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Abstract. We prove the logarithmic Sarnak conjecture for sequences of subquadratic word

growth. In particular, we show that the Liouville function has at least quadratically

many sign patterns. We deduce the main theorem from a variant which bounds the

correlations between multiplicative functions and sequences with subquadratically many

words which occur with positive logarithmic density. This allows us to actually prove

that our multiplicative functions do not locally correlate with sequences of subquadratic

word growth. We also prove a conditional result which shows that if the (κ − 1)-Fourier

uniformity conjecture holds then the Liouville function does not correlate with sequences

with O(nt−ε) many words of length n where t = κ(κ + 1)/2. We prove a variant of the

1-Fourier uniformity conjecture where the frequencies are restricted to any set of box

dimension less than 1.
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1. Introduction

The prime number theorem states that

lim
N→∞

En≤N3(n) = 1,

where 3(n) is the von Mangoldt function, equal to log p if n is a power of a prime p

and 0 otherwise. (We refer the reader to §1.1 for an explanation of the E notation.) This is

equivalent to the estimate

lim
N→∞

En≤Nλ(n) = 0,
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where λ(n) = (−1)# of prime factors of n is the Liouville function. Dirichlet’s theorem on

prime numbers in arithmetic progressions morally follows from the estimate

lim
N→∞

En≤N1n≡r mod dλ(n) = 0,

for any d and r . Taking linear combinations, we find that for any periodic function f,

lim
N→∞

En≤Nf (n)λ(n) = 0.

Equivalently, for any function F : S1 → C and any rational angle α,

lim
N→∞

En≤NF(α
n)λ(n) = 0.

The analogous estimate when α is irrational and F is a continuous function was proved by

Vinogradov and was a key ingredient in his proof that any sufficiently large odd number is

the sum of three primes. Green and Tao proved that

lim
N→∞

En≤NF(g
nŴ)λ(n) = 0

where G is a nilpotent Lie group, g is an element of G, Ŵ is a cocompact lattice and F

is a continuous function F : G/Ŵ→ C. A version of this statement was a key ingredient

in their proof with Tamar Ziegler that counts the solutions to almost any system of linear

equations over the primes. This motivates the following conjecture, due to Sarnak.

Conjecture 1.1. (Sarnak; see [Sar12]) For any topological dynamical system (X, T ) with

zero entropy, any continuous function F : X→ C and any point x in X,

lim
N→∞

En≤NF(T
nx)λ(n) = 0.

Tao introduced the following variant,

Conjecture 1.2. (Logarithmically averaged Sarnak conjecture) For any topological

dynamical system (X, T ) with zero entropy, any continuous function F : X→ C and

any point x in X,

lim
N→∞

E
log
n≤NF(T

nx)λ(n) = 0.

Many instances of Sarnak’s conjecture have been proven. A few examples are [Bou13a,

BSZ13, Bou13b, DK15, EAKL16, EAKaPLdlR17, FJ18, HLSY17, LS15, MMR14,

Mül17, Pec18, Vee17, Wan17], but we stress that this is an incomplete list.

Definition 1.3. A word ǫ of length k is an element of Ck . Let k be a natural number, let ǫ ∈

C
k and let b : N→ C. We say that ǫ occurs as a word of b if there exists a natural number

n such that b(n+ h) = ǫh for all h ≤ k. We say that ǫ occurs with (upper) logarithmic

density δ ∈ R if

lim sup
N→∞

E
log
n≤N1ǫh=b(n+h) for all h ≤ k = δ.

In this paper, when we refer to log-density we mean upper logarithmic density. A word

ǫ whose entries are all ±1 is called a sign pattern. We say that b has subquadratic word
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growth if b takes finitely many possible values and the number of words of length k that

occur with positive upper logarithmic density is o(k2).

Then a particular case of Sarnak’s conjecture predicts that, for any bounded sequence

b : N→ C with subexponential word growth,

lim
N→∞

E
log
n≤Nb(n)λ(n) = 0.

Because λ correlates with itself, this in particular implies that the number of sign patterns

of λ of length k is exponential in k. Frantzikinakis and Host [FH18b] proved the special

case where b has linear word growth. In this paper, we prove the following special case.

THEOREM 1.4. Let b be a bounded sequence with subquadratic word growth. Then

lim
N→∞

E
log
n≤Nb(n)λ(n) = 0.

Previously Hildebrand [Hil86] showed that all eight sign patterns of length 3 occur

infinitely often. Matomäki, Radziwiłł and Tao [MRT16] showed all eight sign patterns of

length 3 occur with positive density. Tao and Teräväinen [TT17b] proved that all 16 sign

patterns of length 4 occur with positive density, using an argument communicated to them

by Matomäki and Sawin. Tao and Teräväinen [TT17b] also showed the number of sign

patterns of length k is at least 2k + 8 for k ≥ 4. Frantzikinakis and Host [FH18b] showed

that the number of sign patterns is superlinear. In particular, Theorem 1.4 implies that λ

does not have subquadratically many sign patterns. We actually prove something slightly

stronger.

THEOREM 1.5. There is a constant δ > 0 such that λ has at least δk2 many sign patterns

of length k.

Tao [Tao17a] showed that the log Sarnak conjecture is equivalent to the following

Fourier uniformity conjecture for every natural number t .

Conjecture 1.6. (t-Fourier uniformity) Let G be a nilpotent Lie group of step t , Ŵ a

cocompact lattice and F : G/Ŵ→ C a continuous function. Then

lim
H→∞

lim
N→∞

E
log
n≤N sup

g∈G

|Eh≤Hλ(n+ h)F (g
hŴ)| = 0.

Tao [Tao17a] also showed that this is equivalent to the log-Chowla conjecture for

every t .

Conjecture 1.7. (Logarithmic Chowla conjecture) For every natural number t and every

distinct natural number h1, . . . , ht , we have

lim
N→∞

E
log
n≤Nλ(n+ h1) · · · λ(n+ ht ) = 0.

A function a : N→ C is said to be unpretentious, non-pretentious or strongly aperiodic

if there exists a function φ from N to N such that, for all natural numbersA, for all Dirichlet

characters χ of period at most A, for all natural numbers N sufficiently large, and for all

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


Sarnak’s conjecture for sequences of almost quadratic word growth 3063

real numbers |t | ≤ AN , we have

∑

p≤N

1− Re(a(p)χ(p)p−it )

p
≥ φ(A),

and φ(A)→∞ as A→∞. The main goal of this paper is to prove the following

theorems.

THEOREM 1.8. Let a : N→ S1 be an unpretentious completely multiplicative function

taking values in the unit circle. Let b : N→ C be a finite-valued 1-bounded function.

Suppose further that for any δ > 0 there are infinitely many k such that the number of

words of b of length k that occur with positive upper logarithmic density is at most δk2.

Then

lim
N→∞

|E
log
n≤Na(n)b(n)| = 0.

We also obtain a conditional version of this result.

THEOREM 1.9. Let κ be a natural number. Set t =
(
κ+1

2

)
. Let a : N→ S1 be an

unpretentious completely multiplicative function taking values in the unit circle so that the

local (κ − 1)-Fourier uniformity conjecture holds for a. Let b : N→ C be a finite-valued

1-bounded function. Suppose further that for some ǫ > 0 there are infinitely many k such

that the number of words of b of length k that occur with positive upper logarithmic density

is at most kt−ε. Then

lim
N→∞

|E
log
n≤Na(n)b(n)| = 0.

We note that this result matches the numerology in [Saw20] and may be almost the

best possible result one can obtain with purely dynamical methods. We also note that even

the 1-Fourier uniformity conjecture is still unknown and so this theorem currently has no

unconditional content. We also obtain a version of the theorem where b need not take only

finitely many values and we only have information about the number of ‘approximate’

words.

Definition 1.10. We say that a sequence b has at most h words of length k up to ε rounding

if there exists a set6 of words of length k such that for all n ∈ N there is an ǫ in6 such that

|b(n+ j)− ǫj | ≤ ε for all j ≤ k and the cardinality of 6 is at most h. We say that b has

at most h words of length k that occur with positive logarithmic density up to ε rounding

if we only require |b(n+ j)− ǫj | ≤ ε for a set of n of lower logarithmic density 1.

THEOREM 1.11. Let c > 0 and ε > 0. Then if ε is sufficiently small depending on c the

following statement holds. Let a : N→ S1 be an unpretentious completely multiplicative

function taking values in the unit circle. Let b : N→ C be a 1-bounded function with

entropy zero. Suppose further that for every δ > 0 there are infinitely many k such that

the number of words of b of length k that occur with positive logarithmic density up to ε

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3064 R. McNamara

rounding is at most δk. Then

lim sup
N→∞

|E
log
n≤Na(n)b(n)| ≤ c.

In fact, this works for any ε satisfying c2 > 2ε.

We list a few new applications of this theorem.

Proof of Theorem 1.5. Apply Theorem 1.8 to a = b = λ. �

THEOREM 1.12. If S is a finite set of sequences of subquadratic word growth and a is an

unpretentious completely multiplicative function taking values in the unit circle then

lim
H→∞

lim
N→∞

E
log
n≤N sup

φ∈S

|Eh≤Ha(n+ h)φ(h)| = 0.

Remark 1.13. We remark that since the set S is finite, it is enough to show that any one

function does not locally correlate with a. However, we also remark that it is generally

harder to show that a does not locally correlate with b than it is to show that a does not

correlate with b. For Theorem 1.12, we need to use that Theorem 1.8 allows us to handle

the case where b may have many words which occur with 0 log-density but still only

subquadratically many words which occur with positive log-density. Theorem 1.12 in the

linear word growth case seems to follow implicitly from [GLdLR19].

Proof. For convenience, we will assume that 0 is in S. Let ε > 0. We aim to show that

lim sup
H→∞

lim sup
N→∞

E
log
n≤N sup

φ∈S

|Eh≤Ha(n+ h)φ(h)| = O(ε).

Suppose not. We will now use an argument of [Tao17a] (see §5 of that paper) to show that

a must be correlate with a ‘ticker tape’ function. We define Sε to be the set of sequences

of the form φ′(n) = e(α)φ(n) where φ is an element of S and α is a rational number with

denominator O(ε). By the pigeonhole principle, for any φ in S and any natural numbers

H and n in N there exists a rational number α with denominator O(ε) such that

Re(|E
log
h≤Hφ(h)a(n+ h)| − E

log
h≤H e(α)φ(h)a(n+ h)) = O(ε).

Therefore, we may assume for the sake of contradiction that for some φn,H in Sε,

lim sup
H→∞

lim sup
N→∞

Re(E
log
n≤NEh≤Ha(n+ h)φn,H (h))≫ ε.

By a diagonalization argument, we may find a sequenceHi andNi of natural numbers both

tending to infinity and functions φn,i = φn,Hi such that Ni+1 ≫ Ni ≫ Hi a

lim
i→∞

Re(E
log
n≤Ni

Eh≤Hia(n+ h)φn,i(h))≫ ε.

Since the functions φ in Sε and a are bounded, for i sufficiently large there exists a set Ai

of natural numbers of lower logarithmic density≫ ε in the interval [1, Ni] such that for n

in Ai ,

Re(Eh≤Hia(n+ h)φn,i(h))≫ ε.
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By a greedy algorithm, we can select a subset Bi of Ai of upper logarithmic density at

least ε/Hi in [1, Ni] that is at least Hi separated (meaning distinct points of Bi differ by at

least Hi). Now define the ‘ticker tape’ function ψ as follows:

ψ(n+ h) = φn,i(h),

for all n in Bi between Ni−1 and Ni and h ≤ Hi . If m is not of the form n+ h for n in Bi

between Ni−1 and Ni and h ≤ Hi then we set ψ(m) = 0. Thus,

lim sup
N→∞

Re(E
log
n≤Na(n)ψ(n))≫ ε2.

Now we aim to show that ψ has subquadratically many words of length k that occur with

positive upper logarithmic density. Let k be a natural number and let ǫ be a word of length

k which occurs in ψ with positive upper logarithmic density. Consider the set C of natural

numbersm such thatm is within k of an element n of Bi or Bi +Hi for some i. Then since

elements of Bi are at least Hi separated, the upper logarithmic density of C in [Ni−1, Ni]

is at most 2k/Hi which clearly tends to 0 as i tends to infinity. Since Ni ≫ Ni−1, we may

assume that the log-density of [1, Ni−1] in the interval [1, Ni] is also o(1). Thus, C has

log-density 0. Therefore, if ǫ occurs with positive log-density then (ψ(n+ h))kh=1 = ǫ

for a positive density set of n not in C. Since Sε has only finitely many members, we

get that there exists φ in Sε such that for a positive upper logarithmic density set of n,

ψ(n+ h) = φ(n+ h) = ǫh for all h ≤ k. Thus, ψ has subquadratic word growth and a

does not correlate with ψ by Theorem 1.8, which gives a contradiction.

THEOREM 1.14. Let C be a subset of [0, 1] of upper box dimension less than 1. Then if a

is an unpretentious completely multiplicative function taking values in the unit circle,

lim
H→∞

lim
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)| = 0.

Remark 1.15. In particular, this implies that if C is the middle thirds Cantor set then

lim
H→∞

lim
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)| = 0.

Of course, the result also applies to a large family of other fractals. The author does not

know of any results in the literature where this is established for any infinite set. He

does not know of any proof for any set of positive box dimension which does not use

Theorem 1.11.

Proof. Suppose the upper box dimension of C ⊂ S1 is less than d < 1. Let ε > 0. As in

the proof of Theorem 1.12, we assume that

lim sup
H→∞

lim sup
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)| ≫ ε,

and derive a contradiction. As before, there is a ticker tape function ψ : N→ C such that

lim sup
N→∞

Re(E
log
n≤NEh≤Ha(n+ h)ψ(h))≫ ε2,

of the following form: there exist sequences of natural numbers Ni and Hi tending to

infinity with Ni+1 ≫ Ni ≫ Hi , a sequence of Hi-separated sets Bi , and ψ(n+ h) =

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3066 R. McNamara

e(βn)e(αnh) for some rational βn of denominator at most O(ε), some αn in C and for

all n in some set Bi ∩ [Ni−1, Ni] and h ≤ Hi . We set ψ(m) = 0 for all natural numbers

m not of this form. As before, for any natural number k, the natural numbers m that are

within k of a number n in Bi or Bi +Hi have log-density 0.

Let k be a natural number sufficiently large depending on C and ε. Let ε′ = ε2. Then

because C has upper box dimension less than d there exists a collection of at most (k/ε′)d

intervals of length ε′/k covering C. If two points on the circle α and α′ differ by at most

ε′/k then by the triangle inequality, for all h ≤ k, we have that |e(hα)− e(hα′)| ≤ ε′.

Therefore, the number of sign patterns of ψ that occur with positive log-density up

to ε′ rounding is sublinear. In particular, for any δ > 0, there are fewer than δk sign

patterns that occur with positive log-density up to ε2 rounding. By Theorem 1.11, we get a

contradiction.

On the surface, this argument appears to be very close to the t-Fourier uniformity

conjecture, which Tao introduced in [Tao17a] and proved was equivalent to the log-Chowla

and log-Sarnak conjectures. (For recent significant progress on the Fourier uniformity

conjecture, see [MRT18].) If you wanted to prove the Fourier uniformity conjecture in

the case d = 1, namely that

lim
H→∞

lim sup
N→∞

E
log
n≤N sup

α∈R

|Eh≤Ha(n+ h)e(hα)| = 0,

the ticker tape functions that you would need λ to be orthogonal to have ∼ ε−1k sign

patterns of length k up to ε rounding. Thus, one might hope that a simple argument could

adjust the constants in Theorem 1.11 and thereby prove the Fourier uniformity conjecture.

However, there is a major theoretical obstacle to further progress. Frantzikinakis and Host

[FH18b] introduced the dynamical system (S1 × S1, dx, T , B) where T (α, β) = (α, αβ).

Sawin [Saw20] showed that this dynamical system with some additional structure is a

dynamical model for the Liouville function (a notion which we will precisely define later).

This is an obstruction to solving the Fourier uniformity conjecture purely with dynamical

methods and without any new input from number theory. Sawin [Saw20] further showed

that there are dynamical models for the Liouville function which have only polynomially

many sign patterns. Explicitly, consider the following function ã which behaves almost like

a multiplicative function: we partition the natural numbers into intervals with the length of

the intervals slowly tending to infinity. For instance, we could split all the numbers between

1010n and 1010n+1
into blocks of length ∼ n. Then on each interval I we pick a random

phase αI in S1 uniformly and independently. Then we set ã to be the function obtained

by rounding the function which sends n 7→ e(αIn) for n in I . In formulas, we set ã(n) =

21Re e(αIn)>0 − 1 for n in I . We remark that the dynamical model for this sequence is

isomorphic to the product of the dynamical system introduced by [FH18b] with Ẑ (again,

we defer the precise definition until later). Clearly, ã is not multiplicative. However, it is

‘statistically’ multiplicative in the sense that, with high probability, for any sign pattern ǫ

of length k, for any m and for large N ,

E
log
n≤N1ãn+h=ǫh for all h≤k ≈ E

log
n≤Nm1m|n1ãn+mh=−ǫh for all h≤k .
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This function clearly does not satisfy the 1-Fourier uniformity conjecture, and [Saw20]

showed that it has quadratically many sign patterns that occur with positive upper

logarithmic density even though it does satisfy a version of [MRT15]. If we had used

a random (κ − 1)-degree polynomial instead of a random linear polynomial, we would get

a function which is again statistically multiplicative but which fails the (κ − 1)-Fourier

uniformity conjecture, and [Saw20] showed that it has . k(
κ+2

2 ) sign patterns of length

k. However, the author is unaware of any ‘dynamical’ techniques that distinguish these

statistically multiplicative functions from the Liouville function. This is made precise with

Definition 1.18.

