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A Simple Proof and Strengthening of a
Uniqueness Theorem for L-functions

Pei-Chu Hu and Bao Qin Li

Abstract. We give a simple proof and strengthening of a uniqueness theorem for functions in the
extended Selberg class.

This paper concerns the question of when two L-functions are identically equal in
terms of the zeros of L− h for a value or more generally, a so-called moving target h
(see below). L-functions are Dirichlet series with the Riemann zeta function ζ(s) =∑∞

n=1
1
ns as the prototype. The Selberg class of L-functions is the set of all Dirichlet

series L(s) =
∑∞

n=1
a(n)
ns of a complex variable s = σ + it with a(1) = 1, satisfying the

following axioms (see [5, 6]):

(i) (Ramanujan hypothesis) a(n)� nε for every ε > 0.
(ii) (Analytic continuation) There is a non-negative integer k such that (s− 1)kL(s)

is an entire function of finite order.
(iii) (Functional equation) L satisfies a functional equation of type

ΛL(s) = ωΛL(1− s̄),

where ΛL(s) = L(s)Qs
∏K

j=1 Γ(λ js + µ j) with positive real numbers Q, λ j , and
complex numbers µ j , ω with Reµ j ≥ 0 and |ω| = 1.

(iv) (Euler product) log L(s) =
∑∞

n=1
b(n)
ns , where b(n) = 0 unless n is a positive

power of a prime and b(n)� nθ for some θ < 1
2 .

The Selberg class, which has been extensively studied, includes the Riemann zeta-
function ζ and essentially those Dirichlet series where one might expect the analogue
of the Riemann hypothesis. At the same time, there are a whole host of interesting
Dirichlet series not possessing Euler product. Throughout the paper, all L-functions
are assumed to be functions from the extended Selberg class of those only satisfying
axioms (i)–(iii) (see [6]). Thus, the results obtained in this paper apply particularly
to L-functions in the Selberg class.

The uniqueness question of when two L-functions are identically equal has been
studied in various settings (see [1–3,6], etc., for related results and references therein).
In particular, the following result was given in [6, p. 152].

Received by the editors February 7, 2015.
Published electronically June 22, 2015.
P.-C. Hu was partially supported by the Natural Science Foundation of China (No. 11271227) and by

PCSIRT (IRT1264).
AMS subject classification: 30B50, 11M41.
Keywords: meromorphic function, Dirichlet series, L-function, zero, order, uniqueness.

119

https://doi.org/10.4153/CMB-2015-045-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-045-1


120 P.-C. Hu and B. Q. Li

Theorem 1 Two L-functions L1 and L2 are identically equal if L1−a and L2−a have
the same zeros (counting multiplicities) for a complex number a.

In [1], the above uniqueness problem was considered in terms of the zeros of
L − R(s) by changing the so-called fixed target a in Theorem 1 to a rational moving
target R(s).

Theorem 2 Let R be a rational function with lims→∞ R(s) 6= 1. Two L-functions
L1 and L2 are identically equal if L1 − R and L2 − R have the same zeros (counting
multiplicities).

In this short article, we first show that Theorem 1 is actually false when a = 1 (see
Remark 4). We then give a simpler proof and also a strengthening of Theorems 2 and
1 (with a 6= 1) by improving a and R in the above theorems to a meromorphic func-
tion h(s) of finite order in the complex plane (note that a rational function is of order
0), which will also be shown to be best possible (see Remark 5). More specifically, we
have the following theorem.

Theorem 3 Let h be a meromorphic function of finite order with

lim
<(s)→+∞

h(s) = α 6= 1

(αmay be∞). Two L-functions L1 and L2 are identically equal if L1−h and L2−h have
the same zeros (counting multiplicities). The conclusion need not hold if h is of infinite
order.

Remark 4 Consider L1(s) = 1 + 2
4s and L2 = 1 + 3

9s . Then L1 and L2 trivially satisfy
axioms (i) and (ii). Also, one can check that L1 satisfies the functional equation

2sL(s) = 21−sL(1− s̄),

and L2 satisfies the functional equation

3sL(s) = 31−sL(1− s̄).

Thus, L1 and L2 also satisfy axiom (iii). It is clear that L1 − 1 and L2 − 1 do not have
any zeros and thus satisfy the conditions of Theorem 1 with a = 1, but L1 6= L2.
This example shows that Theorem 3 is false when α = 1. We note that the proof
of [6, Theorem A] uses a result based on a Riemann–von Mangoldt formula for the
zeros of L− c, which holds for both c 6= 1 and c = 1 with a modification for the case
of c = 1 (see [6, Theorem 7.7, p. 147]). However, the assertion that lims→∞ `(s) = 1
in the proof of [6, Theorem A, p. 153] does not hold when c = 1.

