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SEMI r -FREE A N D r -FREE INTEGERS— 
A UNIFIED A P P R O A C H 

BY 

G. E. H A R D Y A N D M. V. S U B B A R A O 

ABSTRACT. We obtain an asymptotic formula for the number of 
(k, r)-free integers that do not exceed x. By definition, a (k, r)-free 
integer is one in whose canonical representation no prime power is 
in the interval [r, fc-1] where \<r<k are fixed integers. These 
include as special cases the r-free integers, the semi r-free integers 
and the fc-full integers. We obtain an asymptotic formula for the 
number of representations of an integer as the sum of a prime and a 
(k, r)-free integer, and use the result to prove that every sufficiently 
large integer can be represented as the sum of a prime and m = abk 

where a and b are both square free, (a, b) = 1, b > 1 and k is any 
fixed integer, k > 3 . 

§1. Introduction and definitions. Throughout what follows, n represents a 
positive integer. If n > l , we assume throughout the paper that it has the 
canonical form 

n = p ï s p ^ , . . . , pfi. 

Let r be a fixed integer > 1. A well known class of integers which have been 
studied extensively is the set of r-free integers. An integer n is r-free if either 
n = 1, or if n > 1, in its canonical form given above, all the o^'s are less than r. 
Equivalently, n is r-free if and only if it is not divisible by the rth power of any 
prime. The "unitary" analogue of this concept gives rise to the set of semi 
r-free integers. We define an integer n to be semi r-free whenever it is not 
unitarily divisible by the rth power of any prime. (We recall that n is said to be 
unitarily divisible by an integer d if d is a divisor of n and, moreover, d and 
nfd are relatively prime). Thus, n is semi r-free if either n = 1, or if n > 1, in its 
canonical form, we have at ^ r, 1 < i < j . These integers have been studied by D. 
Suryanarayana [17] and others. 

In this paper, we introduce a class of integers called the (k, r)-free integers— 
of which both the set of r-free integers as well as the set of semi r-free integers 
arise as special cases. Thus we unify the study of the r-free and semi r-free 
integers. Indeed, our (k, r)-free integers also generalize another well known 
class of positive integers. These are the k-full integers—that is those integers n 
in whose canonical form we have at > k for all i. 
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Let r and k be fixed integers satisfying l<r<k. Let Q(k;r) be the set of all 
positive integers n such that either n = 1, or if n > 1, its canonical form satisfies 
the property that a{ < r or at < r or at > k for all i (1 < i < / ) . We shall call such 
numbers (k, r)-free. We also define 

n i \ / x JO, ft^Q(k;r) 

U, nGQ ( k ; r ) 

(1-2) Q(k;r)(x)= Z X(k;r)(n). 

Notice that Q(r+1;r) is the set of semi r-free integers. Also, since Q( k + i ; r )
c 

Q(k-,r), w e m aY define Q(oo-r) = flk=r+i Q(k;r) a n d observe that Q(oo;r) is the set of 
r-free integers. Similarly, the k-full integers are the integers for which at >k , 
and these are given by Q(k;i). Thus the (k, r)-free numbers may be considered 
to provide a simultaneous generalization of the r-free number, the k-full 
numbers, as well as the semi r-free numbers. 

The (k, r) free integers are also related to a class of generalized r-free 
integers introduced by L. Carlitz [2]. The details are given later in Section 4. 

The first main result of this paper is Theorem 3.1 where we obtain an 
asymptotic formulae for Q(k;r)(x), as well as estimates for the error term, one 
with no assumptions, and one based on the Riemann hypothesis. 

The next problem we deal with is related to the famous Hardy-Littlewood 
conjectures ([7], p. 609 and 611) that every sufficiently large number is the sum 
of a prime and a square, and every sufficiently large number is the sum of a 
prime and a cube. These conjectures are still open and are made on the basis of 
the extended Riemann hypothesis. However, it has been proved by Hooley [9] 
that every sufficiently large integer is the sum of a prime and two squares, 
assuming the extended Riemann hypothesis. This assumption was dropped in a 
proof of the same result by Ju. V. Linnik [11] in 1960. It has also been proved 
that every sufficiently large integer is the sum of two primes and a square, by 
G. K. Stanley ([15], 1929) with the extended Riemann hypothesis, and by T. 
Esterman ([4], 1937) without. 

It is known (L. K. Hua [10]) that every sufficiently large number can be 
expressed as the sum of a prime and s kth powers of integers, if s > s 0 ~ | k log 
k. Prachar [14] proved that given a positive integer /, 3 n > l and 5 > 0 such 
that for N sufficiently large, at least 8N of the positive integers <iV are not 
expressible in the form p + ml where p is a prime and m is a positive integer, 
m < n log N. On the other hand, it has been shown by Davenport and 
Heilbronn [3] that almost all numbers n can be represented as p + bk, with 
k > 2 fixed. Babaev [1] showed there are infinitely many n with no such 
representation. 