We give one last application.

THEOREM 1.16. Again, suppose that a is an unpretentious completely multiplicative

function taking values in the unit circle. There is a set C ⊂ [0, 1] of Hausdorff dimension

1 such that

lim
H→∞

lim sup
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)| = 0.

Proof. The main idea is to combine Theorem 1.14 with a diagonalization argument. For a

disjoint collection of intervals J = {J } and a natural number n we defineDn(J ) to be the

set of intervals obtained by taking each J , removing a ball of diameter |J |/n around the

center of the interval J , taking the two remaining intervals, then taking the union over all

J in J .

We construct C inductively as follows. Start with any interval I and set J2 = {I }.

Assume inductively that we have constructed Jn−1 Then we apply Dn again and again.

Let

Cn =
⋂

m∈N

⋃

J∈DmJn−1

J .

Since Cn has box dimension (log n− 1)/(log n), we know by Theorem 1.14 that there

exists a natural number Hn such that if H ≥ Hn then

lim sup
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)| ≤
1

n
.

Then define

Jn = D
nHn
n Jn−1.

We set

C =
⋂

n≥2

⋃

J∈Jn

J .

Clearly, the Hausdorff dimension of C is at least (− log 2)/(log((n− 1)/2n)) for every

n and therefore the Hausdorff dimension is precisely 1. Now we verify that C has the

desired property. For each natural numberm, by enlarging the set we are maximizing over,
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we have that

lim sup
H→∞

lim sup
N→∞

E
log
n≤N sup

α∈C

|Eh≤Ha(n+ h)e(hα)|

. lim sup
N→∞

E
log
n≤N sup

α∈J∈Jm

|Eh≤Hma(n+ h)e(hα)|.

Since every element α ∈ J ∈ Jm is in D
mHm
m (Jm−1) there exists β = βα depending on α

such that β is in Cm and the distance from α to β is no more than 1/Hmm. Therefore, for

all h ≤ Hm, αh is within 1/m of βh. Thus,

. lim sup
N→∞

E
log
n≤N sup

β∈Cm

|Eh≤Hma(n+ h)e(hβ)| +
1

m
.

However, by our choice of Hm, we have

.
1

m
.

Since m was arbitrary, we obtain the desired result.

Remark 1.17. We have stated our main theorems in the case where a is completely

multiplicative and takes values in the unit circle. We remark that these assumptions can

be weakened to include all multiplicative functions taking values in the unit disk. The

reduction from multiplicative functions taking values in the unit disk to multiplicative

functions taking values in the unit circle is essentially due to Tao (see [Tao16, Proposition

2.1]). The reduction from multiplicative functions to completely multiplicative functions

(say, both taking values in the unit circle) is carried out in Appendix B. The argument is

rather short and was essentially communicated to me by Tao. However, it may be more

broadly known and I make no claim of originality.

We now sketch an outline of an argument that is morally very similar to the main

argument in this paper. However, for the moment we will work in a more concrete setting.

To make this argument rigorous, it is much easier to pass to the dynamical context. Suppose

that b is a sequence with quadratic word growth rate and that

lim sup
N→∞

|E
log
n≤Nλ(n)b(n)| > c > 0.

Then we can fix a natural number k and average over translates,

lim sup
N→∞

|E
log
n≤NEh≤kλ(n+ h)b(n+ h)| > c.

Fix a large natural number P with N ≫ P ≫ k. Because λ also has a multiplicative

symmetry, we can average over dilates

lim sup
N→∞

|E
log
n≤NEP/2<p≤PEh≤kλ(pn+ ph)b(n+ h)| > c.

Moving the absolute values inside and crudely replacing b by the worst word of length k,

we get

lim sup
N→∞

E
log
n≤N sup

ǫ
EP/2<p≤P |Eh≤kλ(pn+ ph)ǫh| > c,
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where the supremum is taken over all words ǫ of b. Tao’s entropy decrement argument,

introduced in [Tao16], allows us to replace pn by n:

lim sup
N→∞

E
log
n≤N sup

ǫ
EP/2<p≤P |Eh≤kλ(n+ ph)ǫh| > c.

Now if λ behaves randomly, then we already know that λ is orthogonal to b. Therefore,

if λ correlates with b it must have some structure. Morally, [FH18b] says we can break

up λ into a structured part and a random part, and that all the correlation comes from

the structured part. Host [HK05] proves that the structured part must take the form of a

nilsequence. For the purposes of this sketch, we will focus on the case where there exist

αn and βn irrational such that

lim sup
N→∞

E
log
n≤N sup

ǫ
EP/2<p≤P |Eh≤ke(αn(ph)

2 + βnph)ǫh| > c.

By Hölder’s inequality,

lim sup
N→∞

E
log
n≤N sup

ǫ
EP/2<p≤P |Eh≤ke(αn(ph)

2 + βnph)ǫh|
4 > c4.

By the pigeonhole principle, since there are only δk2 sign patterns, there is a sign pattern

ǫ such that

lim sup
N→∞

E
log
n≤NEP/2<p≤P |Eh≤ke(αn(ph)

2 + βnph)ǫh|
4 > δ−1k−2c4.

Expanding everything out and using that δ ≤ c4/2,

lim sup
N→∞

E
log
n≤N |EP/2<p≤PEj∈[k]4e(αnp

2(j2
1 + j

2
2 − j

2
3 − j

2
4 )

+ βnp(j1 + j2 − j3 − j4))| > 2k−2.

If j2
1 + j

2
2 − j

2
3 − j

2
4 6= 0 or j1 + j2 − j3 − j4 6= 0 then for P large, by the circle method,

EP/2<p≤P e(αnp
2(j2

1 + j
2
2 − j

2
3 − j

2
4 )+ βnp(j1 + j2 − j3 − j4)) ≈ 0.

The analogue of the circle method for more general nilpotent Lie groups was introduced

in [GT12a], [GT10] and [GTZ12], The analogue of the step where we conclude that the

sums of powers is 0 for more general nilpotent Lie groups is an argument of [Fra17]. Thus

the only contribution is from the terms where j2
1 + j

2
2 − j

2
3 − j

2
4 = 0 and j1 + j2 − j3 −

j4 = 0. But it is easily seen from Newton’s identities for symmetric polynomials that this

only happens for the 2k2 ‘diagonal’ terms. Thus, we get

2k−2 > 2k−2,

which of course provides a contradiction. For the proof of Theorem 1.9, we need to use not

only the theory of symmetric polynomials but also [BDG16].

1.1. Background and notation. Suppose a(n) is a 1-bounded, unpretentious multiplica-

tive function with |a(n)| = 1 for all n. Let b(n) a sequence where only o(k2) or O(kt−ε)

many sign patterns occur with positive log-density. The usual construction of a Furstenberg

system (see [FKO82]) for (a, b) proceeds as follows. Consider the point (a, b) in the space
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of pairs of sequences. Then apply a random shift to this deterministic variable, (T na, T nb).

This gives a random variable in the space of pairs of sequences. The distribution of this

random variable is then a shift invariant measure on the space of pairs of sequences.

Furthermore, if f is the function on the space of pairs of sequences that evaluates the

first sequence at 1 and f ′ is the function which evaluates the second sequence at 1 then

f (T na, T nb)f ′(T na, T nb) = a(n+ 1)b(n+ 1),

which is the sequence whose average value we care about. Therefore, if the average of

a(n)b(n) is greater than c in absolute value then
∣∣∣∣
∫
f · f ′

∣∣∣∣ > c,

as well. Of course, it does not really make sense to take a random natural number. Instead,

one must shift by a random natural number in a large but finite interval whose length tends

to infinity, then find a subsequence of the random variables that converges in distribution.

This corresponds to taking a weak-∗ limit of the corresponding measures.

However, we take a slightly modified approach. The reason is that the function a has

some additional symmetry, namely a(nm) = a(n)a(m). As such, the probability that some

word occurs (i.e. that a(n+ h) = ǫh for h = 1, . . . , k and for n randomly chosen between

1 and N) is the same as the probability that a(pn+ ph) = a(p) · ǫh for h = 1, . . . , k and

for n chosen randomly between 1 andN . That is the same as p times the probability that for

a randomly chosen n between 1 and pN one has a(n+ ph) = a(p) · ǫh for h = 1, . . . , k

and p divides n. Just flipping everything around, the probability that a random n between 1

and pN satisfies a(n+ ph) = a(p) · ǫh and is divisible by p is 1/p times the probability

that a random n between 1 and N satisfies a(n+ h) = ǫh. We want our dynamical system

to capture this symmetry. There are two difficulties which arise when we want to translate

this symmetry to our dynamical system. The first is that the interval keeps changing: the

distribution of T na might be very different on the intervals from 1 to N and from 1 to pN

so when we take a weak limit along a subsequence of intervals, the distribution T na for

shifts in one interval might approximate our invariant measure while shifts along the other

interval might not. The fix for this problem is to use log-averaging. After we weight each

natural number n by 1/n, the probability that a random n will be between N and pN is

∼ (log p)/(log N) which tends to 0 as N tends to infinity. Therefore, the distribution of

T na for a random n between 1 andN is very close to the distribution of T na for a random n

between 1 and pN as long as we choose n randomly using logarithmic weights. The other

problem is that our dynamical system does not have a good notion of ‘being divisible’ by

a number. To remedy this, we make use of the profinite completion of the integers

Ẑ =
∏

p

Zp,

where p is always restricted to be a prime and Zp is the p-adic integers Zp =

lim← Z/pkZ, that is, the inverse limit of Z/pkZ for all k. For each natural number n,

we get an element of Ẑ by reducing n mod pk for every prime p and every natural number

k. Then to build our dynamical system, we take the space of triples consisting of two

sequences and a profinite integer and for a logarithmically randomly chosen integer n we
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consider the random variable (T na, n, T nb) in this space. The distribution of this random

variable is a shift invariant measure. Furthermore, we have the following symmetry.

Let Y = {T nb : n ∈ N} and X = (S1)N × Ẑ. Define the function

M : X→ Ẑ,

by projecting onto the Ẑ coordinate in X,

M : (α, r) 7→ r .

Define the function

Ip : M−1(pẐ)→ X

by ‘zooming in’ by a factor of p and multiplying by a(p) on the first factor and dividing

by p on the second,

Ip : (α(n), r) 7→ (a(p)α(pn), r/p),

where r/p is the unique element of Ẑ such that p · (r/p) = r . Then if ν is our invariant

measure on X × Y and µ is its first marginal, Ip pushes forward µ restricted to M−1(pẐ)

to (1/p)µ. Formally, we make the following definition.

Definition 1.18. Let (X, µ, T ) be a dynamical system, let f : X→ C be a measurable

function, letM : X→ Ẑ be a measurable function, and for eachm let Im : M−1(mẐ)→

X be a measurable function. We say that (X, µ, T , f , M , Im) is a dynamical model for a

if the following statements hold.

• M ◦ T = M + 1 almost everywhere.

• Im ◦ T
m = T ◦ Im almost everywhere in M−1(mẐ).

• Im pushes forward the measure µ restricted to M−1(mẐ) to (1/m)µ. Symbolically,

for any function φ in L1(µ) we have
∫

X

φ(x)µ(dx) =

∫

X

m1x∈M−1(mẐ)φ(Im(x))µ(dx).

• f ◦ Im = a(m) · f almost everywhere in M−1(mẐ).

• For all m and n, Inm = In ◦ Im almost everywhere in M−1(mnẐ).

We also require the following property that [Saw20] does not impose.

• For any natural number m and any measurable subset A of Cm,

µ{x ∈ X : (f (T 1x), . . . , f (T mx)) ∈ A}

≤ dlog{n ≤ N : (a(n+ 1), . . . , a(n+m)) ∈ A},

where dlog denotes upper logarithmic density. We remark that we can also fix a

Banach limit p-lim extending the usual limit functional and require that equality in

the previous equation holds for any limit taken with respect to that Banach limit. For

more details, see [Tao17b].

Let (X × Y , ν, T ) be a joining of two dynamical systems X and Y . Suppose that µ is the

first marginal and (X, µ, T , f , M , Im) is a dynamical model for a. Let f ′ be a measurable

function on X × Y which is Y measurable. We say that (X × Y , ν, T , f , f ′, M , Im) is a

joining of a dynamical model of a with b if we also have that, for any natural number m

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3072 R. McNamara

and any measurable subset A of Cm,

ν{(x, y) ∈ X × Y : (f ′(T 1y), . . . , f ′(T my)) ∈ A}

≤ dlog{n ≤ N : (b(n+ 1), . . . , b(n+m)) ∈ A}

where dlog denotes upper logarithmic density. We could also require that the joint statistics

of (f , f ′) agree with the joint statistics of (a, b) but this is not necessary for our argument.

Remark 1.19. The preceding definition was used first in [Tao17b] and generalized in

[Saw20].

We abuse notation and denote all transformations by the letter T . We also remark that,

for the proof of Theorems 1.8 and 1.9, f ′ only takes finitely many values.

We now specify some notation used in the main argument.

• We fix an unpretentious 1-bounded multiplicative function a. (For the definition

of unpretentious, see [MRT15]. We will only really use that a is unpretentious in

Theorem 2.1. We remark that the Liouville function is unpretentious). We fix constants

t ∈ N, c > 0 and δ > 0. We fix a 1-bounded function b with at most o(k2) or kt−ε

many words of length k occurring with positive upper logarithmic density for all k ∈ K

where K is some fixed infinite set. We suppose that

lim sup
N→∞

|E
log
n≤Na(n)b(n)| > c.

We fix η > 0 such that

lim sup
N→∞

|E
log
n≤Na(n)b(n)| > c + η.

• We use the following theorem of [FH18a].

THEOREM 2.15. [FH18a, Theorem 1.5] There exists a joining of a dynamical model

for a with b, (X × Y , T , ν, f , f ′, M , Im), satisfying
∣∣∣∣
∫

X×Y

f (x, y)f ′(x, y)ν(dx dy)

∣∣∣∣ > c + η,

and if µ is the first marginal then the ergodic components (X, µω, T ) are isomorphic

to products of Bernoulli systems with the Host–Kra factor of (X, µω, T ).

Because the statement here is slightly different than that in [FH18a, Theorem 1.5],

we will go through the details in Appendix A. We fix such a system. We will always

denote by µ the first marginal of ν. We also fix ergodic decompositions ν =
∫
�
νω dω

and µ =
∫
�
µω dω. We define the words of length k of f ′ to be those words ǫ of

length k such that the set of (x, y) such that f ′(T hx, T hy) = ǫh for all h ≤ k has

positive measure. We note that the set of words of f ′ is a subset of the set of words of

b that occur with positive upper log density: after all, if f ′(T hx, T hy) = ǫh then by

definition of a joining of a dynamical model a with b,

0 < µ{(x, y) ∈ X × Y : f ′(T hy) = ǫh for all h ≤ k}

≤ dlog{n ∈ N : b(n+ h) = ǫh for all h ≤ k},

where dlog denotes upper logarithmic density.
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• G will always refer to a nilpotent Lie group. Gs will always refer to the sth step in

the lower central series. Ŵ will always refer to a cocompact lattice in G, meaning that

Gs/Ŵs is compact for every s. g, σ , and τ will always refer to group elements. B will

always refer to the Borel sigma algebra. We will fix a particular G, Ŵ and g following

Corollary 2.20. For more on this see [GT12b].

• For a non-empty, finite set A and φ : A→ C, we denote En∈Aφ(n) = (1/#A)·∑
n∈A φ(n). For A ⊂ N, we denote

E
log
n∈Aφ(n) =

1∑
n∈A(1/n)

∑

n∈A

φ(n)

n
.

This notation is due to Frantzikinakis (see [Fra17]). We always restrict p to be

prime. By definition a nilsystem is a dynamical system (G/Ŵ, dx, T , B) where G

is a nilpotent Lie group, Ŵ is a cocompact subgroup, dx is Haar measure, there exists

g such that T (x) = gx and B is the Borel sigma algebra. A nilsequence is a sequence

of the form F(gnŴ) where G is a nilpotent Lie group, Ŵ is a cocompact lattice in G,

g is an element in G, and F : G/Ŵ→ C is a continuous function. Suppose G is an

s-step nilpotent Lie group so that Gs is an abelian group and Gs/Ŵs is a compact

abelian group. Then a nilcharacter 8 is a function G/Ŵ→ C such that there exists a

character ξ : Gs/Ŵs → S1 called the frequency of 8 such that, for all x in G/Ŵ and

u in Gs , we have 8(ux) = ξ(uŴs)8(x). We will abuse notation and identify ξ with

the function on Gs that maps u 7→ ξ(uŴs). We say that ξ is non-trivial if there exists

u in Gs such that ξ(u) 6= 1. We say that ξ is non-trivial on the identity component if

we can find a u in the identity component of Gs such that ξ(u) 6= 1.

