive moments of
Xoms are

(5.6) m(£L, | j r = Y mf\ J f c = l , 2 , 3 .
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C. Predicting the Mr-liability

The term Xnr on the right of (4.12) is independent of J^, and is to be assessed
on the basis of its marginal distribution. By Theorem 2, all results in
Paragraphs 3C-D carry over to the process of wr-claims — just insert topscript
nr in all symbols. In particular, formula (3.15) applies and, recalling

(5.7) wm{t) = w{t)(\-Pw{x-t)),

Pu,r\t(du,dy)J.(5.8) P%(dy) =
l-Pvll(z-t)

one obtains

« $ , = f wnr(t) f yk Pn
Y

r
lt(dy) dt

(5.9.) J (>0 J y>0

= f w(O f f ykPv,YV{du,dy)dt, Ar= 1 , 2 , 3 .
J r>0 J H>T-/ J>>>0

D. Predicting the total outstanding liability

By Theorem 2, the liability components A""7" and X"r are conditionally
independent, given ^ . Thus the first three predictive moments of the
outstanding claims X" in (4.12) are just the sums of the corresponding
moments in (5.6) and (5.9);

(5.10) m%jr = mty^sr + mfyr k = 1, 2, 3.

An appropriate reserve is the first moment given by (5.10) with k = 1. A
fluctuation loading may be provided by adding a multiple of the standard
deviation. As an alternative to this ad hoc method, one may take the upper
e-fractile (e.g. e = 0.01) of the predictive distribution, or some approximation
of it based on the first three moments in (5.10).

6. UNOBSERVABLE RISK CHARACTERISTICS MODELLED BY
RANDOMLY FLUCTUATING CLAIM INTENSITY

A. Model assumptions

In addition to observable risk characteristics there may be risk conditions that
are not observable or whose effects are difficult to model explictly by
covariates. If they are judged to be of importance, they can be modelled by a
stochastic process representing the unknown.
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PREDICTION OF OUTSTANDING LIABILITIES IN NON-LIFE INSURANCE 107

Only random fluctuations in the claim intensity will be discussed here. It is
assumed that the intensity is of the multiplicative form

(6.1) w(t)0(t),

with {w(0}/>o a non-negative and nonrandom function representing an observ-
able measure of risk exposure per time unit, and @{t) is a non-negative
"proportional hazard" factor representing unobservable risk conditions that
may vary over time. Assume that 0 = {0(t)},>o is a stationary stochastic
process with mean and covariance function denoted by

(6.2)

(6.3) Cov(0(s),0(t)) = p(\t-s\),

The set-up of Section 3, with w(t) replaced by (6.1), is taken as the
conditional model, given 0.

B. Prediction of the eras-liability

The predictive distribution of Xorns remains the same as in the previous section
since the marks {Z(r)}<>o a r e independent of {N(t), 0(t)}t>o. In particular, the
first three predictive moments are given by (5.6).

C. Linear prediction of the iw-liabUity

Prediction of X"r now becomes more intricate since JFX contains partial
information on 0, hence also on the wr-claims. A feasible approach is provided
by the theory of linear prediction in time-continuous processes presented
recently by the author, see NORBERG (1992) for a full account with proofs. The
procedure goes as follows.

The liability X"r is to be predicted from the observed claims process,
{Nr(t)}0<l<T, which is a sufficient statistic. Consider inhomogeneous linear
predictors of the form

(6.4) Xnr = g0+ f g(s)Nr(ds) =f
The performance of a predictor Xnr is measured by the mean squared error,

\\X"r-X'"'\\2 = E(Xnr-Xnr)2, which is the squared norm of Xnr-Xm with
respect to the usual inner product in the space of squared integrable random
variables; <X, » = E(XY) and \\X\\2 = 4,X, 1 > . The optimal linear predic-
tor is the projection of Xm onto the linear space of functions of the form (6.4).
Denote it by

(6.5) Xnr = y0+ f y(s)Nr(ds).
v0<s<?
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The constant term y0 and the function {y(t)}o<i<;z a r e determined by the
following normal equations, which are analogous to those for the discrete case
(think of the integral in (6.4) as a sum of terms Nr(ds) multiplied by
coefficients g(s)):

(6.6) EXnr = y0+ f y(s)ENr(ds),

(6.7) Cov (Xnr, Nr(dt)) = [ y (s) Cov (Nr(ds), Nr(dt)),

0 < t < T. The moments appearing in these equations are easily obtained by
heuristic reasoning. First, introducing