It has been shown by Esterman [4] in 1931 that every sufficiently large n is 
the sum of a prime and a square free number. Page [13] obtained in 1935 an 
asymptotic formula for T(ft), the number of representations of n as the sum of 
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a prime and a square-free integer. His error estimate was improved by Walfisz 
[21] in 1936 to produce the result: 

TW = Fl 11 — ; — li.m + 0(n/logH n) as n -* oo 
Pin I p ( p - l ) J 

where the constant implied by the O-estimate is dependent on H. 
This result was extended to the r-free integers in 1949 by Mirsky [12]. In 

1970, K. W. Feng [6] found an asymptotic formula for the number of 
representations of n as the sum of a prime and a (k, r) integer. His error term 
was improved by Subbarao and Suryanarayana [16], who used their improve­
ment to prove a new representation result: Every sufficiently large integer can 
be written as the sum of a prime and a number of the form a • bk, where fc > 3 
is fixed b > 1, a is square-free, and (a, b) = 1. 

In this paper, we improve this representation result. We find an asymptotic 
formula for T(fc, r;n), the number of representations of n as the sum of a prime 
and a (fc, r)-free integer, together with three error estimates, one with no 
assumptions, an improvement under the Page hypothesis (which we describe in 
(§2)), and a second improvement under the extended Riemann hypothesis. We 
use the asymptotic formula to show that every sufficiently large integer n is the 
sum of a prime and an integer of the form a • bk, where fc>3 is fixed, 
(a, b) — 1, a and b are both square-free and b > 1. We give an estimate for the 
number of such representations. This is our improvement over Subbarao and 
Suryanarayana's result. The corresponding result for k = 2 remains an open 
problem. 

First we require several lemmas. 

§2. Some Lemmas and Notation. Notation: To simplify our notation, the 
following abbreviations of conditions under summation signs are used. Here p 
is any prime number and all other letters represent positive integers. 

D l : P / n M:p = n(modakb r) S4 :n<x 
D 2 : p j n Pl :(m,n) = l S5:np<x 
D 3 : p j a P2 : (n ,p )= l S5A:n^x/p 
Bl:akbrc = m P3:(a,b) = l S6:fc<y 
B2:akbrc = n P4:(akb r, n) = 1 S7 :b<z 
B3:akbrc = pa P5:(a, n) = 1 SS:akbrc < x 
E4:akbrc + p = n P6:(b,n) = l S8A:akc<x/fc r 

E5:p + m = n P7:(akb r, n)> 1 S8B:fc<(x/akc)1/r 

B6:drl = n FS:(akb\n) = p S 9 : a k c < p r 

E7:drl = p" P9:(dk~r, I)G Qk_r S10:akb r < x 
Gl:b>z Q:aeQ2 S10A:a k <x/b r 

G2:b>pz S l : p < n S l l : a < p _ r / k 

G 3 : a k b r > x S2:akbrc<n 
LG:z<fc<y S3:b<pz 
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For example XS4,PI M-M means the summation is taken over all n such that 
n < x and (m, n) = 1. 

We write fx(n) for the well known Mobius fx function and £(s) for the 
Riemann Zeta function. The letter p always denotes a prime. 

LEMMA 2.1. If we define M(x) as follows: 

(2.2) M(x)= X **(*), 

theft we have 

(2.3) M (x) = 0(x8(x)), (x -> oo) 

where 

( 2 4 ) S(x) = exp{-A log375 x • (log log x)"175}, x > 3 

S(x) = 8(3), 0 < x < 3 

where A > 0 is an absolute constant. This result is due to A. Walfisz [21]. 

We recall c/>s(ft), the generalized Jordan totient function, is defined to be: 
(/>s(ft) = ftsrip|n(l~P~s) where s need not be an integer. 

We use this function in the following lemma: 

LEMMA 2.5: Define M(x, m) as follows: 

(2.6) M(x,m) = X M-(n) 
S4.P1 

then we have, for any fixed 8, 0 < e < l , 

(2.7) M(x, m) = 0(x • 6(x) • rft1_e/(/>i-e(m)) as x—>o° 

where the constant implied by the O-estimate depends only on e. 

Proof. We claim that when x is sufficiently large, 6(x/s)<seô(x), or equival-
ently: 

(x/s)eô(x/s)<xeÔ(x). 