• For Theorem 2.14, we will adopt conventions from the theory of Shannon entropy. In

particular, H(x) will denote the Shannon entropy of x and I (x, y) will denote the

mutual information between x and y. For more details, see [Tao16].

• We will always denote by Z the smallest sigma algebra on X generated by the union

of the sigma algebras corresponding to each of the Host–Kra factors. We will denote

B = {(x, y) ∈ X × Y : f ′(T ny) is eventually periodic as a function of n}.

Since whether (x, y) is in B depends only y, we will abuse notation and also use

B = {y ∈ Y : f ′(T ny) is eventually periodic as a function of n}.

• For a complex number z, a setA and a real numberw we say that z = OA(w) and z .A
w if there exists a constant C depending on A but not z and w such that |z| ≤ Cw. If

there are more subscripts we mean that the constant may depend on more parameters.

For instance, by .A,u,K we mean that the implied constant can depend on A, u,

and K .

2. Main argument

In this section we prove Theorems 1.8 and 1.9. In §3 we explain how to adapt the proof to

handle Theorem 1.11.

We remark that much of the notation, includingX, Y , µ, ν, f , f ′, a, and b, was defined

in §1.1.

We start off with a theorem by [MRT15], relying on work in [MR16]. This is a special

case of our theorem, so it is no surprise that we need this result.

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3074 R. McNamara

THEOREM 2.1. ([MRT15, Theorem 1.7]; see also [MR16]) Let a be a bounded,

non-pretentious multiplicative function. Let θ be a periodic sequence. Then

lim
H→∞

lim sup
N→∞

E
log
n≤N |Eh≤Ha(n+ h)θ(h)| = 0.

This theorem says that a does not locally correlate with periodic functions. Eventually,

we plan to use a local argument. In particular, our argument will only work for those

points where f ′ does not behave locally like a periodic function. Therefore, we need

to exclude any contribution to the integral coming from points where f ′ behaves like a

periodic function. That is the content of the following corollary.

COROLLARY 2.2. LetB = {(x, y) ∈ X × Y : f ′(T ny) is eventually periodic as a function

of n}. Then
∫

B

f (x)f ′(y)ν(dx dy) = 0.

Proof. In this proof, we introduce some notation which will not be used in the rest of the

paper. Because T preserves ν and because B is T -invariant, we can average over shifts:
∫

B

f (x)f ′(y)ν(dx dy) = lim
H→∞

∫

B

Eh≤Hf (T
hx)f ′(T hy)ν(dx dy).

We know f ′ takes only finitely many values. There are only countably many different

periodic sequences taking values in a finite alphabet. Therefore, it suffices to prove that if

Bθ is the set of points (x, y) on which f ′(T hy) is eventually equal to the periodic function

θ then

0 = lim
H→∞

∫

Bθ

Eh≤Hf (T
hx)f ′(T hy)ν(dx dy).

Let ε > 0. By Theorem 2.1, for H sufficiently large,

ε3 ≫ lim sup
N→∞

E
log
n≤N sup

j∈N

|Eh≤Ha(n+ h)θ(h+ j)|. (1)

We claim that, translating this to the dynamical world using the definition of a dynamical

model for a,

ν
{
(x, y) : lim sup

H→∞

|Eh≤Hf (T
hx)θ(h)| > ε

}
≤ ε.

After all, by Chebyshev’s inequality, for any H such that (1) holds,

dlog
{
n ∈ N : sup

j∈N

|Eh≤Ha(n+ h)θ(h+ j)| ≥ ε
}
≪ ε2,

where dlog denotes upper logarithmic density. Fix such an H for the moment and fix a

natural number H ′ > H . In fact, more is true. Let S be the subset of the natural numbers

such that n is in S if and only if there exists a natural number H ′ ≥ Hn ≥ H such that

|Eh≤Hna(n+ h)θ(h)| ≥ ε.

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


Sarnak’s conjecture for sequences of almost quadratic word growth 3075

Let S′ denote the union of all the intervals [n+ 1, n+Hn] for n in S. We claim there is

a subcollection I of these intervals which covers S′ and such that each natural number

is contained in at most two intervals in I. This is a somewhat standard covering lemma,

but we include the details for the interested reader. For instance, consider the following

construction. Let I0 denote the empty set. Then assuming we have constructed Iℓ for

some natural number ℓ, let m denote the smallest natural number in S′ not contained in

the union of the intervals in Iℓ. (If no such m exists, then just set Iℓ+1 = Iℓ). Let n be

a natural number maximizing n+Hn subject to the constraints that n is in S and m is in

[n+ 1, n+Hn]. Such an n exists because m is in S′. Then let Iℓ+1 = Iℓ ∪ {[n+ 1, n+

Hn]}. Now we check that I =
⋃

Iℓ has the desired property. First, for any m in S, m is

clearly contained in the union of the intervals in Im. Thus, I covers S′. Second, suppose

thatm in S′ is contained in I1, I2, and I3, with Iℓ chosen before Iℓ+1 for ℓ = 1, 2. Suppose

that Iℓi is the first set of the form Iℓ where Ii is contained in Iℓi . Then the union of the

intervals in Iℓ1
contains m. Thus, there exists m′ in S′ such that I2 = [n+ 1, n+Hn] was

chosen to maximize n+Hn subject to the constraint that m′ is in I2. Since we assumed m

was contained in I2, we have that n < m. Now let I3 = [n′ + 1, n′ +Hn′ ]. Since I3 also

contains m, n′ is also less than m which is in turn less than m′. But I2 maximized n+Hn
over all intervals containing m′ and if n′ +Hn′ were larger than n+Hn which is larger

than m′, then I3 would contained m′ as well. Thus n′ +Hn′ ≤ n+Hn and therefore any

point contained in I3 is already contained in the union of the intervals in Iℓ2
. Therefore, I3

should not have been selected for Iℓ3
, which leads to a contradiction. Thus, every natural

number is covered at most twice by the union of the intervals in I. If

|Eh≤Hna(n+ h)θ(h)| & ε

then

Eh≤Hn |Eh′≤Ha(n+ h+ h
′)θ(h+ h′)| & ε.

Therefore, for at least ε ·Hn points n+ h′ in the interval [n+ 1, n+Hn],

sup
j∈N

|Eh≤Ha(n+ h+ h
′)θ(h+ j)| & ε.

However, we know that

dlog
{
n ∈ N : sup

j∈N

|Eh≤Ha(n+ h)θ(h+ j)| ≥ ε
}
≪ ε2,

and that each such natural number is contained in at most two intervals of the form [n+

1, n+Hn] in I. We conclude that, by Chebyshev’s inequality, the logarithmic density of

S′ is at most ε. Therefore, the logarithmic density of S is at most ε. This means precisely

that

dlog
{
n ∈ N : sup

L∈[H ,H ′]

|Eh≤La(n+ h)θ(h)| ≥ ε
}
≤ ε.
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The condition supL∈[H ,H ′] |Eh≤La(n+ h)θ(h)| ≥ ε depends measurably on (a(n+

1), . . . , a(n+H ′)) so by definition of a dynamical model for a,

ν
{
(x, y) : sup

L∈[H ,H ′]

|Eh≤Lf (T
hx)θ(h)| ≥ ε

}
≤ ε.

Since this is true for all H ′, we get that

ν
{
(x, y) : sup

L≥H

|Eh≤Lf (T
hx)θ(h)| ≥ ε

}
≤ ε.

Since this is true for all ε > 0, for all (x, y) outside a set of measure 0, we have

lim
H→∞

Eh≤Hf (T
hx)θ(h) = 0.

For (x, y) ∈ Bθ , we know that f ′(T hy) = θ(h) for h sufficiently large, so for (x, y) ∈

Bθ outside a set of measure 0, we know Eh≤Hf (T
hx)f ′(T hy)→ 0. By the dominated

convergence theorem, we have

0 = lim
H→∞

∫

Bθ

Eh≤Hf (T
hx)f ′(T hy)ν(dx dy)

as desired.

We will also need the following result later. It states that f does not correlate locally

with periodic functions.

COROLLARY 2.3. Let µ =
∫
�
µω dω be an ergodic decomposition of µ. For almost every

ω, for all 1-bounded functions φ : X→ C such that, for µω-almost every x, φ(T hx) is

periodic in h, we have
∫

X

f (x)φ(x)µω(dx) = 0.

Proof. Let d be a natural number. Then we claim that

lim
H→∞

lim
N→∞

E
log
n≤N sup

θ∈Sd

|Eh≤Ha(n+ h)θ(h)| = 0,

where Sd is the set of d! periodic, 1-bounded functions. Since the supremum is over a finite

set, this directly follows from Theorem 2.1. Let ε > 0. For H sufficiently large,

lim sup
N→∞

E
log
n≤N sup

θ∈Sd

|Eh≤Ha(n+ h)θ(h)| ≤ ε
3.

Therefore, as in the proof of Proposition 2.2,

ν
{
(x, y) : lim sup

H→∞

sup
θ∈Sd

|Eh≤Hf (T
hx)θ(h)| > ε

}
≤ ε.

Since this is true for all ε, we get that
∫

X

lim sup
H→∞

sup
θ∈Sd

|Eh≤Hf (T
hx)θ(h) | µ(dx) = 0.
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Therefore, there exists �d ⊂ � of full measure such that for ω in �d , we have
∫

X

lim sup
H→∞

sup
θ∈Sd

|Eh≤Hf (T
hx)θ(h)|µω(dx) = 0.

Now let ω be an element of �d for all d and let φ be a 1-bounded function such that

φ(T hx) is periodic in h for µω-almost every x. Suppose that there exists ε > 0 such that
∣∣∣∣
∫

X

f (x)φ(x)µω(dx)

∣∣∣∣ > ε.

Then by translation invariance, we know that
∣∣∣∣ lim sup
H→∞

∫

X

Eh≤Hf (T
hx)φ(T hx)µω(dx)

∣∣∣∣ ≥ ε.

Let Xd be the set of all points x such that φ(T hx) is periodic with period at most d . Note

by assumption that µω
(⋃

Xd
)
= 1. Then by dominated convergence, there exists d such

that ∫

Xd

lim sup
H→∞

|Eh≤Hf (T
hx)φ(T hx)|µω(dx) >

ε

2
.

Since φ(T hx) is d! periodic for every x in Xd , this integral is bounded by
∫

X

lim sup
H→∞

sup
θ∈Sd

|Eh≤Hf (T
hx)θ(h)|µω(dx),

which gives a contradiction.

For the proof of Theorem 1.9, we also need an upgraded version of Corollary 2.3 under

the assumption that the (κ − 1)-Fourier uniformity conjecture holds.

PROPOSITION 2.4. Suppose that the (κ − 1)-Fourier uniformity conjecture holds, that is,

for every nilpotent Lie group G of step less than κ , every cocompact lattice Ŵ and every

continuous function F : G/Ŵ→ C,

lim
H→∞

lim sup
N→∞

E
log
n≤N sup

g∈G

|Eh≤Ha(n+ h)F (g
hŴ)| = 0.

Then for almost every ω, we have the following property: for every nilpotent Lie group G

of step less than κ , every cocompact lattice Ŵ, every continuous function F : G/Ŵ→ C

and every function φ on X such that for µω-almost every x there exist x′ in G/Ŵ and g in

G we have φ(T hx) = F(ghx′) for all h in N, we have that
∫

X

f (x)φ(x)µω(dx) = 0.

Proof. In the proof of this proposition, we will introduce some notation which will not be

used in the rest of the paper. By, for instance, [HK18, Ch. 10, Theorem 28] there are only

countably many pairs (G, Ŵ) up to isomorphism of G/Ŵ. Thus, we can fix a sequence

(Gi , Ŵi) of nilpotent Lie groups of step less than κ and cocompact lattices such that,

for any nilpotent Lie group G of step less than κ and for any cocompact lattice Ŵ there

exist a natural number i and a Lie group isomorphism ψ : Gi → G such that ψ(Ŵi) = Ŵ.
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By Stone–Weierstrass, there exists a countable, uniformly dense subset of the continuous

functions onGi/Ŵi . Fix such a subset and call it Fi . We are assuming the (κ − 1)-Fourier

uniformity conjecture:

lim
H→∞

lim sup
N→∞

E
log
n≤N sup

g∈Gi

|Eh≤Ha(n+ h)F (g
hŴi)| = 0,

for all i and all F a continuous function on G/Ŵ. By [Fra17, §4.5, Step 4] we also get

that, for all i and F as before,

lim
H→∞

lim sup
N→∞

E
log
n≤N sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Ha(n+ h)F (g
hx)| = 0.

Fix a natural number i for the moment and a function F in Fi . For each ε > 0 there exists

Hε such that

lim sup
N→∞

E
log
n≤N sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Hεa(n+ h)F (g
hx)| ≪ ε3.

Therefore, by Chebyshev’s inequality,

dlog

{
n ∈ N : sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Hεa(n+ h)F (g
hx)| ≥ ε

}
≪ ε2,

where dlog denotes the upper logarithmic density. Note that

sup
g∈Gi

x∈Gi/Ŵi

|Eh≤Hεa(n+ h)F (g
hx)|

depends measurably on (a(n+ 1), . . . , a(n+Hε)). Thus, there exists some set A in C
He

such that

sup
g∈Gi

x∈Gi/Ŵi

|Eh≤Hεa(n+ h)F (g
hx)| ≥ ε

if and only if (a(n+ 1), . . . , a(n+Hε)) are in A. Therefore, we know that

dlog{n ∈ N : (a(n+ 1), . . . , a(n+Hε)) ∈ A} ≪ ε2.

By the definition of a dynamical model for a,

µ{x′ ∈ X : (f (T 1x′), . . . , f (T Hεx′)) ∈ A} ≪ ε2.

Unpacking definitions, we get

µ

{
x′ ∈ X : sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Hεf (T
hx′)F (ghx)| ≥ ε

}
≪ ε2.

We call this set
{
x′ ∈ X : sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Hεf (T
hx′)F (ghx)| ≥ ε

}
= Sε.
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Remember that Sε implicitly depends on i and F . By the definition of the ergodic

decomposition, we have that

µ(Sε) =

∫

�

µω(Sε) dω.

Therefore, by another application of Chebyshev’s inequality, we find that

|{ω ∈ � : µω(Sε) ≤ ε}| ≥ 1− ε.

We call this set Kε = {ω ∈ � : µω(Sε) ≤ ε}. Of course Kε depends on i and F . Define

�i,F =
⋂

m∈N

⋃

r≥m

K1/r ,

and define

�′ =
⋂

i∈N

⋂

F∈F

�i,F .

Since |Kε| ≥ 1− ε, we know that for any m, we have
∣∣ ⋃

r≥m K1/r

∣∣ = 1 and therefore

|�′| = 1.

Now we check that �′ has the desired properties. Thus, fix ω in �′, φ a measurable

function on X, G a nilpotent Lie group of step less than κ , Ŵ a cocompact lattice and F ′ a

function on G/Ŵ. Suppose that for µω-almost every x in X, there exists x′ in G/Ŵ such

that φ(T hx) = F ′(ghx′) for some g in G. Fix ε > 0. We aim to show
∣∣∣∣
∫

X

f (x)φ(x)µω(dx)

∣∣∣∣ . ε · (‖F ′‖L∞ + 1).

Fix i in the natural numbers such that (G, Ŵ) is isomorphic to (Gi , Ŵi). Fix ψ : Gi → G

an isomorphism such thatψ(Ŵi) = Ŵ. Fix F in Fi such that ‖F ◦ ψ − F ′‖L∞ ≤ ε. Then ω

is in�′ so ω is in�i,F and therefore there exists r > 1/ε such that ω is inK1/r . Therefore,

for some H = H1/r ,

µω

{
x′ ∈ X : sup

g∈Gi
x∈Gi/Ŵi

|Eh≤Hf (T
hx′)F (ghx)| ≥ ε

}
≤ ε.

By the triangle inequality,

µω

{
x′ ∈ X : sup

g∈G
x∈G/Ŵ

|Eh≤Hf (T
hx′)F ′(ghx)| ≥ 2ε

}
≤ ε.

Next, we use that φ locally looks like F ′:

µω{x
′ ∈ X : |Eh≤Hf (T

hx′)φ(T hx′)| ≥ 2ε} ≤ ε.