Remark 5 We show that Theorem 3 is best possible in the following senses.
(i) The same example in Remark 4 shows that the condition lim<(s)→+∞ h(s) =

α 6= 1 in Theorem 3 cannot be dropped. We include here an example with a non-
constant h. Let h = L be an arbitrary L-function, which is of finite order. Let
l1 = L1L and l2 = L2L, where L1 and L2 are the same L-functions in Remark
4. Then l1 and l2, as a product of two L-functions, are still L-functions. Clearly,
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l1 − h = L1L − L = (L1 − 1)L and l2 − L = (L2 − 1)L have the same zeros with
counting multiplicities. But, l1 6= l2.

(ii) The condition “counting multiplicities” cannot be dropped. In fact, for any
nonconstant L-function L(s), L(s), and L2(s) have the same zeros (without counting
multiplicities), but they are not equal.

(iii) A moving target of a function is usually assumed to grow more slowly than
the function. The function h in Theorem 3, however, does not have this restriction
and can be of any finite order, which may grow more quickly than L1 and L2, which
are of finite order by axiom (ii) (actually order≤ 1, see e.g., [6, p. 150]). Furthermore,
as stated in the theorem, the order of h cannot be further improved to infinite order.

We next give the proof of Theorem 3, which is short and elementary using only the
basic fact that the orders of f

g and f + g cannot exceed the maximum of the orders
of f , g (see e.g., [4, p. 216]). In particular, it does not require the Riemann–von
Mangoldt formula for L-functions or the result that L-functions are of order≤ 1 (cf.
[1, 6]). Thus, the proof enables one to extend the theorem to more general Dirichlet
series and meromorphic functions, which is omitted here.

Proof of Theorem 3 Consider the function G(s) = L1(s)−h(s)
L2(s)−h(s) . Under the given con-

ditions, it is clear that G(s) cannot have any zeros or poles except possibly at s = 1.
Since L1, L2, h are all of finite order, the function G is also of finite order, as noted
above. Thus, we have that

G(s) =
L1(s)− h(s)

L2(s)− h(s)
= (s− 1)mep(s),

where m is an integer and p(s) is a polynomial, and then that

(1) |G(σ + it)| = |σ + it − 1|me<{p(σ+it)}.

We may write

<p(σ + it) = an(t)σn + an−1(t)σn−1 + · · · + a0(t),

a polynomial in σ with an(t), . . . , a0(t) being polynomials in t . If an(t) 6≡ 0 and
n ≥ 1, then we can take a t0 such that an(t0) 6= 0. Noting that limσ→+∞ G(s) = 1
(even when α = ∞), by letting σ → +∞ in (1) with t = t0 we deduce that 1 = 0
(when an(t0) < 0) or 1 = ∞ (when an(t0) > 0), which is absurd. This shows that
<p(σ + it) = a0(t) and then |G(σ + it)| = |σ + it − 1|mea0(t), which clearly implies
that m = 0, since otherwise G(s) → 0 when m < 0 and G(s) → ∞ when m > 0 as
σ → +∞ for a fixed t , a contradiction to the fact that limσ→+∞ G(s) = 1. We thus
obtain that |G(s)| = ea0(t). By letting σ → +∞ again, we deduce that ea0(t) ≡ 1 for
each t . Hence, |G(s)| ≡ 1, which implies that G(s) ≡ c, a constant. Letting σ → +∞
again, we obtain that G(s) ≡ 1, which implies that L1 ≡ L2.

Next, we show that the theorem need not hold if the function h is of infinite order.
Let L1 = 1 + 2

4s , L2 = 1 + 3
9s (cf. Remark 4), and let h = L1eL1−1−L2

eL1−1−1 . Then it is easy to

check that L2−h
L1−h = eL1−1, which implies that L1 − h and L2 − h have the same zeros,

counting multiplicities. It is elementary to check that

lim
<(s)→+∞

h(s) = lim
<(s)→+∞

(
L1 +

L1 − L2

eL1−1 − 1

)
= 2.
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Thus, L1, L2, h satisfy all the conditions of Theorem 3 except the “finite order” as-
sumption on h, but L1 6= L2.
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