To prove this, it is sufficient to prove x e ô ( x ) ^ œ as x-^o° and that 
d/dx(xe8(x))>0 for x sufficiently large. That xeô(x)->oo as x - ^ œ follows from 
the definition of 8(x). 

4- (xe8(x)) = xe~1ô(x)(e - A log-(2/5)x(|(log log x)- (1 /5) -Klog log x)-(6/5))) 
dx 

and since e is fixed, e > 0 , d/dx(xe8(x))>0 for x sufficiently large. Thus for x 
sufficiently large, ô(x/s)<seô(x). 

Since replacing m by y(m), the largest square free divisor of m, does not 
alter either side of (2.7), we may, without loss of generality, assume m to be 
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square free. To prove the lemma, we shall induct on the number of prime 
divisors of m. If m = 1, (2.7) follows directly from Lemma 2.1. Assume Lemma 
2.5 holds for m having < / prime divisors, and m* = p • m has (j + 1) prime 
divisors. We have: 

M(x,m*) = M(x,p'm)= £ lJL(n)~ Z vW 
S4.P1 S4.D1.P1 

= M(:x, m)— X jut(p • n) = M(x, m)+ £ vM 
S5,P1 S5A,P1,P2 

(2.8) =M(x, m) + M(x/p, m*). 

Iterating (2.8), we find 

(2.9) M (a, m*) = t M(x/pk, m) 
k=0 

where c = [log x/log p]. By the inductive hypothesis and (2.7), we have: 

M(x/p\m) = 0((xlpk)8(xlpk)m1-e/<t>1-e(m)) 

But we may assume 8(x/pk)<pke • 8(x). Thus 

(2.10) M(x/p \ m) = 0((x/pfc-ke)ô(x) • m ^ / c / ^ m ) ) . 

Combining (2.9) and (2.10) we find: 

M(x, m*) = o( t (x/pk-ke)Ô(x)m1-e/^>1-e(m)) 

= o ( x - Ô ( x ) - ( m 1 - ^ 1 _ e ( m ) ) - t p~k^A 
v k=o ' 

= 0(x • 8(x) • (m1-e/c/>i-(m)) • (p^'lp1-* - D) 

= 0(x-S(x)-(m*)1-V^i- e(m*)). 

Thus (2.7) holds for m* and Lemma 2.5 follows by induction. 

REMARK. The above proof can be refined to improve the estimate given in 
the lemma. See, for example, [18], Lemma 3.5. For our purpose, however, the 
stated result is adequate. 

LEMMA 2.11. For e fixed, 0 < e < l , fc>2 and z > 0 , we have: 

(2.12) £ VL(b)lbk=0(z-ik-1)8(z)a1-el(t>1-e(a)) as z -*œ 
G1.P3 

where the constant implied by the 0-estimate depends only on e. 
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Proof. 

Z H(b)/bk = k I ii(b) ry-
(k+1)dy = k\ y- ( k + 1 )( I n(b))dy 

G1,P3 G1,P3 «t *t ^LG,P3 ' 

(2.13) = fc [ V < k + 1 ) ( X M 6 ) ) d y - f c [ V ( k + 1 ) ( I f*(b))dy 
4 ^SG,P3 ' h ^S7,P3 ' 

= fc ! M(y, a)y- ( k + 1 ) dy - kM(z, a) | y"(fc+1) dy. 
•'z •'z 

Applying (2.7) to (2.13), we have: 

X M,(b)/fok=(3(fc f 8(y)'(a1-lct>^e(a))y-kdy) 

+ 0(Ô(z)(a1-e/4>1_e(a))2-^1>). 

Since ô is monotonically decreasing, we may replace 6(y) in the first O-estimate 
above to obtain: 

X jLt(&)/6k=o(s(z)(a1-e/*i-e(a)) f ky~k dy) 
G1,P3 ^ ^z ' 

+ 0(o(z)(a1-e/c^1_e(a))z-(k-1)) 

^0(ô(z)-(a1-e/cf)1_e(a))z- (k-1)). 
LEMMA 2.14 (Cf., Titchmarsh [19], Theorem 14-26(A), p. 316). If the 

Riemann hypothesis is true, then for x > 1, 

(2.15) M(x) = 0(x1/2co(x)) as x -> oo 

where 

l (u(x) = exp{A log x(loglog x) - 1}, x > 16 

= exp{A log 16(log log 16)-1}, x < 16. 

and A is an absolute positive constant. 

LEMMA 2.17. If the Riemann hypothesis is true, then for x > 1, 

(2.18) M(x, m) = 0(x1/2co(x)m1/2/c^1/2(m)) as x-^oo 

where the constant implied by the O-estimate is independent of m and x. 