(6.8) mnr(t) = w(t)[ [ yPUtY[t{du,dy),
Ju>x-t iy>0

(6.9) w r ( t ) = w ( t ) P u l t ( r - 0 , 0 < t < x ,

form the conditional moments

E{Xnr\0) = f mm{s)0(s)ds,fnr\0) = f mm(
Jo

E{Nr{dt)\0) = wr{t)0(t)dt,
Cov(X"r,Nr(dt)\0) = 0,

Cov (Nr(ds), Nr(dt)\0) = dStt w
r{t)0{t) dt,

where SSi, is the Kronecker delta, 1 for s = t and 0 otherwise.
The first relation is obtained upon replacing w (t) in (5.9) by the pro-

duct in (6.1). The remaining relations follow easily from the fact
that {Nr(t)}o<t<T\0 ~ Po(wr(t) 0{t); 0 < t <x) and the conditional inde-
pendence of Xnr and {Nr(t)}0<t£r. Now, form the unconditional moments
by use of the general rules EX= EE(X\0) and Cov (X, Y) = Cov (E(X\0),
E(Y\0)) + E Cov (X, Y\0):

EXnr = f mm{s)dsp,
Jo

ENr(dt)= wr(t)dtp,

Cov(Xnr,Nr(dt))= [ mnr(s)p(\t-s\)dswr(t)dt,
Jo

Cov (Nr(ds), Nr(dt)) = wr(s)p(\t-s\)wr(t)dsdt + dSJw
r
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Upon substituting these expressions, (6.6) becomes

(6.10) f mnr(s)dsp=y0 + f y (s) wr (s) ds p,
Jo Jo

and, after dividing by wr(t) dt on both sides, (6.7) becomes

(6.11) \ mnr(s)p(\t-s\)ds= \ y(s)wr(s)p(\t-s\)ds + y(t)P,O<t<T.
Jo Jo

Thus one is left with the problem of first solving y (•) from (6.11), which is an
integral equation of the Fredholm type. Then one solves the constant term y0

from (6.10). In general, a numerical procedure must be arranged for each
specification of Pzu and p.

D. The case with exponential covariance function

A reasonable specification of the covariance function in (6.3) is

(6.12) p(\t-s\) = Xe~Klt~sl.

Inserting (6.12) in (6.11) and dividing on both sides by X yields

(6.13) j" mnr{s)eK(s~')ds + f mm{s) eK(t's) ds
Jo J r

= [ y(s)wr(s)eK(-s-')ds + f y(s) wr(s) eK(t~s) ds + y(t) - .
Jo J < ^

Assume that the functions mnr and wr are continuous. Differentiating with
respect to t in (6.13) and cancelling terms that sum to zero on both sides
gives

/.( /.CO

(6.14) mm{s)eK(s~l)ds{-K)+ mm (s) eK('~s) ds K
Jo it

y{s)wr{s)eK(s~')ds(-K)+ y(s)wr(s)eK{'~s)dsK + y ' ( t ) - .
Jo J r X

Differentiating once more with respect to t gives

(6.15) f mnr(s)eK(^l)dsK2 + f mnr(s) eK('~s) dsK2-2mnr(t) K
Jo J t

y{s)wr{s)eK(s-') dsK2 + I y(s) wr (s) eK°~s) ds,
Jo
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Now, multiply (6.13) by K1 and subtract it from (6.15) to obtain the fol-
lowing second order differential equation for the optimal coefficient function:

(6.16) y"(t) - K2 + 2-K~wr(t)\ y(t) + 2mnr(t)-^ = 0 , 0 < t<x.
P I P

To solve this equation by standard procedures, one needs two boundary
conditions, e.g. on y(0) and y'(0). Putting t = 0 in (6.13) and (6.14) gives

(6.17) y'(O)

and

B
(6.18) r00 r

mnr(s)e'KS ds - y(s)wr(s)e~KSds =
Jo Jo

The latter condition involves the solution y, and so it does not serve
immediately as a boundary condition. One can, however, search by trial and
error as follows. Fix a value of y(0), whereby (6.17) fixes y'(0). Find the
solution of (6.16) for these boundary conditions. Compute the expression on
the left of (6.18) and compare with the expression on the right. If they are
equal, the problem is solved. If not, adjust the choice of y (0) and repeat the
procedure. Continue in this manner until (approximate) equality is attained in
(6.18).

