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Geometric Classification of Graph
C*-algebras over Finite Graphs

Søren Eilers, Gunnar Restorò, Efren Ruiz, and Adam P. W. Sørensen

Abstract. We address the classiûcation problem for graphC∗-algebras of ûnite graphs (ûnitelymany
edges and vertices), containing the class of Cuntz–Krieger algebras as a prominent special case.
Contrasting earlier work, we do not assume that the graphs satisfy the standard condition (K), so
that the graph C∗-algebras may come with uncountably many ideals.

We ûnd that in this generality, stable isomorphism of graph C∗-algebras does not coincide with
the geometric notion of Cuntz move equivalence. However, adding a modest condition on the
graphs, the two notions are proved to be mutually equivalent and equivalent to the C∗-algebras
having isomorphic K-theories. _is proves in turn that under this condition, the graph C∗-algebras
are in fact classiûable by K-theory, providing, in particular, complete classiûcation when the C∗-
algebras in question are either of real rank zero or type I/postliminal. _e key ingredient in obtain-
ing these results is a characterization of Cuntz move equivalence using the adjacency matrices of
the graphs.

Our results are applied to discuss the classiûcation problem for the quantum lens spaces deûned
byHong and Szymański, and to complete the classiûcation of graph C∗-algebras associated with all
simple graphs with four vertices or less.

1 Introduction

_e classiûcation problem for Cuntz–Krieger algebras has a long and prominent his-
tory. Indeed, Rørdam’s classiûcation [Rør95] of the simple such C∗-algebras by ap-
pealing to fundamental results in symbolic dynamics paved the way for the sweeping
generalization by Kirchberg and Phillips [Kir00, Phi00] to all simple, nuclear, sepa-
rable and purely inûnite C∗-algebras in the UCT class, and Restorò ’s generalization
[Res06] to the general case of Cuntz–Krieger algebraswithûnitelymany ideals (equiv-
alent to Cuntz’ Condition (II)) was a key inspiration for the recent surge in results
concerning nonsimple purely inûnite C∗-algebras.

Until now, almost nothing has been known about the classiûcation of Cuntz–Krie-
gerC∗-algebras having inûnitelymany ideals—failingCondition (II)—even though
the symbolic dynamical systems that deûne them are o�en extremely simple. In this
paper, we will establish classiûcation up to stable isomorphism between the Cuntz–
Krieger algebras deûned from a large class of graphs including the pairs of graphs
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Figure 1. Six graphs

given in (a) and (b) of Figure 1, but must leave open the question concerning some
more complicated graphs such as the ones in (c).

Wework in themore general (andmore natural) setting of graph C∗-algebras over
ûnite graphs, where Condition (II) is replaced by the standard Condition (K). Fol-
lowing [Sør13, ERS12] we emphasize the question of geometric classiûcation, the aim
being to generate the equivalence relation on graphs induced by stable isomorphismof
the associated C∗-algebras as the coarsest equivalence relation containing the class of
basicmoves on the graphs, resembling the role ofReidemeistermoves on knots. _ese
moves are closely related to those deûning �ow equivalence for shi� spaces, apart
from the so-called Cuntz splicewhich plays a special role and also fails to preserve the
canonical diagonal Abelian subalgebra of the graph algebras (cf. [MM14, BCW17]).

We will largely approach the problem following the strategy from [Rør95,Res06]
to reduce the stable classiûcation problem for graph C∗-algebras to questions con-
cerning �ow equivalence of shi�s of ûnite type. To do so requires three new tools as
listed below.
First and foremost, we need to know that the Cuntz splice also leaves the C∗-

algebras in question invariant up to stable isomorphism in this generality. _is we
proved in [ERRS16a]. Second, we need to develop the theory of a gauge invariant
prime ideal space which in our case will serve as a substitute for the standard primi-
tive ideal space. _e fact that this space is ûnite is key to our largely combinatorial ap-
proach throughout the paper, andwewill equip itwith a “temperaturemap” to help us
align the graphs so that the various types of gauge simple subquotients arematched.
Finally, we introduce a procedure of “plugging” and “unplugging” sinks to pass be-
tween the cases allowing sinks and cases disallowing them, giving us the option to
appeal to stronger general classiûcation results in one case and to a direct connection
to symbolic dynamics in the other.
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In the course of proving the above-mentioned results, we extract and general-
ize some strong results from [Res06, BH03] concerning GLP-equivalence and SLP-
equivalence. From the existence of certain such equivalences, we deduce conclusions
about the existence of move equivalences or Cuntz move equivalences between the
graphs or about the existence of (stable) isomorphisms between the graph C∗-alge-
bras, and vice versa. _is gives us some very concrete and hands-on tools to decide
such questions.

In most cases, such as the one illustrated in Figure 1(a), stable isomorphism of the
C∗-algebras associated with a pair of graphs allow for a geometric realization by a
ûnite number ofmoves, and we crystallize this out via the notion of “Condition (H)”,
which we introduce in Deûnition 4.19. In sporadic cases failing this condition, such
as the ones illustrated in Figure 1(b) and (c), we will establish that no ûnite sequence
of the moves deûning the concept of Cuntz move equivalence can connect the two
graphs in each pair, even though the K-theoretical invariants of the associated C∗-
algebras are the same. In the case of (b), wemay in fact prove by appealing to ad hoc
classiûcation results that the C∗-algebras are stably isomorphic, proving that stable
isomorphism of C∗-algebras is not always attainable via themoves hitherto studied.
Condition (H) generalizes Condition (K) and turns out to bemet in a lot of other

important special cases. When the graph C∗-algebras are of type I/postliminary, our
results can be reûned further and lead to the classiûcation of a class of quantum lens
spaces introduced and studied by Hong and Szymański in [HS03b]. Moreover, spe-
cializing to the graph C∗-algebras associated with simple graphs with four vertices
or less, we give a complete classiûcation. _ese results have bearing on the Abrams–
Tomforde conjecture [AT11].

In forthcoming work [ERRS16b] we will introduce a ûnal new move and prove,
among many other things, that indeed all Cuntz–Krieger algebras are classiûed by
their K-theory, because any isomorphism at the level of K-theory may be realized
using an enlarged family ofmoves, all leaving the stabilized C∗-algebra invariant. _e
paper at hand is self-contained and does not draw on the much more complicated
approach in [ERRS16b]. We will, however, develop basic results in the paper at hand
in generality not needed here to anticipate applications in [ERRS16b].

_e paper is organized as follows. In Section 2 we outline key concepts for the pa-
per, mainly stemming from the theory of graph C∗-algebras, and discuss the moves
that constitute our fundamental notion of Cuntz move equivalence. In Section 3 we
develop the idea of the gauge invariant prime ideal space, which is completely essen-
tial for everything that follows, and we connect this to K-theory, block matrices and
partially ordered sets in Section 4, also introducing the key notion of tempered ideal
spaces.

In Section 5 we prove a complete characterization of Cuntz move equivalence for
ûnite graphs, drawing heavily on ideas from [Res06] augmentedwith a trick of “plug-
ging sinks”, which we also develop there. Section 6 contains our geometric classiûca-
tion theorem for ûnite graphs with Condition (H), as well as examples showing the
necessity of this condition, and in Section 7 we detail the applications listed above.

https://doi.org/10.4153/CJM-2017-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-016-7


Geometric Classiûcation of Graph C*-algebras over Finite Graphs 297

2 General Preliminaries

In this section, we introduce notation and fundamental concepts concerning graphs
and their C∗-algebras.

2.1 C∗-algebras over Topological Spaces

_roughout the paper, we will work with C∗-algebras over topological spaces sat-
isfying the T0 separation condition. We will use the notation and deûnitions from
[MN09, §§2.2, 2.3] — concepts such as locally closed subsets, C∗-algebras over X,
X-equivariant homomorphisms, and notation such asO(X),LC(X), I(A). As usual,
Prim(A) denotes the primitive ideal space of A, equipped with the usual hull-kernel
topology, also called the Jacobson topology. Note that for every X-equivariant homo-
morphism Φ, and every locally closed subset Y ⊆ X, Φ induces a ∗-homomorphism
ΦY ∶A(Y) → B(Y). We let CX denote the category whose objects are C∗-algebras
over X and whosemorphisms are X-equivariant homomorphisms.

2.2 Graphs and their Matrices

By a graphwemean a countable directed graph. A graph is called ûnite if there are only
ûnitelymany vertices and edges. Wewill use notation and deûnitions from [ERRS16a,
§2]: concepts such as vertex, edge, range map, source map, loop, path, length of a
path, empty paths, cycle, vertex-simple cycle, exit for a cycle, return path, regular
vertex, singular vertex, source, sink, adjacencymatrix, and notation such as r, s, E0

reg,
E0

sing = E0 ∖ E0
reg, N, N0, AE , EA. We say that a vertex is an isolated vertex if it is both

a sink and a source.

Deûnition 2.1 Let E be a graph. We say that E satisûes Condition (K) if for every
vertex v ∈ E0 in E, either there is no return path based at v or there are at least two
distinct return paths based at v.

Notation 2.2 If there exists a path from vertex u to vertex v, then we write u ≥ v—
this is a preorder on the vertex set, i.e., it is re�exive and transitive, but need not be
antisymmetric.

It will be convenient for us to alter the adjacency matrix of a graph in two very
speciûc ways, removing singular rows and subtracting the identity, so we introduce
notation for this.

Notation 2.3 Let E be a graph andAE its adjacencymatrix. Denote byA●E thematrix
obtained from AE by removing all rows corresponding to singular vertices of E.

Let BE denote thematrix AE − I, and let B●E be BE with the rows corresponding to
singular vertices of E removed.
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2.3 Graph C∗-algebras

We follow the convention for graphC∗-algebras in [FLR00]; this is not the convention
used inRaeburn’smonograph [Rae05]. Weuse the standardnotion of aCuntz–Krieger
E-family and of a graphC∗-algebra of a graph E and denote itC∗(E) (see, for instance,
[ERRS16a, §2.1] and the references therein).

It is clear from the deûnition that an isomorphismbetweengraphs induces a canon-
ical isomorphism between the corresponding graph C∗-algebras.

Deûnition 2.4 Let E = (E0 , E1 , r, s) be a graph. By universality there is a canonical
gauge action γ∶T → Aut(C∗(E)) such that for any z ∈ T, we have that γz(pv) = pv
for all v ∈ E0 and γz(se) = zse for all e ∈ E1. We say that an ideal I of C∗(E) is
gauge invariant, if γz(I) ⊆ I for all z ∈ T, and we let Iγ(C∗(E)) denote the subset of
I(C∗(E)) consisting of gauge invariant ideals.

It is clear that the lattice operations preserve the gauge invariance, so Iγ(C∗(E))
is a sublattice. We collect some standard facts about graph C∗-algebras below.

Remark 2.5 Every graph C∗-algebra (of a countable graph) is separable, nuclear
in the UCT class ([KP99, DT05]). A graph C∗-algebra is unital if and only if the
corresponding graph has ûnitelymany vertices. A graph C∗-algebra is isomorphic to
a Cuntz–Krieger algebra if and only if the corresponding graph is ûnitewith no sinks;
see [AR15,_eorem 3.12].

2.4 Moves on Graphs

Wewill also needmoves on graphs as deûned in [Sør13, Propositions 3.1 and 3.2,_e-
orems 3.3 and 3.5, and the deûnition right a�er]. _esemoves areMove (S) (remove
a regular source), Move (R) (reduction at a regular vertex), Move (O) (outsplit at a
non-sink), Move (I) (insplit at a regular non-source), Move (C) (Cuntz splicing a
vertex with two return paths). When we perform Move (S), (R), (O), (I), or (C)
on a graph E, we denote the resulting graph by ES , ER , EO , EI , EC , respectively. Note
that contrary to [Sør13], we also allow Cuntz splicing singular vertices (that support
two return paths); see [ERRS16a], especially Deûnition 2.11 therein.

Deûnition 2.6 _e equivalence relation generated by themoves (O), (I), (R), (S)
together with graph isomorphism is called move equivalence, and denoted ∼ME . _e
equivalence relation generated by the moves (O), (I), (R), (S), (C) together with
graph isomorphism is called Cuntz move equivalence, and denoted ∼CE .

_e following two theorems were essentially proved in [BP04]; see also [Sør13,
Propositions 3.1, 3.2 and 3.3 and_eorem 3.5].

_eorem 2.7 ([Sør13]) Let E1 and E2 be graphs such that E1 ∼ME E2. _en

C∗(E1)⊗K ≅ C∗(E2)⊗K.

https://doi.org/10.4153/CJM-2017-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-016-7


Geometric Classiûcation of Graph C*-algebras over Finite Graphs 299

For themove (O), we actually obtain isomorphism rather than just stable isomor-
phism.

Proposition 2.8 Let E1 and E2 be graphs such that one is obtained from the other
using Move (O); then C∗(E1) ≅ C∗(E2).

For the move (C), it has recently been proved in [ERRS16a] that it preserves the
Morita equivalence class for arbitrary graphs.

_eorem 2.9 ([ERRS16a,_eorem 4.8]) Let E be a graph and let v be a vertex that
supports two distinct return paths. _en C∗(E)⊗K ≅ C∗(EC)⊗K.

We also extend the notation of equivalences to adjacency matrices.

Deûnition 2.10 If A,A′ are square matrices with entries in N0 ⊔ {∞}, we deûne
them to bemove equivalent, andwrite A ∼ME A′ ifEA ∼ME EA′ . We deûneCuntzmove
equivalence similarly.

Remark 2.11 _e Cuntzmove equivalence, ∼CE , is calledmove prime equivalence in
[Sør13]. Since the similarity of the two terms could create confusion, we have chosen
to use the term Cuntz move equivalence instead.

2.5 Derived Moves

We now discuss (following and generalizing [Sør13, Section 5]) ways of changing the
graphs without changing their move equivalence class. We will present criteria al-
lowing us to conclude that two graphs aremove equivalent when one arises from the
other by a row or column addition of the B-matrices. As we shall see, knowing move
invariance of these derivedmoves dramatically simpliûes working with ∼ME .

We use the notation introduced in [ERRS16a, Deûnition 2.7] for the collapsing of
a regular vertex that does not support a loop. We call this Move (Col), and denote
the resulting graph by ECOL . According to [Sør13, _eorem 5.2], E ∼ME ECOL when
∣E0∣ <∞; in fact, the collapsemove can be obtained using themoves (O) and (R).
Below, we will show how we can perform row and column additions on BE with-

out changing themove equivalence class of the associated graphs, when E is a graph
with ûnitelymany vertices. _e setupwe need is slightly diòerent fromwhatwas con-
sidered in [Sør13, Section 7] — it was considered in [ERRS16a]. For the convenience
of the reader, we collect the needed results from [ERRS16a] in one proposition. Note
that the deûnition ofmove equivalence in [ERRS16a] is slightly diòerent from the one
above in order to be able to deal with graphs with inûnitely many vertices, but in the
case of ûnitely many vertices, they do in fact coincide.

Proposition 2.12 ([ERRS16a]) Let E = (E0 , E1 , r, s) be a graph with ûnitely many
vertices. Suppose u, v ∈ E0 are distinct vertices with a path from u to v. Let Eu ,v be
equal to the identitymatrix except for on the (u, v)-th entry, where it is 1. _en BEEu ,v
is the matrix formed from BE by adding the u-th column into the v-th column, while
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Eu ,vBE is the matrix formed from BE by adding the v-th row into the u-th row. _en
the following hold.
(i) Suppose u supports a loop or suppose that there is an edge from u to v and u emits

at least two edges. _en

AE ∼ME BEEu ,v + I.

(ii) Suppose v is regular and either v supports a loop or there is an edge from u to v.
_en

AE ∼ME Eu ,vBE + I.

Remark 2.13 As in [ERRS16a], we can use the above proposition backwards to
subtract columns or rows in BE as long as the addition that undoes the subtraction is
legal.

Since legal row and column additions preserve ∼ME , the resulting graph C∗-alge-
bras will be stably isomorphic. _e column addition in (i) above rarely preserves the
actual isomorphism class, but undermodest additional assumptions, the row addition
in (ii) does.

Proposition 2.14 If Condition (ii) in Proposition 2.12 ismetwith v regular, supporting
a loop and an edge from u to v, then C∗(E) ≅ C∗(EA), where A = Eu ,vBE + I.

Proof Let F = EA and denote the given edge from u to v in E by f . _en F is
formed by removing f but adding for each e ∈ s−1

E (v) an edge e with sF(e) = u and
rF(e) = rE(e). Moreover, since v supports a loop, we have that r−1

E (v)∖ { f } /= ∅. Set
E1 = r−1

E (v) ∖ { f } and E2 = { f }. Using this partition, we form EI , which replaces
v with v1 and v2. _e vertex v1 receives the edges of v except f and also receives
one edge from v2 for each loop based at v. _e vertex v2 only receives the edge f .
Both vertices emit copies of the edges v emitted and do so in such a way that there
is no loop based at v2. By [RT13a, Proposition 3.6], there exists a ∗-isomorphism
Ψ1∶C∗(E)→ pVC∗(EI)pV where V = E0

I /{v2}.
Since v2 does not support a loop, we may collapse this vertex, yielding F. Set

qw = pEw for all w ∈ F0, te = sEe for all e ∈ E1
I ∖ (r−1

EI
(v2) ∪ s−1

EI
(v2)) and t[ee′] =

sEe s
E
e′ for e ∈ r−1

EI
(v2) and e′ ∈ s−1

EI
(v2). One can easily check that Ψ2(pFv ) = qv

and Ψ2(sFe ) = te provides a ∗-isomorphism Ψ2∶C∗(F) → pVC∗(EI)pV . Hence,
Φ = Ψ−1

2 ○Ψ1∶C∗(E)→ C∗(F) is a ∗-isomorphism.

3 The Gauge Invariant Prime Ideal Space

We now provide deûnitions and fundamental results concerning the gauge invariant
prime ideal spaces of graph C∗-algebras. Although this is a very natural thing to do
whenwehave the graph given,we arenot awareof anyplace in the literaturewhere this
has been done only using the graph C∗-algebra and not the underlying graph. For the
beneût of further applications elsewhere, we carry out the analysis in full generality.
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3.1 Structure of Graph C∗-algebras

It is important for us to view the graph C∗-algebras as X-algebras over a topological
space X that, in general, is diòerent from the primitive ideal space. _is is due to
the fact that when there exist ideals that are not gauge invariant, then there are inûn-
itelymany ideals. _e spacewe choose toworkwith corresponds to the distinguished
ideals being exactly the gauge invariant ideals. We show a C∗-algebraic characteriza-
tion of the gauge invariant ideals, and describe the space X = Primeγ(C∗(E)) in this
subsection.

Deûnition 3.1 Let E = (E0 , E1 , r, s) be a graph. A subset H ⊆ E0 is called hereditary
if whenever v ,w ∈ E0 with v ∈ H and v ≥ w, then w ∈ H. A subset S ⊆ E0 is called
saturated if whenever v ∈ E0

reg with r(s−1(v)) ⊆ S, then v ∈ S. For any saturated
hereditary subset H, the breaking vertices corresponding to H are the elements of the
set

BH ∶= {v ∈ E0 ∣ ∣s−1(v)∣ =∞ and 0 < ∣s−1(v) ∩ r−1(E0 ∖H)∣ <∞} .
It is clear that∅ and E0 are both saturated and hereditary subsets. _e intersection

of any family of hereditary subsets is again hereditary. _us, for every subset S ⊆
E0, there exists a smallest hereditary subset of E0 containing S; this set is called the
hereditary subset generated by S and is denoted H(S). _e intersection of any family
of saturated subsets is again saturated. _us, for every subset S ⊆ E0, there is a smallest
saturated subset of E0 containing S; this set is called the saturation of S and is denoted
S. _e saturation of a hereditary set is again hereditary. It is also clear that the union
of any family of hereditary sets is again hereditary. _is makes the set of saturated
hereditary subsets of E0 into a complete lattice.
An admissible pair (H, S) consists of a saturated hereditary subset H ⊆ E0 and

a subset S ⊆ BH . We order the collection of admissible pairs by deûning (H, S) ≤
(H′ , S′) if and only ifH ⊆ H′ and S ⊆ H′∪S′. _ismakes the collection of admissible
pairs into a lattice.

Fact 3.2 Let E = (E0 , E1 , r, s) be a graph. For any admissible pair (H, S), we let
J(H ,S) denote the ideal generated by

{pv ∣ v ∈ H} ∪ {pH
v0 ∣ v0 ∈ S} ,

where pH
v0 is the gap projection

pH
v0 = pv0 − ∑

s(e)=v0
r(e)/∈H

se s∗e .

If BH = ∅, for a saturated hereditary subset H ⊆ E0, then we write JH for J(H ,∅). _e
map (H, S) ↦ J(H ,S) is a lattice isomorphism between the lattice of admissible pairs
and the lattice of gauge invariant ideals of C∗(E) (cf. [BHRS02,_eorem 3.6]).

Lemma 3.3 Let E = (E0 , E1 , rE , sE) and F = (F0 , F 1 , rF , sF) be graphs and let I be
an ideal of C∗(E). _en I is gauge-invariant if and only if I is generated by projections.
Consequently, every ∗-isomorphism from C∗(E) to C∗(F) will send gauge invariant
ideals to gauge invariant ideals, and every ∗-isomorphism fromC∗(E)⊗K toC∗(F)⊗K
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will send gauge invariant ideals to gauge invariant ideals under the identiûcation of the
ideal lattice of C∗(E) and C∗(F) with the ideal lattice of C∗(E)⊗K and C∗(F)⊗K,
respectively.

