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A Simple Proof and Strengthening of a
Uniqueness Theorem for L-functions

Pei-Chu Hu and Bao Qin Li

Abstract. 'We give a simple proof and strengthening of a uniqueness theorem for functions in the
extended Selberg class.

This paper concerns the question of when two L-functions are identically equal in
terms of the zeros of L — h for a value or more generally, a so-called moving target h
(see below). L-functions are Dirichlet series with the Riemann zeta function ((s) =
>°°, L as the prototype. The Selberg class of L-functions is the set of all Dirichlet

n=1n°

series L(s) = >_°° “SZ) of a complex variable s = o + it with a(1) = 1, satisfying the

n=1
following axioms (see [5,6]):
(i)  (Ramanujan hypothesis) a(n) < n® for every ¢ > 0.
(ii) (Analytic continuation) There is a non-negative integer k such that (s — 1)*L(s)
is an entire function of finite order.
(iii) (Functional equation) L satisfies a functional equation of type

Ar(s) = wAL(1 = 3),

where A;(s) = L(s)Q° Hi;l I'(Ajs + pj) with positive real numbers Q, A;, and
complex numbers 1, w with Reps; > 0 and |w| = 1.

(iv) (Euler product) logL(s) = Z;’il bf;f), where b(n) = 0 unless 7 is a positive
power of a prime and b(n) < n’ for some § < %

The Selberg class, which has been extensively studied, includes the Riemann zeta-
function ¢ and essentially those Dirichlet series where one might expect the analogue
of the Riemann hypothesis. At the same time, there are a whole host of interesting
Dirichlet series not possessing Euler product. Throughout the paper, all L-functions
are assumed to be functions from the extended Selberg class of those only satisfying
axioms (i)—(iii) (see [6]). Thus, the results obtained in this paper apply particularly
to L-functions in the Selberg class.

The uniqueness question of when two L-functions are identically equal has been
studied in various settings (see [1-3,6], etc., for related results and references therein).
In particular, the following result was given in [6, p. 152].
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Theorem 1  Two L-functions L, and L, are identically equal if L, — a and L, — a have
the same zeros (counting multiplicities) for a complex number a.

In [1], the above uniqueness problem was considered in terms of the zeros of
L — R(s) by changing the so-called fixed target a in Theorem 1 to a rational moving
target R(s).

Theorem 2  Let R be a rational function with lim,_, ., R(s) # 1. Two L-functions
L, and L, are identically equal if Ly — R and L, — R have the same zeros (counting
multiplicities).

In this short article, we first show that Theorem 1 is actually false when a = 1 (see
Remark 4). We then give a simpler proof and also a strengthening of Theorems 2 and
1 (with a # 1) by improving a and R in the above theorems to a meromorphic func-
tion k(s) of finite order in the complex plane (note that a rational function is of order
0), which will also be shown to be best possible (see Remark 5). More specifically, we
have the following theorem.

Theorem 3  Let h be a meromorphic function of finite order with

li = 1
%(S)L)rnJroo h(S) @ 7&
(o may be 00). Two L-functions Ly and L, are identically equal if Ly —h and L, — h have
the same zeros (counting multiplicities). The conclusion need not hold if h is of infinite
order.

Remark 4 Consider Li(s) = 1+ % andL, =1+ %. Then L, and L, trivially satisfy
axioms (i) and (ii). Also, one can check that L, satisfies the functional equation

2L(s) = 2'7°L(1 —3),
and L, satisfies the functional equation
3°L(s) = 3'°L(1 — 3).

Thus, L; and L, also satisfy axiom (iii). It is clear that L; — 1 and L, — 1 do not have
any zeros and thus satisfy the conditions of Theorem 1 with a = 1, but L; # L,.
This example shows that Theorem 3 is false when @ = 1. We note that the proof
of [6, Theorem A] uses a result based on a Riemann—von Mangoldt formula for the
zeros of L — ¢, which holds for both ¢ # 1 and ¢ = 1 with a modification for the case
of c = 1 (see [6, Theorem 7.7, p. 147]). However, the assertion that lim,_, o, #(s) = 1
in the proof of [6, Theorem A, p. 153] does not hold when ¢ = 1.