Proof. We employ an inductive argument similar to the one for Lemma 2.5. 
Again, we may assume m is square free. If m = 1, Lemma 2.17 follows directly 
from Lemma 2.14. Let us assume Lemma 2.17 holds for m having < / prime 
divisors and let m* = m • p have (/ +1) prime divisors. Then, as in Lemma 2.5, 

c 

M(x, m*) = X M(xlpk, m) 
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where c = [log x/log p]. By the inductive hypothesis, we find: 

M(x, m*) = o( I ((x/p)1/2<o(*/p) • m1/2/</>1/2(m)) ' 

Ox1/2o)W(m1/2/cf)1/2(m))X p (1/2) 

since co(x) is monotonically increasing. Thus 

M(x, m*)-0(x1/2co(x)(m1/2/c/>1/2(m)) • p 1 / 2 / p 1 / 2 - l 

= 0(x1/2co(x)(m*)1/2/c^1/2(m*)) 

and the lemma follows by induction. 

LEMMA 2.19. Given z>\, fc>2, and the Riemann hypothesis then: 

(2.20) X f i ( W k = 0(o)(z) • z"(1/2) • z - * ^ • a 1 / 2 / ^ ( a ) ) as z ^ o o 
G1,P3 

where the constant implied by the 0-estimate is independent of z and a. 

Proof. Since a straight forward differentiation shows co(z) • z~(1/2) is mono­
tonically decreasing for z sufficiently large, we follow the proof of Lemma 
2.11, replacing 8(z) by co(z) • z~(1/2), using Lemma 2.17 in place of Lemma 2.5 
and easily derive (2.20). 

LEMMA 2.21. For K r < k < o ° 5 we have: 

(2-22) X(kir)(n)= I ii(b) 
E2,P3,Q 

and 

(2-23) X(k:r)(n)= I ii(d) 
E6,P9 

where QÏ is the set of I-free integers. 

Proof. Since n(n) is multiplicative, both XE2,P3,Q jtx(b) and XE6,P9 V<(d) are 
multiplicative. 

Thus we may assume n = PŒ, a prime power. But it may readily be verified 
that 

i Mft)= i *w)={? T < k 

E3JP3,Q E7j»9 LI otherwise. 
Lemma 2.21 follows. 

REMARK. The above proof holds even when k = oo5 in that case notice that 
a = 1 in (2.22). 

We use the standard notation ir(x; u, t>) = the number of primes < x which 
are = v (mod u), where (u, v) = l. 
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LEMMA 2.24. If (u, v) = 1, then for any H: 

(2.25) w ( x ; ^ v ) = ^ + o(r4-) as x^œ 
<t)(u) \log x) 

where the constant implied by the 0-estimate depends only on H. 

This is due to Van der Corput [20], Footnote 4, pp. 279-280. 
For the convenience of the reader, we shall now state the Page hypothesis, 

which appears in Lemma 2.27 below: 

HYPOTHESIS 2.26 (Page Hypothesis). The greatest real zero (which we de­
note by a) possessed by any Dirichlet L-function with modulus q satisfies 
c r < l - A (logq) - 1 where A is an absolute positive constant. 

REMARK. Page has shown there is at most one real primitive character which 
does not satisfy this hypothesis, and he believes the hypothesis is probably true. 

LEMMA 2.27. If (u, v) = 1 and the Page Hypothesis 2.26 is true, then: 

(2.28) TT(X; U, V) = ——- + 0{x exp(-pVïôg~x)} as x—»°° 
<p(u) 

where j3 is an absolute positive constant and the 0-estimate is independent of u 
and v. 

The proof is due to Page [13], p. 135. 

LEMMA 2.29. If (w, v) = 1 and the extended Riemann hypothesis is true, then 
for u<x: 

(2.30) 7 r ( x ; M , u ) = ^ + 0 / ^ \ as x ^ œ 

<t>(u) MV7 / log*)/ 

where the 0-estimate is independent of u and v. 

The proof is due to Titchmarch [19], Theorem 6, p. 427. 

LEMMA 2.31. There exists an integer n0 such that for all n>n0, there is a 
prime p<2logn such that p \ n. 

Proof. By the prime number theorem, XP<xlogP~x as x—>oo. Thus 3n 0 

such that for all n > n0, 

(2.32) £ l ogp> logn . 
p<21ogn 

Let us assume that n > n0 such that for all p < 2 log n, p\n. Then we have 
np<2iogn P I n which implies np<2iogn P < n which implies Sp<2iogn log p <log n. 

This contradicts (2.32), and thus Lemma 2.31 is proved. 
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§3. The main results. 