7. OBSERVABLE RISK CHARACTERISTICS MODELLED BY COVARIATES

In Paragraph 2B it was mentioned that the intensity w(t) may depend on
covariates representing observable risk characteristics of the portfolio at time /.
The same goes for the mark distribution Pzu. The risk characteristics may be
fluctuating " external" conditions, like weather and other driving conditions in
automobile insurance, or "internal" portfolio characteristics that can be read
from the policy records.

As an example of the latter, imagine a portfolio that is heterogeneous with
respect to observable risk characteristics, e.g. a portfolio of fire insurance
policies where the fire peril and the typical claim size vary substantially from
one house to another, depending on size of the building, building materials, fire
preventing measures, and possibly other characteristics. As explained by
NORBERG and SUNDT (1985), in such a situation one cannot rely on aggregate
statistics on claims frequencies and claim sizes for the portfolio as a whole:
changes in the composition of the portfolio may cause considerable changes of
the claims process in the course of time.

To concretize, suppose the portfolio is composed of q risk classes with
marked Poisson claims processes {(Tf-P\ Zf-p))}l<j<N<p), p= \,...,q. Assume
that they all have the same mark space X (just a matter of definition). For the
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aggregate claims process of the whole portfolio the process counting the claims
is

(7.1)

the claims epochs are

(7.2)

and the marks are

(7.3) Z, =

N(t) =

Z p (T,) l^w
P=\

Theorem 3: Assume that the claims processes of the individual classes are
mutually independent and are of marked Poisson type;

/ > 0 ) , p=\,...,q.

Then the aggregate process defined by (7.1)-(7.3) is also marked Poisson,

{(I], ZdhmN~Po(w(t), Pzu; t >0),

with
9

(7.4)

(7.5)

Wit) =

Pzu =

Proof: The likelihood of the aggregate process is
P{N = n, (Th Z , ) e (dt,, dz^, i = 1, . . . , « }

which, in terms of the quantities in (7.4)-(7.5), is easily recast as (3.11) with
w(t) and Pzu defined by (7.4) and (7.5). •

The model can be specified further as follows. Assume that each class p is
homogeneous and consists of n(p){t) identical risks at time t, and that each
individual risk in the class catches fire with intensity w(p) and has claims
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developing in accordance with the distribution P^p\ The statistical assessment
of these entities must be based on data as per risk class. The quantities
in (7.4)-(7.5) can be taken to be w(p)(t) = n(p)(t) w(p) and P% = P(

z
p); t > 0.

In this case the relevant covariate at time t is the vector c(t) =

The impact of observable external risk conditions may be assessed on the
basis of statistics from risk cohorts that are fully developed and settled by
time T. However, an additional difficulty arises as such risk conditions typically
are subject to random fluctuations and, contrary to internal risk characteristics,
their future course is unknown. Thus, at time x only the external conditions
governing the rns and inr claims are known, whereas those governing the cni
claims are unknown and can only be predicted in an extended model specifying
some assumptions as to the nature of the fluctuations of external risk
conditions.

8. EXAMPLES

A. A special model

Suppose the joint distribution of the waiting time from occurrence to notifica-
tion and the claim amount for a claim occurred at time t is independent of t
and that Y ~ Ga (p, a), the gamma distribution with shape parameter p and
scale parameter a~\ and U\Y=y ~ Ga (1, py), the exponential distribution with
parameter py. This means that large claims tend to be reported more promptly
than small claims. The joint density of (U, Y) is

(8.1) p u>r(u,y) = we
r(p)

p+l-1

r{p)
The predictive moments in (5.3)-(5.5) and (5.9) involve integrals of the type

pco

irAy') = yr

J y '

00

-I o-sye~sydy,s>0,r =

which can be calculated by the recursive relation (integration by parts)

S S

starting from the numerically computed value of Ip+l s(y'). In particular

' ( 0 ) = r * > 0
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and one easily finds

(8.2) | f ykPu,r(u,y)dudy =f -n(')

For k = 0 in (8.2), one gets the probability of U>z — t involved in the
nr-intensity in (5.7) and the /--intensity in (6.9);

(8.3) \-Pv(T-t) =

For k = 1 one gets the integral involved in mnr in (6.8);

(8.4) | ypu,v(u,y) dudy =
J u > j — i

app

B. Numerical results

Consider the model Paragraph 6D, with (U, Y) distributed as described in
Paragraph A above. First, let p = a = 2, which implies that Y has expected
value p/a — 1, coefficient of variation (standard deviation divided by expected
value) p'Xil = 0.707, and skewness (here defined as the third root of third
central moment divided by standard deviation) 21 / 3p~1 / 6= 1.122. Next, let
p = a = 0.09, which implies that Y has expected value 1, coefficient of variation
3.33, and skewness 1.88. Throughout take y ? = l , T = 1, w(t) = 100 for
0 < t < 1 and w{t) = 0 for t > 1 (no cm-claims).