Bounding the exceptional points by the L∞ norm, we get that
∫

X

|Eh≤Hf (T
hx)φ(T hx)|µω(dx) . ε · (‖F ′‖L∞ + 1).
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By the triangle inequality,
∣∣∣∣
∫

X

Eh≤Hf (T
hx)φ(T hx)µω(dx)

∣∣∣∣ . ε · (‖F ′‖L∞ + 1).

By translation invariance,
∣∣∣∣
∫

X

f (x)φ(x)µω(dx)

∣∣∣∣ . ε · (‖F ′‖L∞ + 1).

This completes the proof.

PROPOSITION 2.5. Let (X, µ, T ) be a (topologically) compact, invertible, not necessarily

ergodic dynamical system. Let µ =
∫
�
µω dω be an ergodic decomposition. Recall that,

for each ω, the Host–Kra factor Zω is defined up to sets of µω-measure 0. For each ω, fix

such a Host–Kra factor. For instance, one could use any definition of the Host–Kra factor

and then add all sets of µω-measure 0 to obtain the complete Host–Kra factor. Then there

exists a sigma algebra Z on X such that, for any measurable set A, A is Z measurable

if and only if there exists a full measure subset �′ ⊂ � such that for all ω in �′, A is Zω

measurable. This implies that a function f in L∞(µ) is Z measurable if and only if there

exists a full measure subset �′ ⊂ � such that f is Zω measurable for every ω in �′.

Proof. Let Z be the set of measurable subsets of X such that there exists a full measure

set �A ⊂ � such that for all ω in �A, A is Zω measurable. For each such set, fix such an

�A. Let A1, A2, A3, . . . be a countable list of sets in Z . Consider

�′ =
⋂

i∈N

�Ai .

Because�′ is the intersection of countably many full measure sets, it has full measure. Let

ω be an element of �′. Then for every natural number i, Ai is Zω measurable. Because

Zω is a sigma algebra, that implies the countable intersection and countable union of the

sets Ai are also Zω measurable. Thus the intersection
⋂
Ai and union

⋃
Ai are both Zω

measurable for a full measure subset �′ ⊂ � and thus, by definition of Z , Z is closed

under countable unions and intersections. If A is in Z , then A is in Zω for every ω in

�A. Since Zω is a sigma algebra, the complement Ac is also in Zω for every ω in �A. By

definition of Z , we conclude that Z is closed under complements. Obviously X and ∅ are

in Z so Z is a sigma algebra.

Lastly, we check that a function f in L∞(µ) is Z measurable if and only if it is Zω

measurable for a full measure set of ω. First, suppose there exists a full measure subset

�′ ⊂ � such that, for ω in �′, f is Zω measurable. Let A be a measurable subset of C.

Then since f is Zω measurable for anyω in�′, f−1(A) is in Zω for anyω in�′. Therefore,

by definition of Z , f−1(A) is in Z so f is Z measurable.

Now suppose f is Z measurable. We approximate f by simple functions fi . For

instance, we can take fi(x) = k · 2
−i if f (x) is between k · 2−i and (k + 1) · 2−i for any

natural number k. Then fi → f in L1(µ) and also in L1(µω) for any ω by the dominated

convergence theorem. For each i, the function fi has only finitely many distinct level sets.

Because f is Z measurable, the level sets of fi are Z measurable. Therefore, there exists
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a full measure subset �i ⊂ � such that fi is Zω measurable for all ω in �i . Let

�′ =
⋂

i∈N

�i .

Then since �′ is the intersection of sets of full measure, �′ has full measure. For each ω

in�′, fi is Zω measurable for all natural numbers i. But fi → f in L1(µω) so the limit f

is also Zω measurable for all ω in �′.

Definition 2.6. By Proposition 2.5, there exists a sigma algebra Z such that a L∞(µ)

function f is Z measurable if and only if it is Zω measurable for almost every ω in �. We

fix such a sigma algebra and call it the Host–Kra sigma algebra for (X, µ, T ).

PROPOSITION 2.7. Let f be a function in L∞(µ). Then there exists a set �′ of full

measure in � such that for ω in �′,

E
µ[f |Z] = E

µω [f |Zω],

µω-almost everywhere.

Proof. First, we need the following quick ergodic-theoretic fact. The space X can be

essentially partitioned into pieces where each piece carries all the mass of an ergodic

component. More precisely, there exists a map ω′ : X→ � such that

∫

�

∫

X

φ(x)µω(dx) dω =

∫

�

∫

X

φ(x)1ω=ω′(x)µω(dx) dω

for any integrable φ. For instance, in the usual construction of an ergodic decomposition,

one can take � to be the set of atoms of X with respect to the invariant sigma algebra I.

Then let
∫
ψ(x′)µ[x](dx

′) = E[ψ |I](x) where x is any point in the atom [x]. In this case

the map ω′ just sends x to the atom containing x.

By Proposition 2.5, there is a set �0 of full measure such that E
µ[f |Z] is Zω

measurable for every ω in �0. We also require that, for ω in �0,

‖f ‖L∞(µω) ≤ ‖f ‖L∞(µ)

which holds for a full measure set of ω. Fix such an �0. Since X is compact, there exists a

countable uniformly dense subset of the space of continuous functions. Fix such a subset

and fix an order on that subset f1, f2, f3, f4, . . .. Again by Proposition 2.5, there exists a

full measure subset�i of� such that for ω in�i , the function E
µ[fi |Z] is Zω measurable.

Let

�′ =
⋂

i≥0

�i .

Since each �i has full measure and there are only countably many choices of i, we

conclude that �′ has full measure. Now let ω be an element of �′ and suppose for the

sake of contradiction that

E
µ[f |Z] 6= E

µω [f |Zω],
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meaning equality does not hold up to sets of µω-measure 0. The conditional expectation is

uniquely defined by two properties, namely that Eµω [f |Zω] is Zω measurable and that
∫

X

E
µω [f |Zω](x)φ(x)µω(dx) =

∫

X

f (x)φ(x)µω(dx),

for any Zω measurable function φ in L∞(µω). If Eµ[f |Z] satisfies the same properties

then E
µ[f |Z] equals Eµω [f |Zω] µω-almost everywhere. We know since ω is in�′ which

is contained in �0 that Eµ[f |Z] is Zω measurable. Therefore, there exists φ in L∞(µω)

such that ∫

X

E
µ[f |Z](x)φ(x)µω(dx) 6=

∫

X

f (x)φ(x)µω(dx).

By subtracting off the appropriate multiple of E
µ[f |Z], we may assume that φ is

µω-orthogonal to E
µ[f |Z]. Multiplying by a scalar, we may assume that 〈f , φ〉L2(µω)

is a positive real number greater than 1.

For each ω in �′ such that Eµ[f |Z] 6= E
µω [f |Zω], we showed there exists φ a Zω

measurable function such that 〈Eµ[f |Z], φ〉L2(µω)
= 0 and 〈φ, f 〉L2(µω)

> 1. Let φ be

such a function. Suppose for the moment that ‖φ‖L2(µω)
< C. Since f1, f2, f3, . . . are

dense in L2(µω), for any ε and for any power p ≥ 2 we can find an i such that ‖φ −

fi‖Lp(µω) ≤ ε. This implies, by Cauchy–Schwarz, that

〈Eµ[f |Z], fi〉L2(µω)
≤ ε‖f ‖L∞(µ) (2)

and

〈φ, fi〉L2(µω)
> 1− ε. (3)

We also need a quantitative way of saying that fi is close to being Zω measurable. One

option is to use the Host–Kra norms defined for an ergodic system in [HK05, §3.5]. Let

|||φ|||k,ω denote the kth Host–Kra norm. The key feature of the Host–Kra norms is that a

function φ is Zω measurable if and only if |||φ|||k,ω = 0 for all k (see [HK05, Lemma 4.3]).

We claim that |||φ|||k,ω is a measurable function of ω. After all, by definition |||φ|||2
k

k,ω is the

integral of some fixed function on X2k , namely (x1, . . . , x2k ) 7→ φ(x1) . . . φ(x2k ) with

respect to some measure (namelyµ
[k]
ω defined in [HK05, §3.1]) which depends measurably

on ω. Thus, we can find also fi with

|||fi |||k,ω ≤ 2ε, (4)

for all k ≤ 1/ε. If we also know that

‖φ‖Lp(µω) < C

for some constant C then also by the triangle inequality,

‖fi‖Lp(µω) ≤ C + ε. (5)

Fix a constant C. Now we define a function i : �× R>0 → N ∪ {∞} as follows. Let

i(ω, ε) be the first index such that all four inequalities (2)–(5) are satisfied with p = 1/ε if

such an i exists and +∞ otherwise. Note that i implicitly depends on C. Let E denote the

set of ω such that i(ω, ε) is finite for all ε. In particular, if Eµ[f |Z] 6= E
µω [f |Zω] then ω

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


Sarnak’s conjecture for sequences of almost quadratic word growth 3083

is in this set for some choice of C. Thus, we may assume for the sake of contradiction that

the measure of E is positive. Let

ψε(x) =

{
fi(ω,ε)(x), ω ∈ E, ω′(x) = ω,

0, otherwise.

Since, for all p < 1/ε,

‖ψε‖Lp(µ) =

∫

�

‖ψε‖Lp(µω) dω ≤ C + ε,

we can take an Lp(µ) weak-∗ limit ψε → ψ for some subsequence of epsilons tending

to 0. By a diagonalization argument, we can ensure that this weak-∗ limit exists for all

p <∞. By (4), we conclude that ψ is Zω measurable for each ω in E. If ω is not in E,

then ψ = 0 on a set of µω full measure, so ψ is measurable with respect to Zω for a full

measure set of ω in �, so by definition ψ is Z measurable. Furthermore, by (3),

〈φ, ψ〉L2(µω)
≥ 1,

so we conclude that

〈φ, ψ〉L2(µ) ≥ |E|

by integrating in ω. On the other hand, by (2),

〈Eµ[f |Z], ψ〉L2(µω)
= 0.

This contradicts the definition of Eµ[f |Z]. Thus,

E
µ[f |Z] = E

µω [f |Zω]

for almost every ω in �.

A crucial input is the following theorem of [FH18a]. This theorem says that if a

correlates with b then it does so for some algebraic reason. In particular, any correlation

between f and f ′ is due solely to some locally algebraic structure in f .

THEOREM 2.8. ([FH18a, Theorem 1.5]; see also Appendix A) Let µ be the first marginal

of ν corresponding to the factor X. Then the ergodic components (X, µω, T ) of µ are

isomorphic to the product of a Bernoulli system with the Host–Kra factor of (X, µω, T ).

To use this theorem, we need the following result, which essentially appears in [FH18b].

LEMMA 2.9. ([FH18b]; see the proof of Lemma 6.2) Suppose that (X, µω, T ) ∼=

(W , dw, T )× (Z, dz, T ) where W is a Bernoulli system, Z is a zero entropy system

and µω is the first marginal of νω. Then for any function φ : X→ C and any function

ψ : Y → C we have
∫

X×Y

φ(x)ψ(y)νω(dx dy) =

∫

X×Y

E
νω [φ|Z](x)ψ(y)νω(dx dy)

where E
νω [φ|Z] denotes the conditional expectation of φ with respect to the measure νω

and the sigma algebra of Z-measurable functions.
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Proof. By density, it suffices to consider the case φ(w, z) = φW (w)φZ(z). Because any

joining of the Bernoulli system W and the zero entropy system Z × Y is trivial (i.e. is

equipped with the product measure), we can break up the integral
∫

W×Z×Y

φW (w)φZ(z)ψ(y)νω(dw dz dy)

=

∫

W

φW (w)νω(dw dz dy) ·

∫

Z×Y

φZ(z)ψ(y)νω(dw dz dy)

=

∫

X×Y

E
νω [φ|Z](z)ψ(y)νω(dw dz dy).

We also need the following result, which says that conditional expectation is essentially

local.

COROLLARY 2.10. Let X, Y , ν, f, f ′, c, and η be as in §1.1. Let B be as in Corollary 2.2.

Then
∣∣∣∣
∫

Bc
Eh≤kT

h(Eν[f |Z] · f ′)dν

∣∣∣∣ > c + η.

Proof. Recall that
∣∣∣∣
∫

X×Y

f (x) · f ′(y)ν(dx dy)

∣∣∣∣ > c + η.

By Corollary 2.2, we have that
∣∣∣∣
∫

Bc
f (x) · f ′(y)ν(dx dy)

∣∣∣∣ > c + η.

Since Bc is T invariant and ν is T invariant, we can average over shifts:
∣∣∣∣
∫

Bc
Eh≤kf (T

hx) · f ′(T hy)ν(dx dy)

∣∣∣∣ > c + η.

Next, we disintegrate the measure ν,
∣∣∣∣
∫

�

∫

Bc
Eh≤kf (T

hx) · f ′(T hy)νω(dx dy) dω

∣∣∣∣ > c + η.

Notice, for each h, THAT f ′(T hy)1y 6∈B is a function on Y . By Theorem 2.8, (X, µω, T )

is isomorphic to a product of a Bernoulli factor with the Host–Kra factor for almost every

ω. Since the Host–Kra factor has entropy zero, the hypotheses of Lemma 2.9 are satsified.

Thus, by Lemma 2.9,
∣∣∣∣
∫

�

∫

Bc
Eh≤kE

µω [f |Zω](T hx) · f ′(T hy)νω(dx dy) dω

∣∣∣∣ > c + η.

By Proposition 2.7,
∣∣∣∣
∫

�

∫

Bc
Eh≤kE

µ[f |Z](T hx) · f ′(T hy)νω(dx dy) dω

∣∣∣∣ > c + η.
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By definition of the ergodic decomposition,

∣∣∣∣
∫

Bc
Eh≤kE

µ[f |Z](T hx) · f ′(T hy)ν(dx dy)

∣∣∣∣ > c + η.

This completes the proof.

Now we forget everything about the joining of X and Y and reduce to the worst case

scenario, where we choose the worst possible y in Y for each x in X.

COROLLARY 2.11. Let X, Y , ν, µ, f, f ′, c, and η be as in §1.1. Let Z be as in

Definition 2.6. Let B be as in Corollary 2.2. Since whether (x, y) ∈ B only depends on

y, we abuse notation and write y ∈ B to mean (x, y) ∈ B for some x. Then,

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T hx) · f ′(T hy)|µ(dx) > c + η,

where the supremum is an essential supremum taken with respect to the second marginal

of ν.

We will need the following lemma, which states that conditioning with respect to a

conditional measure is essentially the same as conditioning with respect to the original

measure.

LEMMA 2.12. Let A be a positive measure set in Z and denote µA(S) = µ(S|A). Then

for any measurable function f,

E
µA[f |Z] = E

µ[f |Z],

µA-almost everywhere (i.e. for µ-almost every point in A).

Proof. Let C be another set in Z . Then

∫

C

E
µ[f |Z](x)µA(dx) =

∫

C∩A

1

µ(A)
E
µ[f |Z](x)µ(dx).

Since A is in Z , we know that A ∩ C is in Z . By definition of conditional expectation,

this is

=
1

µ(A)

∫

C∩A

fµ(dx)

=

∫

C∩A

fµA(dx).

This is the defining property of EµA [f |Z]. Since conditional expectation is well defined

up to sets of measure 0, we obtain the result.

The system X possesses an extra symmetry that most dynamical systems do not have,

a dilation symmetry. In fact, it possesses a whole family of dilation symmetries. It is

not obvious which dilation makes the problem easiest. Therefore, instead of choosing a

particular dilation, we use a random dilation.
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PROPOSITION 2.13. Let P be any natural number. Then

EP/2<p≤P

∫

X

p1
M−1(pẐ)

(x) sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c + η,

where p is always restricted to be prime.

Proof. By Corollary 2.11 we have
∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T hx) · f ′(T hy)|µ(dx) > c + η.

Now we use that Ip pushes forward p1
M−1(pẐ)

µ to µ for every p and average in p:

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T hIpx) · f

′(T hy)|µ(dx) > c + η.

Because Ip ◦ T
hp(x) = T h ◦ Ip(x) for almost every x in M−1(pẐ), we have that

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](IpT

phx) · f ′(T hy)|µ(dx) > c + η.

Next we use the standard fact that

E
µ[f |Z] ◦ Ip = E

Ip∗µ[f ◦ Ip|I
−1
p (Z)]

Ip∗µ-almost everywhere, where Ip∗µ is the pushforward of µ. Since Ip∗µ = (1/p)µ, we

can replace Ip∗µ by µ. Note that Ip defines a factor map between (M−1(pẐ), pµ, T p)

and (X, µ, T ). Since Host–Kra factors are functorial, the Host–Kra factor for

(M−1(pẐ, pµ, T p)) factors onto the Host–Kra factor for (X, µ, T ). Thus, I−1
p (Z) is

contained in the Host–Kra factor of some dynamical system and thus corresponds to an

inverse limit of nilsystems. This is all we actually need for our purposes. However, for the

sake of avoiding notation, we also prove that

1M−1(pẐ)E
µ[f ◦ Ip|I

−1
p (Z)] = 1M−1(pẐ)a(p)E

µ[f |Z].