THEOREM 3.1. For 2 < r < k < o o ) vve have: 

(3.2) Q(k;r)M = * • c(fc;r) + 0 ( x • ô r ( x ) - 1 as X-H»OO 

where 

(3.3) c(k;r)=n(i-p-r+p-k) 
p 

and 

(3.4) 8r(x) = exp(-cr(log3/5 x)(log log x)~(1/5)) 

where cr depends only on r and the O-estimate is uniform in k and r. 

Proof. From Lemma 2.21 it follows that: 

( 3 - 5 ) Q ( f c ; r ) ( * ) = I X ( k ; r ) ( n ) = I fifr). 
n<x S8,P3,Q 

Let z = x1/r and p = p(z) be a function of z, p < l , such that (p • z)^>o° as 
z—»°o (p will be chosen later). Then if akbrc<x, we cannot have both b>pz 
and akc>p~r. Thus we have: 

Q(k;r)(x)= Z ,*(&)+ I ,*(&)- I M,(fo) 
( 3 . D ) S8,P3,Q,S3 S8,P3,Q,S9 S3,S9,P3,Q 

= S1 + S2 + S3(say). 

We consider each of these sums separately 

Sx- I fx(fc) I 1 
b<pz S8A,P3,Q 

= I n(b) I [x/akbr] 
b<pz S10A,P3,Q 

= Z M&) Z ((x/ak6') + 0(l)) 
b<pz S10A,P3,Q 

= Z /x(b)(o(x1/k/br/k)+ Z (x/afcbr) + o( £ (x/akbr))} 
b<pz l P3,Q \ i=[x 1 / k /b r f k ] ' J 

= x Z M&)/&r Z l /a k + o(x1/fc Z b" r /k) + o( Z Z (x/akbr)\ 
b<pz P3,Q ^ b = l ' H><pz a=[x l f l t /b r / k] ' 

A simple calculation shows, since x1/r = z, we have: 

o(x1/k Z W k ) = o ( z • p1-"" • ̂ ) 
and 

fc 
o ( Z Z ( x / a ^ o V o f z - p 1 -

\><pza=[x 1 / k / b" k ] / \ 

•r/k 

k-r 
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Thus 

Si = x- £ (/x(b)/br) I l /a k 

(3.7) 

+ o(x I (n(b)lbr) I lla^ + oizp1-^--^-) 
\ b>pz P3,Q ' ^ K Tl 

We now examine the first 0-term more closely: 

(3.8) J C X (fx(b)/br) X l / a k = x ] T <*~k I !*(&)/&'. 
b>pz P3,Q aeQ2 G2,P3 

Applying Lemma 2.11 to (3.8) with e = 1/2, we have 

x Z (fi(b)/br) X a-k = x £ 0(o(pz) • a ( 1 / 2 ) - V " 1 ^ " 1 ^ / ^ ) ) 
b>pz P3,Q aeQ2 

(3.9) = 0(x • 8(pz) • plr - x ^ - z t (a(1/2)-fc/4>1/2(a)) 
a = l 

= 0(z8(pz)P
1-r) 

since £"=i (Û ( 1 / 2 ) _ I7<£I/2(Û)) converges uniformly for fcs=:3. Thus by (3.7) and 
(3.9), we have: 

(3.10) 
Si = * £ (n(b)lbr) I l / a k +0(z5( P 2)p 1 ^) + o ( z p 1 - r / k - - 4 -

b = i P3 ,Q \ K r 

= x- c(k;r) + 0(zS(pz)P
1- r) + o ( z p w / k - ~ ) , 

fc-r/' 

by a simple argument and (3.3). We next consider S2: 

(3-11) S2= X n (6 )= X I n(b) 
P3,Q,S9,S8 S9,Q S8B,P3 

Applying Lemma 2.5 to the inner sum of (3.11) we obtain (again with 

e = è ) : . 

(3.12) 

S2= I 0{(x/akc)1/r6((x/akc)1/r)a1/2/^1/2(a)} 
S9,Q 

= o(x1 / r X (akc)~(1/r)Ô((x/afcc)1/r)a1/2/^,1/2(a)}. 
^ S9,Q J 

But we have, since 8(x) is monotonically decreasing, and akc<p~\ that 
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( l / a k c ) 1 / r >p and 8((xlakc)Vr)<8(pxllr) = 8(pz). Thus, from (3.12) we have: 

S2 = o\x1"S(pz) I a-k/r(a1/2/4,1/2(a)) Z ^ 1 / r | 
(3.13) a £ p " k c£p"'a"k 

= o\z8(pz) X a^ / r (a 1 / 2 /^ 1 / 2 (a ) ) (p- f a- k ) 1 - ( W ] 
<- a s p - * J 

