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TWO-SEX BRANCHING PROCESSES
WITH OFFSPRING AND MATING
IN A RANDOM ENVIRONMENT
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Abstract

We introduce a class of discrete-time two-sex branching processes where the offspring
probability distribution and the mating function are governed by an environmental
process. It is assumed that the environmental process is formed by independent but not
necessarily identically distributed random vectors. For such a class, we determine some
relationships among the probability generating functions involved in the mathematical
model and derive expressions for the main moments. Also, by considering different
probabilistic approaches we establish several results concerning the extinction probability.
A simulated example is presented as an illustration.
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1. Introduction

Mathematical models in which individuals may be replaced by others of a similar or different
type are now being developed. It is an active research area of both theoretical interest and
applicability to such fields as biology, demography, ecology, epidemiology, genetics, medicine,
population dynamics, and physics. One may cite, for example, the monographs by Jagers
(1975), Kimmel and Axelrod (2002), Pakes (2003), and Haccou et al. (2005), which include
practical applications to cell kinetics, cell biology, chemotherapy, gene amplification, human
evolution, and molecular biology.

In particular, it is our purpose to model the probabilistic evolution of populations where
females and males coexist and form couples (female–male). Several classes of discrete-time
two-sex (bisexual) branching processes have been studied, including the bisexual Galton–
Watson process (see Alsmeyer and Rösler (1996), (2002), Bagley (1986), Bruss (1984), Daley
(1968), and Daley et al. (1986)); processes with immigration (see González et al. (2000),
(2001), and Ma and Xing (2006)); in varying environments (see Molina et al. (2003), (2004a));
and processes depending on the number of couples in the population (see Molina et al. (2002),
(2004b), (2006), and Xing and Wang (2005)). We refer the reader to Hull (2003) or Haccou et
al. (2005, pp. 43–46, 135–145, 177–179) for surveys of two-sex branching processes. Also, a
general class of continuous-time two-sex branching processes was introduced in Molina and
Yanev (2003).
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It can be stated that significant efforts have been made regarding random environment
models with asexual reproduction (see, e.g. Agresti (1975), Holzheimer (1984), Smith and
Wilkinson (1969), and Yanev and Yanev (1990)). Now similar efforts should be made to
develop a branching process with a random environment where reproduction is bisexual. So,
in this work we introduce a class of two-sex branching processes with offspring probability
distribution and mating function dependent on a random environmental process.

The paper is organized as follows. In Section 2, the probability model is described formally
and interpreted intuitively. A simulated example is presented by way of illustration. Section 3 is
devoted to determining some relationships among the probability generating functions involved
in the mathematical model, deducing expressions for the main moments. Finally, in Section 4,
several results concerning its extinction probability are established by considering different
probabilistic approaches.

2. The two-sex model

On a probability space (�,F ,P)we introduce the two-sex branching process with offspring
and mating in a random environment as the two-type sequence {(Fn,Mn)}n≥1 defined in the
form

(Fn+1,Mn+1) =
Zn∑
i=1

(fn,i;θn ,mn,i;θn), Zn+1 = Lηn(Fn+1,Mn+1), n = 0, 1, . . . ,

(2.1)
where the empty sum is considered to be (0, 0). The random vector (Fn+1,Mn+1) represents the
number of females and males in the (n+ 1)th generation. These females and males form Zn+1
couples. Initially, we assume that there is a positive number, N0, of couples in the population,
i.e. Z0 = N0.

The sequence {(θn, ηn)}n≥0 represents an environmental process consisting of independent
but not necessarily identically distributed random vectors (θn, ηn) defined on (�,F ,P) and
taking values in a certain space S. Let Z

+ be the set of nonnegative integers. If, for any n ∈ Z
+,

there exists (θ, η) in S such that (θn, ηn) = (θ, η) then the following statements hold.

(a) (fn,i;θ ,mn,i;θ ), i = 1, . . . , Zn, are independent and identically distributed nonnegative
random vectors on (�,F ,P). Intuitively, (fn,i;θ ,mn,i;θ ) represents the number of
females and males descending from the ith couple of the nth generation, assuming that
the environmental variable θn has taken the value θ . Its probability law is referred to as
the offspring distribution when θn = θ .