Remark 5 We show that Theorem 3 is best possible in the following senses.

(i) The same example in Remark 4 shows that the condition limwys)—y+00 #(s) =
« # 1 in Theorem 3 cannot be dropped. We include here an example with a non-
constant h. Let h = L be an arbitrary L-function, which is of finite order. Let
I, = L)L and l, = L,L, where L; and L, are the same L-functions in Remark
4. Then ; and 1, as a product of two L-functions, are still L-functions. Clearly,
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L—h=LL—-L=(,—1)_Landl, — L = (L, — 1)L have the same zeros with
counting multiplicities. But, [} # b.

(ii) The condition “counting multiplicities” cannot be dropped. In fact, for any
nonconstant L-function L(s), L(s), and L?(s) have the same zeros (without counting
multiplicities), but they are not equal.

(iii) A moving target of a function is usually assumed to grow more slowly than
the function. The function h in Theorem 3, however, does not have this restriction
and can be of any finite order, which may grow more quickly than L; and L,, which
are of finite order by axiom (ii) (actually order < 1, seee.g., [6, p. 150]). Furthermore,
as stated in the theorem, the order of h cannot be further improved to infinite order.

We next give the proof of Theorem 3, which is short and elementary using only the
basic fact that the orders of g and f + g cannot exceed the maximum of the orders
of f,g (see e.g, [4, p. 216]). In particular, it does not require the Riemann—von
Mangoldt formula for L-functions or the result that L-functions are of order < 1 (cf.
[1,6]). Thus, the proof enables one to extend the theorem to more general Dirichlet
series and meromorphic functions, which is omitted here.

Proof of Theorem 3 Consider the function G(s) = 223:28 . Under the given con-

ditions, it is clear that G(s) cannot have any zeros or poles except possibly at s = 1.
Since L1, Ly, h are all of finite order, the function G is also of finite order, as noted
above. Thus, we have that

Li(s) — h(s)
G(s) = = (s—1)"el®,
©) Ly(s) — h(s) =
where m is an integer and p(s) is a polynomial, and then that
(1) |G(o +it)| = |o + it — 1|"eR Pt}

We may write
Rp(o +it) = a,(t)o" + ay_ (1)o" " + -+ ay(t),

a polynomial in o with a,(t), ..., a(t) being polynomials in ¢. If a,(t) # 0 and
n > 1, then we can take a ty such that a,(ty) # 0. Noting that lim, ;.. G(s) = 1
(even when a@ = o0), by letting 0 — +00 in (1) with t = t; we deduce that 1 = 0
(when a,(ty) < 0) or 1 = oo (when a,(t;) > 0), which is absurd. This shows that
Rp(o +it) = ay(t) and then |G(o + it)| = |o + it — 1|"e™"), which clearly implies
that m = 0, since otherwise G(s) — 0 when m < 0 and G(s) — oo when m > 0 as
o — +oo for a fixed t, a contradiction to the fact that lim,_, -, G(s) = 1. We thus
obtain that |G(s)| = e®®). By letting ¢ — +oco again, we deduce that ¢*® = 1 for
each t. Hence, |G(s)| = 1, which implies that G(s) = ¢, a constant. Letting o — +00
again, we obtain that G(s) = 1, which implies that L; = L,.

Next, we show that the theorem need not hold if the function # is of infinite order.
LetL,=1+2.L,=1+ ; (¢f. Remark 4), and let h = L =L Then it is easy to

e LT
check that ﬁ—:z = =1, which implies that L; — h and L, — h have the same zeros,
counting multiplicities. It is elementary to check that

Li—L
lim h(s) = lim <L1+1721) — 2.

R(s)—+o0 R(s)—+00 eLl*I

https://doi.org/10.4153/CMB-2015-045-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-045-1

122 P.-C. Hu and B. Q. Li

Thus, Ly, L,, h satisfy all the conditions of Theorem 3 except the “finite order” as-
sumption on h, but L; # L,. [ |
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