S2 = o{z5(p2)p1-r Z a-fca1/2/4>1/2(a)| 
(3.14) l asp"r/k J 

= 0(zS(pz)p1-r) 

since £"=i a~ka1/2/(|)1/2(a) converges uniformly for fc>3. Finally, we have: 

(3-15) S3= Z n(b)= £ X n(ft). 
S3,S9,P3,Q S9,Q S3,P3 

Applying Lemma 2.5 to (3.15), we obtain for e =\: 

S3= Z 0{pzô(pz)a1/2/4>1/2(a)} 
S9,Q 

(3.16) = o{ Z PZ • 8(pz) • (a1/2/4>1/2(a)) • p^7a fc] 
^S10,Q J 

= o{z • 8(pz) • p 1 " ' Z a- f ca1 /2/^1 /2(a)) = 0(z • Ô(pz)p1~r) 
^ S11,Q J 

since Xa=i a-ka1/2/</>1/2(a) converges uniformly for fc>3. 
Thus, substituting (3.10), (3.14) and (3.16) into (3.6), we have: 

(3-17) Q(k;r)(x) = xc(k;r) + 0(z • p(Pz) • p1"0 + o(z • p 1 ^ • ~ ) 

Setting p = p(x) = (8(x1/2r))1/r, from (3.17) we obtain (3.2). The calculations 
follow the procedure of Subbarao and Suryanarayana [16]. Q.E.D. 

THEOREM 3.18. If 2 < r < k < o ° and the Riemann hypothesis is true, then: 

0^9) Q(k:r)(x) = x • c(k;r) + o(x1/rco(x)x- (k- r ) / r (2kr+k-2r) • -j^) as x->™ 

where Ù)(X) is given by (2.16), and the 0-estimate is uniform in k and r. 

Proof. Following the proof of Theorem 3.1, replacing 8(x) by (co(x)x"(1/2)), 
(which is, as we remarked before, monotonically decreasing for x sufficiently 
large), and using Lemmas 2.17 and 2.19 in place of Lemmas 2.5 and 2.11 
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respectively, we obtain: 

k 
Q(k:r)(x) = x • c(k;r) + 0(z • co(pz) • (pz)-(1/2) • p1~r) + o(z • p l -(r /k) , 

fc-r 
(3.20) 

= x • c(k;r) + 0(z1/2co(x)p (1^-0 + o(z • p 1 - ™ • ^ 

Setting p = z-i/(i+2r-(2r/k))j w e o b t a i n ( 3 1 9 ) f r o m (3 20). 

REMARK. The proof of Theorems 3.1 and 3.18 when k = °° requires only a 
minor modification of the proofs given above. 

THEOREM 3.21. If 2 < r < k < o o ? then for any H, 

T(k,nn) = Li(n)U\l-^(^-~h)} 
(3 22) p / n P - 1 V P / J 

iJn-(klk-r)\ 
\logH(r 1 ) / r (n) / 

where the constant implied by the 0-estimate depends only on H. 

Proof. To avoid repetitions, we shall assume all 0-estimates to be as n -* oo 
unless stated otherwise. We have: 

(3.23) T(fc,r;n) = I x ( k ; n ) ( m ) . 
p 

E5 

Applying Lemma 2.21 to (3.23), we find: 

T(k , r ;n ) = I £ u(b) 
(3.24) E5 E1-P3-Q 

= I n(&)= I ii(b)+ S n(ft) 
E4,P3,Q E4,P3,Q,S10 E4,P3„Q,G3 

where x = x(n) is a function of n, x(n)<n, monotonically increasing to infinity 
as x -^ oo, its precise valuation to be determined later. Considering the first sum 
from (3.24), we find: 

, . _ , I **(&) = I **(&) I 1+ I (̂6) I 1 
( ^ . Z j ) E4,P3,Q,S10 S10,P3,Q,P4 S1,M S10,P3,Q,P7 S1,M 

= 2 1 + 22(say). 

Let us consider 2 2 . If n = (akbr)c + p and (n, ak, br)> 1, we must have 
(n, a^bO^P- Thus 

E4,S10,P8,P3,Q 
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For a given a and b, if there is a representation n = akbrc + p with (akb\ n)> 
1, this uniquely fixes p (namely p = (akb\ n)) and this in turn fixes c. Thus 

s2=o( l I) 

(3.26) =0UL-.xvr/x 

k in 

^l ï 1 "'" 
We now turn to %t: 

(3-27) 2 l = X Z I-
S10,P4,P3,Q S1,M 

Applying (2.25) to (3.27), we find: 

SIO,P4,P3,Q \<t>(akbr) \logH ( n ) / / 

P4.P3.Q Va k -V(a) ft'-^(fc)/ 

_ r ï ^ y / i n(*>) \ 
m W w w * Vafc"V(a) fcr-V(b)/ 

'+o(. I , > I l ) = 2 3 + 2 4 + 25(say). 
UogH (n) a ^ S j c / 

We consider 2 3 : 