(b) Lη is the function which governs the mating between females and males. It is defined
on R

+ × R
+ and takes values in R

+, where R
+ is the set of nonnegative real numbers.

It is assumed to be nondecreasing in each argument, integer valued on the integers, and
such that Lη(x, 0) = Lη(0, y) = 0, x, y ∈ R

+.

The process {(Fn,Mn)}n≥1 may be interpreted as a branching model developing in an environ-
ment which changes stochastically in time and which affects both the reproductive behaviour
and the mating between females and males. In addition to its theoretical interest, this model
also has clear practical implications, especially in population dynamics. For certain sexually
reproducing animal populations, it is reasonable to assume that behaviour is affected by such
environmental factors as weather, food supply, fertility parameters, and so on. For example, in
making policy decisions as to whether to introduce or reintroduce certain animal species into an
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Two-sex processes in random environments 995

environment, this class of process may provide appropriate mathematical models with which to
describe the probabilistic behaviour of the population. Indeed, the motivation behind processes
of the type presented in (2.1) is the interest in developing two-sex models for such phenomena.
When the random vectors (θn, ηn) do not change with n, i.e. they have the same probability
distribution for all n, the process defined in (2.1) reduces to the bisexual Galton–Watson process
introduced in Daley (1968). This process has received much attention in the branching process
literature (see, e.g. the survey by Hull (2003)).

Example 2.1. By way of illustration, let us consider a two-sex branching process in a random
environment (2.1), in which the following statements hold.

(a) The environmental sequence {(θn, ηn)}n≥0 is such that θn and ηn are independent random
variables for each n. We assume that θn has a beta distribution with parameters an and
bn, and ηn has an exponential distribution with mean λ−1

n , where

an = (n+ 1)(n+ 2)−1, bn = (2n+ 1)(n+ 2)−1, and λn = (5n+ 1)(n+ 1)−1.

It follows that the joint probability density function of (θn, ηn) is given by

f(θn,ηn)(θ, η) = �(an + bn)

�(an)�(bn)
θan−1(1 − θ)bn−1λne−λnη, θ ∈ (0, 1), η ∈ (0,∞).

(Recall that, for c > 0, �(c) = ∫ ∞
0 xc−1e−x dx.)

(b) If θn = θ for some θ ∈ (0, 1) then, independently ofn, we assume as offspring probability
law the trinomial distribution

P(fn,1;θ = k, mn,1;θ = j) = 10!
k! j ! (10 − k − j)! (0.9θ)

k(0.9(1 − θ))j (0.1)10−k−j ,

where k and j are nonnegative integers such that k + j ≤ 10.

(c) If ηn = η for some η ∈ (0,∞) then we assume that the mating between females and
males is governed by the function

Lη(x, y) = min{x, �3yη(1 + η)−1�}, x, y ∈ R
+,

where �z� denotes the integer part of z.

Starting withN0 = 35 couples in the population, we simulated 20 generations of this process.
The observed values of the environmental variables θn and ηn are shown in Figure 1. Graphics
in Figure 1 reflect the fact that

lim
n→∞ E[θn] = lim

n→∞ an(an + bn)
−1 = 1

3 and lim
n→∞ E[ηn] = lim

n→∞ λ
−1
n = 0.2.

On the other hand, the obtained values of females, males, and couples are shown in Figure 2.
Note that, for the particular sample path observed, the process does not survive. The extinction
problem will be considered in Section 4.
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Figure 1: The observed values of the environmental variables θn (left) and ηn (right) for generations
n = 0, . . . , 19.
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Figure 2: Left: the observed values of the numbers of females (solid line) and males (dashed line), i.e.
(Fn,Mn), n = 1, . . . , 20. Right: the observed value of the number of couples, i.e. Zn, n = 0, . . . , 19.

3. Probability generating functions

For n ∈ Z
+ and s1, s2 ∈ [0, 1], let

hn+1(s1, s2) = E[sFn+1
1 s

Mn+1
2 ], gn(s) = E[sZn ], and ϕn;θ (s1, s2) = E[sfn,1;θ

1 s
mn,1;θ
2 ]

be the probability generating functions of (Fn+1,Mn+1), Zn, and (fn,1;θ ,mn,1;θ ), respectively.