That f ◦ Ip = a(p)f follows from the definition of Ip. If Zi(T
p) denotes the ith

Host–Kra factor for T p and Zi(T ) denotes the ith Host–Kra factor for T , then any

T p invariant subset of the cube X2i is an element of the Kronecker factor, that is, the

first Host–Kra factor for (X2i , T , µ[i]) (where µ[i] is the measure on the cube defined

in [HK05, §3]). Since the Host–Kra factor of an ergodic system is the smallest sigma

algebra generating the invariant factor on the cube, we conclude that Zi(T
p) ⊂ Zi+1(T )

so I−1
p (Z) ⊂ Z ∩M−1(pẐ). In fact, as in Appendix A, the Host–Kra factor for X is a

joining of the Host–Kra factor on the space of sequences DZ and Ẑ. On the second factor,

Ip acts by division by p. On the first factor, Ip ◦ T
p = T ◦ Ip and so, on each ergodic

component of the first factor, Ip acts by multiplication by p up to a possible translation.

Multiplication by p is a local isomorphism of any nilmanifold that does not contain p

torsion. However, by Corollary 2.3, f is already orthogonal to all p torsion. Thus,

1M−1(pẐ)E
µ[f ◦ Ip|I

−1
p (Z)] = 1M−1(pẐ)a(p)E

µ[f |Z].
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Combined with Lemma 2.12 and the fact that M−1(pẐ) is T p invariant and therefore an

element of Z , we get

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µa(p)[f |Z](T phx) · f ′(T hy)|µ(dx) > c + η.

Recall that |a(p)| = 1 for all p. Thus, a(p) merely gets absorbed into the absolute value:

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c + η.

2.1. The entropy decrement argument. Next, we use the entropy decrement method to

replace p1
M−1(Ẑ)

by its average, 1. This is essentially due to Tao, but because our statement

is slightly different we reproduce the argument. For the definitions of entropy, conditional

entropy, mutual information, and conditional mutual information, see [Tao16].

Let x′ be a random variable distributed according to µ and fix a natural number P .

From this, we get the following two random variables. SetXP = (x1, . . . , x(k+1)P ) where

xi = E
µ[f |Z](T ix′), and set YP = (M(x

′)mod p)P/2<p≤P in
∏
P/2<p≤P Z/pZ. Denote

YP mod p = yp so that YP = (yp)P/2<p≤P . Note that YP is uniformly distributed in∏
P/2<p≤P Z/pZ and that the distribution of XP is the same as the distribution of T iXP

for any i because µ is translation invariant. Technically, if Eµ[f |Z] takes infinitely many

values then we will have to round E
µ[f |Z](T ix′) so that each xi takes values in a finite

set, but this slightly annoying detail may be delayed for the moment. We want to study the

following integral:

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx).

By translation invariance, this is equal to

EP/2<p≤PEi≤P

∫

X

pT i1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T ph+ix) · f ′(T hy)|µ(dx).

Notice that this is the expected value of some function of XP and YP . In particular, we are

interested in

E
(
EP/2<p≤P fP ,p(XP , yp)

)

where fP ,p : C(k+1)P × Z/pZ→ C is defined by the formula

fP ,p(XP , yp) = Ei≤P p1yp=i sup
y 6∈B

|Eh≤kxhp+if (T y)|.

Define

fP (XP , YP ) = EP/2<p≤P fP ,p(XP yP ).

Thus, we are interested in

EfP (XP , YP ).

We would like to say thatXP and YP are very close to independent for some large choice of

P . LetWP be a random variable with the same distribution as YP but which is independent

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3088 R. McNamara

of XP . We would like to say that

E[fP (XP , YP )] ≈ E[fP (XP , WP )].

A property like this actually holds in a more general setting, which we take the liberty of

stating now.

THEOREM 2.14. ([Tao16, §3]; see also [Mor18], [TT17b, Lemma 3.4 and Proposition 3.5],

and [TT17a, §4]) Let A be a finite set and let C be a natural number. For each P a power

of 2, let XP = (x1, . . . , xCP ) be a sequence of random variables with xi taking values in

A and let YP be a random variable that is uniformly distributed in
∏
P/2<p≤P Z/pZ. We

write YP = (yp)P/2<p≤P where yp = YP mod p. We further assume that for different

values of P , the random variables YP are jointly independent, meaning (yp)p≤P is

uniformly distributed in
∏
p≤P Z/pZ for all P that are powers of 2. Suppose that, for

any natural numbers i and m such that i +m ≤ CP , we have that the distribution of

(x1, . . . , xm) is equal to the distribution of (xi+1, . . . , xi+m). Furthermore, suppose that

for any P , any element b in
∏
p≤P Z/pZ, and any S a measurable subset of Cm,

P((x1, . . . , xm) ∈ S | (yp)p≤P = b) = P((xi+1, . . . , xi+m) ∈ S | (yp)p≤P = b + i).

For each p with P/2 < p ≤ P , let fP ,p be a 1-bounded function ACP × Z/pZ→ C and

let fP (XP , YP ) = EP/2<p≤P fP ,p(XP , yp). Let WP be a random variable with the same

distribution as YP but which is independent of XP . Then

lim inf
P→∞

E[|fP (XP , YP )− fP (XP , WP )|] = 0.

Proof. Fix P a large power of 2 and ε > 0. By replacing fP ,p(a, b) by fP ,p(a, b)−

fP ,p(a, WP ) we may assume that fP ,p(a, WP ) = 0 for all a. To prove the theorem, first

we need a very good understanding of the case where XP and YP are independent. In

that case, even if we know the exact value of XP , fP is still a sum of independent

random variables fP ,p(a, WP ) and therefore exhibits concentration. This is formalized in

Hoeffding’s inequality, which says that large collections of independent random variables

exhibit concentration.

LEMMA 2.15. (Hoeffding’s inequality) Suppose Z1, . . . , Zn are independent random

variables taking values in [−2, 2]. Then

P(|Z1 + · · · + Zn − E[Z1 + · · · + Zn]| > t) ≤ exp(−nt2/16).

Let a be an element of ACP . We apply Hoeffding’s inequality to the random variables

fP ,p(a, YP ) (we remind the reader that there are roughly P/(2 log P) such terms, by the

prime number theorem):

P(|fP (a, WP )| > ε) ≤ exp

(
−

ε2P

40 log P

)
. (6)

Next, we aim to show that if YP is not necessarily independent of XP but nearly

independent of YP , we still can obtain a good bound. To do this, we use a Pinsker-type

inequality.

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


Sarnak’s conjecture for sequences of almost quadratic word growth 3089

LEMMA 2.16. [TT17a, Lemma 3.4] Let Y be a random variable taking values in a finite

set, let W be a uniformly distributed random variable on the same set, and let E be a set.

Then

P(Y ∈ E) ≤ −
H(W)−H(Y)+ log 2

log P(W ∈ E)
.

Let a be an element of ACP . Let E be the set of b in
∏
P/2<p≤P Z/pZ such that

|fP (a, b)| > ε. By (6), we know that

P(WP ∈ E) ≤ exp

(
−

ε2P

40 log P

)
.

Applying Lemma 2.16 to P( · |XP = a), we find that

P(|f (a, YP )| > ε|XP = a) ≤ −
(H(WP )−H(YP |XP = a)+ log 2)40 log P

ε2P
.

Note that
∑

a

P(XP = a)(H(WP )−H(YP |XP = a)) = H(WP )−H(YP |XP ) = I (XP , YP ),

where the last equality follows since H(WP ) = H(YP ) since the two random variables

have the same distribution. Therefore, summing over a, we get

P(|f (XP , YP )| > ε) ≤ −
(I (XP , YP )+ log 2)40 log P

ε2P
.

If

I (XP , YP ) .
εP

log P

then

P(|f (XP , YP )| > ε) . ε.

This would complete the proof. Let Y≤P/2 = (yp)p≤P/2. Fix b′ an element of∏
p≤P/2 Z/pZ. Then we may repeat the previous argument with P( · |Y≤P/2 = b

′) to

conclude that

P(|f (XP , YP )| > ε) ≤ −
(I (XP , YP |Y≤P/2)+ log 2)40 log P

ε2P
,

and therefore if

I (XP , YP |Y≤P/2) .
ε3P

log P

then

P(|f (XP , YP )| > ε) . ε

and therefore

E|f (XP , YP )| . ε.

Let P0 be a power of 2. We will try to show that there exists P ≥ P0 such that

E|f (XP , YP )| . ε.
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This would complete the proof. Suppose not. Then

I (XP , YP |Y≤P/2)≫
ε3P

log P
,

for all P ≥ P0. By definition of mutual information,

H(XP |Y≤P ) = H(XP |Y≤P/2)− I (XP , YP |Y≤P/2)

where Y≤P = (yp)p≤P . By assumption, we have a lower bound for the mutual information

≤ H(XP |Y≤P/2)−
ε3P

log P
.

By subadditivity of entropy,

≤ H(XP/2|Y≤P/2)+H(xCP/2+1, . . . , xCP |Y≤P/2)−
ε3P

log P
(7)

where XP/2 = (x1, . . . , xCP/2). Since (x1, . . . , xCP/2) has the same distribution as

(x1, . . . , xCP/2), for any set S in C
CP/2 and for any b′ in

∏
p≤P/2 Z/pZ,

P((x1, . . . , xCP/2) ∈ S|Y≤P/2 = b
′) = P((xCP/2+1, . . . , xCP ) ∈ S|Y≤P/2 = b

′ + CP/2).

Since the entropy of a random variable only depends on its distribution, we conclude that,

for all b′,

H(x1, . . . , xCP/2|Y≤P/2 = b
′) = H(xCP/2+1, . . . , xCP |Y≤P/2 = b

′ + CP/2).

Since Y≤P/2 is uniformly distributed, for all b′,

P(YP/2 = b
′) = P(YP/2 = b

′ + CP/2).

Therefore, summing in b′,

H(x1, . . . , xCP/2|Y≤P/2)

=
∑

b′

P(YP/2 = b
′)H(x1, . . . , xCP/2|Y≤P/2 = b

′)

=
∑

b′

P(YP/2 = b
′ + CP/2)H(xCP/2+1, . . . , xCP |Y≤P/2 = b

′ + CP/2) (8)

= H(xCP/2+1, . . . , xCP |Y≤P/2).

Applying (8) to (7),

H(XP |Y≤P ) ≤ 2H(XP/2|Y≤P/2)−
ε3P

log P
.

We just obtained an upper bound for H(XP |Y≤P ). We can apply the same argument to

obtain an upper bound for H(XP/2|Y≤P/2):

≤ 4H(XP/4|Y≤P/4)− 2
εP/2

log P/2
−

ε3P

log P
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where XP/2 = (x1, . . . , xCP/4) and where Y≤P/4 = (yp)p≤P/4. Applying this argument

inductively, if P = 2m · P0 then

≤ 2m


H(XP0

|Y≤P0
)− ε

m∑

j=1

P0

j


 . (9)

However,
∑
m≤log2 P/P0

(1/m) ∼ log log P so, for large P ,

ε

m∑

j=1

P0

j
≫ CP0 log |A| ≥ H(XP0

|Y≤P0
).

Combining this with (7),

H(XP , Y≤P ) < 0

which is impossible.

Applying Theorem 2.14 to our situation yields the following corollary.

COROLLARY 2.17. Let X, Y , µ, f, f ′, M , Ip, c, and η be as in §1.1. Let Z be as in

Definition 2.6. Let B be as in Corollary 2.2. We have

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c.

Proof. Recall that, for all natural numbers P ,

EP/2<p≤P

∫

X

p1
M−1(pẐ)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c + η.

By translation invariance, for all natural numbers P ,

EP/2<p≤PEi≤P

∫

X

p1
M−1(pẐ+i)

sup
y 6∈B

|Eh≤kE
µ[f |Z](T ph+ix) · f ′(T hy)|µ(dx) > c + η.

Let x′ be a random variable with distribution µ. Fix ε > 0 small. We will require that

ε < 10 · η. Let φ be a measurable function on X which uniformly approximates Eµ[f |Z],

that is,

‖φ − E
µ[f |Z]‖L∞ < ε.

For instance, φ(x) could be obtained by rounding E
µ[f |Z](x) to the closest element of

(ε/10) · Z[i]. By the triangle inequality,

EP/2<p≤PEi≤P

∫

X

p1
M−1(pẐ+i)

sup
y 6∈B

|Eh≤kE
µφ(T ph+ix) · f ′(T hy)|µ(dx) > c + η − ε.

For each natural number P , let XP = (x1, . . . , xCP ) where xi = φ(T
ix′) and where C =

k + 1. Let YP = (yp)P/2<p≤P where yp = M(x
′) mod p. For each natural number P , let

fP ,p(XP , yp) = Ei≤P p1yp=i sup
y 6∈B

|Eh≤kxhp+if (T y)|.

Define

fP (XP , YP ) = EP/2<p≤P fP ,p(XP yP ).
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Unpacking definitions, for every natural number P ,

EfP (XP , YP ) > c + η − ε.

Now we check the hypotheses of Theorem 2.14. Because φ takes only finitely many values,

xi takes values in a finite set. For all natural numbers P , since the distribution of (yp)p≤P

is a +1 invariant measure on
∏
p≤P Z/pZ, it must be the uniform distribution. Since µ is

translation invariant, for any natural numbers i and m and any subset E of Xm,

P((T x′, . . . , T mx′) ∈ E) = P((T i+1x′, . . . , T i+mx′) ∈ E).

Applying this to the preimage under (φ, . . . , φ) of an arbitrary subset S of Cm reveals

that the distribution of (x1, . . . , xm) is the same as the distribution of (xi+1, . . . , xi+m).

Similarly, if b is an element in
∏
p≤P Z/pZ and if E is the preimage under (φ, . . . , φ)

of an arbitrary set S intersected with the set of points z in X such that M(z) =

b mod
∏
p≤P p then we conclude that

P((x1, . . . , xm) ∈ S|(yp)p≤P = b) = P((xi+1, . . . , xi+m) ∈ S|(yp)p≤P = b + i).

For each natural number P and each prime P/2 < p ≤ P , for at most two values of i ≤ P

is it true that yp = i mod p. Therefore, at most two terms in the sum

Ei≤P p1yp=i sup
y 6∈B

|Eh≤kxhp+if (T y)|

are non-zero. Therefore fP ,p is bounded by 2. LetWP be a random variable with the same

distribution as YP . Then by Theorem 2.14,

lim inf
P→∞

E[|fP (XP , YP )− fP (XP , WP )|] = 0.

Since, for any natural number P ,

EfP (XP , YP ) > c + η − ε,

we conclude that

lim sup
P→∞

EfP (XP , WP ) > c + η − ε.

Unpacking definitions, this proves

lim sup
P→∞

EP/2<p≤PEi≤P

∫

X

sup
y 6∈B

|Eh≤kφ(T
ph+ix) · f ′(T hy)|µ(dx) > c + η − ε.

By the triangle inequality,

lim sup
P→∞

EP/2<p≤PEi≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T ph+ix) · f ′(T hy)|µ(dx) > c + η − 2ε.

Since ε was arbitrary,

lim sup
P→∞

EP/2<p≤PEi≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T ph+ix) · f ′(T hy)|µ(dx) > c.
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By translation invariance,

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c.

This completes the proof.

2.2. Nilsystems and algebraic structure. Now we want to use [HK05] to show that

E
µ[f |Z] has some local algebraic structure. This algebraic structure makes E

µ[f |Z]

much easier to understand than f .

PROPOSITION 2.18. Let ω be an element of � such that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µω(dx) > c.

Then for almost all such choices for ω, there exists a collection of nilsystems

(G(j)/Ŵ(j), dx, g(j), B), 1-bounded functions Fj , and factor maps ψj : X→

G(j)/Ŵ(j) so that Fj is a nilcharacter on G(j)/Ŵ(j) with frequency non-trivial on

the identity component and such that, after identifying Fj with a function on X, we have

that
∑
Fj = F satisfies ‖F‖∞ ≤ 1 and

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kF(T
phx) · f ′(T hy)|µω(dx) > c.

Proof. We are given that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µω(dx) > c.

Recall that by Lemma 2.7, we know that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µω [f |Zω](T phx) · f ′(T hy)|µω(dx) > c.

By [HK05] Theorem 10.1, (X, µω, T , Z) is isomorphic to an inverse limit of nilsystems.

Therefore, there exist a nilsystem (G/Ŵ, dx, g, B) and a factor map ψ : X→ G/Ŵ such

that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µω [f |ψ−1(B)](T phx) · f ′(T hy)|µω(dx) > c.