X3 = Li(n) 2, ^fc-i./^x 1 . r-i , / M • 
P5,Q « <f> W P6.P3 O <p(b) 

The inner sum, above, can be expanded as an Euler product as follows: 

£V3b-'ub) DlLv P
r-pr-v 

p/n \ P P / p | a ^ P - p " I / 

since a / n. Thus we have: 
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Since in the above sum a e Q2, we may also expand this sum as an Euler 
product to obtain: 

î3 = Li(n) n ( l - Z T - ^ n 1 +
 p f c - V P - i v p C p r - x _ ^ 

/ 3 2 m p/n V P P /pfn P (P lAP P 1) 

= Li(n)n{l--L
r(^T-4l)}. 

n/n l P ~ l \P P /J 
We now estimate 2 4 

(3.29) S 4 = o(Li(n) I a~k • - f r • 6"' • - M 
V a4>->x <Ka) <K&V 

But Li(n) = 0(n/logn). Also, ab<n and lim(c/>(n)(loglog n)/n) = e~y (cf., 
Hardy and Wright [8], p. 267). Thus, with (a, b) = 1, we have al^{a) • 6/4>(b) = 
ab/</>(ab) = 0(log n). Applying these results to (3.29), we have 

(3.30) 2 4 = o ( n - X - ^ - ) = 0(n-x 1 /7x) . 
\ akbr>x CI D / 

Estimating S5, we have: 

(3.31) S 5 = o ( - 4 — I l ) = o ( r ^ - n - x ^ / l o g H ( n ) Y 
\logH (n) a4>^x / \k~r I 

Finally, we estimate the second sum in (3.24) 

X M» = 0( I l W I -*-) 
/^> ^>~x E 4 , P 3 , Q , G 3 N S2,G3 / ^akbr>x Cl D / 

= 0(n-x1,r/x). 

Combining (3.26), (3.28), (3.30), (3.31) and (3.32), we obtain: 

(3.33) >*A (P - I )VP P n 
J k nx1/r\ J k nx1/r 

+ 0 + 0 —-£— 
\k-r x ) \k-r logM (r 

l / r 

_ n)J 

Setting x = l o g H n in (3.33), we obtain (3.22). 

THEOREM 3.34. If 2< r<fc<oo and the Page Hypothesis is true, then: 

T(k , r ;n) = L i ( n ) n ( l - T - ^ f i - i ) } 
(3.35) p ' " 1 ( P 1 ) V p P / J 

+ 0 h n e x p s - A l IVlog nI [ as n—>oo 

where the constant implied by the 0-estimate is independent of k and r. 
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Proof. Proceeding as above, using (2.28) in place of (2.25), we obtain: 

T(Kr;n) = Li(n)Y\ { i - ^ ^ - ^ U o ^ - ^ 
( 3 3 6 ) P / „ l ( p - l ) V V /J \k-r x J 

+ o ( - n • x1/r - exp(-AVlog n) ) as n-><*>. 

Setting x = exp(A Vlog n) in (3.36), we obtain (3.35). 

THEOREM 3.37. I / 2 < r < f c < o o and the extended Riemann hypothesis is true, 
then: 

T ( k , r ; n ) - L / ( n ) n ( l - 7 ^ ( ^ - - t r ) ] 
(3.38) " ' » l ( P " 1 ) V P P Ji 

+ o(--^-(n ( r + 1 ) / 2 r(logn) ( r-1 ) / r) as r-^oo. 
\k-r 

where the constant implied by the O-estimate is independent of k and r. 

Proof. As above, using (2.30) in place of (2.25), we obtain: 

T ( f c , r ; n ) ^ L / ( n ) n ( l - ^ ( - è î - - è r ) ] 
(3 39) p ' n l P~lKP P ,] 

/ k nx1/r\ / k nx1/r \ 
+ \k-r' x r \k-r' n1/2l\ogn)' 

Setting x = n1/2llogn in (3.39) we obtain (3.38). 

REMARKS. Setting k = œ in the statements of Theorems 3.21, 3.24 or 3.37 
(with k/k — r replaced by 1, and l/p°°= l/p°°—1 = 0) reduces these theorems to 
known results about the r-free integers. A proof for k = <*> requires a minor 
modification of the proofs given above. 