Proposition 3.1. For n ∈ Z
+,

hn+1(s1, s2) =
∫
�n

gn(ϕn;θ (s1, s2)) dFθn(θ), s1, s2 ∈ [0, 1],

where �n denotes the set on which θn takes values and Fθn is the distribution function of θn.
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Proof. Let Fn = σ(Z0, θ0, . . . , Zn, θn) be the σ -algebra generated by the variables
Z0, θ0, . . . , Zn, θn. Then, for n ∈ Z

+,

hn+1(s1, s2) = E[E[sFn+1
1 s

Mn+1
2 | Fn]]

=
∫
�n

∞∑
k=0

E[s
∑k
i=1 fn,i;θ

1 s

∑k
i=1 mn,i;θ

2 ] P(Zn = k) dFθn(θ)

=
∫
�n

∞∑
k=0

(E[sfn,1;θ
1 s

mn,1;θ
2 ])k P(Zn = k) dFθn(θ)

=
∫
�n

gn(ϕn;θ (s1, s2)) dFθn(θ), s1, s2 ∈ [0, 1].

Using the notationµn;θ = E[(fn,1;θ ,mn,1;θ )] and	n;θ = cov[(fn,1;θ ,mn,1;θ )] for the mean
vector and the covariance matrix of the offspring distribution when θn = θ , respectively, from
Proposition 3.1 we find by straightforward calculation the following expressions for the mean
vector and the covariance matrix of (Fn+1,Mn+1), n ∈ Z

+:

E[(Fn+1,Mn+1)] = E[Zn] E[µn;θn ],
cov[(Fn+1,Mn+1)] = E[Zn] E[	n;θn ] + var[Zn](E[µn;θn ])	 E[µn;θn ],

where (E[µn;θn ])	 denotes the transpose of the vector E[µn;θn ].

Remark 3.1. We shall henceforth assume that all the mating functions Lη are superadditive,
i.e. that they satisfy

Lη(x1 + x2, y1 + y2) ≥ Lη(x1, y1)+ Lη(x2, y2), xi, yi ∈ R
+, i = 1, 2.

Superadditivity expresses the intuitive notion that x1 +x2 females and y1 +y2 males coexisting
together will form a number of couples that is at least as great as the total number of couples
formed by x1 females and y1 males, and x2 females and y2 males, living separately. This is
not a severe constraint, since most mating functions considered in two-sex branching process
theory are superadditive (see, e.g. Hull (1982) or Daley et al. (1986)).

Note that if (θn, ηn) = (θ, η) then the variable Lη(fn,1;θ ,mn,1;θ ) represents the number
of matings originated from the offspring of a couple in the nth generation. Let ζn;(θ,η)(s) =
E[sLη(fn,1;θ ,mn,1;θ )], s ∈ [0, 1], be its probability generating function. Since Z0 = N0, we have
g0(s) = sN0 , s ∈ [0, 1]. We now provide upper and lower bounds for gn+1(s), n ∈ Z

+.

Proposition 3.2. For n ∈ Z
+,

gn+1(s) ≤
∫

S
gn(ζn;(θ,η)(s)) dF(θn,ηn)(θ, η), s ∈ [0, 1],

where F(θn,ηn) denotes the distribution function of the random vector (θn, ηn).
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Proof. Let F ∗
n = σ(Z0, (θ0, η0), . . . , Zn, (θn, ηn)). Since Lη is a superadditive function,

and s ∈ [0, 1], we deduce, for n ∈ Z
+, that

gn+1(s) = E[E[sZn+1 | F ∗
n ]]

=
∫

S

∞∑
k=0

E[sLη(
∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )] P(Zn = k) dF(θn,ηn)(θ, η)

≤
∫

S

∞∑
k=0

E[s
∑k
i=1 Lη(fn,i;θ ,mn,i;θ )] P(Zn = k) dF(θn,ηn)(θ, η)

=
∫

S

∞∑
k=0

(E[sLη(fn,1;θ ,mn,1;θ )])k P(Zn = k) dF(θn,ηn)(θ, η)

=
∫

S
gn(ζn;(θ,η)(s)) dF(θn,ηn)(θ, η), s ∈ [0, 1].

Proposition 3.3. For n ∈ Z
+,

gn+1(s) ≥
∫

S
gn(ξn;(θ,η)(s)) dF(θn,ηn)(θ, η), s ∈ [0, 1],

where ξn;(θ,η)(s) = limk→∞(E[sLη(
∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )])1/k.