We denote F = E
µω [f |ψ−1(B)]. By a Fourier decomposition, we may write F as a

sum of nilcharacters, F =
∑
ξ Fξ . For each ξ , either ξ is non-trivial on the identity

component of G/Ŵ or ξ is trivial on the identity component. If ξ is trivial on the identity

component and the step s of G is greater than 1, then ξ is actually trivial on Gs . That

is because, for any σ in G, the multiplication by σ map σ : G/Ŵ→ G/Ŵ is continuous

so it takes components to components. Let σ∗ : components of G→ components of G be

the induced map on components and let τ be any other element of G. Then if σ and τ

are in the same component of G then for any σ ′ in G, multiplication by σ ′ on the right

is also continuous, so σσ ′ is in the same component as τσ ′ so σ∗ = τ∗. We return to the
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general case where σ and τ are not necessarily in the same component. Also note that,

for any element γ in Ŵ, (γ σ )∗ = [γ , σ ]∗σ∗γ∗ = [γ , σ ]∗σ∗. Pick n, m, γ and γ ′ such

that gnγ is in the same component as σ and gmγ ′ is in the same component as τ . Thus

[σ , τ ]∗ = [gnγ , gmγ ′]∗ = π∗[g
n, gm]∗ where π is an element of higher order. Of course

[gn, gm] = e and by induction we get that [σ , τ ]∗ is the identity and therefore [σ , τ ]γ is

in the identity component for some γ . Therefore, if s > 1, the function Fξ descends to

a function on (G/Gs)/(Ŵ/Ŵs). By induction, we can almost prove the theorem, namely

we can find a collect of nilsystems (G(j)/Ŵ(j), dx, g(j), B) and functions Fj and factor

maps ψj : X→ G(j)/Ŵ(j) so that Fj is a nilcharacter on G(j)/Ŵ(j) with frequency

non-trivial on the identity component or G(j) is abelian and such that, after identifying

Fj with a function on X, we have that
∑
Fj = F satisfies ‖F‖∞ ≤ 1 and

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kF(T
phx) · f ′(T hy)|µω(dx) > c.

It remains to observe that the case of a locally constant function on an abelian group cannot

occur by Corollary 2.3 as follows: we can think of the Fj s as all functions on the group

G with some additional equivariance properties; by construction the different Fj s have

different frequencies so if Fr is a locally constant function on an abelian group and thus is

locally periodic, meaning Fr(T
hx) is a periodic function of h, then by Corollary 2.3,

0 =

∫

X

f · Frµω(dx).

Since Fr is ψ−1(B) measurable,

=

∫

G/Ŵ

F · Fr dx.

Since all the Fj s have different frequencies, they are all orthogonal to each other,

=

∫

G/Ŵ

Fr · Fr dx.

Remark 2.19. If we also know the (κ − 1)-Fourier uniformity conjecture then the step of

all nilpotent Lie groups is at least κ by Proposition 2.4 (plugging Fr = φ into the statement

of that proposition).

COROLLARY 2.20. There exist a natural numberL independent of k, a nilpotent Lie group

G of step s, a cocompact subgroup Ŵ, an ergodic element g in G, and a nilcharacter 8

with non-trivial frequency even when restricted to the identity component,

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)| dx >

c

L
,

where K as defined in §1.1 is an infinite set such that for k in K, the number of words of

length k of f ′ is o(k2) if t = 2 or O(kt−ε) if t 6= 2 for some ε.
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Proof. By Corollary 2.17,

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µ(dx) > c.

Thus, for a positive measure set of ω,

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kE
µ[f |Z](T phx) · f ′(T hy)|µω(dx) > c.

By Proposition 2.18, we know that for almost every ω,

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

∣∣∣Eh≤k
∑

j

Fj (T
phx) · f ′(T hy)

∣∣∣µω(dx) > c,

where Fj is as in Proposition 2.18. Fix such an ω.

Since the sum
∑
j Fj converges inL2(µω), there exists a natural numberL independent

of k such that ‖
∑
j≤L/2 Fj −

∑
j Fj‖L2(µω)

< c/2. By the triangle inequality

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

∣∣∣Eh≤k
∑

j≤L/2

Fj (T
phx) · f ′(T hy)

∣∣∣µω(dx)

+

∫

X

sup
y 6∈B

Eh≤k

∣∣∣
∑

j>L/2

Fj (T
phx) · f ′(T hy)

∣∣∣µω(dx) > c.

The second term is bounded by
∫

X

∣∣∣
∑

j>L/2

Fj (x)

∣∣∣µω(dx),

using that µω is shift invariant and f ′ is 1-bounded. By Cauchy–Schwarz, this term is

bounded by ‖
∑
j≤L/2 Fj −

∑
j Fj‖L2(µω)

< c/2. Thus, by the triangle inequality,

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

∣∣∣Eh≤k
∑

j≤L/2

Fj (T
phx) · f ′(T hy)

∣∣∣µω(dx) >
c

2
.

By the pigeonhole principle, there exists some Fj such that

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤kFj (T
phx) · f ′(T hy)|µω(dx) >

c

L
.

Renaming everything gives the conclusion. We remark that the corollary just stated that

such L, G, Ŵ, g, and 8 exist and therefore the statement of the corollary allows L to

depend on G, Ŵ, and all the other data that comes from ω. The remainder of the argument

essentially takes place inside a single ergodic component and so how the constants vary

from component to component is not important for our purposes.

For the remainder of §2, we fix G, Ŵ, g, and 8. We let c0 = c/L. For the next few

pages, we fix an integer k in K such that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)| dx > c0.
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We will later send k to infinity. The following lemma does two things. First, it uses Hölder’s

inequality to raise the exponent of |Eh≤k8(g
phx) · f ′(T hy)|. We want this term raised to

an even power because we want to expand out the product and get rid of the absolute values

which are less ‘algebraic’ and therefore harder to understand directly using the theory of

nilpotent Lie groups. We also want this even power to be larger the more oscillatory our

function 8 is. This is because the more 8 oscillates, the more cancelation we expect in

larger and larger products. The larger the power we use, the smaller the fraction of terms

which do not exhibit cancelation is. Second, we use the pigeonhole principle. This lemma

and the following lemma are where we make essential use of our bound on the word growth

rate of b.

LEMMA 2.21. Recall that b had at most kt−ε words of length k occurring with positive

upper logarithmic density for k in K, or b has o(k2) many words of length k that occur

with positive upper logarithmic density if t = 2. Fix δ a constant that is small even when

compared to c0. Then for each k in K there is a word ǫ = (ǫ1, . . . , ǫk) of length k such

that

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > k−t+εc2t
0 ,

for t 6= 2, and when t = 2 we have

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > δ−1k−tc2t
0 .

Proof. We know that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)| dx > c0.

By Holder’s inequality, we have

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)|2t dx > c2t

0 .

Because each term is non-negative, we can replace the essential sup by a sum over words

that occur with positive log-density:

∑

ǫ

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > c2t
0 .

We assumed that the number of words occurring with positive logarithmic density and

therefore the number of terms in the sum is at most δkt when t = 2 or kt−ε when t 6= 2.

By the pigeonhole principle, when t = 2 there is a word such that

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > δ−1k−tc2t
0 ,

and similarly for t 6= 2 we have

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > k−t+εc2t
0 ,

which completes the proof.
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We need a slightly different estimate for the abelian case. The key to the next lemma

is the idea that if e(αh) correlates with ǫh for h ≤ k then e(αh) also must correlate with

translates of ǫ of size ∼ k. Thus, in the abelian case, the previous lemma is rather lossy.

When we replace the sup by a sum, we should gain an extra power of k.

LEMMA 2.22. For t = 2, for all k in K, there is a word ǫ such that

lim sup
P→∞

∫

X

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫh|

2t−2 dx

>
c2t−2

0

9
·

⌊
c2t−2

0 k

6

⌋
δ−1k−t .

Proof. Again, we know that

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)| dx > c0.

By Holder’s inequality,

lim sup
P→∞

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)|2t−2 dx > c2t−2

0 .

Again we want to replace F ′(T hy) by a sum over words. Let P be a number satisfying

EP/2<p≤P

∫

X

sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)|2t−2 dx > c2t−2

0 .

Let A be the set of x such that

EP/2<p≤P sup
y 6∈B

|Eh≤k8(g
phx) · f ′(T hy)|2t−2 >

2c2t−2
0

3
.

Therefore, the measure of A is at least c2t−2/3. We want to show that for µ-almost every

x in A, there are at least ⌊c2t−2k/6⌋ many distinct words of f ′ such that

EP/2<p≤P sup
ℓ∈N

sup
y 6∈B

|Eh≤k8(g
ph+ℓx) · f ′(T hy)|2t−2 >

c2t−2
0

3
.

Let y be an element of Bc such that the words of f ′(T hy) are words of Y and such that

EP/2<p≤P |Eh≤k8(g
phx) · f ′(T hy)|2t−2 >

2c2t−2
0

3
.

Denote by ǫ(m) the word of length k whose hth entry is ǫ(m)h = f
′(T m+hy). If the words

ǫ(m) are distinct for m = 1, . . . , ⌊c2s
0 k/6⌋ then by the triangle inequality,

EP/2<p≤P sup
y 6∈B

|Eh≤k8(g
ph+pmx) · ǫ(m)h|

2t−2

= EP/2<p≤P |Eh≤k8(g
ph+pmx) · f ′(T h+pmy)|2t−2.
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We note that all but 2mk terms in the average are the same if we replace 8(gph+pmx) ·

f ′(T h+pmy) with 8(gphx) · f ′(T hy). Thus

≥ EP/2<p≤P |Eh≤k8(g
phx) · f ′(T hy)|2t−2 −

2m

k

≥ EP/2<p≤P |Eh≤k8(g
phx) · f ′(T hy)|2t−2 −

c2t−2
0

3
.

Suppose for a moment that instead the words ǫ(m) are not distinct for m =

1, . . . , ⌊c2t−2
0 k/6⌋. Then there exists a minimum j such that ǫ(1), . . . , ǫ(j) are not

distinct. Fix such a j for the remainder of the proof. Thus, there exists some 1 ≤ d < j

such that ǫ(j) = ǫ(j − d). We claim that ǫ(j − d) is d-periodic: that is because

ǫ(j − d)h = ǫ(j)h = ǫ(j − d)h+d . Furthermore, if ǫ(j − d − 1)1 = ǫ(j − 1)1 then

since ǫ(j − d − 1)h = ǫ(j − d)h−1 = ǫ(j)h−1 = ǫ(j − 1)h for all h > 1, we clearly

have ǫ(j − d − 1) = ǫ(j − 1) and j is not minimal. For the rest of the proof, let r be the

minimum number such that r ≥ j − d and ǫ(r) is not d periodic. For y not in B, we can

find such an r because f ′(T hy) is not eventually periodic. Since ǫ(r) is not d periodic but

ǫ(r − 1) is d periodic and is equal to ǫ(q) for some q between j − d and j − 1, we have

that ǫ(r)k 6= ǫ(r)k−d but ǫ(r)h = ǫ(r)h−d for all other h ≤ k. We claim that the words

1, . . . , j − 1 and r , . . . , r + ⌊c2t−2
0 k/6⌋ − j + 1 are all distinct. The reason is that for all

m between 1 and j − d , we have that ǫ(m)h = ǫ(j − d)h+m−j+d for all h > m− j + d

and precisely no larger range of h, and for all m between r and r + ⌊c2t−2
0 k/6⌋ − j + 1

we have that ǫ(m)h = ǫ(j − d)h+m−r for all 1 ≤ h < k −m+ r and precisely no larger

range of h. For m between j − d and j − 1, ǫ(m) is d periodic but because j was

the minimal natural number such that ǫ(1), . . . , ǫ(j) are not distinct, we have that the

ǫ(m) for m between j − d and j − 1 are still distinct. For m between 1 and j − d and

m′ between r and r + ⌊c2t−2
0 k/6⌋ − j + d we have that the intervals h > m− j + d

and h < k −m+ r meet so the previous argument shows that ǫ(m) 6= ǫ(m′). A similar

triangle inequality computation shows that for m between r and r + ⌊c2t−2
0 k/6⌋ − j + 1

we still have

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫ(m)h|

2t−2

= EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · f ′(T h+my)|2t−2

≥ EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · f ′(T h+r−1y)|2t−2 −

2(m− r + 1)

k
.

Next, we use that ǫ(r − 1) = ǫ(q) for some q between j − d and j − 1:

≥ EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · f ′(T h+qy)|2t−2 −

2(m− r + 1)

k

≥ EP/2<p≤P |Eh≤k8(g
phx) · f ′(T hy)|2t−2 −

c2t−2
0

3
.
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This proves the claim that for x in A there are at least ⌊c2t−2
0 k/6⌋ distinct words ǫ of f ′

such that

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫh|

2t−2 >
c2t−2

0

3
.

Summing over words we get that for almost every x in A,
∑

ǫ a word of f ′

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫh|

2t−2

>

⌊
c2t−2k

6

⌋
·
c2t−2

0

3
.

Next, we use that µ(A) > c2t−2
0 /3:

∫

X

∑

ǫ a word of f ′

sup
ℓ∈N

EP/2<p≤P |Eh≤k8(g
ph+ℓx) · ǫh|

2t−2

>
c2t−2

0

3

⌊
c2t−2

0 k

6

⌋
·
c2t−2

0

3
.

Sending P to infinity and using the pigeonhole principle, we deduce that for some word ǫ,

lim sup
P→∞

∫

X

sup
ℓ∈N

EP/2<p≤P |Eh≤k8(g
ph+ℓx) · ǫh|

2t−2 dx

>
c2t−2

0

9
·

⌊
c2t−2

0 k

6

⌋
δ−1k−t .

Remark 2.23. For G abelian and therefore 8 a character, we have

lim sup
P→∞

∫

X

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫh|

2t−2 dx

= lim sup
P→∞

∫

X

EP/2<p≤P |Eh≤k8(g
phx) · ǫh|

2t−2 dx.

Therefore, by choosing δ sufficiently small, in the abelian case, we get

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤kǫh8(g
phx)|2 dx ≫ k−1.

The next theorem contradicts the previous two lemmas and proves Theorem 1.8. In its

proof, we rely heavily on [BDG16, Fra17, GTZ12, GT12a, GT10].

THEOREM 2.24. Recall that, after Corollary 2.20, we fixed a nilpotent Lie group G, a

cocompact lattice Ŵ, a nilcharacter8 with non-trivial frequency on the identity component

ξ , and an element g which acts ergodically on G/Ŵ, such that ‖8‖L∞x = 1. Recall that

the step s of G is at least κ , where t =
(
κ+1

2

)
. Let ǫ be a sequence of words implicitly

depending on k. Let ε > 0. Then

lim sup
k∈K

lim sup
P→∞

∫

X

EP/2<p≤P |Eh≤kǫh8(g
phx)|2t dx · kt−ε = 0.
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If t = 2 then we do not need the epsilon loss and instead get the estimate

lim sup
k∈K

lim sup
P→∞

∫

X

EP/2<p≤P |Eh≤kǫh8(g
phx)|2t dx · kt ≤ Cs .

This contradicts Lemmas 2.21 and 2.22 as follows. When G is abelian and thus t = 2,

Lemma 2.22 states that there is a word ǫ of length k such that

lim sup
P→∞

∫

X

EP/2<p≤P sup
ℓ∈N

|Eh≤k8(g
ph+ℓx) · ǫh|

2t−2 dx

>
c2t−2

0

9
·

⌊
c2t−2

0 k

6

⌋
δ−1k−t ,

for any δ we choose so long as k is chosen from the set K of natural numbers such that f ′

has fewer than δk2 words of length k. Thus, picking δ small (in particular, smaller than,

say, C−1
1 100c4

0), we find that

lim sup
P→∞

∫

X

EP/2<p≤P |Eh≤k8(g
phx) · ǫh|

2t−2 dx > k−tC1,

contradicting Theorem 2.24. (Note that we have replaced |Eh≤k8(g
ph+ℓ)ǫh| by the same

expression without the shift in ℓ as in Remark 2.23.) Similarly, if the group is not abelian,

Lemma 2.21 states that there exists a word ǫ of length k such that

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > k−t+εc2t
0 ,

for t 6= 2, and when t = 2 we have

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > δ−1k−tc2t
0 .

When t = 2, again by picking δ small, this time smaller than C−1
s c2t

0 , we have that

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > Csk
−t ,

again contradicting Theorem 2.24. Finally, when t 6= 2,

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤k8(g
phx) · ǫh|

2t dx > k−t+εc2t
0

contradicts

lim sup
k∈K

lim sup
P→∞

∫

X

EP/2<p≤P |Eh≤kǫh8(g
phx)|2t dx · kt−ε = 0

from Theorem 2.24.

Thus, the rest of this section is devoted to showing that Theorem 2.24 is true. Suppose

not, and for the moment fix k in K such that

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤kǫh8(g
phx)|2t dx ≫ k−t+ε.
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The first step is to replace averages over primes by uniform averages over natural numbers.

To do this, we need the machinery of Green and Tao [GT12a, GT10] and Green, Tao,

and Ziegler [GTZ12]. By the triangle inequality, we may replace averages over primes by

averages weighted by the von Mangoldt function. We have

lim sup
P→∞

EP/2<n≤P

∫

X

3(n)|Eh≤kǫh8(g
phx)|2t dx ≫ k−t+ε.