Proof Suppose I is a gauge-invariant ideal. _en by Fact 3.2, I is generated by
vertex projections and gap projections. Suppose I is generated by projections S =
{p1 , p2 , . . .}. By [HLM+14, _eorem 3.4 and Corollary 3.5], each p i is Murray-von
Neumann equivalent to sums of vertex projections and gap projections in C∗(E),
where the Murray-von Neumann equivalence and sums are in C∗(E) ⊗K. But this
implies that C∗(E)p iC∗(E) is generated by vertex projections and gap projections.
Hence, I = spanC∗(E)SC∗(E) is generated by vertex projections and gap projec-
tions. Since vertex projections and gap projections are ûxed by the gauge action, we
have that I is a gauge-invariant ideal.

Suppose Φ∶C∗(E)→ C∗(F) is a ∗-isomorphism. Let I be a gauge-invariant ideal
ofC∗(E). _en from the ûrst part of the lemma,we have that I is generated by projec-
tions. SinceΦ is a ∗-isomorphism,we have thatΦ(I) is also generated by projections.
_us, Φ(I) is a gauge-invariant ideal.
For a C∗-algebra A, we say that an ideal in A⊗K is generated by projections in A

if it is generated by projections in A⊗ e11. Suppose Ψ∶C∗(E)⊗K → C∗(F)⊗K is a
∗-isomorphism. Let I be a gauge-invariant ideal of C∗(E) ⊗K, i.e., I = J(H ,S) ⊗K.
So, in particular, I is generated by projections. Since Ψ is a ∗-isomorphism, Ψ(I) is
generated by projections. By [HLM+14, _eorem 3.4 and Corollary 3.5] and using a
similar argument as in the ûrst paragraph, we get that Ψ(I) is generated by vertex
projections and gap projections in C∗(F). Hence, Ψ(I) is gauge-invariant.

Deûnition 3.4 Let E = (E0 , E1 , r, s) be a graph. Let Primeγ(C∗(E)) denote the set
of all proper ideals that are prime within the set of proper gauge invariant ideals, i.e.,
p ∈ Primeγ(C∗(E)) if and only if p is a proper gauge invariant ideal of C∗(E) and

I1I2 ⊆ pÔ⇒ I1 ⊆ p ∨ I2 ⊆ p,

for all (proper) gauge invariant ideals I1 , I2 of C∗(E).
Recall that for an ideal I, we let hull(I) denote the set of primitive ideals contain-

ing I, i.e., {p ∈ Prim(C∗(E)) ∣ p ⊇ I}. Similarly, for every ideal I, we let hullγ(I)
denote the set {p ∈ Primeγ(C∗(E)) ∣ p ⊇ I}. We equip Primeγ(C∗(E))with a topol-
ogy similar to the hull-kernel topology for primitive ideals; i.e., the closure of a subset
S ⊆ Primeγ(C∗(E)) is

hullγ(⋂ S) = {p ∈ Primeγ(C∗(E)) ∣ p ⊇ ⋂ S} .

To check that this closure operation deûnes a unique topology, we need only to check
that it satisûes the four Kuratowski closure axioms, but the ûrst two paragraphs of
[Mur90, 5.4.6 _eorem] show this. With an argument similar to [Mur90, 5.4.7 _eo-
rem], it also follows that the topology is T0.

When Φ∶C∗(E) → C∗(F) is a ∗-isomorphism, we get an induced homeomor-
phism Φ♯∶Primeγ(C∗(E))→ Primeγ(C∗(F)) by Lemma 3.3.
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It is an elementary fact that every primitive ideal of aC∗-algebra is a (closed) prime
ideal (e.g. [Mur90, 5.4.5_eorem]). For a separable C∗-algebra, the converse is true,
which can be seen by showing that the primitive ideal space of a separable C∗-algebra
is a Baire space (e.g. [Bla06, II.6.5.15 Corollary]), but as shown by Weaver in [Wea03]
the concepts diòer for nonseparable C∗-algebras. In fact, there are counterexamples
even for nonseparable graph C∗-algebras (see [AT14]), but since we only consider
countable graphs, this will not be an issue here.

Lemma 3.5 Let E = (E0 , E1 , r, s) be a graph. Every primitive gauge invariant ideal
of C∗(E) is in Primeγ(C∗(E)). Every primitive ideal of C∗(E) that is not gauge in-
variant has a largest gauge invariant ideal as a subset, and this gauge invariant ideal is
in Primeγ(C∗(E)).

If I is a proper gauge invariant ideal of C∗(E), then

I = ⋂{p ∈ Primeγ(C∗(E)) ∣ p ⊇ I} = ⋂hullγ(I).

Proof First, note that all primitive ideals of C∗(E) are described in [HS04, Corol-
lary 2.11]; we will use their terminology. As pointed out in [Gab13] there is a minor
mistake in the description of the topology of the primitive ideal space in [HS04], but
this has no consequences for this paper, since we are not using the description of the
topology. Sowehave a bijection fromMγ(E)⊔BV(E)⊔(Mτ(E)×T) toPrim(C∗(E))
given by

Mγ(E) ∋ M z→ JΩ(M),Ω(M)fin∞ ,
BV(E) ∋ v z→ JΩ(v),Ω(v)fin∖{v}

∞
,

Mτ(E) ×T ∋ (N , z)z→RN ,t ,

where the gauge invariant primitive ideals are exactly the ideals coming fromMγ(E)
and BV(E). Note that every gauge invariant primitive ideal of C∗(E) is also prime in
the set of ideals of C∗(E). _us, every gauge invariant primitive ideal of C∗(E) is in
Primeγ(C∗(E)).

Note that for N ∈ Mτ(E) and z ∈ T, the ideal JΩ(N),Ω(N)fin∞ is the largest gauge
invariant ideal contained in RN ,z (cf. [HS04, Lemma 2.6]).

Let N ∈ Mτ(E) and assume that I1I2 ⊆ JΩ(N),Ω(N)fin∞ for some gauge invariant
ideals I1 , I2. _en I1I2 ⊆RN ,−1. SinceRN ,−1 is a primitive ideal inC∗(E), it is prime
in the collection of all ideals of C∗(E). _erefore, either I1 ⊆ RN ,−1 or I2 ⊆ RN ,−1.
But since JΩ(N),Ω(N)fin∞ is the largest gauge invariant ideal contained in RN ,−1, we
have I1 ⊆ JΩ(N),Ω(N)fin∞ or I2 ⊆ JΩ(N),Ω(N)fin∞ . _is shows that also JΩ(N),Ω(N)fin∞ ∈
Primeγ(C∗(E)) when N ∈Mτ(E).

LetIbe aproper gauge invariant ideal ofC∗(E). _enI is the intersection of all the
primitive ideals containing it. _eonlyprimitive ideals that arenot in Primeγ(C∗(E))
are the idealsRN ,z for N ∈Mτ(E) and z ∈ T, but if I ⊆RN ,z thenwe can replace it in
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the intersection by the ideal JΩ(N),Ω(N)fin∞ ∈ Primeγ(C∗(E)). So we have shown that

I = ⋂ ( {JΩ(M),Ω(M)fin∞ ∣ JΩ(M),Ω(M)fin∞ ⊇ I,M ∈Mγ(E) ∪Mτ(E)}
∪ {JΩ(v),Ω(v)fin∞∖{v} ∣ JΩ(v),Ω(v)fin∞∖{v} ⊇ I, v ∈ BV(E)} )

= ⋂
p∈Primγ(C∗(E))

p⊇I

p = ⋂hullγ(I),

since the second intersection contains all the sets from the ûrst intersection.

Lemma 3.6 _emap

Iz→ hullγ(I) = {p ∈ Primeγ(C∗(E)) ∣ p ⊇ I}
is an order-reversing 1 − 1 correspondence between the gauge invariant ideals of C∗(E)
and the closed subsets of Primeγ(C∗(E)). Its inversemap is S ↦ ⋂ S.

Proof _is proof follows the lines of the proof of [Mur90, 5.4.7 _eorem].

_e following lemma tells us exactly howwe can consider a graphC∗-algebra as an
algebra over Primeγ(C∗(E)) such that the distinguished ideals are exactly the gauge
invariant ideals.

Lemma 3.7 Let E be a graph. Consider themap ζ ∶Prim(C∗(E))→ Primeγ(C∗(E))
sending each primitive ideal to the largest element of Primeγ(C∗(E)) that it
contains. _is map is continuous and surjective, and it makes C∗(E) into a
Primeγ(C∗(E))-algebra in a canonical way. Moreover,

(3.1) ζ−1(hullγ(I)) = hull(I)
for every gauge invariant ideal I of C∗(E), so the distinguished ideals under the action
are exactly the gauge invariant ideals.

Proof _e validity of the deûnition of themap ζ follows from Lemma 3.5. First we
show (3.1). _en continuity follows, since every closed set of Primeγ(C∗(E)) is of the
form hullγ(I). So let I be a gauge invariant ideal.

Let p ∈ ζ−1(hullγ(I)). _en ζ(p) ⊇ I. Since, by deûnition, p ⊇ ζ(p), it is clear that
p ⊇ I. _erefore, p ∈ hull(I).

Now let p ∈ hull(I). _en p ⊇ I. If p is gauge invariant, then ζ(p) = p ⊇ I, so
p ∈ ζ−1(hullγ(I)). If, on the other hand, p is not gauge invariant, then ζ(p) is the
largest gauge invariant ideal contained in p; cf. Lemma 3.5. _us, p ⊇ ζ(p) ⊇ I, so
also in this case p ∈ ζ−1(hullγ(I)). Now we want to show surjectivity of the map.
For this we use the notation of [BHRS02] and [HS04] and the content of the proof of
Lemma 3.5. Recall that every gauge invariant ideal I of C∗(E) is of the form I = JH ,B
for some saturated hereditary subset H ⊆ E0 and some subset B ⊆ BH = Hfin

∞ ; in fact,
if HI = {v ∈ E0 ∣ pv ∈ I} and BI = {v ∈ BHI

∣ pHI
v ∈ I}, then I = JHI ,BI

. Note that
if (H, S1) and (H, S2) are admissible pairs, then (H, S1) ∧ (H, S2) is (H, S1 ∩ S2).

Now assume that I ∈ Primeγ(C∗(E)), so I = JHI ,BI
. Since I is a proper ideal,

HI /= E0, so M = E0 ∖ HI is nonempty. _e proof of [BHRS02, Lemma 4.1] shows
that M is amaximal tail. Note that Ω(M) = E0 ∖M = HI.
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Wewant to show that ∣BHI
∖BI∣ ≤ 1. So assume that v1 , v2 ∈ BHI

∖BI with v1 /= v2.
It follows from [BHRS02, Proposition 3.9] that

JHI ,BI∪{v1} ∩ JHI ,BI∪{v2} = JHI ,BI
= I.

But JHI ,BI∪{v i} /⊆ JHI ,BI
= I, for i = 1, 2, which contradicts that I is prime within

the proper gauge invariant ideals of C∗(E). Hence, ∣BHI
∖ BI∣ ≤ 1.

Now assume that BHI
∖ BI = {v}. We want to show that v ∈ BV(E), i.e., we need

to show that v supports a cycle. So assume that v does not support a cycle. Since v is
an inûnite emitter, H2 = H(v) ∖ {v} is a saturated hereditary subset not containing
v. Note that v /∈ BH2 . From [BHRS02, Proposition 3.9], it follows that

JHI ,BHI
∩ JH2 ,BH2

⊆ JHI ,BI
= I.

But JHI ,BHI
/⊆ I and JH2 ,BH2

/⊆ I,which contradicts that I is primewithin the proper
gauge invariant ideals of C∗(E). Hence, v ∈ BV(E). Now we also want to show
that Ω(v) = HI. From the deûnition, it is clear that Ω(v) ⊇ HI. From [BHRS02,
Proposition 3.9], it follows that

JΩ(v),BΩ(v)∖{v} ∩ JHI ,BHI
⊆ JHI ,BI

= I.

Since JHI ,BHI
/⊆ I and I is prime within the proper gauge invariant ideals of C∗(E),

it follows that JΩ(v),BΩ(v)∖{v} ⊆ I. _erefore, Ω(v) ⊆ HI.
Now it follows from the proof of Lemma 3.5 that ζ is surjective.

Remark 3.8 Assume that E is a graph with ûnitely many vertices. _en E sat-
isûes Condition (K) if and only if C∗(E) has ûnitely many ideals, and in this case
Prim(C∗(E)) = Primeγ(C∗(E)).

3.2 The Component Poset

For our purposes, itwill be essential toworkwith block matrices in away that resem-
bles the ideal structure and the ûltered K-theory of the graph C∗-algebras. To do this,
we need to put the graph in a certain form and to order the vertices in a certain way
such that the adjacencymatrix has a certain nice block form. It is also essential to our
work that the topological space Primeγ(C∗(E)) is built into this construction. For
the beneût of possible applications to other settings, we will allow inûnite emitters,
but it is essential for the exposition that we allow only ûnitely many vertices.
As we shall see, it will be necessary to modify the given graph up to move equiv-

alence to deal with certain complication introduced by transitional (introduced in
Deûnition 3.9 below) and breaking vertices. _is will not change the C∗-algebras in
question up to stable isomorphism, and is hence unproblematic for the work in this
paper. But to pave the way for classiûcation of the graph C∗-algebras themselves, we
keep track of the isomorphism class as far as possible.

Deûnition 3.9 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices. We say
that a nonempty subset S of E0 is strongly connected if for any two vertices v ,w ∈ S
there exists a nonempty path from v to w. In particular, every vertex in a strongly
connected set has to be the base of a cycle. _e maximal strongly connected subsets
of E0 are all disjoint, and these are called the strongly connected components of E. We
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let ΓE denote the set of all strongly connected components togetherwith all singletons
consisting of singular vertices that are not the base point of a cycle. _e sets in ΓE are
all disjoint. We call the sets in ΓE the components of the graph E and the vertices in
E0 ∖∪ΓE the transition states of E; the transition states are by deûnition all the regular
vertices that are not the base point of a cycle. Note that with this terminology, all
regular sources are also transition states. A strongly connected component is called
a cyclic component if one of its vertices (and thus all of its vertices) has exactly one
return path.

We deûne a relation ≥ on ΓE by saying that γ1 ≥ γ2 if there exist vertices v1 ∈ γ1 and
v2 ∈ γ2 such that v1 ≥ v2. By deûnition this is the same as for all vertices v1 ∈ γ1 and
all vertices v2 ∈ γ2 we have that v1 ≥ v2. _us, it is clear that ≥ is a partial order.

We say that a subset σ ⊆ ΓE is hereditary if whenever γ1 , γ2 ∈ ΓE with γ1 ∈ σ and
γ1 ≥ γ2, then γ2 ∈ σ . We equip ΓE with the topology that has the hereditary subsets as
open sets; this makes ΓE into a T0-space. For every subset σ ⊆ ΓE , we let η(σ) denote
the smallest hereditary subset of ΓE containing σ , i.e., the set {γ ∈ ΓE ∣ ∃γ′ ∈ σ ∶ γ′ ≥ γ}.

We recall the deûnition of an Alexandrov space and some of its properties.

Deûnition 3.10 A topological space is called an Alexandrov space if arbitrary in-
tersections of open subsets are again open. If we have a topological space X, then we
can deûne a preorder on X by x ≥ y if and only if x is in the closure of {y}; this pre-
order is called the specialization preorder. In the opposite direction, for a preordered
set (X , ≥) we can let the sets F ⊆ X satisfying x ≥ y ∧ y ∈ F ⇒ x ∈ F be the closed
sets. _is topology is the ûnest topology satisfying that x ≥ y if and only if x is in the
closure of {y}. It is also clear that this is an Alexandrov topology.

If an Alexandrov space is given, and we take its specialization preorder, then the
Alexandrov topology is uniquely determined from the specialization preorder by the
above construction. _us, there is a one-to-one correspondence betweenAlexandrov
topologies and preorders on a space. A map between two Alexandrov spaces is con-
tinuous if and only if it is an order preserving map with respect to the specialization
preorders.

Note that o�en the specialization preorder is written as the opposite order com-
pared to above. Both conventions are used in the literature,while the convention used
here is chosen, since it ûts better with our setup, as we will see now.

Remark 3.11 We will mainly consider the topological spaces Primeγ(C∗(E)) and
ΓE for graphs with ûnitelymany vertices. Assume that E is a graph with ûnitelymany
vertices. Although Prim(C∗(E)) will o�en be inûnite (in the case of a cyclic com-
ponent), the sets Primeγ(C∗(E)) and ΓE are ûnite. _us, it is clear that arbitrary
intersections of open subsets are again open. _us, Primeγ(C∗(E)) is anAlexandrov
space. We see immediately from the deûnition that p1 is in the closure of {p2} if and
only if p1 ⊇ p2. So the specialization preorder ≥ is set containment. Similarly, ΓE is an
Alexandrov space and its specialization preorder is exactly the order ≥.
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Lemma 3.12 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices. Let η ⊆ ΓE
be a hereditary subset. Assume that v ∈ E0

reg and that there is no path from v to any of
the components in ΓE ∖ η. _en v ∈ H(⋃ η).

Proof _ere has to be a path from v to some component, thus a component in η. If v
supports a cycle, clearly v ∈ ⋃ η ⊆ H(⋃ η). LetH0 = H(⋃ η). Using the description in
[BHRS02,Remark 3.1],we get a non-decreasing sequence of hereditary sets Σ0(H0) =
H0, Σ1(H0), Σ2(H0), . . . . If v /∈ Σk(H0), then the length of the longest path from v
to Σk(H0) is one less than the length of the longest path from v to Σk−1(H0). _us,
eventually v ∈ Σk(H0) for some k, i.e., v ∈ H0.

Lemma 3.13 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices. _en the
map η ↦ H(⋃ η) from the set of hereditary subsets of ΓE to the set of saturated hered-
itary subsets of E0 is a bijective order isomorphism (with respect to the order coming
from set containment). In fact, ⋃ η = (⋃ ΓE) ∩ H(⋃ η). Moreover, for any saturated
hereditary subset H ⊆ E0, the set (⋃ ΓE)∩H is a (disjoint) union of all components that
intersect H nontrivially, and if we let η ⊆ ΓE be the set of these components, then η is
hereditary and H(⋃ η) = H.

Proof Assume that η ⊆ ΓE is a hereditary subset. Clearly, ⋃ η ⊆ (⋃ ΓE) ∩ H(⋃ η).
Let v ∈ (⋃ ΓE) ∩ H(⋃ η). Suppose that v ∈ γ1 ∈ ΓE but γ1 /∈ η. _en v /∈ H(⋃ η).
Let H0 = H(⋃ η). Using the description in [BHRS02, Remark 3.1], we get a non-
decreasing sequence of hereditary sets Σ0(H0) = H0, Σ1(H0), Σ2(H0), . . . , such that
v ∈ Σk(H0) ∖ Σk−1(H0), for some k = 1, 2, 3, . . . . _is means that v ∈ E0

reg and
r(s−1(v)) ⊆ Σk−1(H0). _us, clearly v cannot support a loop. But v cannot either sup-
port a cycle, since Σk−1(H0) is hereditary and all edges that v emit go into Σk−1(H0).
So we get a contradiction, and therefore v ∈ ⋃ η.

So now it is clear thatwe have an injectivemap η ↦ H(⋃ η) from the set of hered-
itary subsets of ΓE to the set of saturated hereditary subsets of E0. It is also clear that
it is order preserving.

Now let there be given a saturated hereditary subset H ⊆ E0. For each v ∈ (⋃ ΓE)∩
H, all v′ that belong to the same component as v are elements of (⋃ ΓE) ∩ H. So let
η ⊆ ΓE be the (uniquely determined) set such that⋃ η = (⋃ ΓE)∩H. Since⋃ η ⊆ H, it
is clear that H(⋃ η) ⊆ H. Let H0 = H(⋃ η) ⊆ H. Suppose v ∈ H∖H0. _en v needs to
be a transition state, so v ∈ E0

reg and v does not support a cycle. Consequently, it has to
have a path to at least one component, but it cannot have any path to a component not
in η. Lemma 3.12 now implies that v ∈ H0, which is a contradiction. Consequently,
H0 = H(⋃ η) = H, and therefore themap is surjective.

As an immediate consequence we get the following corollary.

Corollary 3.14 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices, and
assume that E does not have any transition state. _en every hereditary subset of E0 is
saturated and η ↦ ⋃ η is a lattice isomorphism between the hereditary subsets of ΓE
and the saturated hereditary subsets of E0.
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_e following is also clear.

Lemma 3.15 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices. If every
inûnite emitter emits inûnitelymany edges to any vertex it emits any edge to, then BH =
∅ for every saturated hereditary subset H ⊆ E0.

Lemma 3.16 Let E = (E0 , E1 , r, s) be a graphwith ûnitelymany vertices, and assume
that every inûnite emitter emits inûnitelymany edges to any vertex it emits any edge to.
Deûne a map υE ∶ ΓE → Primeγ(C∗(E)) as follows. For each γ0 ∈ ΓE , let υE(γ0)

denote the ideal JH(⋃ ηγ0 )
, where

ηγ0 = ΓE ∖ {γ ∈ ΓE ∣ γ ≥ γ0} .

_is is in fact an element of Primeγ(C∗(E)) and makes υE into a bijection. Moreover,
γ1 ≥ γ2 if and only if υE(γ1) ⊇ υE(γ2). Consequently, υE is a homeomorphism.

Proof From [HS04] and the proof of Lemma 3.5, it is clear that the ideals in
Primeγ(C∗(E)) are exactly the ideals JE0∖M , where M /= ∅ is a maximal tail. As-
sume that M /= ∅ and let H = E0∖M. _at M is amaximal tail means that M satisûes
the conditions (MT1), (MT2), and (MT3) in [HS04]. Condition (MT1) is equivalent
to H being hereditary, while (MT2) is equivalent to H being saturated. Since E0 is
assumed to be ûnite, (MT3) is equivalent to the existence of w ∈ M such that v ≥ w
for all v ∈ M; i.e.,M has a least element (we will use this terminology although this is
only a preorder and not a partial order in general). Let γ0 ∈ ΓE , and let

ηγ0 = ΓE ∖ {γ ∈ ΓE ∣ γ ≥ γ0} .