Proof. First, we shall prove that ξn;(θ,η)(s) exists. To this end, taking n, s, and (θ, η) fixed,
consider the function

τ(k) = log(E[sLη(
∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )]), k = 1, 2, . . . .

From the superadditivity property, and using the fact that (
∑k+j
i=k+1 fn,i;θ ,

∑k+j
i=k+1mn,i;θ )

and (
∑j
i=1 fn,i;θ ,

∑j
i=1mn,i;θ ) are identically distributed random vectors, we have

τ(k + j) = log(E[sLη(
∑k+j
i=1 fn,i;θ ,

∑k+j
i=1 mn,i;θ )])

≤ log(E[sLη(
∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )])+ log(E[sLη(

∑k+j
i=k+1 fn,i;θ ,

∑k+j
i=k+1 mn,i;θ )])

= log(E[sLη(
∑k
i=1(fn,i;θ ,mn,i;θ ))])+ log(E[sLη(

∑j
i=1(fn,i;θ ,mn,i;θ ))])

= τ(k)+ τ(j), k, j = 1, 2, . . . .

It follows that τ is a subadditive function. Hence (see, e.g. Hille and Philips (1957, p. 244)),
limk→∞ k−1τ(k) exists, and, moreover, limk→∞ k−1τ(k) = infk>0 k

−1τ(k). Consequently,
ξn;(θ,η)(s) exists, and

ξn;(θ,η)(s) = inf
k>0
(E[sLη(

∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )])1/k. (3.1)
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We now prove Proposition 3.3. From (3.1), we obtain, for n ∈ Z
+,

gn+1(s) = E[E[sZn+1 | F ∗
n ]]

=
∫

S

∞∑
k=0

E[sLη(
∑k
i=1 fn,i;θ ,

∑k
i=1 mn,i;θ )] P(Zn = k) dF(θn,ηn)(θ, η)

≥
∫

S

∞∑
k=0

(ξn;(θ,η)(s))k P(Zn = k) dF(θn,ηn)(θ, η)

=
∫

S
gn(ξn;(θ,η)(s)) dF(θn,ηn)(θ, η), s ∈ [0, 1].

Note that, from Propositions 3.2 and 3.3, and using the fact that Z0 = N0, we have

N0

n∏
k=0

E[ζ ′
k;(θk,ηk)(1)] ≤ E[Zn+1] ≤ N0

n∏
k=0

E[ξ ′
k;(θk,ηk)(1)], n ∈ Z

+.

4. Extinction probability

In this section we consider the extinction probability of the two-sex process presented in (2.1).
First, we provide some sufficient conditions (Propositions 4.1 and 4.2) that guarantee the prop-
erty which is the random environment analogue of the extinction-explosion duality in branching
process theory. We then take two different probabilistic approaches to establish some results
for the extinction probability. The first approach uses the concept of the asymptotic growth rate
(Proposition 4.4), and the second considers the comparison with an asexual branching process
in a random environment (Proposition 4.5). For simplicity, we shall use
 = {(θn, ηn)}n≥0 and
F
 = σ((θ0, η0), (θ1, η1), . . .) to denote the environmental process and the σ -algebra that it
generates, respectively.

For every positive integer N , we shall consider the probability conditional on F
 ,

πN;
 = P
(

lim
n→∞Zn = 0

∣∣∣ Z0 = N,F

)

+ P
(

lim
n→∞Zn = ∞

∣∣∣ Z0 = N,F

)

almost surely (a.s.).

Next, we shall establish sufficient conditions for

P(πN;ψ = 1) = 1, N = 1, 2, . . . . (4.1)

Proposition 4.1. Assume that, for some n ∈ Z
+,

P(P(fn,1;θn = 0 | θn) > 0) = 1 or P(P(mn,1;θn = 0 | θn) > 0) = 1.

Then (4.1) holds.

Proof. Let k be a positive integer. Given that (θn, ηn) = (θ, η),

P

(
Lη

( k∑
i=1

fn,i;θ ,
k∑
i=1

fn,i;θ
)

= 0

)
≥ max{(P(fn,1;θ = 0))k, (P(mn,1;θ = 0))k}.
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Thus, a.s., we have

P(Zn+1 = 0 | Zn = k, (θn, ηn)) ≥ max{(P(fn,1;θn = 0 | θn))k, (P(mn,1;θn = 0 | θn))k}.