We denote ψx(m) = 8(g
mx). We expand:

lim sup
P→∞

EP/2<n≤P

∫

X

3(n)EJ∈[k]2t ǫJψx(nj1) · · · · · ψx(njt )·

ψx(njt+1) · · · · · ψx(nj2t ) dx ≫ k−t+ε,

where ǫj is a phase given by the formula ǫJ = ǫj1
· · · ǫjt · ǫjt+1

· · · ǫj2t
.

We say that J ∈ [k]s is diagonal if #{m ≤ s : jm = h} = #{m > s : jm = h} for all h ≤

k. We say that J solves the Vinogradov mean value problem if, for all m between 1 and s,

we have

jm1 + · · · + j
m
t = j

m
t+1 + · · · + j

m
2t .

Every diagonal J also solves Vinogradov’s mean value problem. We rely on the following

Theorem due to Bourgain, Demeter, and Guth which says that those account for ‘most’

solutions, up to a constant.

THEOREM 2.25. [BDG16, Theorem 1.1] For all ε and s there exists a constant Cs,ε such

that the number of solutions to the Vinogradov mean value problem is less than Cs,εk
t+ε

where t ≤
(
s+1

2

)
.

We will show that if J does not solve Vinogradov’s mean value problem then J does not

contribute to the sum. Thus, fix J which does not solve Vinogradov’s mean value theorem

and suppose that

lim sup
P→∞

∣∣∣∣EP/2<n≤P
∫

X

3(n)ψx(nj1) · · · · · ψx(njt ) · ψx(njt+1) · · · · · ψx(nj2t ) dx

∣∣∣∣

& k,s,c 1.

We denote

9x(n) = ψx(nj1) · · · · · ψx(njt ) · ψx(njt+1) · · · · · ψx(nj2t ).

Fix a subsequence such that

lim
P∈I

∣∣∣∣EP/2<n≤P
∫

X

3(n)9x(n) dx

∣∣∣ = lim sup
P→∞

∣∣∣EP/2<n≤P
∫

X

3(n)9x(n) dx

∣∣∣∣ & k,s,c 1,

where I is some infinite subset of the natural numbers and where the implied constant

may depend on 9x . Fix a large number W , a product of many small primes. We will later

choose exactly how large W must be. We pass to a subsequence where the following limit
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exists for each b ≤ W :

lim
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

3(Wn+ b)9x(Wn+ b) dx

∣∣∣∣ ,

where I ′ is an infinite subset of I . We may do this by a diagonalization argument. By the

triangle inequality,

Eb<W lim
P∈I ′

∣∣∣∣EP/2<Wn+b≤P
∫

X

3(Wn+ b)9x(Wn+ b) dx

∣∣∣∣ & k,s,c 1,

where the implied constant does not depend on W . Note that because b < W , we miss at

most one term by changing the bounds of the sum from P/2 < Wn+ b ≤ P to P/2 <

Wn ≤ P . SinceW is much smaller than P , this is an acceptable error. Note that if b is not

coprime to W , then

lim
P∈I ′

EP/2<Wn≤P

∫

X

3(Wn+ b)9x(Wn+ b) dx = 0,

becauseWn+ b is never prime. By the pigeonhole principle, there exists b < W such that

lim
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

W

ϕ(W)
3(Wn+ b)9x(Wn+ b) dx

∣∣∣∣ & k,s,c 1,

where again the implied constant does not depend onW and where ϕ(W) is Euler’s totient

function, the function which counts the number of residue classes modW that are coprime

toW . Denote (W/ϕ(W))3(Wn+ b) = 3b,W . Then we can write our expression as a sum

of two terms

lim
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

3b,W (n)9x(Wn+ b) dx

∣∣∣∣

= lim
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

(3b,W (n)− 1)9x(Wn+ b)+9x(Wn+ b) dx

∣∣∣∣

To handle the first term, we need the following theorems of Green and Tao and of Green,

Tao, and Ziegler.

THEOREM 2.26. [GT10, Proposition 11.2] Let G/Ŵ be a degree s filtered nilmanifold,

and let M > 0. Suppose that F(gnx)∞n=1 is a bounded nilsequence on G/Ŵ with Lipschitz

constant at most M , where F is a function on G/Ŵ, g is an element of G, and x is a point

in G/Ŵ. Let ε ∈ (0, 1) and P a large natural number. Then we may decompose

F(gnx) = F1(n)+ F2(n),

where F1 : N→ [−1, 1] is a sequence with Lipschitz constant OM ,ε,G/Ŵ(1) and obeying

the dual norm bound

‖F1‖U s+1[P/2<Wn≤P ]∗ = OM ,ε,G/Ŵ(1),

while F2 : N→ R obeys the uniform bound

‖F2‖∞ ≤ ε.
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Note that the bound ‖F1‖U s+1[N]∗ = OM ,ε,G/Ŵ(1) is uniform in the element g. We also

need the following theorem of Green, Tao, and Ziegler. The proof of this theorem is spread

out over [GTZ12, GT12a, GT10], making it somewhat hard to give a specific theorem

number. Essentially, if the Gowers norm were big then the inverse conjecture for the

Gowers norms would imply that the Möbius function correlates with a nilsequence which

it does not by the Möbius nilsequence conjecture. In [GT10], Theorem 7.2 states that the

theorem follows from the Möbius nilsequence conjecture and the inverse conjecture for

the Gowers norms. The first of these conjectures is an immediate consequence of [GT12a,

Theorem 1.1]. The second of these conjectures is [GTZ12, Theorem 1.3].

THEOREM 2.27. ([GTZ12]; see also [GT12a, GT10]) With all the notation as before,

‖3b,W − 1‖U s+1[P/2<Wn≤P ] = oW→∞(1).

Thus, our nilsequence 9x can be written as a sum 9x = F1 + F2 where F1 and F2

implicitly depend on x and enjoy the following properties. F2 is uniformly small, so

lim sup
P∈I ′

∣∣EP/2<Wn≤P (3b,W (n)− 1)F1(Wn+ b)
∣∣

can be estimated by simply moving the absolute values inside. The remaining term is

bounded in dual norm, so

(3b,W − 1)(n) · F1(n) ≤ ‖3b,W − 1‖U s+1[P/2<Wn≤P ] · ‖F1‖U s+1[P/2<Wn≤P ]∗

which tends to 0. For a similar argument, see the proof of [GT10, Proposition 10.2]. It

may also be possible to circumvent the use of [GTZ12] by using [GT12a, Theorem 7.1].

Putting this together, we get that

lim sup
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

(3b,W (n)− 1)9x(Wn+ b) dx

∣∣∣∣ = oW→∞(1).

As such, for W sufficiently large, by the triangle inequality,

lim inf
P∈I ′

∣∣∣∣EP/2<Wn≤P
∫

X

9x(Wn+ b) dx

∣∣∣∣ & k,s,c 1.

So far we exploited cancelation in the 3b,W (n)− 1 term and simply boundedness in the

9x(n) term. Next, we will try to exploit cancelation in 9x to obtain a contradiction. To

exploit this cancelation we interpret the average as an integral over a complicated nilmani-

fold, then use the fact that the frequency of 8 is non-trivial on the identity component of

G/Ŵ and therefore non-trivial on every component of G/Ŵ. Let G2t = G× · · · ×G be

the product of G with itself 2t many times and let G = (gWj1 , gWj2 , . . . , gWj2t ) be the

element of G2t whose ℓth coordinate is gWjℓ . For any σ in G let 1σ = (σ , . . . , σ) be the

element ofG2t whose entries are all σ and letG1 be the set of all the elements of the form

1σ . Define

G = 〈G, G1, Ŵ × · · · × Ŵ〉,
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the closure of the group generated by G, G1, and Ŵ2t inside G2t . Our sequence 9x is a

nilsequence on G/Ŵ2t . Consider the sequence of ‘empirical’ measures on G2t/Ŵ2t ,

ρP = EP/2<Wn≤P (g
(Wn+b)j1 , . . . , g(Wn+b)j2t )∗(1∗dx),

where 1∗dx is the Haar measure on G1/(Ŵ
2s ∩G1) and where ∗ denotes the pushfor-

ward. By construction, if 4 : G2t/Ŵ2t → C is defined by

4(x1, . . . , x2t ) =

t∏

j=1

8(xj ) ·

2t∏

j=t+1

8(xj ),

then

EP/2<Wn≤P

∫

X

9x(Wn+ b) dx =

∫

G2t/Ŵ2t
4 ρP (dx).

By the Banach–Alaoglu theorem, there is a further subsequence along which the empirical

measures converge weakly,

lim
P∈I ′′

ρP
∗
⇀ ρ,

where I ′′ is an infinite subset of I ′. Note that, by summation by parts, ρP is almost invariant

by G in the following sense:

g ∗ρP = ρP +O

(
W

P

)
.

Therefore ρ is actually G invariant. Since ρ is an average of G1 invariant measures, ρ is

alsoG1 invariant. Of course ρ is also Ŵ2t invariant because Ŵ2t acts trivially onG2t/Ŵ2t .

Since stabilizers of measures are closed, ρ is invariant under G. By the classification of

invariant measures, we know that ρ is actually (a translate of) Haar measure on some

nilmanifold X. Next we need the following result, essentially due to Frantzikinakis [Fra17].

LEMMA 2.28. ([Fra17]; see §5.7 and especially the proof of Proposition 5.7) With all the

notation as before, for any u ∈ Gs and m ≤ s, we have (u(Wjℓ)
m
)2tℓ=1 ∈ G.

We include the proof for completeness and because our result differs very slightly from

the way it was stated in [Fra17].

Proof. We split Lemma 2.28 into three claims.

CLAIM 2.29. Letm and ℓ be natural numbers. If g1 is in Gm and g2 and g3 are in Gr then

there exists σ in Gm+r+1 such that

[g1, g2] · [g1, g3] = [g1, g2 · g3] · σ .

Moreover, σ depends continuously on g1, g2, and g3. In fact, this holds for any nilpotent

Lie group, not just G.

CLAIM 2.30. For any m between 1 and s and any element τ in Gm and in the identity

component (which is automatic for m > 1), there exists an element σ in (Gm+1)
2t such
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that

(τ (Wjℓ)
m

)2tℓ=1 · σ ∈ G.

CLAIM 2.31. For any natural number r between 1 and s and any natural number m

between 1 and r and for any τ in Gr , there exists an element σ in (Gr+1)
2s such that

(τ (Wjℓ)
m

)2tℓ=1 · σ ∈ G.

We remark that taking τ = u in Claim 2.31 gives Lemma 2.28.

Proof of Claim 2.29. The proof is simply a computation. For any g1, g2, and g3 as above,

[g1, g2] · [g1, g3] =g1g2g
−1
1 g−1

2 [g1, g3]

=g1g2g
−1
1 [g1, g3]g−1

2 mod Gm+r+1

=g1g2g3g
−1
1 g−1

3 g−1
2 mod Gm+r+1

=[g1, g2g3] mod Gm+r+1.

Proof of Claim 2.30. We prove Claim 2.30 by induction on m. First, suppose m = 1.

Consider the torus Z = G/G2Ŵ. Let π be the projection map π : G→ Z. Then since g

acts ergodically on G/Ŵ, we know π(g) is an ergodic element in Z. Therefore, for any

π(τ) inG/G2, note that π(τ) is in the orbit of π(g). By the definition of G, (π(gWjℓ))2tℓ=1

is an element of π2t (G). Thus, for any τ in G, (π(τWjℓ))2tℓ=1 is an element of π2t (G) so,

by definition of the quotient,

(τWjℓ)2tℓ=1 · σ ∈ G

for some σ in G2t
2 .

Next, assume by induction that Claim 2.30 holds for m. We will try to prove the claim

for m+ 1. We begin with the case where τ is the commutator of two elements of the

following form. Suppose that there exist g1 in G and g2 in Gm such that [g1, g2] = τ . By

assumption, there exist σ1 in G2t
2 and σ2 in G2t

m+1 such that

(g
Wjℓ
1 )2tℓ=1 · σ1 ∈ G and (g

(Wjℓ)
m

2 )2tℓ=1 · σ2 ∈ G.

Since G is a group, we conclude that the commutator is in G.

[(g
Wjℓ
1 )2tℓ=1 · σ1, (g

(Wjℓ)
m

2 )2tℓ=1 · σ2] ∈ G.

Using Claim 2.29 repeatedly, this is

([g1, g2]Wj
m+1
ℓ )2tℓ=1σ ∈ G,

for some σ in G2t
m+2.

Finally, we note that commutators generateGm+1 so it suffices to show that if τ1 and τ2

are elements of Gm+1 that satisfy Claim 2.30 then so does their product. After all, if

(τ
(Wjℓ)

m+1

1 )2tℓ=1 · σ1 ∈ G and (τ
(Wjℓ)

m+1

2 )2tℓ=1 · σ2 ∈ G,
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where σ1 and σ2 are in G2t
m+2, then

(τ
(Wjℓ)

m+1

1 )2tℓ=1 · σ1 · (τ
(Wjℓ)

m+1

2 )2tℓ=1 · σ2 = (τ
(Wjℓ)

m+1

1 )2tℓ=1 · (τ
(Wjℓ)

m+1

2 )2tℓ=1 · σ

= ((τ1τ2)
(Wjℓ)

m+1

)2tℓ=1 · σ
′

= (τ (Wjℓ)
m+1

)2tℓ=1 · σ
′,

where σ and σ ′ are in G2t
m+2. This completes the proof of Claim 2.30.

Proof of Claim 2.31. First, ifm = r then we are done by Claim 2.30. Thus, we will assume

m < r .

Second, we check that if τ1 and τ2 are in Gr and satisfy Claim 2.31 then so does their

product. By assumption, we may write

(τ
(Wjℓ)

m

i )2tℓ=1 · σi ∈ G,

where σi is an element of (Gr+1)
2s and i = 1, 2. Then the product is given by

(τ
(Wjℓ)

m

1 )2tℓ=1 · σ1 · (τ
(Wjℓ)

m

2 )2tℓ=1 · σ2

= (τ
(Wjℓ)

m

1 )2tℓ=1 · (τ
(Wjℓ)

m

2 )2tℓ=1 · σ1 · [σ
−1
1 , (τ

−(Wjℓ)
m

2 )2tℓ=1] · σ2.

Then we use that τ
(Wjℓ)

m

1 · τ
(Wjℓ)

m

2 = (τ1τ2)
(Wjℓ)

m
up to higher-order terms:

= ((τ1τ2)
(Wjℓ)

m

)2tℓ=1 mod (Gr+1)
2s .

Therefore, it suffices to prove Claim 2.31 in the case where τ = [g1, g2] where g1 is inGm

and g2 is in Gr−m because such commutators generate Gr as a group up to higher-order

corrections.

By Claim 2.30, there exists σ in (Gm+1)
2s such that

(g
(Wjℓ)

m

1 )2tℓ=1 · σ ∈ G.

We also know, because G contains diagonal elements, that (g2)
2t
ℓ=1 is an element of G. We

conclude that

[(g
(Wjℓ)

m

1 )2tℓ=1 · σ , (g2)
2t
ℓ=1] ∈ G.

By Claim 2.29, this is given by

(τ (Wjℓ)
m

)2tℓ=1 · σ
′ ∈ G,

for some σ ′ in Gr+1.

This completes the proof of Lemma 2.28 by plugging in r = s.

Since the frequency ξ of 8 is non-trivial on the identity component, there exists an

element u in the identity component of Gs such that (1/2πi) log ξ(u) is irrational. Fix

such a u. Now since J does not solve Vinogradov’s mean value problem there existsm ≤ s

such that jm1 + · · · + j
m
t − j

m
t+1 − · · · − j

m
2t 6= 0. Fix such anm. Then the mapGs → Gs

given by v 7→ v(j
m
1 +···+j

m
t −j

m
t+1−···−j

m
2t )W

m

has image both open and closed so u is in the
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image. For more details, see [Fra17]. Fix a v such that v 7→ u. Then by Lemma 2.28,

(v(Wjℓ)
m
)2tℓ=1 ∈ G. As such

∫

X

4(x) ρ(dx) =

∫

X

4(vx) ρ(dx)

=

∫

X

ξ(u)4(x) ρ(dx)

= 0.

This gives a contradiction. We conclude that the terms which do not solve Vinogradov’s

mean value problem do not contribute to our sum.

For every 2t-tuple j1, . . . , j2t in [k]2t , we have that for all p,

|8(gpj1x) · · · · ·8(gpjt x) ·8(gpjt+1x) · · · · ·8(gpj2t x)| ≤ 1,

simply using a trivial L∞ bound. For every 2t-tuple which does not solve Vinogradov’s

mean value problem we have

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

8(gpj1x) · · · · ·8(gpjt x) ·8(gpjt+1x) · · · · ·8(gpj2t x) = 0.