From the above results, we may easily deduce that every sufficiently large 
integer n can be expressed as the sum of a prime and a (k, r)-free integer. 
However, this is not a new result since a square-free number is always 
(k, r)-free and (as was noted in (§1)) in 1931 Esterman proved that every 
sufficiently large number is the sum of a prime and a square-free integer. The 
following result is new: 

THEOREM 3.40. Every sufficiently large integer n can be written as n = p + abk 

where both a and b are square free, (a, b) = 1, b > 1 and k is any fixed integer, 
k > 3 . 

Proof. Let T(n) be the number of representations of n as a sum as given 
above. Clearly: 

T(n) = T(k, 2; n) - T(k + 1 , 2; n). 
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Applying Theorem 3.21, we find: 

(3.41) p/' 

Let: 

T(n) = Li(n)(n ( l — M 1 - ^ 

-n(1^(r7)))+ 0 (" , , o ê H (" ) ) as -

p - l \ p p / 

1 / 1 1 
0 ( P ) = 1 p - l \ p pk 

7 ( P ) = ^ ) _ 1 -

We have: 

0(p)7(p) = a(p)- |3(p) 

- , _ U I - » W i - ' n ' 
p - l \ p pk V V* p - l V p p" 

1 / l 1 
p - l \ p f c p k + 1 

= l /p k + 1 

Thus 7 ( p ) > l / p k + 1 

| ^ 1 + 7 ( p ) > 1 + 1 / p . 

Let |8 = rip P(p). We have 0 < 0 < 1. Thus 

n«(P)-n^(P)=(n^(P))((n^)-i) 
P/n p/n Vn A\ p / n |3(p)/ / 

>n^(p)((ri(i+i/pk+i))-i) 

>^((ri(i+i/pfc+i))-i) 
>|3((l + l / p k + 1 ) - l ) 

= /3/pk+1 

where the prime above is any prime not dividing n. By Lemma 2.31, for n 
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sufficiently large, we may assume p < 2 log n. Thus 

n«(p)-n0(p)>0/2k+i(iogn)k+i 
p/fn p 

Thus from (3.41) we have 

TW = 1 , J n \ogkn log n\ 

np/nP(n)-Y\Ptn«(p) i + UVlogH(r-1)MW 0 n ) n^°° 

- l + 0(log- ( H ( r-1 ) / r )-k-2 )(n)) as rc^oo. 

Since H is arbitrary, choose H > ( k + 2) ( r / r - l ) and Theorem 3.40 follows. 

§4. Remarks. I. In [2, section (5.2) and Theorem 4], L. Carlitz considered, 
in effect the following generalization of r-free integers. Let s(p) be an integral 
valued function of the prime p such that s(p)> 1 for all primes p and indeed 
s (p )>2 for all but possibly a finite number of primes. Then Carlitz considered 
integers n which are not divisible by p s (p ) for any prime p. He did not estimate 
the number of such integers n not exceeding n. His interest was in estimating 
sums of the type 

n = ni~\ \-nt 

where hl9..., ht are non negative integers and pSi(p) \ n{ (i = 1 , . . . , f), each 
st(p) being of the same type as s(p) described above. 

Some time ago, Carlitz suggested to the second author the study of integers n 
with the following more general property. Let a = (au a2,. •.) and |8 = 
O i , 02? • • •) where 1 < at < 0f <o° for all i, with af > 1 for all but a finite number 
of values of i. Call a number n (a, 0) - f ree if in its unique representation 

n = 2Tl3^2 • • • q{1..., 

(where <fc is the Jth prime in the natural sequence of primes), we have yt < at or 

7 i ^ 0 i -

Obviously our (k, r)-free integers are a specialized class of (a, 0)-free inte­
gers. 

We can show that if Qa,3(x) denotes the number of (a, 0)-free integers not 
exceeding x, then 

o*w~*n (i-i+i)-
m = l x 4m HnT/ 

We omit the details of proof which is similar to that of Theorem 3.1. 
II. We give in (3.41) an explicit formula for the number of representations 

of n as the sum p + abk. We are naturally led to ask if the seemingly weaker 
question: can every sufficiently large integer be represented as the sum of a 
prime plus ab2 where p is a prime, both a and b are square free, (a, b) = 1 and 
b > l . Indeed, the result of Subbarao and Suryanarayana quoted above holds 
for k = 2 (i.e., every sufficiently large integer is the sum of a prime plus ab2, 
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where (a, b) = 1, and a is square free). This follows trivially from the result for 
k = 4, since n = p + a'b4 = p + a- (b2)2. Our result does not admit such an easy 
generalization to fc = 2, and we leave this question open with the conjecture. 

CONJECTURE 4.1. Every sufficiently large integer n can be represented as the 
sum of a prime and a number a • b2, where a and b are both square-free, 
(a,b) = l and 6 > 1 . 

Added in Proof: We can now prove this conjecture. The proof will be 
published later. 
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