Hence, since, conditionally on 
, 0 is an absorbing state for {Zn}n≥0,

P

( ∞⋃
m=1

{Zn+m = k}
∣∣∣∣ Zn = k,F


)
≤ 1 − P(Zn+1 = 0 | Zn = k, (θn, ηn)) < 1 a.s.,

and we deduce that k is a transient state. Consequently, for N = 1, 2, . . . ,

P
(

P
(

lim sup
n→∞

{Zn = k}
∣∣∣ Z0 = N,F


)
= 0

)
= 1.

And, since

{{
lim
n→∞Zn = 0

}
∪

{
lim
n→∞Zn = ∞

}}c ⊂
⋃
k∈N

lim sup
n→∞

{0 < Zn ≤ k},

the proof is complete.

Proposition 4.2. Assume that, for n ∈ Z
+,

(i) P(P(fn,1;θn = 0 | θn) = 0) = P(P(mn,1;θn = 0 | θn) = 0) = 1,

(ii) P(P(Lηn(1, 1) = 1 | ηn) = 1) = 1,

(iii) P(P(Zn+1 = k | Zn = k, (θn, ηn)) < 1) = 1, k = 1, 2, . . . .

Then (4.1) holds.

Proof. By Proposition 4.1, it is sufficient to prove that each positive integer k is a transient
state for {Zn}n≥0. Indeed, conditional on
, using the superadditivity property and assumptions
(i) and (ii), we deduce, for n ∈ Z

+, that

Zn+1 = Lηn

( Zn∑
i=1

fn,i;θn ,
Zn∑
i=1

mn,i;θn
)

≥
Zn∑
i=1

Lηn(fn,i;θn ,mn,i;θn) ≥ Zn a.s.

Therefore,

P

( ∞⋃
m=1

{Zn+m = k}
∣∣∣∣ Zn = k,F


)
= P(Zn+1 = k | Zn = k, (θn, ηn)) a.s.

Now, by assumption (iii),

P

(
P

( ∞⋃
m=1

{Zn+m = k}
∣∣∣∣ Zn = k,Fψ

)
< 1

)
= 1.

Therefore, k is a transient state for {Zn}n≥0.
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Definition 4.1. Let
qN;
 = P

(
lim
n→∞Zn = 0

∣∣∣ Z0 = N,F

)

be the a.s. defined extinction probability conditional on 
 when there are initially a positive
number, N , of couples in the population. If, for all N , P(qN;
 = 1) = 1 then the process will
become extinct. If, however, there exists a positive integer N such that P(qN;
 < 1) = 1 then
the process will survive.

We now establish some sufficient conditions for the almost-sure extinction of the process
{(Fn,Mn)}n≥1. To this end, we shall make a natural extension to the class of processes
considered in (2.1) of the concept of the mean growth rate per couple introduced in Bruss
(1984) for Daley’s bisexual process.

Definition 4.2. Given that (θn, ηn) = (θ, η), we define the mean growth rate per couple as

Rn,k;(θ,η) = k−1 E[Zn+1 | Zn = k], k = 1, 2, . . . .

Intuitively, Rn,k;(θ,η) represents the expected growth rate per couple when there are k couples
in the nth generation and (θn, ηn) = (θ, η). It is clear that

Rn,k;(θ,η) = k−1 E

[
Lη

( k∑
i=1

fn,i;θ ,
k∑
i=1

mm,i;θ
)]
.

We shall write Rn;(θ,η) = limk→∞ Rn,k;(θ,η) for the asymptotic growth rate when (θn, ηn) =
(θ, η).

Proposition 4.3. Assume that (θn, ηn) = (θ, η). Then,

Rn;(θ,η) = sup
k>0

Rn,k:(θ,η).