It is clear that ηγ0 is hereditary. Clearly, by the deûnition above, υE(γ0) deûnes an
ideal. Let

H0 = H(⋃ ηγ0).
We want to show that E0 ∖ H0 is a maximal tail. _e only thing we need to show is
that it has a least element. Choose v0 ∈ γ0, and let v ∈ E0 ∖ H0 be given. Assume
that v /≥ v0. If v ∈ ⋃ ΓE , then v ∈ ⋃ ηγ0 and thus v ∈ H0 (which is a contradiction).
_erefore,wewould need to have that v is a transition state, so v ∈ E0

reg and v does not
support a cycle. _ere exists a path to some component in ΓE , and, clearly, no such
component can be in ΓE ∖ ηγ0 = {γ ∈ ΓE ∣ γ ≥ γ0}. From Lemma 3.12 it follows that
v ∈ H(⋃ ηγ0) = H0, which is a contradiction as well. _erefore, E0 ∖H0 is amaximal
tail, and υE(γ0) is an element of Primeγ(C∗(E)).
From Fact 3.2 and Lemma 3.12 it follows that υE is injective. Given an element

of Primeγ(C∗(E)), then it has to be of the form JH0 for some saturated hereditary
subset H0 ⊊ E0 with E0 ∖H0 having a least element v0. First note that v0 cannot be a
transition state, so v0 ∈ γ0 for some γ0 ∈ ΓE . Let η ⊆ ΓE be such that⋃ η = (⋃ ΓE)∩H0.
Clearly γ0 /∈ η. Let v ∈ γ ∈ ΓE ∖ η. _en v ≥ v0, since v ∈ γ ⊆ E0 ∖ H0. Consequently,
γ ≥ γ0. On the other hand, assume that γ ≥ γ0 and let v ∈ γ. _en v ≥ v0, so
v ∈ E0 ∖H0. Consequently, ΓE ∖ η = {γ ∈ ΓE ∣ γ ≥ γ0}. _us, themap υE is surjective.

_at γ1 ≥ γ2 implies υE(γ1) ⊇ υE(γ2) is clear from the deûnition. _at υE(γ1) ⊇
υE(γ2) implies γ1 ≥ γ2 is clear from the deûnition and Lemma 3.13.
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Lemma 3.17 Let E = (E0 , E1 , r, s) be a graph with ûnitely many vertices.
(i) If every transition state has exactly one edge going out, then H1 ∪ H2 = H1 ∪H2

for all saturated hereditary subsets H1 ,H2 ⊆ E0.
(ii) If γ ∈ ΓE , then H(γ) ∖ γ is the largest proper saturated hereditary subset of H(γ).
(iii) If every transition state has exactly one edge going out, then the collection H(γ)∖

H(γ) ∖ γ, γ ∈ ΓE is a partition of E0.
(iv) _ere exists a graph F with ûnitely many vertices such that every inûnite emitter

emits inûnitelymany edges to any vertex it emits any edge to, every transition state
has exactly one edge going out, E ∼ME F, and C∗(E) ≅ C∗(F),

(v) If every inûnite emitter in E emits inûnitely many edges to any vertex it emits
any edge to and every transition state has exactly one edge going out, then there
exists a graph F with ûnitely many vertices, such that every inûnite emitter emits
inûnitely many edges to any vertex it emits any edge to, F has no transition states
F0 = ⋃ ΓE ⊆ E0, ΓE = ΓF , and they carry the same order ≥,

(3.2) s−1
E (⋃ ΓE) ∩ r−1

E (⋃ ΓE) ⊆ s−1
F (⋃ ΓF) ∩ r−1

F (⋃ ΓF),

and there exists an injective ∗-homomorphism from C∗(E) to C∗(F) ⊗ K such
that the image of each ideal JH(S) is a full corner in JH(S)⊗K for every hereditary
subset S ⊆ ΓE .

(vi) In the setting of part (v), we can get all cyclic components of F to be singletons
at the cost of (3.2) not necessarily holding anymore and only having a canonical
identiûcation of ΓE with ΓF .

Proof (i) Let H1 and H2 be saturated hereditary subsets of E0. Since H1 ∪ H2 is
hereditary, it is enough to show thatH1∪H2 is saturated. Let x ∈ E0 be a regular vertex
such that r(s−1(x)) ⊆ H1∪H2. Suppose x is a transitional vertex. _en by assumption,
s−1(x) = {e}. _erefore, r(s−1(x)) = {r(e)} ⊆ H1 or r(s−1(x)) = {r(e)} ⊆ H2.
Since H1 and H2 are saturated, we have that x ∈ H1 or x ∈ H2, which implies that
x ∈ H1 ∪ H2. Suppose x ∈ γ for some γ ∈ ΓE . _en there exists a path µ = µ1 ⋅ ⋅ ⋅ µn
such that s(µ1) = r(µn) = x (we are using the fact that x is a regular vertex). Since
r(s−1(x)) ⊆ H1 ∪H2 and µ1 ∈ s−1(x), we have that r(µ1) ∈ H1 ∪H2. Since H1 ∪H2 is
hereditary, x = r(µn) ∈ H1 ∪H2.

In both cases, we have shown that x ∈ H1 ∪H2. _erefore, H1 ∪H2 is saturated.
(ii) Let H = H(γ) ∖ γ. Clearly, H is saturated and hereditary, and H ⊆ H(γ).

We want to show that H is a proper subset of H(γ) and γ ∩ H = ∅. So assume ûrst
that γ ∩ H /= ∅. _en H ∖ γ is not saturated. _us, there exists a v ∈ E0

reg such that
r(s−1(v)) ⊆ H ∖ γ and v /∈ H ∖ γ. Since H ∖ γ ⊆ H and H is saturated, v ∈ H. _us
v ∈ γ. Since v ∈ γ ∈ ΓE ,we have that v supports a cyclewithin γ or v is singular—both
being contradictions. Consequently, we have that γ ∩H = ∅. Now it is clear that H is
a proper subset of H(γ). Now we want to show that H is the largest proper saturated
hereditary subset of H(γ). It is enough to show that for all v ∈ H(γ) ∖ H, we have
that H(v) = H(γ). So let v ∈ H(γ)∖H be given. Clearly, H(v) ⊆ H(γ). If v ∈ γ, then
H(v) = H(γ), so H(v) = H(γ). Suppose v ∉ γ. Since H(γ) ∖ γ ⊆ H, we have that
v /∈ H(γ) ∖ γ. So now assume that v ∈ H(γ) ∖ H. Note that H(γ) ∖ γ is saturated,
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and thus H ⊆ H(γ) ∖ γ. _en H(γ) ∖ {v} cannot be saturated, so v ∈ E0
reg and

r(s−1(v)) ⊆ H(γ)∖ {v}. By assumption, wemust have that r(s−1(v)) /⊆ H. Using the
description of the saturation from [BHRS02, Remark 3.1], it follows that there exists
a v0 ∈ γ such that v ≥ v0. _us, H(v) ⊇ H(γ) and H(v) ⊇ H(γ) follows.

(iii) It follows from (ii) that γ ⊆ H(γ) ∖ H(γ) ∖ γ for each γ ∈ ΓE . _e transition
states are the regular vertices not supporting a cycle. Sincewe only have ûnitelymany
vertices, every transition state will have a path to a component (the sinks are also
components). Moreover, since every transition state has exactly one outgoing edge,
each transition state has a unique shortest path to a component through transition
states. Ifwe have a transition state v and the ûrst component every path from v reaches
is γ, then it follows from [BHRS02, Remark 3.1] that v ∈ H(γ). From the proof of (ii),
we have that γ ∩ H(γ) ∖ γ = ∅, so v /∈ H(γ) ∖ γ. _us, we have shown that every
vertex belongs to at least one of the sets H(γ) ∖ H(γ) ∖ γ, γ ∈ ΓE . Let γ, γ′ ∈ ΓE .
If γ ≥ γ′ and γ /= γ′, then γ′ ⊆ H(γ), and therefore γ′ ∩ (H(γ) ∖ H(γ) ∖ γ) = ∅.
If γ /≥ γ′, then H(γ) ∖ γ′ is a saturated set that contains H(γ), and, consequently,
γ′ ∩ H(γ) = ∅. _erefore, the vertices of the components belong to a unique set in
the collection H(γ) ∖ H(γ) ∖ γ, γ ∈ ΓE . Now let v be a transition state and let γ be
the ûrst component every path from v reaches. Assume that v ∈ H(γ′) ∖ H(γ′) ∖ γ′

for a γ′ ∈ ΓE with γ′ /= γ. If γ′ ≥ γ, then γ ⊆ H(γ′) ∖ γ′ and therefore v ∈ H(γ′) ∖ γ′.
So this is a contradiction since v ∈ H(γ′) ∖ H(γ′) ∖ γ′. If γ′ /≥ γ, then we have seen
that γ ∩H(γ′) = ∅ while v ∈ H(γ′) implies that γ ⊆ H(γ′). So this is a contradiction.
_uswe have shown that each transition state belongs to a unique set in the collection
H(γ) ∖H(γ) ∖ γ, γ ∈ ΓE , namely, the ûrst component every path from it reaches.

(iv) First we show how to modify E to get a graph with the property that if v is an
inûnite emitter, then v emits inûnitely many edges to any vertex it emits any edge to.
Let v ∈ E0 be an inûnite emitter. If there exists a vertex u ∈ E0 such that v emits only
ûnitely many edges to u, we partition s−1(v) into two sets,

E1 = {e ∈ s−1(v) ∣ ∣s−1(v) ∩ r−1(r(e))∣ <∞} ,
E2 = {e ∈ s−1(v) ∣ ∣s−1(v) ∩ r−1(r(e))∣ =∞} ;

i.e., E1 consists of the edges out of v that only have ûnitely many parallel edges. Note
that since E0 is ûnite, E1 is a ûnite set. Hence,we can performMove (O) according to
this partition, resulting in a graph E′ that is move equivalent to E. Assume v was split
into vertices v1 and v2. In E′, v2 is an inûnite emitter with the property that it emits
inûnitely many edges to any vertex it emits any edge to, and any inûnite emitter in E
that already had that property keeps it. On the other hand v1 is a ûnite emitter. Since
E0 is ûnite,we can do the above process a ûnite number of times, endingwith a graph
G that is move equivalent to E, and with the property that if v is an inûnite emitter,
then v emits inûnitely many edges to any vertex it emits any edge to.

Let n ∈ N and let v ∈ G0 be a transition state of G, i.e., a regular vertex that is not
the base point of a cycle. Assume that ∣s−1(v)∣ ≥ 2, and that the shortest path from
v to a component of G has length n. Since v is regular, we can partition s−1(v) into
ûnitely many disjoint singletons E′1,E

′
2 , . . . ,E

′
∣s−1(v)∣. Now we can perform Move (O)

according to this partition, resulting in a graph G′ that is move equivalent to G such
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that vertices that v was split into are still transition states, but each having exactly one
outgoing edge, and the shortest path from each of them to a component has length
at least n. A vertex in G′ is a transition state if and only if it is one of the vertices
that v was split into or it is a transition state of G. All transition states in G that had
exactly one outgoing edge, and a path to a component of length n or shorter will still
have exactly one outgoing edge and a path of length at most n. Also, every inûnite
emitter inG′ emits inûnitelymany edges to any vertex it emits any edge to. We repeat
this for all transition states emitting at least two edges and with the shortest path to
a component having length n. By induction on n, we can get a graph F with ûnitely
many vertices such that every inûnite emitter emits inûnitelymany edges to any vertex
it emits any edge to and every transition state has exactly one edge going out.

We got F from E by usingMove (O) a number of times. _erefore,we clearly have
that E ∼ME F, and it follows from Proposition 2.8 that C∗(E) ≅ C∗(F).

(v) Let F be the graph obtained by continuing to collapse all transitional vertices
of E. It is clear from the construction of F that F0 = ⋃ ΓE ⊆ E0, ΓE = ΓF , they carry the
same order, and s−1

E (⋃ ΓE)∩ r−1
E (⋃ ΓE) ⊆ s−1

F (⋃ ΓF)∩ r−1
F (⋃ ΓF). Now, there exists an

injective ∗-homomorphism Φ1∶C∗(F) → C∗(E) such that Φ1(C∗(F)) = PC∗(E)P,
where P is the sum of vertex projections of the vertices from F. Since H(F0) = E0,
we have that Φ1(C∗(F)) is a full corner of C∗(E). _erefore, Φ1(JH(S)) = PJH(S)P
for every hereditary subset S ⊆ ΓF . By [Bro77] there exists a partial isometry v in
M(C∗(E) ⊗ K) such that v∗v = Φ1(1C∗(F)) ⊗ 1B(ℓ2) and vv∗ = 1M(C∗(E)⊗K). Set
Φ2 = Ad(v) ○ (Φ1 ⊗ idK). Hence, Φ2∶C∗(F)⊗K→ C∗(E)⊗K is a ∗-isomorphism
such that Φ2(JH(S) ⊗ K) is a full corner of JH(S) ⊗ K for every hereditary subset
S ⊆ ΓF .

Set Ψ = Φ−1
2 ○ κ, where κ is the embedding C∗(E) to C∗(E) ⊗ K given by a ↦

a⊗e11. _erefore,Ψ∶C∗(E)→ C∗(F)⊗K is an injective ∗-homomorphism such that
Ψ(JH(S)) is a full corner of JH(S) for every hereditary subset S ⊆ ΓF . Since ΓF = ΓE ,
S is hereditary in ΓF if and only if S is hereditary in ΓE . So, Ψ∶C∗(E)→ C∗(F)⊗K is
an injective ∗-homomorphism such that Ψ(JH(S)) is a full corner of JH(S) for every
hereditary subset S ⊆ ΓE .

(vi) In addition to the process in (v) of collapsing all transitional vertices of E, we
also collapse all regular vertices of E that are base points of cyclic components (but not
of a loop). Using a similar argument as the proof of (v), we get the desired result.

Proposition 3.18 Let E be a graph with ûnitelymany vertices such that every inûnite
emitter emits inûnitely many edges to any vertex it emits any edge to. In Lemma 3.16
we have deûned a homeomorphism υE from ΓE to Primeγ(C∗(E)). _is homeomor-
phism induces a lattice isomorphism from the open subsets of ΓE to the open subsets of
Primeγ(C∗(E)). We also denote this map υE .

Let ωE denote themap given by Lemma 3.13 and Fact 3.2, i.e.,

ωE(η) = JH(⋃ η)

for every hereditary subset η of ΓE , and let εE denote themap fromO(Primeγ(C∗(E)))
to Iγ(C∗(E)) given in Lemma 3.6, i.e.,

εE(O) = ⋂(Primeγ(C∗(E)) ∖ O)
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for every open subset O ⊆ Primeγ(C∗(E)). _en we have a commuting diagram

O(ΓE)

υE≅

��

≅

ωE // Iγ(C∗(E))

O(Primeγ(C∗(E))) ≅

εE // Iγ(C∗(E))

of lattice isomorphisms.

Proof _e only new statement in the proposition is the commutativity of the di-
agram. Note that the inverse of the map εE is also given in Lemma 3.6, and it is
I↦ ΓE ∖ hullγ(I). Let η ⊆ ΓE be a hereditary subset. _en

ε−1
E ○ ωE(η) = Primeγ(C∗(E)) ∖ hullγ(JH(⋃ η)).

From the description of the elements in Primeγ(C∗(E)) in the proof of Lemma 3.16,
we see that this set is exactly the set

{JH(⋃(ΓE∖{γ∈ΓE ∣γ≥γ0}))
∣ γ0 ∈ ΓE ,H(⋃(ΓE ∖ {γ ∈ ΓE ∣ γ ≥ γ0})) /⊇ H(⋃ η)} .

But this is exactly the image of

{γ0 ∈ ΓE ∣ ΓE ∖ {γ ∈ ΓE ∣ γ ≥ γ0} /⊇ η}
under the homeomorphism υE . Since η is hereditary, this set is exactly η.

Example 3.19 We will now take a look at an example of how we get the space
Primeγ(C∗(E)) from the space ΓE for a graph E with ûnitelymany vertices (where all
the inûnite emitters emit inûnitely many edges to any vertex they emit any edge to).
Let us say that the ordered set ΓE consists of four points γ1, γ2, γ3, γ4 with the relations
γ1 ≥ γ3, γ2 ≥ γ3, γ3 ≥ γ4 (and thus also γ1 , γ2 ≥ γ4), while γ1 /≥ γ2 and γ2 /≥ γ1. _is
can be illustrated by the component graph as in Figure 2.

γ1

  

γ2

~~
γ3

��
γ4

Figure 2. _e component graph ΓE

For each γ i , i = 1, 2, 3, 4, we consider the hereditary subset

η i = ΓE ∖ {γ ∈ ΓE ∣ γ ≥ γ i} .

_ese subsets are illustrated in Figure 3 by encircling the elements of the subset.
So the corresponding gauge invariant ideals υE(γ i) = ωE(η i) of C∗(E) are

JH(⋃ η i)
, i.e., JH(γ2∪γ3∪γ4)

, JH(γ1∪γ3∪γ4)
, JH(γ4)

, JH(∅)
= {0}, respectively. _e topol-

ogy on Primeγ(C∗(E)) is given by the specialization preorder, so we can illustrate it
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γ1

��

γ2

��
γ3

��
γ4

(a) _e set η1

γ1

��

γ2

��
γ3

��
γ4

(b) _e set η2

γ1

""

γ2

||
γ3

��
γ4

(c) _e set η3

γ1

  

γ2

~~
γ3

��
γ4

(d) _e set η4 — it is the empty set

Figure 3. _e encircled components show the elements of η i , for
i = 1, 2, 3, 4

as in Figure 4, where an arrow (or path) from x to y indicates that x is in the closure
of {y}.

JH(γ2∪γ3∪γ4)

&&

JH(γ1∪γ3∪γ4)

xx
JH(γ4)

��
{0}

Figure 4. An illustration of Primeγ(C∗(E))

Example 3.20 In the case where the ordered set ΓE is linearly ordered

γ1 ≥ γ2 ≥ ⋅ ⋅ ⋅ ≥ γn

(where all the inûnite emitters emit inûnitelymany edges to any vertex they emit any
edge to) we get hereditary subsets η i = {γ ∣ γ i > γ} and prime gauge invariant ideals

pi = υE(γ i) = ωE(η i) = JH(⋃ η i)
=
⎧⎪⎪⎨⎪⎪⎩

JH(γ i+1)
i < n

{0} i = n.

Note that the pi decrease as i increases. We denote the corresponding topological
space by Xn and note that it is the Alexandrov space of a linear order on a set of n
elements.
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3.3 Reduced Filtered K-theory

Let X be a topological space satisfying the T0 separation property and letA be aC∗-al-
gebra over X. For open subsets U1 ,U2 ,U3 of X with U1 ⊆ U2 ⊆ U3, let Y1 = U2 ∖U1,
Y2 = U3 ∖U1 ,Y3 = U3 ∖U2 ∈ LC(X). _en the diagram

K0(A(Y1))
ι∗ // K0(A(Y2))

π∗ // K0(A(Y3))

∂∗
��

K1(A(Y3))

∂∗

OO

K1(A(Y2))π∗
oo K1(A(Y1))ι∗

oo

is an exact sequence. _e collection of all such exact sequences is an invariant of the
C∗-algebras over X o�en referred to as the ûltered K-theory. We use a reûned notion
here.

Deûnition 3.21 Let X be a ûnite topological space satisfying the T0 separation prop-
erty and letA be a C∗-algebra over X. Note that all singletons of X are locally closed.
For each x ∈ X, we let Sx denote the smallest open subset that contains x, and we

let Rx = Sx ∖ {x}, which is an open subset. As mentioned above, we get a cyclic six
term exact sequence in K-theory

(3.3)

K0(A(O)) // K0(A(U)) // K0(A(U ∖ O))

��
K1(A(U ∖ O))

OO

K1(A(U))oo K1(A(O))oo

wheneverwe have two open subsetsO ⊆ U ⊆ X. It follows from [CET12,_eorem4.1]
that the map from K0 to K1 is the zero map whenever A(O) and A(U) are gauge
invariant ideals of a graph C∗-algebra.

Let

I0(A) = {Rx ∣ x ∈ X , Rx /= ∅} ∪ {Sx ∣ x ∈ X} ∪ {{x} ∣ x ∈ X} ,
I1(A) = {{x} ∣ x ∈ X} ,

and let Imm(x) denote the set

{y ∈ X ∣ Sy ⊊ Sx∧ /∃ z ∈ X∶ Sy ⊊ Sz ⊊ Sx} .

_e reduced ûltered K-theory of A, FKR(X;A), consists of the families of groups
(K0(A(V)))V∈I0(A) and (K1(A(O)))O∈I1(A) togetherwith themaps in the sequences

(3.4) K1(A({x})) Ð→ K0(A(Rx))Ð→ K0(A(Sx)) Ð→ K0(A({x}))

originating from the sequence (3.3), for all x ∈ X with Rx /= ∅, and the maps in the
sequences

(3.5) K0(A(Sy))→ K0(A(Rx))
originating from the sequence (3.3), for all pairs (x , y) ∈ X with y ∈ Imm(x) and
Imm(x) ∖ {y} /= ∅.
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Let B be a C∗-algebra over X. A homomorphism from FKR(X;A) to FKR(X;B)
consists of families of group homomorphisms

(ϕV ,0∶K0(A(V))Ð→ K0(B(V)))V∈I0(A)
,

(ϕO ,1∶K1(A(O))Ð→ K1(B(O)))O∈I1(A)

such that all the ladders coming from the above sequences commute. A homomor-
phism is an isomorphism exactly if the group homomorphisms in the family are group
isomorphisms.
Analogously,we deûne the ordered reduced ûltered K-theory ofA, FK+R(X;A), just

as FKR(X;A),wherewe also consider the order on all theK0-groups, and for a homo-
morphism respectively an isomorphism,we demand that the group homomorphisms
(resp. the group isomorphisms) between the K0-groups are positive homomorphisms
(resp. order isomorphisms). Hereby we get — in the obvious way — two functors
FKR(X; ⋅ ) and FK+R(X; ⋅ ) that are deûned on the category of C∗-algebras over X.