Table 1 displays the coefficients and the constant term of the optimal linear
predictor of the outstanding (here inr —) liability for some choices of X, K, and
//. The results are easy to explain, so only a few comments shall be rendered
here.

TABLE 1

OPTIMAL LINEAR PREDICTOR OF THE

X

.01

.01

.01

.10

.10

.10

.01

.01

.10

.10

K

0
1
1
0
1
1
1
1
0
1

p

2
2
2
2
2
2

.09

.09

.09

.09

a

2
2
2
2
2
2

.09

.09

.09

.09

M

10
10
1
1
1

10
1

10
1
1

7(0)

0.053
0.022
0.244
1.282
0.740
0.010
0.092
0.013
0.832
0.421

7 (-2)

0.053
0.027
0.291
1.282
0.940
0.017
0.110
0.015
0.832
0.521

y(.4)

0.053
0.036
0.332
1.282
1.230
0.040
0.127
0.018
0.832
0.653

7 (-6)

0.053
0.046
0.360
1.282
1.568
0.095
0.143
0.022
0.832
0.810

r(-8)

0.053
0.059
0.364
1.282
1.834
0.211
0.152
0.026
0.832
0.960

7(1)

0.053
0.064
0.327
1.282
1.771
0.319
0.144
0.027
0.832
0.970

?o

5.31
6.42

44.98
12.54
19.29
2.18

18.30
3.00
7.98

10.45
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In those cases where K = 0, the coefficient function y (•) is constant. The
situation is reduced to that of standard credibility models, with 0(t) = 0
random, but not changing over time. Then Nr (x) = Jo<^<i Nr{ds) is sufficient,
and the optimal coefficient function should be constant.

Large values of X give large coefficients, that is, much weight on the observed
claims reports. This effect is well-known from standard credibility theory.

Large values of // mean that claims are quickly reported, and then both the
constant term and the coefficients get small since few claims are outstanding.

The roles of K, p, and a are not easy to interpret.

C. An illustration:
estimation of the cumulative hazard in a model with no delays

Finally, to acquire a feeling of how the entities in the model act on the linear
predictor, consider a special case simple enough to allow for comparison with
well-known results from standard credibility theory. Let the model be as in
Paragraph 6D, with no delays in reporting of claims, hence wr(t) = w(t). As in
the previous paragraph, take /? = 1, T = 1, w{t) = w constant for t < 1.

Consider the problem of estimating the cumulative intensity w\\ 0(s) ds
from the observations {N(0}o<<<i- The normal equations of the optimal
linear estimator are as in Paragraph 6D with wr{t) = m"' (t) = w for t < 1 and
mnr(t) = 0 for t > 1. Table 2 shows the results for some selected values of X, K,
and w.

As in the previous example, tc = 0 yields constant coefficients. The coefficient
function is invariably symmetric around the midpoint, t = 0.5, with the larger
values in the middle, and this effect is more pronounced the larger K is. This is
so because the observations in the center shed light on ©-values to both
sides.

TABLE 2
' OPTIMAL LINEAR ESTIMATOR OF THE CUMULATIVE HAZARD RATE

X

.10

.10

.10

.01

.01

.01

.10

.10

.00

K

0.0
1.0
5.0
0.0
1.0
5.0
0.0
1.0
1.0

w

100
100
100
100
100
100

1000
1000
100

7(0)

.909

.779

.553

.500

.365

.154

.990

.929

.000

7 (.2)

.909

.879

.774

.500

.421

.244

.990

.991

.000

V (-4)

.909

.914

.797

.500

.448

.270

.990

.995

.000

7 (-6)

.909

.914

.797

.500

.448

.270

.990

.995

.000

7 (-8)

.909

.879

.774

.500

.421

.244

.990

.991

.000

HI)

.909

.779

.553

.500

.365

.154

.990

.929

.000

yo

9.09
12.18
24.43
50.00
57.68
75.84
9.90
14.24

100.00
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