Therefore, the average is bounded by the fraction of terms which solve Vinogradov’s mean

value problem. There are no more than Cs,εk
t+.5ε such solutions by Bourgain, Demeter,

and Guth’s result (Theorem 2.25). Thus

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤kǫh8(g
phx)|2t dx · kt−ε = 0

in the case t 6= 2, and

lim sup
k∈K

lim sup
P→∞

EP/2<p≤P

∫

X

|Eh≤kǫh8(g
phx)|2t dx · kt ≤ C

in the case t = 2. After all, since diagonal solutions are the only solutions to Vinogradov’s

mean value problem in the case of two variables and one equation (i.e. j1 = j2), there is

no ε loss when t = 2. Thus, we obtain Theorem 2.24 and in turn Theorems 1.8 and 1.9.

3. Proof of Theorem 1.11

The proof of Theorem 1.11 is essentially the proof of Theorem 1.8 with a few minor

simplifications. As before, suppose not. Then as before, we can find a joining such that
∣∣∣∣
∫

X×Y

f (x)f ′(y)ν(dx dy)

∣∣∣∣ > c.

As before, we can apply [FH18a] such that
∣∣∣∣
∫

X×Y

E
µ[f |Z](x)f ′(y)ν(dx dy)

∣∣∣∣ > c.
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Unlike before, we do not need to restrict the integral to B. As before, we can average over

translates ∫

X×Y

|Eh≤kE
µ[f |Z](T hx)f ′(T hy)|ν(dx dy) > c.

As before, we can take an essential supremum over y,
∫

X

sup
y∈Y

|Eh≤kE
µ[f |Z](T hx)f ′(T hy)|µ(dx) > c.

As before, we can apply the entropy decrement argument: for some P ≫ k, we have

EP/2<p≤P

∫

X

sup
y∈Y

|Eh≤kE
µ[f |Z](T phx)f ′(T hy)|µ(dx) > c.

We can use the Cauchy–Schwarz inequality,

EP/2<p≤P

∫

X

sup
y∈Y

|Eh≤kE
µ[f |Z](T phx)f ′(T hy)|2µ(dx) > c2.

This time, we would like to replace f ′ by a sum over words of length k up to ε rounding.

In the no-rounding case, we knew that words of f ′ were words of b. We double-check that

a similar result holds for words up to constant rounding. In particular, fix k such that there

are at most δk words of length k that occur with positive log density up to ε rounding.

Thus, we can fix a set 6 of words of length k such that #6 ≤ δk and for all n outside a set

of 0 log density there exists an ǫ in 6 such that |b(n+ h)− ǫh| ≤ ε. Translating this to

the dynamical setting,

ν{(x, y) : there exists ǫ in 6 such that |f ′(T hy)− ǫh| ≤ ε} = 0.

Therefore, we can replace f ′ by a sum over words as before:

∑

ǫ

EP/2<p≤P

∫

X

|Eh≤kE
µ[f |Z](T phx)ǫh|

2µ(dx) > c2 − 2ε.

Notice that this time, when we replace f ′(T hy) by a word, we incur an error of ε. Now

the rest of the argument runs exactly the same as before. In fact, after pigeonholing, any

dependence on b completely drops out of the argument.
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A. Appendix. Frantzikinakis–Host and dynamical models

Tao [Tao17b] shows that there is a joining (X0 × Y , ν0, T , f , f ′, M , Im) of a dynamical

model for a with b where X0 = D
Z × Ẑ is the space of sequences in the unit disk with

the product topology, T is the shift map onDZ and +1 on Ẑ, f is the evaluation at 0 map,

M is projection onto the second factor, and Im((x(n))n∈Z, r) = ((a(m)x(mn))n∈Z, r/m)

whenever r is inmẐ. Callµ0 the pushforward of ν0 ontoX0. Of course,X0 factors ontoDZ

by projection onto the first factor. Call ρ the pushforward of ν ontoDZ. Frantzikinakis and

Host [FH18a, Proposition 4.2] showed that (DZ, T , ρ) is a factor of a system (X̃, ρ̃, T )

where X̃ = (DZ)Z, T is the shift map and there exists a natural number d so that if Pd is

the set of primes which are 1 mod d then

∫

X̃

K∏

j=−K

Fj (T
jx)ρ̃(dx) = lim

N→∞
Ep∈Pd∩[N]

∫

DZ

K∏

j=−K

Fj (T
pjx)ρ(dx),

where K is any natural number, the functions Fj are any bounded measurable functions

depending only on the zeroth coordinate and by [FH18a] the limit always exists. We fix

such a d . By [FH18a, Theorem 4.5], each ergodic component of X̃ is isomorphic to a

product of a Bernoulli system with an inverse limit of nilsystems. Thus, we get a joining

of X̃ with X0 over their common factor DZ. Call this joining (X, µ, T ). We also get a

joining of X0 × Y and X over their common factor X0, which we call (X × Y , ν, T ).

Explicitly, this joining is defined as follows. A point in (X × Y , ν, T ) can be thought of

as a triple of points (x1, x2, y) with x1 in X̃ and (x2, y) in X0 × Y . Since X0 = D
Z × Ẑ,

we have that x2 = (x3, r) for some x3 in DZ and r in Ẑ. The measure is supported on

triples where π(x1) = x3, so we will often forget x1 and simply write a point in X × Y as

a triple (x, r , y) with x in X̃, r in Ẑ, and y in Y . The measure is given explicitly by the

following formula: if K is a natural number, Fj are bounded measurable functions on DZ

depending only on the zeroth coordinate, φ is a bounded measurable function on Ẑ, and ψ

is a bounded measurable function on Y , then

∫

X×Y

K∏

j=−K

Fj (T
jx) · φ(r) · ψ(y)ν(dx dr dy)

= lim
N→∞

Ep∈Pd∩[N]

∫

X0×Y

K∏

j=−K

Fj (T
pjx) · φ(r) · ψ(y)ν0(dx dr dy).

We will proceed to check thatX × Y has all the desired properties. We defineM : X→

Ẑ by taking an element (x, r) with x in X̃ and r in Ẑ to r . Let x be an element of X̃.

We will write x = (xn)n∈Z for a sequence of elements xn in DZ and write xn(k) ∈ D

for the kth element of the sequence xn. Let ιm((x(k))k∈Z) = a(m)(x(mk))k∈Z We define

Im(x, r) = (ιm((xnm)n∈Z), r/m). Explicitly

Im(x, r) =
(
(a(m)xnm(km)k∈Z)n∈Z,

r

m

)

whenever r is in mẐ. We define f : X × Y → C by the formula f (x, r , y) = x0(0). This

is just the pullback of f : X0 × Y → C under the factor map X × Y → X0 × Y . We

https://doi.org/10.1017/etds.2020.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.94


3110 R. McNamara

define f ′ : X × Y → C by pulling back f ′ : X0 × Y → C under the same factor map (i.e.

f ′(x, r , y) = y). Now we check the following points.

• M(T (x, r)) = M(T x, r + 1) = r + 1 = M(x, r)+ 1.

• We have

Im ◦ T
m(x, r) =

(
(a(m)xnm+m(km)k∈Z)n∈Z,

r +m

m

)

=
(
(a(m)x(n+1)m(km)k∈Z)n∈Z,

r

m
+ 1

)

=T
(
(a(m)xnm(km)k∈Z)n∈Z,

r

m

)

=T ◦ Im(x, r)

for any m and whenever r is in mẐ.

• Let K be a natural number and Fj : X̃→ C be a sequence of bounded measurable

functions depending only on 0. Let φ be a function which is measurable with respect

to Ẑ. Then for any m,

∫

X

1M−1(mẐ)(x)φ(Imx) ·

K∏

j=−K

Fj (T
j Imx)µ(dx)

= lim
N→∞

Ep∈Pd∩[N]

∫

X0

1r∈mẐφ
( r
m

)
·

K∏

j=−K

Fj ◦ ιm(T
pmjx)µ0(dx dr),

by definition of µ. Next, we use that ιm ◦ T
pmj = T pj ◦ ιm:

= lim
N→∞

Ep∈Pd∩[N]

∫

X0

1r∈mẐφ
( r
m

)
·

K∏

j=−K

Fj ◦ T
pj ◦ ιm(x)µ0(dx dr).

Because X0 is a dynamical model for a, it possesses a dilation symmetry:

= lim
N→∞

Ep∈Pd∩[N]

∫

X0

1

m
φ(r) ·

K∏

j=−K

Fj (T
pjx)µ0(dx dr).

Finally, we apply the definition of µ one more time:

=

∫

X

1

m
φ(x) ·

K∏

j=−K

Fj (T
jx)µ(dx).

• For any natural number m and any r in mẐ, we have

f (Im(x, r)) = f
((
(a(m)xnm(km)k∈Z)n∈Z,

r

m

))
= a(m)x0(0) = a(m)f (x, r).

• Clearly, for any natural numbers m and h,

IhIm(x, r) =
(
(a(mh)xnmh(kmh)k∈Z)n∈Z,

r

mh

)
= ImIh(x, r),

for any r in hmẐ.
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• Since f and f ′ are pulled back from X0 × Y , the ‘statistics’ of f : X × Y → C will

be the same as the statistics of f : X0 × Y → C and similarly for f ′.

Therefore, (X × Y , ν, T , f , f ′, Im, M) is a joining of a dynamical model for a with b.

Let (X, µω, T ) be an ergodic component of (X, µ, T ) which joins the corresponding

ergodic component (X̃, ρ̃ω, T ) of (X̃, ρ̃, T ) with Ẑ. Note that Ẑ is already an ergodic

inverse limit of nilsystems: after all, it is an inverse limit of the ergodic systems of

the form Z/mZ and the inverse limit of ergodic systems is ergodic. By [FH18a], there

exist a Bernoulli system (W , dw, T ) and an inverse limit of nilsystems (Z0, dz, T )

such that (X̃, ρ̃ω, T ) ∼= (W , dw, T )× (Z0, dz, T ). Therefore (X, µω, T ) is isomorphic to

(W × Z0 × Ẑ, µ′, T ) where µ′ is some mystery measure and where T is just the product

transformation. We can think of this system as a joining of (W × Z0, dw × dz, T ) with

(Ẑ, dz, T ) or as a joining of (W , dw, T ) with (Z0 × Ẑ, ζ , T ) where ζ is some unknown

measure given by pushing forward µ′ ontoZ0 × Ẑ. Next, we claim that any ergodic joining

of two inverse limits of nilsystems is in fact isomorphic to an inverse limit of nilsystems.

After all, if Z1 and Z2 are two nilsystems and ζ is an ergodic invariant measure on

Z1 × Z2, then ζ is a translate of Haar measure on some closed subgroup by measure

classification for nilsystems. Thus (Z1 × Z2, ζ , T ) ∼= (Z3, dz, T ) for some nilsystem Z3.

Taking inverse limits, (Z0 × Ẑ, ζ , T ) is isomorphic to an inverse limit of nilsystems

(Z, dz, T ). Because (Z, dz, T ) is an inverse limit of nilsystems, it has zero entropy so

the only possible joining of (Z, dz, T ) with the Bernoulli system (W , dw, T ) is the trivial

joining (i.e. µ′ is the product measure dw × dz). Lastly, we claim that Z is isomorphic to

the Host–Kra factor of (X, µω, T ). Since the Host–Kra factor Z(X) is isomorphic to an

inverse limit of nilsystems, it has zero entropy, so any factor map from W × Z to Z(X)

whereW is Bernoulli necessarily factors through Z. Thus Z factors onto Z(X). Of course,

since X factors onto Z, the Host–Kra factor for X factors onto the Host–Kra factor for Z.

Implicitly in [HK05] and explicitly, for instance, in [HK18, Ch. 12], for any nilsystem

(Z1, dz, T ) the Host–Kra factor of Z1 is Z1. Thus, taking inverse limits gives that the

Host–Kra factor of Z is Z, so Z(X) ∼= Z. This completes the proof.

B. Appendix. Reduction to the completely multiplicative case

We have stated our main theorems in the case where a is completely multiplicative. In this

appendix, we show that these assumptions can be weakened to include all multiplicative

functions. For example, we will show that Theorem 1.8 holds in this generality. The same

argument works for Theorems 1.9 and 1.11 (although in this last case, the way that c

depends on ε gets worse). The argument here will be entirely formal, using nothing of the

proof of Theorem 1.8 and only the result. However, we remark that the interested reader

could check that the proof we give can be adapted to the more general case of multiplicative

functions. The main difference is that now the dynamical model for a does not satisfy the

identity that the pushforward of µ restricted to M−1(mẐ) is (1/m)µ but instead we incur

a 1/m error, that is, for all φ in satisfying ‖φ‖L∞(µ) ≤ 1 we have

∫

X

φ(x)µ(dx) =

∫

X

m1x∈M−1(mẐ)φ(Im(x))µ(dx)+O

(
1

m

)
.
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This introduces an error term of sizeO(1/P ) in Corollary 2.17 which tends to 0 as P tends

to infinity.

However, here we proceed just using the statement of Theorem 1.8. Famously, we can

write

µ(n) =
∑

d2|n

λ

(
n

d2

)
µ(d),

where λ is the Liouville function and µ is the Möbius function which agrees with

the Liouville function on squarefree numbers and vanishes on numbers which are not

squarefree. Of course,

λ

(
n

d2

)
= λ(n),

but we write it this way to suggest that the convolution identity

µ = λ ∗ φ,

where φ(d2) = µ(d), may be generalized. In fact, for any multiplicative function a taking

values on the unit circle, we may write

a = a1 ∗ a2

where a1 is some completely multiplicative function taking values on the unit circle and a2

is a (possibly unbounded) multiplicative function supported on numbers of the form dk for

some natural numbers d and k with k ≥ 2. To prove this is possible, it suffices to check it

is possible on prime powers since both sides are multiplicative. For any prime p, we define

a1(p) = a(p)

and so

a1(p) · a2(1)+ a1(1) · a2(p) = a(p) · 1+ 1 · 0 = a(p).

We also want

a(p2) =a1(p
2) · 1+ 1 · a2(p

2),

so we choose

a2(p
2) =a(p2)− a1(p

2)

=a(p2)− a(p)2.

Iteratively, we may define

a2(p
k) =a(pk)−

∑

0≤i<k

a1(p
k−i)a2(p

i)

=a(pk)−
∑

0≤i<k

a(p)k−ia2(p
i).

Since whether a is unpretentious or not depends only on the behavior of a at primes; clearly

if a is unpretentious then so is a1.
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Informally, the probability that a random number is divisible by d is roughly 1/d . Thus,

the expected number of times that any number of the form dk for k ≥ 2 divides a random

natural number is at most
∑

d≥2

∑

k≥2

1

dk

which is summable. Thus the tails
∑

d≥C

∑

k≥2

1

dk

and
∑

d≥2

∑

k≥C

1

dk

tend to zero as C tends to infinity. Let S be the set of natural numbers n for which dk

divides n for d , k ≥ 2 implies d , k ≤ C. The previous analysis says most numbers are in

S. Fix a function b as in the statement of Theorem 1.8, that is, a bounded function such that

for any δ > 0 there are infinitely many k such that the number of words of b of length k

that occur with positive upper logarithmic density is at most δk2. Our goal will be to show

that for N large,

|E
log
n≤Na(n)b(n)|

is small, say less than a constant times some small positive number ε. If C is sufficiently

large depending on ε but still very small compared to N , we may modify a on the set of

numbers outside S. In particular, a is given by the formula

a(n) =
∑

ℓ|n

a1

(
n

ℓ

)
a2(ℓ).

For most numbers, this is the same as

=
∑

ℓ|n

ℓ≤CC

a1

(
n

ℓ

)
a2(ℓ).

That formula works as long as n is not divisible by a number of the form dk where either

d or k is greater than C. In that exceptional case when n is divisble by a number of the

form dk with d or k greater than C, we can write n as i · j where i is not divisible by any

number greater than CC and is as large as possible given that constraint. We conclude that

if ℓ ≤ CC and ℓ|n then ℓ|i. Thus, expanding the definitions and using multiplicativity,

a1(j) · a(i) = a1(j)
∑

ℓ|i

ℓ≤CC

a1

(
i

ℓ

)
a2(ℓ)

=
∑

ℓ|i

ℓ≤CC

a1

(
ij

ℓ

)
a2(ℓ)
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=
∑

ℓ|n

ℓ≤CC

a1

(
n

ℓ

)
a2(ℓ)

We conclude that the formula
∑

ℓ|n

a1

(
n

ℓ

)
a2(ℓ)

is bounded and agrees with a(n) all but at most

∑

d≥C

∑

k≥2

1

dk
+

∑

d≥2

∑

k≥C

1

dk

of the time. Thus, it suffices to show∣∣∣Elog
n≤N

∑

mℓ=n
ℓ≤CC

a1(m)a2(ℓ)b(n)

∣∣∣

is small. By changing variables and applying Fubini,

=
∣∣∣

∑

ℓ≤CC

a2(ℓ)E
log
m≤N/ℓa1(m)b(mℓ)

∣∣∣.

Fix a natural number ℓ. Notice that every word of length k of the function m 7→ b(mℓ)

embeds in a word of b of length k · ℓ. Thus, it is easy to check that m 7→ b(mℓ) still

satisfies the conditions of Theorem 1.8. Therefore, as N tends to infinity, the previous

expression tends to 0.
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