Remark 3.22 Let E be a graph. _en C∗(E) has a canonical structure as
a Primeγ(C∗(E))-algebra. So if E has ûnitely many vertices, or, more gener-
ally, if Primeγ(C∗(E)) is ûnite, then we can consider the reduced ûltered K-
theory, FKR(Primeγ(C∗(E)),C∗(E)). We use the results of [CET12] to identify the
K-groups and the homomorphisms in the cyclic six term sequences using the adja-
cency matrix of the graph.

Remark 3.23 Let A be an X-algebra. Since I ↦ I ⊗ K is a lattice isomorphism
between I(A) and I(A ⊗ K), the C∗-algebra A ⊗ K is an X-algebra in a canonical
way, and the embedding κA given by a ↦ a⊗ e11 is an X-equivariant homomorphism
from A to A ⊗K. Also, it is clear that FKR(X; κA) is an (order) isomorphism. Note
also that the invariant FKR(X; ⋅ ) has been considered in [ABK14a,ABK14b].

Remark 3.24 Appealing to [APPSM09] instead of [HS04], one can deûne Primeγ
also for Leavitt path algebras over C, and establish most of the results of this section
also in a purely algebraic setting.1 Since [APPSM09] only discusses row-ûnite graphs,
and here we insist that there are only ûnitely many vertices, this applies only to ûnite
graphs.

4 Specific Preliminaries

In this sectionwe introduce concepts and notation that are required for the remainder
of the paper; these aremainly generalizations of concepts from the interplay between
shi� spaces and Cuntz–Krieger algebras used in [Res06]. In Sections 4.1 and 4.2, we
generalize various concepts from the work of Boyle andHuang—most notably con-
cerning block matrices, the K-web, and GLP- and SLP-equivalence — to allow for
rectangular diagonal blocks or vacuous blocks. In Section 4.3, we introduce certain
block forms, which will ensure that we can use the developed theory on the graphs.

1Note added in proof: Details are provided in [ERRS17].
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In Section 4.4, we explain how the reduced ûltered K-theory, the K-web, and GLP-
equivalences are interrelated. In Section 4.5, the temperature for a graph C∗-algebra
and the standard form for a pair of graphs are introduced; for each gauge simple sub-
quotient, the temperature tells whether it is a simple AF algebra, a Kirchberg algebra,
or nonsimple, while a pair of graphs being in standard form ensures that we can use
the K-web, GLP- and SLP-equivalences instead of working directly with the reduced
ûltered K-theory.

4.1 Block Matrices and Equivalences

Notation 4.1 For m, n ∈ N0,we letM(m×n,Z) denote the set of group homomor-
phisms from Zn to Zm . When m, n ≥ 1, we can equivalently view this as the m × n
matrices over Z, where composition of group homomorphisms corresponds to ma-
trixmultiplication; the (zero) group homomorphisms for m = 0 or n = 0, wewill also
call empty matrices with zero rows or columns, respectively.
For m, n ∈ N, we let M+(m × n,Z) denote the subset ofM(m × n,Z), where all

entries in the corresponding matrix are positive. For an m × n matrix, we will also
write B > 0 whenever B ∈M+(m × n,Z).
For an m × n matrix B, where m, n ∈ N, we let B(i , j) denote the (i , j)-th entry of

the corresponding matrix, i.e., the entry in the i-th row and j-th column.

Deûnition 4.2 Let m, n ∈ N. For an m × n matrix B over Z, we let gcdB be the
greatest common divisor of the entries B(i , j), for i = 1, . . . ,m, j = 1, . . . , n, if B is
nonzero, and zero otherwise.

Assumption 4.3 Let N ∈ N. For the rest of the paper, we let P = {1, 2, . . . ,N}
denote a partially ordered set with order ⪯ satisfying i ⪯ j ⇒ i ≤ j, for all i , j ∈ P,
where ≤ denotes the usual order onN. We denote the corresponding irre�exive order
by ≺.

Deûnition 4.4 Let m = (m i)N
i=1 ,n = (n i)N

i=1 ∈ NN
0 bemultiindices. We writem ≤ n

ifm i ≤ n i for all i = 1, 2, . . . ,N , and in that case,we let n−m be (n i −m i)N
i=1. We also

letm+n denote (m i +n i)N
i=1 for anymultiindices, andwe let ∣m∣ = m1+m2+⋅ ⋅ ⋅+mN .

We denote themultiindex with 1 on every entry by 1.
We letM(m×n,Z) denote the set of group homomorphisms fromZn1⊕Zn2⊕⋅ ⋅ ⋅⊕

ZnN toZm1 ⊕Zm2 ⊕⋅ ⋅ ⋅⊕ZmN , and for such a homomorphism B,we let B{i , j} denote
the component of B from the j-th direct summand to the i-th direct summand. We
also use the notation B{i} for B{i , i}. Using composition of homomorphisms,we get
in a natural way a categoryMN with objects NN

0 and with the morphisms from n to
m being M(m × n,Z). Moreover,

(BC){i , j} =
N

∑
k=1
B{i , k}C{k, j},

whenever B ∈M(m × n,Z) and C ∈M(n × r,Z) for amultiindex r.
Amorphism B ∈M(m × n,Z) is said to be in MP(m × n,Z), if

B{i , j} /= 0Ô⇒ i ⪯ j,
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for all i , j ∈ P. It is easy to verify that this gives a subcategory MP with the same
objects but MP(m × n,Z) as morphisms.

Moreover, for a subset s of P, with a slight misuse of notation, we let B{s} ∈
Ms((m i)i∈s × (n i)i∈s ,Z) denote the component of B from⊕i∈s Zn i to⊕i∈s Zm i .

We let M(n,Z) denoteM(n × n,Z), andMP(n,Z) denoteMP(n × n,Z).
For n, we let GLP(n,Z) denote the automorphisms in MP(n,Z). _en U ∈

GLP(n,Z) if and only if U ∈ MP(n,Z) and U{i} is a group automorphism (mean-
ing that the determinant as a matrix is ±1 whenever n i /= 0, for every i ∈ P). An
automorphism U ∈ GLP(n,Z) is in SLP(n,Z) if the determinant of U{i} is 1 for all
i ∈ P with n i /= 0.

Remark 4.5 Let m,n ∈ NN
0 be multiindices. If ∣m∣ > 0 and ∣n∣ > 0, we can equiva-

lently view the elements B ∈M(m × n,Z) as block matrices

B =
⎛
⎜
⎝

B{1, 1} . . . B{1,N}
⋮ ⋮

B{N , 1} . . . B{N ,N}

⎞
⎟
⎠
,

where B{i , j} ∈M(m i × n j ,Z) with B{i , j} the empty matrix if m i = 0 or n j = 0.
Note that from this point of view, the matrices in MP(m × n,Z) are upper tri-

angular matrices with a certain zero block structure dictated by the order on P, and
the matrices in GLP(n,Z) (resp. SLP(n,Z)) are matrices in MP(m × n,Z) with all
nonempty diagonal blocks having determinant ±1 (resp. 1).

Note that if B ∈ M(m × n,Z) and C ∈ M(n × r,Z) for a multiindex r, then the
matrix product makes sense, and — as matrices— we have that

(4.1) (BC){i , j} = ∑
k∈P,nk /=0

B{i , k}C{k, j}

for all i , j ∈ P with m i /= 0 and r j /= 0.
We will therefore also allow ourselves to talk about matrices with no rows or no

columns (by considering it as an element of M(m × n,Z) with m = 0 or n = 0);
and then B{s} for a subset s of P as deûned above is just the principal submatrix
corresponding to indices in s (remembering the block structure).

Deûnition 4.6 Let m and n bemultiindices. Matrices B and B′ in MP(m × n,Z)
are said to be GLP-equivalent (resp. SLP-equivalent) if there exist U ∈ GLP(m,Z)
and V ∈ GLP(n,Z) (resp. U ∈ SLP(m,Z) and V ∈ SLP(n,Z)) such that UBV = B′ .

Deûnition 4.7 Let r = (r i)N
i=1 ∈ NN

0 be a multiindex. We now want to deûne a
functor ιr from MN to MN . For objects, we let ιr(n) = n + r for all multiindices
n ∈ NN

0 . We deûne an embedding ιr from M(m × n,Z) to M((m + r) × (n + r),Z),
for all multiindices m = (m i)N

i=1, n = (n i)N
i=1 ∈ NN

0 , as follows. _e block ιr(B){i , j}
has B{i , j} as upper le� corner. Outside this corner, this block is equal to the zero
matrix if i /= j. If i = j, then the lower right r i × r i corner of this (diagonal) block is
the identitymatrix and zero elsewhere (outside the upper le� and lower right corner).

It is easy to check that ιr gives a faithful functor fromMN toMN that also induces
a faithful functor from MP to MP.
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Note that this is a generalization of the deûnitions in [Boy02, BH03] (in the ûnite
matrix case) to the cases with rectangular diagonal blocks or vacuous blocks.

Remark 4.8 We see that GLP(n,Z) and SLP(n,Z) are groups for all multiindices
n = (n i)N

i=1 ∈ NN
0 . We also see that ιr is an injective homomorphisms fromGLP(n,Z)

to GLP(n+ r,Z) and from SLP(n,Z) to SLP(n+ r,Z) preserving the identity, for all
multiindices n, r ∈ NN

0 (since it is a faithful functor). Moreover, ιr′ ○ ιr = ιr+r′ , for all
multiindices r, r′ ∈ NN

0 , and ιr is the identity functor whenever r = (0, 0, . . . , 0).

4.2 K-web and Induced Isomorphisms

We deûne the K-web, K(B), of amatrix B ∈MP(m×n,Z) and describe how aGLP-
equivalence (U ,V)∶B → B′ induces an isomorphism κ(U ,V)∶K(B)→ K(B′).
For an element B ∈ M(m × n,Z) (i.e., a group homomorphism B∶Zn → Zm), we

deûne, as usual, cok B to be the abelian group Zm/BZn and kerB to be the abelian
group {x ∈ Zn ∣ Bx = 0}. Note that if m = 0, then cok B = {0} and kerB = Zn , and if
n = 0, then cok B = Zm and kerB = {0}.
For m, n ∈ N0, B, B′ ∈ M(m × n,Z), U ∈ GL(m,Z) and V ∈ GL(n,Z) with

UBV = B′, it is now clear that this equivalence induces isomorphisms

cok B
ξ(U ,V)

[x]↦[Ux] // cok B′ and kerB
δ(U ,V)

[x]↦[V−1x] // kerB′ .

Lemma 4.9 Consider P = P2 = {1, 2} as a partially ordered set and let

B ∈MP(m × n,Z).
_en the sequence

cok B{1}
[v]↦[(

v
0 )] // cok B

[(
v
w )]↦[w]

// cok B{2}

0
��

kerB{2}

v↦[B{1,2}v]

OO

kerB
w↤(

v
w )

oo kerB{1}
(
v
0 )↤v

oo

is exact.
Moreover, if B and B′ are elements ofMP(m×n,Z) and (U ,V)∶B → B′ is aGLP-

equivalence, then (U ,V) induces an isomorphism

(ξ(U{1},V{1}) , ξ(U ,V) , ξ(U{2},V{2}) , δ(U{1},V{1}) , δ(U ,V) , δ(U{2},V{2}))
of (cyclic six-term) exact sequences.

Proof _e ûrst part of the lemma follows directly from the snake lemma applied to
the diagram

0 // Zn1 //

B{1}
��

Zn1 ⊕Zn2 //

B
��

Zn2

B{2}
��

// 0

0 // Zm1 // Zm1 ⊕Zm2 // Zm2 // 0.
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_e second part of the proof is a straightforward veriûcation.

Completely analogous to [BH03], wemake the following deûnitions.

Deûnition 4.10 A subset c of P is called convex if c is nonempty and for all k ∈ P,
{i , j} ⊆ c and i ⪯ k ⪯ j Ô⇒ k ∈ c.

A subset d of P is called a diòerence set if d is convex and there are convex sets r and
s in P with r ⊆ s such that d = s ∖ r and

i ∈ r and j ∈ d Ô⇒ j â i.

Whenever we have such sets r, s and d = s ∖ r, we get a canonical functor from MP

to MP2 , where P2 = {1, 2} with the usual order if there exist i ∈ r and j ∈ d such that
i ⪯ j, and the trivial order otherwise. _us, such sets will also give a canonical (cyclic
six-term) exact sequence as above.

Deûnition 4.11 Let B ∈MP(m×n,Z). _e (reduced) K-web of B, K(B), consists of
a family of abelian groups together with families of group homomorphisms between
these, as described below.
For each i ∈ P, let r i = { j ∈ P ∣ j ≺ i} and s i = { j ∈ P ∣ j ⪯ i}. Note that if r i in

the above deûnition is nonempty, then {i} = s i ∖ r i is a diòerence set. We let Imm(i)
denote the set of immediate predecessors of i (we say that j is an immediate predecessor
of i if j ≺ i and there is no k such that j ≺ k ≺ i).
For each i ∈ P with r i /= ∅, we get an exact sequence from Lemma 4.9,

(4.2) kerB{i}Ð→ cok B{r i}Ð→ cok B{s i}Ð→ cok B{i}.
Moreover, for every pair (i , j) ∈ P × P satisfying j ∈ Imm(i) and Imm(i) ∖ { j} /= ∅
is s j ⊊ r i ; consequently we have a homomorphism

(4.3) cok B{s j}Ð→ cok B{r i}
originating from the exact sequence above (cf. Lemma 4.9 used on the division into
the sets r i , s j and r i ∖ s j).

Set

IP0 = {r i ∣ i ∈ P and r i /= ∅} ∪ {s i ∣ i ∈ P} ∪ {{i} ∣ i ∈ P} ,
IP1 = {i ∈ P ∣ r i /= ∅} .

_e K-web of B, denoted by K(B), consists of the families (cok B{c})c∈IP0 and
(kerB{i})i∈IP1

together with all the homomorphisms from the sequences (4.2) and
(4.3). Let B′ be an element ofMP(m′ × n′ ,Z). By a K-web isomorphism, κ∶K(B) →
K(B′), wemean families

(κc ,0∶ cok B{c}→ cok B′{c}) c∈IP0 and (κ i ,1∶kerB{i}→ kerB′{i}) i∈IP1

of isomorphisms satisfying that the ladders coming from the sequences in K(B) and
K(B′) commute.
By Lemma 4.9, any GLP-equivalence (U ,V)∶B → B′ induces a K-web isomor-

phism from B to B′. We denote this induced isomorphism by κ(U ,V).
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Remark 4.12 We note the obvious likeness between the K-web and the reduced
ûltered K-theory. _ere are two fundamental diòerences: In K(B) we never consider
orders, and the groups kerB{i} are only appearing in K(B) when {i} /= s i , whereas
the corresponding K1-group always appears in FKR(C∗(EB+I)).

Remark 4.13 It is clear that the K-webs K(B) and K(ιr(B)) are canonically iso-
morphic for all multiindices m,n, r ∈ NN

0 and all B ∈MP(m × n,Z).
Note also that the K-webs K(B) and K(−B) are canonically isomorphic, and that

(U ,V) is aGLP-equivalence (respectively SLP-equivalence) from B to B′ if and only
if (U ,V) is a GLP-equivalence (respectively SLP-equivalence) from −B to −B′, and
they will induce exactly the same K-web isomorphisms under the above identiûca-
tion. Note that this identiûcation will change the generators of the cokernels and the
kernels. In this way, we also get a canonical identiûcation of the K-webs K(B) and
K(−ιr(−B)) by embedding a vector by setting it to be zero on the new coordinates.
_is identiûcation preserves the canonical generators of the cokernels and kernels,
which will be of importance when we consider positivity.

Remark 4.14 _e deûnitions above are completely analogous to the deûnitions in
[BH03], and are the same in the casewherem i = n i /= 0 for all i ∈ P. Note that the last
homomorphism in (4.2) is really not needed, because commutativity with this map is
automatic.

_e reasonweneed touseK(−ιr(−B)) rather thanK(ιr(B)) (as in [Boy02,BH03]),
is thatwe let B = B●E ,whereBE = AE−I rather than I−AE (as done in [Boy02,BH03]).
One of the beneûtswith this approach is that it is somewhat more convenient towork
with positivematrices instead of negativematrices, and Boyle actually does this partly
himself in his proof of the factorization theorem; cf. [Boy02, Section 4]. _e reason
thatwe do not deûne ιr as extending by−1’s instead of 1’s is crucial. _iswould force us
to have one deûnition of embeddings for the GLP and SLP-matrices used for GLP-
equivalences and SLP-equivalences and another for the matrices arriving from the
adjacencymatrices. Moreover, such a deûnition would not give a functor. Both these
problemswould be very inconvenient for ourwork. _us, this is amatter of choosing
either to have the convenience of working with positive matrices or to not need the
two minuses in K(−ιr(−B)). We have chosen to use the former convention.

4.3 Block Structure for Graphs

Deûnition 4.15 Let E = (E0 , E1 , r, s) be a graph. We write BE ∈M○
P(m × n,Z) if

● P satisûesAssumption 4.3, and there is an isomorphism YBE fromP to ΓE such that
YBE and Y

−1
BE
are order reversing;

● E has ûnitely many vertices;
● every inûnite emitter emits inûnitelymany edges to any vertex it emits any edge to;
● every transition state has exactly one edge going out;
● BE is an n× n block matrix where the vertices of the i-th block correspond exactly

to the set H(YBE (i)) ∖H(YBE (i)) ∖ YBE (i);
● B●E ∈MP(m × n,Z).
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We write BE ∈ M○○
P (m × n,Z) if BE ∈ M○

P(m × n,Z) and E does not have any
transition states, and we write BE ∈ M○○○

P (m × n,Z) if BE ∈ M○○
P (m × n,Z) and

∣γ∣ = 1, for every cyclic component γ ∈ ΓE .
According to Lemma 3.17(iv), (v), and (vi), for every graph E with ûnitely many

vertices, there exist graphs E′, E′′ and E′′′ such that

Primeγ(C∗(E)) ≅ Primeγ(C∗(E′)) ≅ Primeγ(C∗(E′′)) ≅ Primeγ(C∗(E′′′))

in a canonical way and BE′ ∈ M○
P(m′ × n′ ,Z), BE′′ ∈ M○○

P (m′′ × n′′ ,Z), BE′′′ ∈
M○○○

P (m′′′ × n′′′ ,Z), C∗(E) ≅ C∗(E′), C∗(E)⊗K ≅ C∗(E′′)⊗K and C∗(E)⊗K ≅
C∗(E′′′)⊗K via equivariant isomorphisms.

If we have BE ∈ M○
P(m × n,Z) and BE′ ∈ M○

P(m′ × n′ ,Z), then we say that a
∗-homomorphism Φ from C∗(E) to C∗(E′) (or from C∗(E)⊗K to C∗(E′)⊗K) is
P-equivariant if Φ is Primeγ(C∗(E))-equivariant under the canonical identiûcation
Primeγ(C∗(E)) ≅ ΓE ≅ P ≅ ΓE′ ≅ Primeγ(C∗(E′)) coming from the block structure.

Note that the conditions above are not only conditions on the graph; they are also
conditions on the adjacency matrix and how we write it (indexed over {1, . . . , ∣E0∣}).
In addition to some assumptions about the graph, we choose a speciûc order of the
vertices and index themover {1, . . . , ∣E0∣}, andwe have then implicitly chosen an iso-
morphism ΓE ≅ P for some appropriate order onP = {1, 2, . . . , ∣ΓE ∣}. In general, there
might bemany diòerent such isomorphisms for the same partially ordered set P that
work depending on the order chosen of the vertices (if P admits a nontrivial auto-
morphism), and it might also be possible to choose an order reversing isomorphism
ΓE ≅ P′, where P′ has a diòerent order than P.

4.4 Reduced Filtered K-theory, K-web, and GLP-equivalence

Let (P, ⪯) be a partially ordered set that satisûes Assumption 4.3. We let PT denote
the set Pwith order deûned by i ⪯T j in PT if and only if N + 1− j ⪯ N + 1− i in P, for
i = 1, 2, . . . ,N . _e partially ordered set (PT , ⪯T) is really the setP equippedwith the
opposite order, followed by a permutation to ensure that it satisûes Assumption 4.3.
For every multiindexm = (m1 ,m2 , . . . ,mN) we let mT = (mN , . . . ,m2 ,m1), and we
let Jm denote the ∣m∣ × ∣m∣ permutation matrix that reverses the order.

Now assume that we have a graph E with ûnitely many vertices such that BE ∈
M○○

P (mE × nE ,Z). It is easy to see that B●E ∈ MP(mE × nE ,Z) is equivalent to
JnE (B●E)

T JmE ∈ MPT(nT
E ×mT

E ,Z). Now assume that we also have a graph F with
ûnitely many vertices such that BF ∈M○○

P (mF × nF ,Z). For notational convenience,
we let

CE = JnE(B●E)
T
JmE , CF = JnF(B●F)

T
JmF .