Proof. Taking n and (θ, η) fixed, consider the function γ (k) = kRn,k;(θ,η). Then,

γ (k + j) = E

[
Lη

(k+j∑
i=1

fn,i;θ ,
k+j∑
i=1

mn,i;θ
)]

≥ E

[
Lη

( k∑
i=1

fn,i;θ ,
k∑
i=1

mn,i;θ
)]

+ E

[
Lη

( k+j∑
i=k+1

fn,i;θ ,
k+j∑
i=k+1

mn,i;θ
)]

= E

[
Lη

( k∑
i=1

fn,i;θ ,
k∑
i=1

mn,i;θ
)]

+ E

[
Lη

( j∑
i=1

fn,i;θ ,
j∑
i=1

mn,i;θ
)]

= γ (k)+ γ (j), k, j = 1, 2, . . . .

Thus, γ is a superadditive function, and, therefore (see Hille and Philips (1957)),

rn;(θ,η) = lim
k→∞ rn,k;(θ,η)

exists and
rn;(θ,η) = sup

k>0
rn,k;(θ,η).
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By considering the concept of the asymptotic growth rate, the following result provides
sufficient conditions for the almost-sure extinction of the two-sex process.

Proposition 4.4. Assume that P(Rn;(θn,ηn) < 1) = 1, n ∈ Z
+, and that (4.1) holds. Then,

P(qN;
 = 1) = 1, N = 1, 2 . . . .

Proof. Note that {Zn}n≥0 is a nonnegative supermartingale with respect to the sequence of
σ -algebras {F ∗

n }n≥0,
F ∗
n = σ(Z0, (θ0, η0), . . . , Zn, (θn, ηn)).

In fact, since P(Rn;(θn,ηn) < 1) = 1, n ∈ Z
+, we have

E[Zn+1 | F ∗
n ] ≤ ZnRn;(θn,ηn) ≤ Zn a.s.

Hence,
P
(

P
(

lim
n→∞Zn = ∞

∣∣∣ Z0 = N,Fψ
)

= 0
)

= 1.

By (4.1), the proof is complete.

In the following result, comparison with an asexual branching process in a random environ-
ment is used to provide some sufficient conditions for the survival of the two-sex process. To
this end, we shall use the probability generating functions introduced in Section 3,

ζn;(θ,η)(s) = E[sLη(fn,1;θ ,mn,1;θ )], s ∈ [0, 1], n ∈ Z
+.

Proposition 4.5. Assume that

(i) supj≥0 E[ζ ′′
j ;(θj ,ηj )(1)(ζ

′
j ;(θj ,ηj )(1))

−2] < ∞,

(ii)
∑∞
j=0(

∏j
i=0(E[ζ ′

i;(θi ,ηi )(1)])−1)−1 < ∞.

Then there exists a positive integer N such that P(qN;
 < 1) = 1.

Proof. We introduce the auxiliary process {Z∗
n}n≥0, where Z∗

0 = Z0 = N0 and, for n ∈ Z
+,

Z∗
n+1 =

Z∗
n∑

i=1

Lηn(fn,i;θn ,mn,i;θn).

Note that {Z∗
n}n≥0 is an asexual branching process in a random environment, with {(θn, ηn)}n≥0

being its environmental sequence (see, e.g. Agresti (1975)). We shall prove by induction on
n that the processes {Zn}n≥0 and {Z∗

n}n≥0 are such that, for all n, Zn ≥ Z∗
n a.s. Indeed, for

n = 0, we have Z0 = Z∗
0 = N0. Assume that, for some positive n, Zn ≥ Z∗

n a.s. Then, by the
superadditivity and the hypothesis of induction, we have

Zn+1 = Lηn

( Zn∑
i=1

fn,i;θn ,
Zn∑
i=1

mn,i;θn
)

≥
Zn∑
i=1

Lηn(fn,i;θn ,mn,i;θn)

≥
Z∗
n∑

i=1

Lηn(fn,i;θn ,mn,i;θn)

= Z∗
n+1 a.s.
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Hence, for every positive integer N ,

P
(

lim
n→∞Zn = 0

∣∣∣ Z0 = N,Fψ
)

≤ P
(

lim
n→∞Z

∗
n = 0

∣∣∣ Z∗
0 = N,F


)
a.s. (4.2)

Now, from requirements (i) and (ii) of Proposition 4.5, we deduce the survival of the asexual
process {Z∗

n}n≥0 (for details, see Agresti (1975)). Consequently, from (4.2), we also derive that
the process {(Fn,Mn)}n≥1 will survive.
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