With the usual description of the K-theory and six term exact sequences for graph
C∗-algebras (cf. [CET12]), we see that a reduced ûltered K-theory isomorphism from
FKR(P;C∗(E)) to FKR(P;C∗(F)) corresponds exactly to a (reduced) K-web iso-
morphism from K(CE) to K(CF) togetherwith an isomorphism from ker(CE{i}) to
ker(CF{i}) for every i ∈ (PT)min , where

Pmin = {i ∈ P ∣ j ⪯ i ⇒ i = j} and (PT)min = {i ∈ P ∣ j ⪯T i ⇒ i = j} .
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Positivity is easy to describe on the gauge simple subquotients. For components
with a vertex supporting at least two distinct return paths, the positive cone is all of
K0 (since the corresponding subquotient is aKirchberg algebra in theUCT class). For
components where each vertex supports exactly one return path, the positive cone is
generated by the class of the projections pv , where v are in this component (the cor-
responding subquotient is stably isomorphic to C(S1)). If such a cyclic component
is a singleton, the ordered K0-group is (Z,N0) under the canonical identiûcations.
For components consisting of a single singular vertex not supporting a cycle, the pos-
itive cone is generated by the class of the projection pv , where v is the vertex in the
component (in this case the subquotient is stably isomorphic toK). Under the canon-
ical identiûcations, the ordered K0-group is also (Z,N0). _e description of the K0-
groups for gauge nonsimple subquotients (or just gauge nonsimple ideals), turns out
to be more complicated in general (when the C∗-algebra is not purely inûnite); see
[Tom03,_eorem 2.2] for a general description of the order. As it turns out, only the
order of the gauge simple subquotients will play a role; as a result of our classiûcation
result,we see that the information stored in the order of the other groups is redundant
(see Remark 6.3).

We see that a necessary condition for having an isomorphism between the reduced
ûltered K-theories is that nE − mE = nF − mF . So assume this holds and choose
m,n ∈ NN

0 such thatmE ,mF ≤m and nE ,nF ≤ n, and n−m = nE−mE = nF−mF . Let
rE =m−mE = n−nE and let rF =m−mF = n−nF . _en theK-webs ofK(−ιrTE (−CE))
and K(−ιrTF (−CF)) are canonically isomorphic to K(CE) and K(CF), respectively,
and ker(CE{i}) and ker(CF{i}) are canonically isomorphic to ker(−ιrTE (−CE){i})
and ker(−ιrTF (−CF){i}) for every i ∈ (PT)min . We see that a necessary condition
for having a positive isomorphism between the reduced ûltered K-theories is that
under the isomorphisms ΓE ≅ P ≅ ΓF we have exactly the same strongly connected
components, the same cyclic strongly connected components, the same sinks, and the
same inûnite emitters not supporting a cycle.

It is clear that (U ,V) ↦ ((JnV Jn)T , (JmU Jm)T) gives a one-to-one corre-
spondence between GLP-equivalences (resp. SLP-equivalences) from −ιrE (−B●E) to
−ιrF (−B●F) and GLPT-equivalences (resp. SLPT-equivalences) from −ιrTE (−CE) to
−ιrTF (−CF).

So every GLP-equivalence (U ,V) from −ιrE (−B●E) to −ιrF (−B●F) will determine
a reduced ûltered K-theory isomorphism from FKR(P;C∗(E)) to FKR(P;C∗(F)).
We call this isomorphism FKR(U ,V). In particular, if m = mE = mF and
n = nE = nF , then every GLP-equivalence (U ,V) from B●E to B●F will determine
a reduced ûltered K-theory isomorphism FKR(U ,V) from FKR(P;C∗(E)) to
FKR(P;C∗(F)). Note that VT induces the isomorphisms between the K0-groups
while (UT)−1 induces the isomorphisms between the K1-groups with the standard
identiûcation of the K-groups.

Note that the hereditary subsets of vertices— as usually deûned for graphs, when
we consider graph C∗-algebras — correspond to subsets S of P satisfying that i ⪯ j
implies that j ∈ S whenever i ∈ S (cf. the order reversing bijection between P and
ΓE in Deûnition 4.15). _is is due to that fact that we generally do not work with the
transposed matrix in this paper, since we ûnd it more convenient to work with the
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non-transposed matrix. Since we are identifying P with ΓE using an order reversing
isomorphism, we will avoid using terms as minimal, maximal, less than, or greater
than. We have already introduced the term (immediate) predecessor for elements of
P. We will deûne (immediate) successors in the analogous way. But we will use the
term that γ1 is a predecessor of γ2 if and only if γ2 is a successor of γ1 if and only if
γ1 ≥ γ2 and γ1 /= γ2. Immediate predecessor and immediate successor in ΓE is deûned
accordingly. _is use of the language also ûts better with our usual picture of the
component set as a graph: if γ2 is a successor of γ1 thismeans that there is a path from
component γ1 to component γ2.

4.5 Temperatures and Standard Form

Let E be a graph with ûnitely many vertices. _en Primeγ(C∗(E)) is ûnite, and the
gauge simple subquotients are C∗(E)({p}) for p ∈ Primeγ(C∗(E)). _ese are either
simple AF algebras, simple purely inûnite C∗-algebras, or nonsimple. _ey are stably
isomorphic to C(S1) when they are nonsimple.

Deûnition 4.16 Let E be a graph with ûnitely many vertices. _en we deûne the
temperature as themap τE ∶Primeγ(C∗(E))→ {−1, 0, 1} deûned by

τE(p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, if C∗(E)({p}) is a simple AF algebra,
0, if C∗(E)({p}) is nonsimple,
1, if C∗(E)({p}) is simple and purely inûnite,

where p ∈ Primeγ(C∗(E)). We call (Primeγ(C∗(E)), τE) the tempered (gauge invari-
ant) prime ideal space.

Let E and F be graphs with ûnitely many vertices. _en an isomorphism

Θ∶ (Primeγ(C∗(E)), τE) → (Primeγ(C∗(F)) , τF)
is a homeomorphism Θ from Primeγ(C∗(E)) to Primeγ(C∗(F)) satisfying that τF ○
Θ = τE . We write (Primeγ(C∗(E)), τE) ≅ (Primeγ(C∗(F)), τF) when such an iso-
morphism exists.

We note from the outset that FK+R(Primeγ(C∗(E));C∗(E)) contains the temper-
ature.

Lemma 4.17 Let E and F be graphs with ûnitely many vertices, let X de-
note Primeγ(C∗(E)) and assume that there is a homeomorphism Θ from X to
Primeγ(C∗(F)). View C∗(E) and C∗(F) as X-algebras in the canonical way and as-
sume that there is an isomorphism from FK+R(X;C∗(E)) to FK+R(X;C∗(F)). _en
τF ○Θ = τE , so (Primeγ(C∗(E)), τE) ≅ (Primeγ(C∗(F)), τF).

Proof We read oò the temperatures from the ordered, reduced ûltered K-theory as

τE(p) = −1⇐⇒ K0 /= (K0)+ ∧ K1 = 0,
τE(p) = 0⇐⇒ K0 /= (K0)+ ∧ K1 /= 0,
τE(p) = 1⇐⇒ K0 = (K0)+ ,
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where K∗ = K∗(C∗(E)({p})).

Remark 4.18 In the case of graphs with ûnitely many vertices such that every in-
ûnite emitter emits inûnitely many edges to any vertex it emits any edge to — in
particular for ûnite graphs — we have a canonical homeomorphism υE from ΓE to
Primeγ(C∗(E)) (cf. Lemma 3.16). _us, we can in this case equally well consider the
space (ΓE , τE ○ υE) as the tempered gauge invariant prime ideal space. Note that ifwe
let

γ1 = {e ∈ E1 ∣ r(e), s(e) ∈ γ} ⊆ E1

for γ ∈ ΓE , then (τE ○ υE)(γ) = sgn(∣γ1∣ − ∣γ∣) if we use the conventions sgn(0) = 0
and sgn(∞) = 1.

It follows that (Primeγ(C∗(E)), τE) ≅ (Primeγ(C∗(F)), τF) whenever E ∼CE F,
because in this case C∗(E)⊗K ≅ C∗(F)⊗K. It is not hard, but somewhat tedious, to
check directly that the allowedmoveswill not change the signs of the numbers ∣γ1∣−∣γ∣
occurring.

Deûnition 4.19 Let E be a graph. We say that E satisûes Condition (H) if for any
regular vertex v supporting a unique return path, either this path has no exit, or there
is a vertexw /= v that is singular or supports a unique return path so that there is a path
from v to w, and so that any path from v to w passes through vertices not supporting
two distinct return paths (in particular, w cannot support two distinct return paths).

Under the assumption that the (ûnite) graphs satisfy Condition (H), we will prove
that every stable isomorphism at the level of graph C∗-algebras can be realized by
the moves deûning ∼CE . Note that among the graphs in Figure 1, the two in (a) have
Condition (H) whereas the remaining four do not. Also note that Condition (H) in a
sense interpolates betweenCondition (K) and the casewhen no vertex has more than
one return path, and is met in both cases.

Lemma 4.20 Let E be a graph with ûnitely many vertices. _en the following hold.
(i) E satisûes Condition (K) if and only if τE(p) /= 0 for every p ∈ Primeγ(C∗(E)).
(ii) E has no vertices supporting two distinct return paths if and only if τE(p) ≤ 0 for

every p ∈ Primeγ(C∗(E)).
(iii) E satisûes Condition (H) if and only if whenever τE(p) = 0, either Imm(p) = ∅

or there is a p′ ∈ Imm(p) with τE(p′) ≤ 0.
If every inûnite emitter emits inûnitely many edges to any vertex it emits any edge to,
then (iii) can be replaced by
(iii′) E satisûes Condition (H) if and only if whenever τE(υE(γ)) = 0, either γ has no

successor in ΓE , or γ has an immediate successor γ′ ∈ ΓE with τE(υE(γ′)) ≤ 0.

Proof We start by assuming that every inûnite emitter in E emits inûnitely many
edges to any vertex it emits any edge to, so that Remark 4.18 applies. In this case, (i)
and (ii) are obvious, and (iii) and (iii′) are equivalent. For (iii′), assume ûrst that the
condition on τE holds. To show (H), let v support a unique return path with an exit
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and note that v then lies in some γ with τE(υE(γ)) = 0,where γ has a successor in ΓE .
One such successor γ′ must be immediate with τE(υE(γ′)) ≤ 0, and we take w ∈ γ′.
_en any path from v to w passes through only transitional vertices and vertices in
γ ∪ γ′, neither of which supports multiple return paths. Finally, if w is regular, then
since it is not a transitional vertex, it must support a unique return path.

In the other direction, assume that the condition on τE fails and choose γ ∈ ΓE
with the property that τE(υE(γ)) = 0, γ has successors and that all such immediate
successors γ′ have τE(υE(γ′)) = 1. We conclude that any path from v ∈ γ to any w
not a transitional vertex must pass through a vertex supporting at least two diòerent
return paths. It remains to check that v cannot be a singular vertex. But since v ∈ γ
and τE(υE(γ)) = 0, v supports a unique return path. _us, v emits ûnitely many
edges to a vertex in γ; hence v is regular.
For general graphs with ûnitely many vertices, we note that by Lemma 3.17(iv)

(and its proof), we can replace E by E′ with the property that every inûnite emitter
in E′ emits inûnitely many edges to any vertex it emits any edge to, in the sense that
C∗(E) ≅ C∗(E′) and E′ is obtained from E by a number ofmoves of type (O). Since
these operations preserve all the conditions on the graphs, the result follows.

According to [Jeo04], the conditions in (i) above translate exactly to C∗(E) being
of real rank zero. According to [DHS03], the conditions in (ii) above translate exactly
to C∗(E) being a type I/postliminal C∗-algebra.

Notation 4.21 Let E be a graph with ûnitely many vertices and assume that BE ∈
M○

P(m × n,Z). _is induces a temperature TBE = τE ○ υE ○ YBE on P.

It will be extremely convenient for us to know that the adjacencymatrices for two
graphs are aligned with all components having the same number of vertices. For this,
we deûne the following.

Deûnition 4.22 Let E and F be ûnite graphs. We say that (BE ,BF) is in standard
form if BE ,BF ∈M○○○

P (m×n,Z) for somemultiindicesm and n and TBE = TBF . _is
means that the adjacency matrices have exactly the same sizes and block structures,
and that the temperatures of the components match up.

Deûnition 4.23 Deûne M+
P(m × n,Z) to be the set of all B ∈ MP(m × n,Z)

satisfying the following.
(i) If i ≺ j and B{i , j} is not the empty matrix, then B{i , j} > 0.
(ii) If m i = 0, then n i = 1.
(iii) If m i = 1, then n i = 1 and B{i} = 0.
(iv) If m i > 1, then B{i} > 0, n i ,m i ≥ 3, and the Smith normal form of B{i} has at

least two 1’s (and thus the rank of B{i} is at least 2).

Lemma 4.24 Let E and F be two ûnite graphs. _e following are equivalent.
(i) (Primeγ(C∗(E)), τE) ≅ (Primeγ(C∗(F)), τF).
(ii) We can choose ûnite graphs E′ and F′ so that (BE′ ,BF′) is in standard form and

so that E ∼ME E′ and F ∼ME F′.
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In (ii), we can further assume that B●E′ ,B
●
F′ ∈M+

P(m × n,Z).

Proof When BE ∈M○○○
P (m×n,Z), we can read oò the temperatures of i ∈ P by the

rules

TBE (i) = −1 ⇐⇒ m i = 0,
TBE (i) = 0 ⇐⇒ m i = 1 and BE{i} = 0,
TBE (i) = 1 ⇐⇒ either m i = 1 and BE{i} > 0 or m i > 1.

_us, (ii)⇒(i) follows from themove invariance of the temperature.
For the other direction, assume (i). It follows from Lemma 3.17 thatwe can assume

that BE ∈M○○○
P (n′ ×m′ ,Z) and BF ∈M○○○

P (n′′ ×m′′ ,Z) for appropriate P,m′,m′′,
n′, and n′′ with υF ○YBF ○Y−1

BE
○υ−1

E being the isomorphismgiven in (i) that intertwines
the temperatures. By assumption, n′i = n′′i = m′

i = m′′
i = 1 when TBE (i) = TBF (i) = 0,

and n′i = n′′i = 1, m′
i = m′′

i = 0 when TBE (i) = TBF (i) = −1.
When TBE (i) = TBF (i) = 1, we can perform Move (Col) inside each of these

components untilwe get vertices uEi and uFi that support loops. Since the components
are not cyclic, uEi and uFi emit at least one other edge than the loop to a vertex in the
component, and we can perform (R) in reverse on them successively to increase the
sizes of the block to arrive at n′i = m′

i = n′′i = m′′
i ≥ 3. By doing this (at most)

twicemorewe can ensure that the Smith normal formhas at least two ones. A�er this
process uEi and uFi still support a loop.

We will now show that we can get B●E ∈ M+
P(m × n,Z). First we will arrange that

all entries are positive in such diagonal blocks. We already have that uEi supports a
loop, and hence Proposition 2.12(i) applies to ensure that any vertex in the component
which has an edge to uEi also supports a loop. Continuing this way, we get that every
vertex supports a loop, and we can use Proposition 2.12(ii) to ensure that u i supports
two loops. With this, it is easy to arrange that BE{i} > 0. Arguing similarly, we can
also arrange that BE{i , j} > 0 and BE{k, i} > 0 for any i ≺ j or k ≺ i.

We continue this process for all i ∈ P satisfying TBE (i) = TBF (i) = 1.
Any block BE{ j, k} with j ≺ k that is not positive a�er this process must have

TBE ( j) = 0 and TBE (k) ≤ 0 and hence will be a 1 × 1-matrix. Further, k is not an
immediate successor of j, so we have j ≺ i ≺ k for some i an immediate successor
of j. _en BE{ j, i} > 0, and we can use Proposition 2.12(i) again to arrange that
BE{ j, k} > 0.

We argue similarly for F.

Note that in general there may be several (but ûnitely many) ways of choosing P

and the isomorphisms from P to ΓE and ΓF that give the standard forms.

Remark 4.25 Let E be a ûnite graph. As is well known, we can eõciently describe
a partially ordered set such as ΓE by theHasse diagram with vertices {1, . . . ,N} con-
necting γ to γ′ when γ′ is an immediate successor of γ. _inking of τE○υE asproviding
a coloring of the vertices of theHasse diagram thus gives an easyway of visualising the
situation. Noting that the color −1 can only occur at the vertices with no successors,
we see that the smallest cases of (isomorphism classes of) coloredHasse diagrams not
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meeting Condition (H) are the cases

(4.4)
0 1

when ∣ΓE ∣ = 2 and

0 1 0 0 1 1 1 0 1 0 0 1

0 1 0 0 1 -1 1 0 1

0 1 1

when ∣ΓE ∣ = 3 (along with the three cases obtained by adding an unconnected vertex
to the one in (4.4)).

5 Classifying Move Equivalence

In this sectionwe inspect one of the key results from [Res06] to conclude that it holds
even for those graphs that are ûnitewithno sinksor sources, essentially corresponding
to the case of Cuntz–Krieger algebras for matrices not necessarily satisfying Condi-
tion (II) introduced by Cuntz.
As in [Res06], we will appeal to the theory of �ow equivalence of shi�s of ûnite

type; since we work with graph C∗-algebras instead of Cuntz–Krieger algebras, we
use the edge shi�s, deûned from a ûnite graph E as

XE = {(en) ∈ (E1)Z ∣ ∀n ∶ r(en) = s(en+1)} .

_is will suõce for our purposes, since we can remove sources via the notion of
canonical form and can replace sinks by loops as discussed below.

_e formal starting point is the following lemma. Wemust allow forXE = ∅ in the
case where no vertex of E supports a return path, and will say that two such empty
shi� spaces are mutually �ow equivalent, and not �ow equivalent to any nonempty
shi� space.

Lemma 5.1 Let E and F be ûnite graphs. When E ∼ME F, XE is �ow equivalent to
XF . If neither E nor F have any sinks, the two conditions are equivalent.

Proof Move (S) does not aòect the shi� spaces, and the remaining moves are pre-
cisely the ones allowed in [PS75]. Any sink of E or F will not aòect the shi� space,
so it is not possible to infer in the opposite direction in general, but if there are no
sinks, we can useMove (S) to remove all sources and to remove the vertices that be-
come sources (this process will terminate since E and F are ûnite graphs) to replace
E and F with E′ ∼ME E and F′ ∼ME F so that neither E′ nor F′ have sources. We have
XE = XE′ and XF = XF′ , so XE′ and XF′ are also �ow equivalent. By [PS75], this �ow
equivalence is induced by a ûnite number of themoves (O), (I), and (R).
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5.1 Plugging Sinks

Wenow introduce away to pass between the casewhere the ûnite graph E hasno sinks
and the casewhere the ûnite graph has somany sinks that every cycle in E has an exit.
_e ûrst case is preferable in the context of symbolic dynamics, whereas the second
case, as we will see in Section 6.2 is preferable in the operator algebraic context, since
it can be used to establish a certain uniqueness theorem.

We startwith the notion of plugging sinks. Whenever a graph E is given, E⋏ denotes
the graph where a loop has been added to all sinks.

Lemma 5.2 Let E and F be graphs with ûnitely many vertices. If E ∼CE F, then also
E⋏ ∼CE F⋏. If E ∼ME F, then also E⋏ ∼ME F⋏.

Proof Considering plugging of sinks as a move, one checks that it commutes with
all of the moves deûning ∼CE and ∼ME . _is is obvious in the case of (I) and (C),
which can never involve a sink. In the case of (O), (S), and (R), one sees the claim
by noting that sinks are involved only as receivers of edges in such moves.

Lemma 5.3 Let E and F be graphs with ûnitely many vertices and assume
that Θ from Primeγ(C∗(E)) to Primeγ(C∗(F)) is a homeomorphism. Let X =
Primeγ(C∗(E)). Since Primeγ(C∗(E)) and Primeγ(C∗(F)) are canonically home-
omorphic to Primeγ(C∗(E⋏)) and Primeγ(C∗(F⋏)), respectively, we can view C∗(E),
C∗(F), C∗(E⋏), and C∗(F⋏) as X-algebras in the canonical way. _en the following
are equivalent:
(i) FK+R(X;C∗(E)) and FK+R(X;C∗(F)) are isomorphic;
(ii) FK+R(X;C∗(E⋏)) and FK+R(X;C∗(F⋏)) are isomorphic, and τE = τF ○Θ.

Proof We note that the changes of E and F only aòect the K1-groups. Since we
are only recording the K1-groups at sets {x} and the plugging takes place only at
components that have no successors, in fact no sequences (3.4) or (3.5) are aòected.
_us, all that happens is that some of the independent K1-groups that were originally
0 are changed to Z, and thus the given isomorphism of the K-theories of the original
graph C∗-algebras readily extend to the plugged versions. In the other direction, the
temperature assumption is to ensure that the number of sinks and the number of
cyclic components of E and F are equal. _us, an isomorphism of the K-theories
of the plugged versions restricts to an isomorphism of the K-theories of the original
graphs.

Note ûnally that when E and F are ûnite graphs with (BE ,BF) in standard form,
so is (BE⋏ ,BF⋏). In this situation,B●E is SLP- orGLP-equivalent toB●F precisely when
the relation holds betweenBE⋏ andBF⋏ . Indeed, ifUB●EV = B●F withU ∈ GLP(m,Z)
and V ∈ GLP(n,Z), we get Ũ ∈ GLP(n,Z) so that ŨBE⋏V = BF⋏ by padding U with
rows and columns from the appropriately sized identity matrix where a plugging has
taken place. Conversely, if Ũ is given,U is obtained by deleting the relevant rows and
columns. Since U ∈ SLP(m,Z) precisely when Ũ ∈ SLP(n,Z), our claim concerning
SLP-equivalence is justiûed.
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Further, when B●E ,B
●
F ∈ M+

P(m × n,Z), we conclude that B●E⋏ ,B
●
F⋏ ∈ M

+
P(n,Z).

We will use these observations repeatedly without mention below.

5.2 Move Equivalence Versus SLP- and GLP-equivalence

_e results in this section are the key to everything that follows and all depend on
the following proposition,whichwas proved in [Res06, Lemma 6.7 and_eorem 6.8]
under the added assumption that the graphs had Condition (K) and no sinks (i.e.,
were Cuntz–Krieger algebras with Condition (II)). But since we are working only at
components that are neither single cycles nor sinks, the same proof applies.

Proposition 5.4 Let E and F be ûnite graphs and assume that (BE ,BF) is in standard
form with B●E ,B

●
F ∈ M+

P(m × n,Z). If U ∈ GLP(m,Z) and V ∈ GLP(n,Z) are given
with UB●EV = B●F and i ∈ P is given with TBE (i) = 1, then there exist r, graphs E′
and F′ with (BE′ ,BF′) in standard form with B●E′ ,B

●
F′ ∈ M+

P((m + r) × (n + r),Z),
U ′ ∈ GLP(m + r,Z), and V ′ ∈ GLP(n + r,Z) so that
(i) r = (r j) with r i ≤ 3 and r j = 0 for j /= i,
(ii) E ∼CE E′, F ∼CE F′,
(iii) U{ j} = U ′{ j}, V{ j} = V ′{ j} for j /= i,
(iv) detU ′{i} = detV ′{i} = 1,
and U ′B●E′V

′ = B●F′ .

Sketch of proof _e key idea is to note that whenever U0BV0 = B′, with

Ũ0 = (U0
( −1 )) , Ṽ0 = (V0

( −1 ))

we have

Ũ0 (
B

( −1 )) Ṽ0 = (B
′

( −1 ))

and det Ũ0 = −detU0 and det Ṽ0 = −detV0, and with

U0 = (U0
( 0 1

1 0 )
) V0 = (V0

( −1 0
0 −1 )

)

we have

U0 (
B

( 0 1
1 0 )

)V0 = (B
′

( −1 0
0 −1 )

)

and detU0 = −detU0 and detV0 = detV0. _us,we can adjust the signs ofU ′{i} and
V ′{i} as required in (iv) at the cost of adding one of thematrices

(−1) , (−1 0
0 −1) ,

⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
, (0 1

1 0) ,
⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠

in the appropriate diagonal of the B-matrix, and the proposition is proved as soon
as we have established that whenever, say, E as in the statement is given, we can ûnd
E′ ∼CE E with 1, 2, or 3 vertices more than E in the component YBE (i) so that B●E′ is
SLP-equivalent to the relevant augmentation ofB●E . Note thatwe require thatB●E′ has
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positive entries wherever it can be nonzero, and that we must take care not to alter
the diagonal blocks of U and V away from component YBE (i).

To add a single −1, we perform Move (R) in reverse on one of the loops at the last
vertex of YBE (i) to get Ẽ with BẼ{i} in the form

⎛
⎜
⎝

BE{i} (
0
⋮
0
1
)

( 0 ⋅⋅⋅ 0 1 ) ( −1 )

⎞
⎟
⎠
.

_is matrix is clearly SL-equivalent to the desired one, and it is straightforward to
obtain E′, which has only positive entries in BE′{i} by a number of row or column
additions. We can also arrange to have positive entries in added rows and columns
in each oòdiagonal block {i , j} or {k, i} where i ≺ j or k ≺ i. By Proposition 2.12,
E ∼ME E′. _e SLP-matrices implementing the necessary row or column additions
will equal the identity at every diagonal block { j} with i /= j, so we will not change
these blocks as required in (iii).

Repeating this process, we can arrangemove equivalences taking us from E to E′

with B●E′ ∈ M+
P((m + kei) × (n + kei),Z) being SLP-equivalent to −ιkei (−BE) for

any k ∈ N, where ei is the vector that is 1 at index i and 0 otherwise. _us all that
remains is to note that if we perform Move (C) on the last vertex of YBE (i) to get E
with BE{i} in the form

⎛
⎜
⎝

BE{i} (
0 0
⋮ ⋮
0 0
1 0

)

( 0 ⋅⋅⋅ 0 1
0 ⋅⋅⋅ 0 0 ) ( 0 1

1 0 )

⎞
⎟
⎠
,

we again obtain the desired matrix augmentation up to SLP-equivalence, and can
arrange for positive entries just as above.

Proposition 5.5 Let E and F be ûnite graphs and assume that (BE ,BF) is in standard
form with B●E ,B

●
F ∈ M+

P(m × n,Z). Assume further that U ∈ GLP(m,Z) and V ∈
GLP(n,Z) are given with UB●EV = B●F .
(i) If U ∈ SLP(m,Z) and V ∈ SLP(n,Z), then E ∼ME F.
(ii) If V{i} = 1 whenever TBE (i) ≤ 0 and U{i} = 1 whenever TBE (i) = 0, then

E ∼CE F.

Proof To prove (i), we pass to the plugged graphs and recall that BF⋏ and BE⋏ are
also SLP-equivalent. Since E⋏ and F⋏ have neither sinks nor sources, we can appeal
to [Boy02,_eorem 4.4], which shows that BF⋏ can be obtained from BE⋏ by a num-
ber of elementary row or column additions or subtractions, never leaving matrices in
M+

P(m × n,Z). In fact, Boyle produces a list of elementary equivalences Eu ,v as de-
scribed in Proposition 2.12where there is a path from u to v throughout, and sincewe
have arranged that any vertex in any graph along the way supports at least one loop,
the proposition applies to yield (i) when E and F have no sinks.

When E and F do have sinks, we apply the same sequence of row and column
operations to BE . We note that in any matrix addition or subtraction implemented
by Eu ,v , u will not be one of the plugged sinks, as indeed these provide paths only to
themselves. Hence, u will not be a sink in the original setup. In the case where the
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matrix implements a column operation, the requirements in Proposition 2.12 are still
met, and thus such an operation remains implemented bymoves in the original setup.
In the case where the matrix implements a row operation, we observe that it has no
eòect, adding or subtracting a zero row from another row. It can hence be omitted,
proving (i).

We prove (ii) by reducing to (i) by Proposition 5.4, changing any negative determi-
nants of the given U and V at blocks {i} starting from {1} and working downwards.
We then get ûnite graphs E′ and F′ such that (BE′ ,BF′) is in standard form with
B●E′ ,B

●
F′ ∈ M+

P((m + r) × (n + r),Z) where the multiindex r has the property that
r j = 0 for j with TBE ( j) ≤ 0 and r j ≤ 3 otherwise. We have that E ∼CE E′, F ∼CE F′
and that for some U ′ ∈ SLP(m + r,Z) and V ′ ∈ SLP(n + r,Z), we can arrange that
U ′B●E′V

′ = BF′ . By (i), E′ ∼ME F′.

Deûnition 5.6 Let E and E′ be graphs with ûnitely many vertices and assume that
BE ∈M○

P(m × n,Z) and BE′ ∈M○
P(m′ × n′ ,Z). We say that a ∗-isomorphism from

C∗(E) to C∗(E′) (or from C∗(E)⊗K to C∗(E′)⊗K) respects the block structure if
the induced homeomorphism from Primeγ(C∗(E)) to Primeγ(C∗(E′)) commutes
with the identiûcation of P with Primeγ(C∗(E)) and Primeγ(C∗(E′)), respectively.
All of the elementary moves introduced in Section 2.4 induce a canonical stable

isomorphism. We say that such an elementary move preserves the block structure
if this induced stable isomorphism respects the block structure. We say that a move
equivalence or a Cuntzmove equivalence respects the block structure if it is the com-
position of a series of elementary moves such that the composition of the induced
stable isomorphisms respects the block structure.

If the only automorphism of P is the trivial automorphism, then ∗-isomorphisms,
move equivalences and Cuntz move equivalences, respectively, automatically respect
the block structure — we will in particular use that this is the case when P is linearly
ordered.

Proposition 5.7 Let E and F be ûnite graphs and assume that (BE ,BF) is in standard
form and has the additional property that gcd(BE{i}) = 1 and gcd(BF{i}) = 1 at every
i with TBE (i) = TBF (i) = 1. When E⋏ ∼CE F⋏ respecting the block structure, there exist
U ,V ∈ GLP(n,Z)withU{i} = V{i} = 1whenever TBE (i) ≤ 0 so that UBE⋏V = BF⋏ .
When E⋏ ∼ME F⋏, we can choose U ,V ∈ SLP(n,Z).

Proof We can assumewithout loss of generality that E ∼CE F respect the block struc-
ture and E and F have no sinks. Since E ∼CE F, we have a string ofmoves as follows:

E
∼ME // E1

(C) // E2oo ∼ME // E3
(C) // E4oo // ⋅ ⋅ ⋅ (C) // E2noo ∼ME // F ,

where each move between E2 j−1 and E2 j is either a Cuntz splice or its inverse. Note
that at each stage of themove equivalence, wemay have introduced transitional ver-
tices andwemay have increased the number of vertices in the cyclic components. So,
we collapse these transitional vertices and the cyclic components, to obtain a graph Fi
with no transitional vertices such that E i ∼ME Fi and Fi ∈M○○○

P (ni ,Z). Note that per-
forming thesemoves commuteswith anyCuntz splice, since such amove cannot take
place at a cyclic component or at a transitional vertex. Hence, we have a commuting
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diagram

E
∼ME // E1

(C) //

∼ME

��

E2oo ∼ME //

∼ME

��

E3
(C) //

∼ME

��

E4oo //

∼ME

��

⋅ ⋅ ⋅ (C) // E2noo

∼ME

��

∼ME // F

F1
(C) // F2oo F3

(C) // F4oo (C) // F2noo

,

where the compositions of themove equivalences all respect the block structure. Let
F0 = E and F2n+1 = F.

Let k ∈ {0, 1, . . . , n} be given. Since F2k ∼ME F2k+1, we have that the shi� spaces
XF2k and XF2k+1 are �ow equivalent. By [Boy02,_eorem 3.1 and_eorem 3.4], there
exists an SLP-equivalence (U2k ,V2k) from −ιr2k(−BF2k) to −ιr′2k(−BF2k+1), where
r2k = (r2k , l)l∈P and r′2k = (r′2k , l)l∈P with r2k , l = r′2k , l = 0 whenever TBE (l) ≤ 0.

Let again k ∈ {0, 1, . . . , n} be given. A computation based on Restorò ’s proof
of Proposition 5.4 shows that there exists a GLP-equivalence (U2k+1 ,V2k+1) from
−ιr2k+1(−BF2k+1) to −ιr′2k+1

(−BF2k) such that U2k+1{i} = V2k+1{i} = 1 for all
TBF2 j+1

(i) ≤ 0, where r2k+1 = (r2k+1, l)l∈P and r′2k+1 = (r′2k+1, l)l∈P with r2k+1, l =
r′2k+1, l = 0 whenever TBE (l) ≤ 0.
By [BH03, _eorem 3.10], the composition of these SLP- and GLP-equivalences

induces a K-web isomorphism κ. Hence, by [BH03,_eorem4.5], there exists aGLP-
equivalence (U ,V)∶BE → BF inducing κ as in Lemma 4.9. Since the cyclic compo-
nents of E and F are 1× 1 blocks and (U ,V) induces κ, we have that U{i} = V{i} = 1
whenever TBE (i) ≤ 0.

We now prove the statement about move equivalence. As above, we can assume
that E and F have no sinks and we get an SLP-equivalence (U ,V) from −ιr(−BE) to
−ιr(−BF), where r = (r l)l∈P with r l = 0 whenever TBE (l) ≤ 0. Now it follows from
[BH03, Proposition 4.1 and Corollary 4.9] that there exists an SLP-equivalence from
BE to BF .

_eorem 5.8 Let E and F be ûnite graphs with (BE ,BF) in standard form with
B●E ,B

●
F ∈M+

P(m × n,Z). _en the following are equivalent:
(i) E ∼CE F respecting the block structure;
(ii) E⋏ ∼CE F⋏ respecting the block structure;
(iii) there exist U ,V ∈ GLP(n,Z) with U{i} = V{i} = 1 whenever TBE (i) ≤ 0 so

that UBE⋏V = BF⋏ ;
(iv) there exist U ∈ GLP(m,Z) and V ∈ GLP(n,Z) with V{i} = 1 whenever

TBE (i) ≤ 0 and with U{i} = 1 whenever TBE (i) = 0 so that UB●EV = B●F .

Proof Lemma 5.2 proves that (i)⇒(ii). Since the gcd is 1 at any block with a 1 in
the Smith form, we can apply Proposition 5.7 to prove (ii)⇒(iii). We have noted that
(iii)⇔(iv) holds in general, and (iv)⇒(i) is the content of Proposition 5.5(ii).

_eorem 5.9 Let E and F be ûnite graphs with (BE ,BF) in standard form with
B●E ,B

●
F ∈M+

P(m × n,Z). _en the following are equivalent:
(i) E ∼ME F respecting the block structure;
(ii) E⋏ ∼ME F⋏ respecting the block structure;
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(iii) there exist U ,V ∈ SLP(n,Z) so that UBE⋏V = BF⋏ ;
(iv) there exist U ∈ SLP(m,Z) and V ∈ SLP(n,Z) so that UB●EV = BF .

Proof _e proof is completely analogous to the proof of_eorem 5.8, where we use
Proposition 5.5(i) in the place of Proposition 5.5(ii).

Wewarn the reader that the implication (ii)⇒ (i) in both results above are only true
when the temperatures of E and F match up, as implicitly arranged by the condition
of standard form.

Example 5.10 _e pair of graphs E and F given in Figure 1(b) are not Cuntz move
equivalent.

Proof We see that the vertices E and F can be ordered with (BE ,BF) in standard
form with BE ,BF ∈ M○○○

P (1,Z) for P = {1, 2, 3} ordered linearly and with gcd of the
blocks at {2} equal to 1. Appealing to Proposition 5.7, we see that it suõces to check,
which is obviously true, that there is no solution to

⎛
⎜
⎝

1 x y
0 s z
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

0 1 2
0 1 1
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

1 x′ y′

0 s′ z′

0 0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1 0
0 1 1
0 0 0

⎞
⎟
⎠

with s, s′ ∈ {−1, 1} and x , x′ , y, y′ , z, z′ ∈ Z.

6 Classifying C∗-algebras

6.1 A Classification Result

_eorem 6.1 Let E and F be ûnite graphs and consider the statements
(i) E ∼CE F;
(ii) C∗(E)⊗K ≅ C∗(F)⊗K;
(iii) there exists a homeomorphism Θ from X = Primeγ(C∗(E)) to Primeγ(C∗(F))

so that when C∗(E) and C∗(F) are considered as X-algebras in the canonical
way, FK+R(X;C∗(E)) ≅ FK+R(X;C∗(F)).

_en
(i)Ô⇒ (ii)Ô⇒ (iii)

and when E and F satisfy Condition (H), statements (i)–(iii) are equivalent.

Proof _e invariance ofmoves required to prove (i)⇒(ii)was established in [Sør13]
and [ERRS16a]; cf. _eorems 2.7 and 2.9.
For (ii)⇒(iii) one needs only note, as we did in Lemma 3.3, that any isomorphism

between C∗(E)⊗K and C∗(F)⊗Kmust preserve the gauge invariant ideals even if
the isomorphism is not gauge invariant.

To prove that (iii)⇒(i) under the additional assumption of Condition (H), we
ûrst note that by Lemma 4.17, the tempered gauge prime ideals agree, and hence by
Lemma 4.24we can assume that (BE ,BF) is in standard form, wherewe can even as-
sume thatBE ,BF ∈M+

P(m×n,Z). Plugging sinkswe get (BE⋏ ,BF⋏),which is also in
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standard form, having isomorphic ordered reduced ûltered K-theories by Lemma 5.3.
_e K-webs then also agree, and [BH03] applies to provide U ,V ∈ GLP(n,Z) with
UBE⋏V = BF⋏ . _us we only need to arrange that U and V satisfy the conditions in
_eorem 5.8(iii) to reach the desired conclusion.

In fact, since V{i} implements an order isomorphism from (Z,N0) to (Z,N0) at
every i with TBE (i) ≤ 0, itmust already be in the desired form. It is straightforward to
check thatwheneverU{i} = −1 at some i with no successors, then since bothBE⋏ and
BF⋏ have zero rows at i, the corresponding row of U can bemultiplied by −1 without
aòecting the relation that UBE⋏V = BF⋏ .

We claim that in the presence of Condition (H), the remaining blocks U{i} at
i with TBE (i) ≤ 0 must be of the desired form. Indeed, choosing an immediate
successor j of i with TBE ( j) ≤ 0, we assume for contradiction that U{i} = −1.
Note that BE⋏{i , j} = x and BF⋏{i , j} = y with x , y > 0, since there must be a
path between the two components, and such a path cannot pass through any other
component. Similarly, we get from the immediate successor condition that for any
B, B′ ∈M○○○

P (m × n,Z) and any k /∈ {i , j}, either B{i , k} = 0 or B′{k, j} = 0, so
that (BB′){i , j} = B{i}B′{i , j} + B{i , j}B′{ j} (cf. (4.1)). From this we infer that
(UBE⋏){i , j} = −x and (BF⋏V−1){i , j} = y, a contradiction.

Corollary 6.2 Let E and F be ûnite graphs so that C∗(E) and C∗(F) are either of
real rank zero or type I/postliminal. _en the statements (i)–(iii) of _eorem 6.1 are
equivalent.

Remark 6.3 Inspection of our proof shows that only the order on K0(C∗(E)({i}))
and K0(C∗(F)({i})) is necessary to conclude that theC∗-algebras are stably isomor-
phic. It is possible to deûne a full (ordered) ûlteredK-theory (see [ABK14a,ABK14b]).
Isomorphism of this invariant clearly implies isomorphism of the reduced invariant
(both in the case with and without order). As a consequence of the results in [BH03],
the opposite holds without order for the cases considered in this paper. From the
results in _eorem 6.1, it follows that it also holds in the case with order. _us, the
full invariant contains the same information about equivalence classes and (stable)
isomorphism classes as the reduced one.

6.2 Unplugging Sinks

For a graph E, let E0
iso be the set of vertices of E that are either sinks or on a vertex-

simple cycle with no exits (the notation, cf. [BCW17], refers to the fact that such ver-
tices give rise to isolated points in the associated path spaces). Assume that E is a
graph with ûnitely many vertices with BE ∈ M○○○

P (m × n,Z). _en every vertex
v ∈ E0

iso/E0
sing supports a unique loop ev . Let E⋎ be the graph obtained from E by

removing the edges ev for all v ∈ E0
iso/E0

sing. We note that in general

(E⋏)⋎ /= (E⋎)⋏ /= E .

Proposition 6.4 Let E and F be graphs with ûnitely many vertices so that BE ∈
M○○○

P (mE × mE ,Z) and BF ∈ M○○○
P (mF × mF ,Z). If there exists a ∗-isomorphism

Φ∶C∗(E⋎)⊗K→ C∗(F⋎)⊗K such thatTBF ○Φ♯ = TBE , thenC
∗(E)⊗K ≅ C∗(F)⊗K.
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Proof Note ûrst that whenever v ∈ (E⋎)0iso is given, v is a sink, so {v} is a saturated
and hereditary set. _us, it deûnes an ideal Jv , which is minimal in C∗(E⋎) and
Morita equivalent to C. In fact, any such ideal has this form, and since the same is
true for F⋎,we conclude that Φ(Jv) = Jw for somew ∈ (F⋎)0iso. Since TBF ○Φ♯ = TBE ,
w will be a sink of F precisely when v is a sink of E, and thus a bijectionw∶ E0

iso → F0iso
is deûned with w(E0

iso/E0
sing) = F0iso/F0sing.

For any graph G, let SG be the stabilized graph; i.e., for each vertex v ∈ G0, we
put an inûnite head at v; cf. [AT11, Deûnition 9.4]. Note that (SG)0iso = G0

iso with
(SG)0iso/(SG)0sing = G0

iso/G0
sing, so that w can also be considered as a map from

(SE)0iso to (SF)0iso. Moreover, v ∈ G0
iso supports a loop if and only if v ∈ (SG)0iso

supports a loop. By the proof of [AT11, Proposition 9.3 and _eorem 9.8], there ex-
ists a ∗-isomorphism χG ∶C∗(SG) → C∗(G)⊗K such that χG(pv) = pv ⊗ e11 for all
v ∈ G0. Deûne Ψ∶C∗(SE⋎)→ C∗(SF⋎) by Ψ = χ−1

F⋎ ○Φ ○ χE⋎ .
Note that Jv ≅ K in C∗(SE⋎) and Jw ≅ K in C∗(SF⋎) for all v ∈ E0

iso and for all
w ∈ F0iso. _erefore, any generator of K0(Jv)+ is Murray–von Neumann equivalent
to pv in C∗(SE⋎) for all v ∈ E0

iso and any generator of K0(Jw)+ is Murray-von Neu-
mann equivalent to pw in C∗(SF⋎) for all w ∈ F0iso. Consequently, Ψ(pv) ∼ pw(v)
in C∗(SF⋎), so there exists Wv ∈ C∗(SF⋎) such that W∗

v Wv = Ψ(pv) andWvW∗
v =

pw(v). Set p = ∑v∈(SE)0
iso

Ψ(pv) and q = ∑v∈(SE)0
iso

pw(v). Since C∗(SF⋎) is a stable
C∗-algebra, by [Min87, Corollary 1.10],

1M(C∗(SF⋎)) − p ∼ 1M(C∗(SF⋎)) ∼ 1M(C∗(SF⋎)) − q.

_us, there exists W ∈ M(C∗(SF⋎)) such that W∗W = 1M(C∗(SF⋎) − p andWW∗ =
1M(C∗(SF⋎)) − q. Set u = W +∑v∈(SE)0

iso
Wv . A computation shows that u is a unitary

in M(C∗(SF⋎)) such that uΨ(pv)u∗ = pw(v) for all v ∈ SE0
iso. So, without loss of

generality, we can assume that Ψ(pv) = pw(v).
Note that SE⋎ and SF⋎ satisfyCondition (L), sincewe have removed all cycleswith

no exits. Using the universal property and the Cuntz–Krieger Uniqueness _eorem,
there are injective ∗-homomorphisms λE ∶C∗(SE⋎) → C∗(SE) and λF ∶C∗(SF⋎) →
C∗(SF) such that λE(se) = se , λE(pv) = pv for all e ∈ (SE⋎)1 ⊆ (SE)1 and for all
v ∈ (SE⋎)0 = (SE)0 and λF(s f ) = s f , and λF(pw) = pw for all f ∈ (SF⋎)1 ⊆ (SF)1

and for all w ∈ (SF⋎)0 = (SF)0. So, using these embeddings, we can assume that
C∗(SE⋎) is a sub-algebra of C∗(SE) and C∗(SF⋎) is a sub-algebra of C∗(SF).

We now deûne a Cuntz–Krieger SE-family in C∗(SF). Set Pv = Ψ(pv) for all
v ∈ (SE)0 = (SE⋎)0 and

Se =
⎧⎪⎪⎨⎪⎪⎩

Ψ(se) if e ∈ (SE⋎)1 ,
sew(v) if e = ev for some v ∈ (SE)0iso/(SE)

0
sing .

_e only nonobvious Cuntz–Krieger relation is at v ∈ (SE)0iso/(SE)
0
sing. But this is

also clear, since Pv = Ψ(pv) = pw(v) = sew(v) s
∗
ew(v) = Sev S

∗
ev . _erefore, there exists a

∗-homomorphism Ξ∶C∗(SE) → C∗(SF). Since the only vertex-simple cycles in SE
with no exits are ev for all v ∈ SE0

iso/SE0
sing and Ξ(sev ) = sw(v) has full spectrum, by

the General Cuntz–Krieger Uniqueness _eorem in [Szy02], we have that Ξ is injec-
tive. Note that Ξ(C∗(SE⋎)) = Ψ(C∗(SE⋎)) = C∗(SF⋎). Let e ∈ (SF)1 such that e is
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not an element of (SF⋎)1. _en e = ew for some w ∈ (SF⋎)0iso/(SF⋎)
0
sing. _erefore,

there exists v ∈ (SE⋎)0iso/(SE⋎)
0
sing such that w(v) = w. Hence, Ξ(sev ) = sew(v) = se ,

so Ξ is surjective, and thus a ∗-isomorphism.

6.3 Examples

In this section we let E and F denote the two graphs given in Figure 1(b). We note
that Example 3.20 applies (with n = 3) to this case. In particular, Primeγ(C∗(E)) ≅
X3 ≅ Primeγ(C∗(F)).

Example 6.5 _e pair of graphs E and F satisfy condition (iii) of_eorem 6.1, but
not condition (i). _e same is true for the pair of graphs E⋎ and F⋎.

Proof We have seen in Example 5.10 that E /∼CE F, and since E = (E⋎)⋏ and F =
(F⋎)⋏, we conclude that E⋎ /∼CE F⋎ by transposition of Lemma 5.2.

To see that the K-theories are isomorphic, we note that

U
⎛
⎜
⎝

0 1 2
0 1 1
0 0 0

⎞
⎟
⎠
V =

⎛
⎜
⎝

0 1 0
0 1 1
0 0 0

⎞
⎟
⎠

with V = I and

U =
⎛
⎜
⎝

−1 2 0
0 1 0
0 0 1

⎞
⎟
⎠
.

_isGLP-equivalence induces an isomorphismFKR(X3;C∗(E)) ≅ FKR(X3;C∗(F))
as noted in Section 4.4, and since V{i} = 1 at all blocks, themaps induced by VT on
the K0-groups are order isomorphisms. _e isomorphism of K-theory for E = (E⋎)⋏
and F = (F⋎)⋏ follows from Lemma 5.3.

In fact, in this particular case, reversal of the chain of implications in _eorem 6.1
breaks down at (ii)⇒(i). To prove this, we provide an ad hoc classiûcation of a small
class of C∗-algebras of relevance.

Let A be a C∗-algebra and let I be an ideal of A. Set

M(A;I) ∶= {x ∈M(A) ∣ ax , xa ∈ I for all a ∈ A}
and set

Q(A;I) ∶= (M(A;I) +A)/A.

Lemma 6.6 Let A be a stable separable C∗-algebra such that A has a unique non-
trivial ideal I with I either isomorphic to K or I is a stable, separable, purely inûnite
simple C∗-algebra and A/I is either isomorphic to K or is a stable, separable, purely
inûnite simple C∗-algebra. _en Q(A, I) is the unique nontrivial ideal of Q(A).

Proof Note that I is an essential ideal ofM(A, I). Hence, this embedding extends
to an embedding ι∶M(A, I) →M(I). We claim that ι(M(A, I)) is a full hereditary
subalgebra ofM(I).

Let x = (L0 , R0) ∈ M(I) and let s, t ∈ M(A, I) (where we are using the double
centralizer picture of themultiplier algebra). Deûne L, R∶A→ A by L(a) = s(L0(ta))
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and R(a) = R0(as)t. Note that L and R arewell deûned, since ta and as are elements
of I for all a ∈ A. A computation shows that L and R are linear and ∥L∥ and ∥R∥ are
bounded above by ∥s∥ ⋅ ∥x∥ ⋅ ∥t∥.

Let {en}∞n=1 be an approximate identity for I. For all a, b ∈ A, we have that

R(ab) = R0(abs)t = lim
n→∞

R0(aenbs)t = lim
n→∞

(aen)(R0(bs)t)

= lim
n→∞

a( enR0(bs)t) = a(R0(bs)t) = aR(b),

L(ab) = sL0(tab) = lim
n→∞

sL0(taenb) = lim
n→∞

sL0(ta)(enb)

= lim
n→∞

( sL0(ta)en)b = ( sL0(ta))b = L(a)b,

R(a)b = (R0(as)t)b = R0(as)(tb)
= asL0(tb) = a( sL0(tb)) = aL(b).

Hence, y = (L, R) deûnes an element ofM(A).
Let a, b ∈ A. _en

LaL(b) = La( sL0(tb)) = (as)L0(tb) = R0(as)tb = LR0(as)t(b),
RRa(b) = R(ba) = R0(bas)t = lim

n→∞
R0(benas)t

= lim
n→∞

b( enR0(as)t) = b(R0(as)t) = RR0(as)t(b).

_erefore, (La , Ra)(L, R) = (LaL, RRa) = (LR0(as)t , RR0(as)t) ∈ I. Similarly compu-
tation shows that (L, R)(La , Ra) = (LsL0(ta) , RsL0(ta)) ∈ I. Hence, (L, R) ∈M(A, I).
Note that ι(s) = (Ls , Rs), where we restrict Ls and Rs to I. Similarly, for ι(t). _us,

ι(s)x ι(t) = (Ls , Rs)x(Lt , Rt) = (Ls , Rs)(L0 , R0)(Lt , Rt) = (LsL0Lt , RtR0Rs)
LsL0Lt(z) = Ls(L0(tz)) = sL0(tz) = L(z),
RtR0Rs(z) = Rt(R0(zs)) = R0(zs)t = R(z)

for all z ∈ I. Hence, ι(y) = ι(s)x ι(t). _erefore, ι(M(A, I)) is a hereditary subalge-
bra ofM(I).

We claim that ι(M(A, I)) /= I. Let {sn}∞n=1 be a collection of isometries in M(A)
such that∑∞

n=1 sns
∗
n converges to 1M(A) in the strict topology (note such a collection

of isometries exists, since A is a stable C∗-algebra). Let a ∈ I∖ {0}. _en∑∞
n=1 snas

∗
n

converges in the strict topology of M(A). _erefore, x = ∑∞
n=1 snas

∗
n is an element

ofM(A). In fact, x ∈ M(A, I), since a ∈ I. Since ∥snas∗n∥ = ∥a∥ /= 0, we have that
x ∉ A. _erefore, I /=M(A;I). So, ι(M(A, I)) /= I, which proves our claim.
By [Rør91, _eorem 3.2], M(I) has exactly one nontrivial ideal I. _erefore,

ι(M(A;I)) is a full hereditary subalgebra ofM(I). _us,M(A;I) has exactly one
nontrivial, I. Consequently, Q(A;I) is a simple C∗-algebra.

Let π∶A → A/I be the canonical projection. _en it induces surjective ∗-ho-
momorphisms π̃∶M(A) → M(A/I) and π∶Q(A) → Q(A/I). Note that ker(π̃) =
M(A;I) and ker(π̃) = Q(A;I). Now, we have an exact sequence

0Ð→ Q(A;I)Ð→ Q(A)Ð→ Q(A/I)Ð→ 0.

By [Rør91,_eorem 3.2], Q(A/I) is a simple C∗-algebra. _us, Q(A;I) must be the
unique nontrivial ideal of Q(A).
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_eorem 6.7 LetA1 andA2 be unital C∗-algebras equippedwith gauge actions. Sup-
pose for each i, there exist gauge invariant ideals Ii ,1 and Ii ,2 of Ai such that
(i) Ii ,1 ⊆ Ii ,2;
(ii) Ii ,1 ≅ K;
(iii) Ii ,2/Ii ,1 is isomorphic to the stabilization of a unital, simple purely inûnite graph

C∗-algebra;
(iv) Ai/Ii ,2 ≅ C(S1);
(v) Ii ,2/Ii ,1 is an essential ideal of Ai/Ii ,1.
If FK+R(X3;A1 ⊗K) ≅ FK+R(X3;A2 ⊗K), then A1 ⊗K ≅ A2 ⊗K.

Proof Let α be the isomorphism from FK+R(X3;A1 ⊗K) to FK+R(X3;A2 ⊗K). Let
ei be the extension 0 → Ii ,2 ⊗K → Ai ⊗K → Ai/Ii ,2 ⊗K → 0. We ûrst show that
ei is a full extension. By Lemma 6.6, the corona algebra Q(Ii ,2 ⊗K) has exactly one
nontrivial ideal. _is ideal is precisely the kernel of the surjectivemap

π∶Q(Ii ,2 ⊗K)Ð→ Q(Ii ,2/Ii ,1 ⊗K)
that is induced by the surjective map π∶Ii ,2 ⊗ K → Ii ,2/Ii ,1 ⊗ K. _erefore, x ∈
Q(Ii ,2 ⊗K) is full if and only if its image in Q(Ii ,2/Ii ,1 ⊗K) is nonzero. Note that
the diagram

0 // Ii ,2 ⊗K //

π
��

Ai ⊗K //

��

(Ai/Ii ,2)⊗K // 0

0 // (Ii ,2/Ii ,1)⊗K // (Ai/Ii ,1)⊗K // (Ai/Ii ,2)⊗K // 0

is commutative. Hence, with τ denoting Busby maps, π ○ τei = τgi , where gi is the
extension

0 // (Ii ,2/Ii ,1)⊗K // (Ai/Ii ,1)⊗K // (Ai/Ii ,2)⊗K // 0.

By assumption v, τgi (x) is nonzero in Q((Ii ,2/Ii ,1) ⊗ K) for all nonzero x ∈
(Ai/Ii ,1)⊗K. Hence, by the above observations, τei (x) is full in Q(Ii ,2 ⊗K). Since
Ii ,2 ⊗K has the corona factorization property (see, e.g., [ERR13a, Proposition 6.1]) ei
is an absorbing extension.

SinceAi/Ii ,2⊗K is C(S1)⊗K, there exists a ∗-isomorphism β2 fromA1/I1,2⊗K
to A2/I2,2 ⊗K which induces α restricted to K∗(A1/I1,2) (we are using the fact that
a positive automorphism on K∗(C(S1)) is induced by idC(S 1)⊗K or ψ ⊗ idK where ψ
sends the canonical generator of C(S1), denoted by z, to z−1). Note that Ii ,2 has a
full projection, I1,2 is stably isomorphic to a unital C∗-algebra with exactly one non-
trivial ideal that is isomorphic to K, and the quotient by this ideal is isomorphic to a
unital and simple purely inûnite graph C∗-algebra. Using this observation together
with [ERR13b, Corollary 4.17 and Proposition 4.19], there exists a ∗-isomorphism
β0∶I1,2 ⊗K→ I2,2 ⊗K that induces α restricted to K∗(I1,2).

Let f1 be the extension obtained by pushing forward the extension e1 via the ∗-iso-
morphism β0 and let f2 be the extension obtained by pulling back the extension e2
by the ∗-isomorphism β2. Since ei is an absorbing extension, we have that fi is an
absorbing extension. By construction, K∗(τf1) = K∗(τf2) as homomorphisms from
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K∗((A1/I1,2)⊗K) to K1−∗(I2,2⊗K). Hence, by theUCT ofRosenberg and Schochet
[RS87], [τf1] = [τf2] inKK1((A1/I1,2)⊗K, I2,2⊗K), sinceK i((A1⊗K)/(I1,2⊗K)) ≅
Z for each i. Since fi are absorbing extensions, there exists a unitaryU inM(I2,2⊗K)
such that Ad(π(U)) ○ τf1 = τf2 . One checks that Ad(U) induces a ∗-isomorphism of
extensions from f1 to f2. Since ei is isomorphic to fi ,we have thatA1⊗K ≅ A2⊗K.

It is easy to see that this result applies to conclude that C∗(E⋎)⊗K ≅ C∗(F⋎)⊗K
for the pair of examples in Example 6.5. To deal with C∗(E)⊗K and C∗(F)⊗K, we
apply an unplugging trick to get the following corollary.

Corollary 6.8 Let E1 and E2 be ûnite graphs with

Primeγ(C∗(E i)) ≅ X3 and τE i ({0}) ≤ 0.

If FK+R(X3;C∗(E1)) ≅ FK+R(X3;C∗(E2)), then C∗(E1)⊗K ≅ C∗(E2)⊗K.

Proof Assume that FK+R(X3;C∗(E1)) ≅ FK+R(X3;C∗(E2)). We write pi
j for the

ideals in C∗(E i) as in Example 3.20. If τE i (pi
1) = 1 we have Condition (H), and the

full force of _eorem 6.1 applies. We can hence assume that τE i (pi
1) = 0. Again if

τE i (pi
2) = 0, we have Condition (H), so we can assume that τE i (pi

2) = 1. When
τE i (pi

3) = −1, we note that all the conditions of _eorem 6.7 are met, so that this
result applies to give the desired conclusion. We thus need only concern ourselves
with the case τE i (pi

3) = 0.
In this case,we pass to (E i)⋎ and note that _eorem 6.7 applies. Since the isomor-

phism provided by that result must satisfy the conditions of Proposition 6.4 because
the ideal lattice is linear, we get the desired conclusion.

We conclude with the following example.

Example 6.9 With E and F the pair of graphs given in Figure 1(b), we have

C∗(E)⊗K ≅ C∗(F)⊗K and C∗(E⋎)⊗K ≅ C∗(F⋎)⊗K,

although (as seen in Example 6.5), E /∼CE F and E⋎ /∼CE F⋎.

7 Applications

In this section, we give applications of our results.

7.1 Type I/Postliminal C∗-algebras

In this sectionwe study further the casewhere no vertex supports two distinct return
paths, i.e. the case of type I/postliminal C∗-algebras in our class; cf. the remarks just
a�er Lemma 4.20.

Itwas conjectured byG.Abrams andM.Tomforde in [AT11] that if the Leavitt path
algebras LC(E) and LC(F) areMorita equivalent, thenC∗(E) andC∗(F) are strongly
Morita equivalent (see [AAP08] for the deûnition of LC(E)). Using _eorem 6.1, we
can show that their conjecture holds for ûnite graphs whose temperatures are never
positive. Moreover, we show that the converse holds as well in that case.
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_eorem 7.1 Let E and F be ûnite graphs where max τE ,max τF ≤ 0. _en the fol-
lowing are equivalent:
(i) E ∼ME F.
(ii) Lk(E) and Lk(F) areMorita equivalent for any ûeld k.
(iii) C∗(E)⊗K ≅ C∗(F)⊗K.
If τE = τF = 0, then (i)–(iii) are equivalent to:
(iv) the two-sided shi� spaces XE and XF are �ow equivalent.
If (BE ,BF) is in standard form, then (i)–(iii) are equivalent to:
(v) there exist matrices U ,V ∈ SLP(1,Z) so that UBE⋏V = BF⋏ .

Proof By [RT13a, Section 3] (see also [Sør13]), (i) implies (ii). We can make sense
of Primeγ also for Leavitt path algebras over ûnite graphs (see Remark 3.24), and we
have that when LC(E) and LC(F) areMorita equivalent, then Primeγ(LC(E)) ≅ X ≅
Primeγ(LC(F)) for appropriately chosen X. Arguing as in the proof of [RT13b,_e-
orem 4.9], we get that FK+R(X ,C∗(E)) ≅ FK+R(X ,C∗(F)). By this observation to-
getherwith_eorem 6.1, since obviously we have Condition (H),we conclude that (ii)
implies (iii). Sincemax τ ≤ 0, no vertex supports two diòerent return paths, so Move
(C) is never allowed, and we have that E ∼CE F if and only if E ∼ME F. _erefore,
_eorem 6.1 gives that (iii) implies (i).
Assuming now that all components of E and F are cyclic, we get that (i) and (iv)

are equivalent by Lemma 5.1.
Finally we get (i)⇔ (v) by appealing to _eorem 5.9.

In general (as we shall discuss in [ERRS16b]), it may be computationally diõcult
to determine when two matrices are SLP-equivalent. _is is because the problem is
equivalent to solving

UBE = BFW(7.1)
∀i ∈ P ∶ detU{i} = detW{i} = 1,(7.2)

where (7.2) is not linear. But when all blocks are 1 × 1, the determinant conditions are
equivalent to all diagonal blocks being identitymatrices, and thus deciding ifUBEV =
BF as in _eorem 7.1(v) reduces to the linear problem (7.1), which may readily be
decided.

7.2 Quantum Lens Spaces

A class of quantum lens spaces C(Lq(r; (m1 , . . . ,mn)))was studied in [HS03b,BS16]
and proved there to be graph C∗-algebras over ûnite graphs. We immediately see that
the C∗-algebras are postliminal/type I with every vertex supporting a loop. To de-
cide any isomorphism question among two such C∗-algebras, one hence need only
to compare their Primeγ-spaces, and if these are homeomorphic, arrange that the
corresponding matrices are in standard form and decide SLP-equivalence as in _e-
orem 7.1(v) (for each possible homeomorphism).
As an immediate application, we shall see that, in fact, in some cases there are

several diòerent quantum lens spaces associated with diòerent choices of secondary
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parameters m i even when the dimension n and the primary parameter r are ûxed.
Although our classiûcation result applies in the general setting of [BS16], wewill here
consider only the original setup from [HS03b]wherePrimeγ becomes theAlexandrov
space of a linear order. We emphasize the fact that even though the K-groups of the
quantum lens spaces carry important information (cf. [HS03b,ABL15,BS16]), they are
not complete invariants. It follows from_eorem 6.1 that the reduced ordered ûltered
K-theory is complete, but as we shall see, it is much more convenient to work with
SLP-equivalence in this setting.

Deûnition 7.2 For each n ∈ N, deûne the directed graph L2n−1 as the graph with n
vertices, L0

2n−1 = {v1 , . . . , vn}, and (n(n + 1))/2 edges ⋃n
i=1{e i , j ∣ j = i , i + 1, . . . , n}

with s(e i , j) = v i and r(e i , j) = v j . For example, L5 is the graph

v1

e1,1

�� e1,2 //

e1,3

44v2

e2,2

�� e2,3 // v3

e3,3

��
.

Deûnition 7.3 For each r, n ∈ N andm = (m1 , . . . ,mn) ∈ Nn ,we deûne the directed
graph L2n−1 ×m Zr as follows:

(i) _e set of vertices is (L2n−1 ×m Zr)0 = L0
2n−1 ×Zr .

(ii) _e set of edges is (L2n−1 ×m Zr)1 = L1
2n−1 ×Zr .

(iii) s(e i , j , k) = (v i , k −m i) and r(e i , j , k) = (v j , k).

For each i, let (L2n−1 ×m Zr)⟨i⟩ be the subgraph with vertex set {v i} × Zr and
edge set {e i , i} × Zr . For each i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ it , let (L2n−1 ×m Zr)⟨i1 , i2 , . . . , it⟩ be the
subgraphwith vertex set⋃t

l=1{v l}×Zr and edge set the set of all edges e in L2n−1×mZr

such that s(e), r(e) ∈ ⋃t
l=1{v l} ×Zr .

Deûnition 7.4 Let r ∈ N and (m1 ,m2 , . . . ,mn) ∈ Nn with r ≥ 2 and gcd(m i , r) = 1
for all i. A path α = (e i1 , j1 , k1) ⋅ ⋅ ⋅ (e ir , jr , kℓ) in L2n−1 ×m Zr is called 0-simple if
k1 = m i1 , ka /= 0 for a /= ℓ, and kℓ = 0. Note that for each 0-simple path α =
(e i1 , j1 , k1) ⋅ ⋅ ⋅ (e iℓ , jℓ , kℓ), we have that s(α) = (v i1 , 0) and r(α) = (v jℓ , 0). _us, the
0-simple paths may be thought of as paths starting and ending at vertices of the form
(v , 0), but avoiding all such vertices along the way.
A 0-simple path α = (e i1 , j1 , k1) ⋅ ⋅ ⋅ (e iℓ , jℓ , kℓ) is called k-step if there exist positive

integers t1 < t2 < ⋅ ⋅ ⋅ < tk+1 such that t1 = i1, tk+1 = jℓ , and for each 2 ≤ q ≤ k, we have
that

{r((e is , js , ks)) ∣ 1 ≤ s ≤ ℓ} ∩ ((L2n−1 ×m Zr)⟨tq⟩)0 /= ∅
and

{r((e is , js , ks)) ∣ 1 ≤ s ≤ ℓ} ⊆
k+1
⋃
i=1

((L2n−1 ×m Zr)⟨t i⟩)
0
.

Deûnition 7.5 Let r ∈ N and m = (m1 ,m2 , . . . ,mn) ∈ Nn with gcd(m i , r) = 1 and
r ≥ 2. Deûne L(r;m)

2n−1 to be the graph with vertices {(v1 , 0), . . . , (vn , 0)}, the edges of
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L(r;m)

2n−1 consisting of all 0-simple paths in L2n−1 ×m Zr , and the range and sourcemaps
extending the range and sourcemaps of L2n−1 ×m Zr .

Note that by our assumption on the m i , they are always units in (Zr/{0}, ⋅ ). We
denote by m−1

i any representative in Z of amultiplicative inverse to m i modulo r.

Lemma 7.6 Let r ∈ N and m ∈ Nn with gcd(m i , r) = 1 and r ≥ 2.
(i) For each i , j with i + 1 ≤ j, the number of 1-step 0-simple paths from (v i , 0) to

(v j , 0) is r.
(ii) For each i , j with i + 2 ≤ j, the number of 2-step 0-simple paths from (v i , 0) to

(v j , 0) is r(r−1)
2 ( j − i − 1).

(iii) For each i, the number of 3-step 0-simple paths from (v i , 0) to (v i+3 , 0) is congru-
ent to −m−1

i+2m i+1( r(r−1)(r−2)
3 ) modulo r.

Consequently, the number of 0-simple paths from (v i , 0) to (v i+2 , 0) is r(r+1)
2 , and

the number of 0-simple paths from (v i , 0) to (v i+3 , 0) is congruent to

−m−1
i+2m i+1(

r(r − 1)(r − 2)
3

)

modulo r.

Proof We ûrst prove (i). Note that for each 0 ≤ k < r, there is exactly one edge from
(v i , k) to (L2n−1 ×m Zr)⟨ j⟩. Since there is exactly 1 path from (v j , l) to (v j , 0) that
passes through (v j , 0) once, we have that the number of 1-step 0-simple paths from
(v i , 0) to (v j , 0) is equal to the number of edges in the subgraph (L2n−1 ×m Zr)⟨i⟩.
_is is equal to r, so (i) holds.

We now prove (ii). Let V be the set of all 2-step 0-simple paths from (v i , 0) to
(v j , 0). For each l with 1 ≤ l ≤ j − i − 1, let Vl be the set of all 2-step 0-simple paths
from (v i , 0) to (v j , 0) that goes through the subgraph (L2n−1 ×m Zr)⟨i + l⟩. _en
V = ⊔ j−i−1

l=1 Vl . By symmetry ∣Vl ∣ = ∣V1∣, so ∣V ∣ = ∣V1∣( j − i − 1).
Let α = α1 ⋅ ⋅ ⋅ αt ∈ V1 and recall that for all k, r(αk) /= (v i , 0) and r(αk) /= (v i+1 , 0).

Since for each 1 ≤ l ≤ r − 1, there is exactly one path from (v i , 0) to (v i , l − m i)
that does not come back to (v i , 0), and there is exactly one edge from (v i , l −m i) to
(v i+1 , l), we have that

∣V1∣ =
r−1

∑
l=1

Pl ,

where Pl is thenumberofpaths from (v i+1 ,m i+1 l) to (v j , 0) in the subgraph (L2n−1×m
Zr)⟨i + 1, j⟩ that do not go through (v i+1 , 0). Clearly, Pl = r − l , so

∣V1∣ =
r−1

∑
l=1

Pl =
r−1

∑
l=1

(r − l) = r(r − 1) − r(r − 1)
2

= r(r − 1)
2

.

_erefore, (ii) holds.
We now prove (iii). For each 1 ≤ l ≤ r − 2, we have an edge (e i+1 ,m i+1(l + 1))

from (v i+1 ,m i+1 l) to (v i+2 ,m i+1(l + 1)). We let Q l be the number of paths from
(v i+2 ,m i+1(l + 1)) to (v i+3 , 0) that do not go through (v i+2 , 0) and only go once
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through (v i+3 , 0). Since there are exactly l paths from (v i , 0) to (v i+1 ,m i+1 l) that do
not come back to (v i , 0) and do not go through (v i+1 , 0), we have that the number of
3-step 0-simple paths from (v i , 0) to (v i+3 , 0) is∑r−2

l=1 lQ l .
Recall that m−1

i+2 is a representative of themultiplicative inverse ofm i+2 modulo r,
and let s l be the integer such that 0 < m−1

i+2m i+1(l + 1) + rs l < r. Since m i+1(l + 1) is
congruent to m i+2(m−1

i+2m i+1(l + 1)+ rs l) modulo r, it follows from the proof of part
(ii) that

Q l = r − (m−1
i+2m i+1(l + 1) + rs l) .

Hence, the number of 3-step 0-simple paths from (v i , 0) to (v i+3 , 0) is
r−2

∑
l=1

l(r −m−1
i+2m i+1(l + 1) − rs l)

≡
r−2

∑
l=1

(−m−1
i+2m i+1 l(l + 1)) mod r

≡ −m−1
i+2m i+1

r(r − 1)(r − 2)
3

mod r.

Hence, (iii) holds.
For the last part of the lemma, by (i) and (ii), we have that the number of 0-simple

paths from (v i , 0) to (v i+2 , 0) is equal to r + r(r−1)
2 = r(r+1)

2 and by (i), (ii), (iii), we
have that the number of 0-simple paths from (v i , 0) to (v i+3 , 0) is congruent to

r + r(r − 1)
2

+ r(r − 1)
2

−m−1
i+2m i+1(

r(r − 1)(r − 2)
3

)

modulo r. It is now clear that the conclusion holds.

Corollary 7.7 K0(C∗(L(r;m)

2n−1 )) ≅ Z⊕G for G some group of order ∣G∣ = rn−1.

Proof _e ûrst row and the last column of (BL(r;m)
2n−1

)T are zero. _e remaining
(n − 1) × (n − 1) submatrix is upper triangular and has r in the diagonal as seen in
Lemma 7.6(i), and thus the determinant is rn−1. Now the corollary follows (e.g. by
using the Smith normal form).

DeterminingG exactly is a diõcult problem(cf. [ABL15]). Sincewe obviously have

∣Primeγ(C∗(L(r;m)

2n−1 ))∣ = ∣ΓL(r;m)
2n−1

∣ = n,

the isomorphism class of C∗(L(r;m)

2n−1 ) ⊗K determines n and hence, by Corollary 7.7,
also r. Further, Lemma 7.6(i) and (ii) show that the graphs and their adjacencymatri-
ces are the same irrespective of m when r is ûxed and n ≤ 3. When n = 4, something
new happens precisely when r is amultiple of 3.

_eorem 7.8 Let r ≥ 2 and let m = (m1 ,m2 ,m3 ,m4) and n = (n1 , n2 , n3 , n4) be
given in N4 such that gcd(m i , r) = gcd(n i , r) = 1 for all i. _en the following are
equivalent:

(i) C∗(L(r;m)

7 ) ≅ C∗(L(r;n)
7 ),

(ii) C∗(L(r;m)

7 )⊗K ≅ C∗(L(r;n)
7 )⊗K,
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(iii) (m−1
3 m2 − n−1

3 n2)( r(r−1)(r−2)
3 ) ≡ 0 mod r.

Proof Let Am be the adjacencymatrix for L(r;m)

7 and let An be the adjacencymatrix
for L(r;n)

7 , with Bm and Bn obtained by subtraction of the identitymatrix as usual. By
Lemma 7.6,

Am =
⎛
⎜⎜⎜⎜
⎝

1 r r(r+1)
2 x

0 1 r r(r+1)
2

0 0 1 r
0 0 0 1

⎞
⎟⎟⎟⎟
⎠

and An =
⎛
⎜⎜⎜⎜
⎝

1 r r(r+1)
2 y

0 1 r r(r+1)
2

0 0 1 r
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
,

where x ≡ −m−1
3 m2

r(r−1)(r−2)
3 mod r and y ≡ −n−1

3 n2
r(r−1)(r−2)

3 mod r.
We ûrst show that (ii) implies (iii). By_eorem 7.1(v), there existU ,V ∈ SLP4(1,Z)

such that UBmV = Bn , with P4 = {1, 2, 3, 4} ordered linearly. Note that U ,V are
upper triangular matrices and U{i} = V{i} = 1 for i = 1, 2, 3, 4. A computation
implies that

x + rs1 +
r(r + 1)

2
s2 = y

for some s1 , s2 ∈ Z. Since y ≡ −n−1
3 n2

r(r−1)(r−2)
3 mod r and x ≡ −m−1

3 m2
r(r−1)(r−2)

3
mod r, we have that

(m−1
3 m2 − n−1

3 n2)
r(r − 1)(r − 2)

3
≡ r(r + 1)

2
s2 mod r.

_us,

(m−1
3 m2 − n−1

3 n2)
r(r − 1)(r − 2)

3
+ rm = r(r + 1)

2
s2(7.3)

for some m ∈ Z.
Suppose r is odd. _en r(r+1)

2 s2 ≡ 0 mod r, and hence (iii) holds. Suppose r is
even, say r = 2tk, where gcd(k, 2) = 1. Dividing equation (7.3) by 2t−1, we get

(7.4) (m−1
3 m2 − n−1

3 n2)
2k(r − 1)(r − 2)

3
+ 2mk = k(r + 1)s2 .

Since 3 divides r(r − 1)(r − 2), we have that 3 divides k(r − 1)(r − 2). _erefore,
k(r − 1)(r − 2)/3 ∈ Z. Hence, the le�-hand side of equation (7.4) is divisible by 2,
which implies that 2 divides (r + 1)s2. Since r is even, 2 divides s2. _us, r(r+1)

2 s2 ≡ 0
mod r. Hence, (iii) holds.

We now show that (iii) implies (i). Since

0 ≡ (m−1
3 m2 − n−1

3 n2)(
r(r − 1)(r − 2)

3
) mod r,

x ≡ −m−1
3 m2

r(r − 1)(r − 2)
3

mod r,

y ≡ −n−1
3 n2

r(r − 1)(r − 2)
3

mod r,

we have that x ≡ y mod r. _erefore, x + rs = y + rt for some positive integers s, t.
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Consider thematrix

C =
⎛
⎜⎜⎜⎜
⎝

1 r r(r+1)
2 x + rs

0 1 r r(r+1)
2

0 0 1 r
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

1 r r(r+1)
2 y + rt

0 1 r r(r+1)
2

0 0 1 r
0 0 0 1

⎞
⎟⎟⎟⎟
⎠
.

By applying Proposition 2.14, s times (note that x > 0), we get that C∗(L(r;m)

7 ) ≅
C∗(EC). Similarly, we can apply Proposition 2.14, t times, to get that C∗(L(r;n)

7 ) ≅
C∗(EC).

It is, in fact, true in general (also in the general setting of [BS16]) that whenever
two quantum lens spaces are stably isomorphic, they are isomorphic. We will pursue
this in [ERRS16b].

Corollary 7.9 If 3 does not divide r, then

C∗(L(r;(1,1,1,1))
7 ) ≅ C∗(L(r;m)

7 )
for all m = (m1 ,m2 ,m3 ,m4) ∈ N4 with gcd(m i , r) = 1.

Suppose r = 3s and let m ∈ N4 with gcd(m i , r) = 1 be given. _en

C∗(L(r;m)

7 ) ≅ C∗(L(r;(1,1,1,1))
7 )

if and only if m2 ≡ m3 mod 3 and

C∗(L(r;m)

7 ) ≅ C∗(L(r;(1,1,r−1,1))
7 )

if and only if m2 /≡ m3 mod 3.

_e isomorphism question for quantum lens spaces was introduced in [HS03b]
and some K-groups were explicitly computed there. We note here that the K-groups
in their own right do not contain suõcient information to classify, even if one takes
the order into account.

Remark 7.10 _e triple

(K0(C∗(L(r;m)

7 )) ,K0(C∗(L(r;m)

7 ))
+
,K1(C∗(L(r;m)

7 )))

is not a complete isomorphism invariant.
Set E = L(3;(1,1,1,1))

7 and F = L(3;(1,1,2,1))
7 with adjacency matrices

AE =
⎛
⎜⎜⎜
⎝

1 3 6 10
0 1 3 6
0 0 1 3
0 0 0 1

⎞
⎟⎟⎟
⎠

AF =
⎛
⎜⎜⎜
⎝

1 3 6 11
0 1 3 6
0 0 1 3
0 0 0 1

⎞
⎟⎟⎟
⎠
.

By Corollary 7.9, we have that C∗(E) and C∗(F) are not stably isomorphic. We will
show that

(K0(C∗(E)) ,K0(C∗(E))+ ,K1(C∗(E)))≅

(K0(C∗(F)) ,K0(C∗(F))+ ,K1(C∗(F))) .
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Because of the symmetry in the antidiagonal of these two matrices, we have CE =
BE and CF = BF and may hence consider the K-groups as given by the kernels and
cokernels of BE and BF themselves (see Remark 3.22 and Section 4.4).

Let e i be the vector with 1 in the i-th coordinate and zero elsewhere, let [e i]E be
the class in cok(BE), and let [e i]F be the class in cok(BF). Under our identiûcation of
the K0-groups of C∗(E) and C∗(F) with cokernels of BE and BF , the positive cones
become exactly

SE = {n1[e1]E + n2[e2]E + n3[e3]E + n4[e4]E ∶ n i ∈ N0} ,
SF = {n1[e1]F + n2[e2]F + n3[e3]F + n4[e4]F ∶ n i ∈ N0} ,

respectively. Hence, it is enough to show that

(cok(BE), SE , ker(BE)) ≅ (cok(BF), SF , ker(BF)) .

Set

U =
⎛
⎜⎜⎜
⎝

10 −18 9 0
6 −11 6 0
3 −6 4 0
0 0 0 1

⎞
⎟⎟⎟
⎠

W =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 −1
0 0 1 0
0 3 0 2

⎞
⎟⎟⎟
⎠
.

A computation shows that U andW are in GL4(Z) and UBE = BFW . _us, U in-
duces an isomorphism from cok(BE) to cok(BF), and W induces an isomorphism
from ker(BE) to ker(BF) as described in Section 4.2.

It is clear that U([e i]E) ∈ SF for all i /= 2. Note that in cok(BF), we have that

U([e2]E) =
⎛
⎜⎜⎜
⎝

−18
−11
−6
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

15
7
3
0

⎞
⎟⎟⎟
⎠
+BF

⎛
⎜⎜⎜
⎝

0
0
0
−3

⎞
⎟⎟⎟
⎠
∈ SF .

In the other direction, since

U−1 =
⎛
⎜⎜⎜
⎝

−8 18 −9 0
−6 13 −6 0
−3 6 −2 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,

we can argue similarly.

7.3 Atlas of Graph C∗-algebras of Small Graphs

Inspired by a similar undertaking for Leavitt path algebras ([ABAPMB+14]), we end
by a complete analysis of the stable isomorphism problem for small graphs, focusing
on simple graphs with no more than 4 vertices. Although our invariant may be eõ-
ciently computed,we do not know an eõcient general procedure for decidingwhether
or not an isomorphism exists between a pair of invariants, and furtherwewill attempt
to study also the few caseswhere ourCondition (H) is notmet, so instead of appealing
exclusively to our invariant we will proceed by deûning two equivalences on the set
of graphs under investigation, approximating stable isomorphism of the associated
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graph algebras on both sides. _e number of cases in need of further study is then so
small that we can resolve it case by case.

Deûnition 7.11 _e K-temperature of a ûnite graph E is the map tKE from ΓE to
{0,−1} ∪ Ab given by

tKE (γ) =
⎧⎪⎪⎨⎪⎪⎩

τE(υE(γ)), τE(υE(γ)) < 1,
K0(C∗(E)({υE(γ)})), τE(υE(γ)) = 1.

Note that when BE ∈M○○○
P (m × n,Z),

K0(C∗(E)({υE(γ)})) ≅ cok((B●E{Y−1
BE (γ)})

T) .

Deûnition 7.12 We say that two graphs E and F with (BE ,BF) in standard form
are outer equivalent, and write E ≡O F, if
(i) cok((B●E)T) ≅ cok((B●F)T), and
(ii) for some order isomorphism h∶ ΓE → ΓF , tKF (h(γ)) and tKE (γ) are either isomor-

phic Abelian groups or equal numbers for all γ ∈ ΓE .

We will say that a row or column addition in a matrix BE representing a simple
graph (i.e., all diagonal entries are in {−1, 0} and all other entries are in {0, 1}) is legal
if it meets the requirements of Proposition 2.12 and produces another such matrix.
Similarly, we say that a Move (Col) is a legal collapse if it is applied to a regular
vertex not supporting a loop, and if it takes a simple graph to another simple graph.

Deûnition 7.13 Fix an integer M and let E and F be simple graphs both with û-
nite numbers of vertices m, n ≤ M, respectively. We say that E and F are elementary
equivalent through simple graphs of size M if either m = n and one of the following
holds
(i) E is isomorphic to F,
(ii) F arises from E by performing a legal row addition in B●E ,
(iii) F arises from E by performing a legal column addition in B●E ,
or if m = n + 1 and
(iv) F arises from E by deleting a regular source,
(v) F arises from E by a legal collapse.
_e coarsest equivalence relation containing elementary equivalence through simple
graphs of size M is called M-inner equivalence, and we write E ≡I ,M F when E and F
are M-inner equivalent.

_e following is now clear.

https://doi.org/10.4153/CJM-2017-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-016-7


348 S. Eilers, G. Restorò, E. Ruiz, and A. P. W. Sørensen

Proposition 7.14 When E and F are ûnite simple graphs both with M vertices or less,
we have

E ≡I ,M F +3 E ∼ME F

��

+3 Lk(E) ∼Morita Lk(F) +3 E ≡O F

E ∼CE F +3 C∗(E)⊗K ≅ C∗(F)⊗K.

KS

Although counting the number of nonisomorphic graphs of a certain size M is
easy by Burnside’s lemma (cf. [Slo] A595), producing lists of them is rather computa-
tionally demanding. _emost eõcient way to obtain such lists is provided byMcKay
and Piperno ([MP14]). Developing algorithms to decideM-inner equivalence is then
straightforward by testing for elementary equivalence and partitioning the set (using,
e.g.,Warshall’s algorithm) by the smallest equivalence relation containing the relations
found. It is not much harder to design an algorithm to decide outer equivalence. At
M = 4, it then only takes a few minutes of computing time to partition these sets of
graphs into ≡I ,4- and ≡O-classes, obtaining the numbers listed in Table 1. At M = 5
we have not attempted a complete analysis, as it takes hours even to compute all the
K-temperatures and divide the graphs into ≡O-classes.

M 1 2 3 4 5
nonisomorphic graphs 2 10 104 3044 291968

≡I ,M-classes 2 8 35 218 ?
≡O-classes 2 8 35 199 1310

Table 1. Number of classes for M ∈ {1, 2, 3, 4, 5}

It follows directly from Proposition 7.14 that ≡O-classes are unions of ≡I ,M-classes,
and that when they coincide, they also coincide with ∼ME-classes, ∼CE-classes, or sta-
ble isomorphism classes of the C∗-algebras. Consequently, the ad hoc invariant deûn-
ing outer equivalence is completewhenever the graph has 1, 2, or 3 vertices. Note that
this conûrms the Abrams–Tomforde conjecture in these special cases.

In the case with M = 4 vertices, the notions diòer by 17 ≡O-classes being divided
into a total of 36 ≡I ,4-classes, which we now address. We organize these classes into
four groups as indicated in Figures 5–8, drawing one representative for each ≡I ,4-class
and indicating the boundaries of each ≡O-class by triple vertical lines. In the cases,
explained below, where the graphs fail to be ∼CE-equivalent we draw a vertical line
between them.

Observation 7.15 None of the graphs in the outer equivalence classes listed in Group
I are ∼CE-equivalent, and none of them give stably isomorphic C∗-algebras.

Proof Since _eorem 7.1 applies, this follows directly by checking that no solution
to the small linear systems in (7.1) exists.
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Figure 5. Group I

Figure 6. Group II

In this case, the ≡I ,4-classes coincidewith the ∼ME-classes aswell aswith the classes
giving stably isomorphic graph C∗-algebras, and the invariant used to deûne outer
equivalence fails to be complete. _is is simply because the information needed to
distinguish the matrices up to SLP-equivalence may not be reconstructed from the
partial data contained in the K0-group of the whole system and of the irreducible
components.
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Figure 7. Group III

Figure 8. Group IV

Observation 7.16 All graphs in the outer equivalence classes listed in Group II are
mutually ∼ME-equivalent.

Proof In every case the given graph deûnes an irreducible SFT, and hence by [Fra84]
(see also [Sør13]), since we know that the Bowen-Franks groups are the same in each
outer equivalence class,we just need to check that the signs of the determinantsmatch
up, which is easily done.

_is observation contains the result that indeed the ≡O-classes coincide with the
∼CE-classes and ∼ME-classes aswell as the classeswith stably isomorphic graph C∗-al-
gebras. _e explanation of the lack of success of our approach to establish elementary
equivalence through simple graphs is that since the graphs have so many edges, there
is not room for enough row or column additions to pass from one to another. Indeed,
all the graphs in each outer equivalence class turn out to be ≡I ,5-equivalent.

Observation 7.17 _e graphs in Group III are ∼CE-equivalent without being ∼ME-
equivalent. _e graphs in the outer equivalence classes listed in Group IV fail to be
∼CE-equivalent, yet produce stably isomorphic C∗-algebras.

Proof For the ûrst claim, we see that the two graphs given are clearly move equiva-
lent to the graph given by thematrix (2) and itsCuntz splice. For the second,we note
that we get the four graphs considered in Examples 5.10, 6.5, and 6.9 a�er applying
Move (Col) to the unique regular vertex not supporting a loop.

Combining these results, we get the following observation.
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Observation 7.18 _e 3044 diòerent simple graphs with four vertices are divided
into 210 diòerent ∼ME-classes and 209 diòerent ∼CE-classes. _ey deûne a total of 207
diòerent graph C∗-algebras, identiûed up to stable isomorphism.

_e number of diòerent Leavitt path algebras (say with k = C) deûned, identiûed
up toMorita equivalence, is not known, butmust be in the range {207, 208, 209, 210},
since for all the graphs giving isomorphic stabilized C∗-algebras except the ones in
Group III and IV we have established ∼ME , which implies Morita equivalence of the
Leavitt path algebras as well.
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