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Abstract

In this work we provide sufficient conditions under which a general counting process
stopped at a random time independent from the process belongs to the reliability
decreasing reversed hazard rate (DRHR) or increasing failure rate (IFR) class. We also
give some applications of these results in generalized renewal and trend renewal processes
stopped at a random time.
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1. Introduction

An interesting problem in reliability theory is to give conditions under which the reliability
properties of a random time T are inherited by N(T ), where {N(t) : t ≥ 0} is a stochastic
process independent of T . Letting {N(t) : t ≥ 0} be a homogeneous Poisson process, Grandell
[7] and Block and Savits [4] analyzed this problem, and showed that in this case the most
common reliability classes of T are preserved by N(T ). Esary et al. [6] analyzed the same
problem for a renewal process and showed that if T is increasing failure rate (IFR) then N(T )

is discrete increasing failure rate average (IFRA) (see [6, Theorem 5.2(a)]), and that if T is new
better than used (NBU) then N(T ) is discrete NBU (see [6, Theorem 5.3]). Moreover, in [6] it is
postulated as an open problem that N(T ) is discrete IFRA when T is IFRA. Recently, it has been
shown by Badia and Sangüesa [1] that, for a renewal process, the decreasing failure rate (DFR)
and log-convex life functions are preserved. Furthermore, in that paper the authors established
conditions under which a renewal process stopped at an independent random time inherits
the IFR, decreasing reversed hazard rate (DRHR), IFRA, and decreasing failure rate average
(DFRA) reliability classes. The assumptions are the growth conditions of the arrival times
under a suitable stochastic order. Ross et al. [13] considered a general counting process that
includes a nonhomogeneous Poisson process and a renewal process, and established sufficient
conditions under which N(T ) is IFR (see [13, Theorem 3.1]). In [13] there are a large number of
applications of previous results in Markov chains, parallel systems, nonhomogeneous Poisson
processes, random sums, etc.

In this paper we obtain, by a different approach, Ross et al.’s [13] IFR property for a
general counting process stopped at an independent random time. Furthermore, we give similar
conditions under which the general counting process stopped at a random independent time
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Hazard rate properties 57

is DRHR. The results are stated in Theorems 2 and 3. The key to the proofs are the bivariate
characterizations of the hazard rate and reversed hazard rate stochastic orders (see Theorem 1)
applied to consecutive arrival times of the process with the bivariate functions considered in
Lemmas 2 and 3. These bivariate characterizations were introduced in [16].

The paper is organized as follows. In Section 2 we give definitions of reliability concepts,
reliability classes, and stochastic orderings, and formulate useful properties, such as the bivariate
characterizations of the hazard rate, reversed hazard rate, and likelihood ratio stochastic orders.
The main results are presented in Section 3 along with the definition of the general counting
process. As a consequence of Theorems 2 and 3, in Section 3 we obtain similar results for a
generalized renewal process stopped at a random independent time. Finally, applications of the
results of Section 2 to the trend renewal process appear in Section 4.

2. Preliminaries

For a nonnegative random variable X, the cumulative distribution and the reliability functions
are denoted byFX and F̄X = 1 − FX, respectively. IfX is absolutely continuous, the probability
density function is denoted by fX. We write X

d= Y to indicate that the random variables X and
Y have the same distribution. Throughout this paper, the terms ‘increasing’ and ‘decreasing’
mean, as usual, ‘nondecreasing’ and ‘nonincreasing’, respectively.

We now present the definitions of the hazard rate (see the classic books by Barlow and
Proschan [2], [3]), the reversed hazard rate (see [11]), the IFR class (see [2], [3], and [9]), the
discrete IFR class (see [9]), the DRHR class (see [5]), and the discrete DRHR class (see [14]).

Definition 1. For any absolutely continuous random variable X, we respectively define its
hazard rate (denoted rX) and reversed hazard rate (denoted qX) by

rX(x) = fX(x)

F̄X(x)
and qX(x) = fX(x)

FX(x)

for x such that F̄X(x) > 0 and FX(x) > 0.

Definition 2. A random variable X is said to be IFR if F̄X(x + h)/F̄X(x) is decreasing with x

for each h ≥ 0 or, equivalently, if and only if rX(x) is increasing with x.

Definition 3. Let X be a nonnegative integer-valued random variable. Then X is said to be
discrete IFR if and only if

P(X ≥ n + 1)2 ≥ P(X ≥ n) P(X ≥ n + 2), n = 0, 1, . . . .

Definition 4. A random variable X is said to be DRHR if FX(x +h)/FX(x) is decreasing with
x for each h ≥ 0 or, equivalently, if and only if qX(x) is decreasing with x.

Definition 5. Let X be a nonnegative integer-valued random variable. Then X is said to be
discrete DRHR if and only if

P(X ≤ n + 1)2 ≥ P(X ≤ n) P(X ≤ n + 2), n = 0, 1, . . . .

The stochastic orders defined below are widely used throughout the paper. The books by
Müller and Stoyan [12] as well as Shaked and Shanthikumar [15] provide a comprehensive
treatment of stochastic orders.
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Definition 6. Let X and Y be nonnegative random variables. Then X is said to be smaller than
Y in the usual stochastic order (denoted X ≤st Y ) if and only if F̄X(x) ≤ F̄Y (x) for all x.

Definition 7. Let X and Y be nonnegative random variables. Then X is said to be smaller
than Y in the hazard rate stochastic order (denoted X ≤hr Y ) if and only if the function
x �→ F̄Y (x)/F̄X(x) is increasing or, equivalently, if and only if rX(x) ≥ rY (x) for all x.

Definition 8. Let X and Y be nonnegative random variables. Then X is said to be smaller than
Y in the reversed hazard rate stochastic order (denoted X ≤rhr Y ) if and only if the function
x �→ FY (x)/FX(x) is increasing or, equivalently, if and only if qX(x) ≤ qY (x) for all x.

Definition 9. Let X and Y be nonnegative random variables. Then X is said to be smaller
than Y in the likelihood ratio stochastic order (denoted X ≤lr Y ) if and only if the function
x �→ fY (x)/fX(x) is increasing with x in the union of the support sets of X and Y , with
a/0 = ∞ for a > 0.

The following lemma is a well-known result about the usual stochastic order (see [12]
and [15]).

Lemma 1. Let X and Y be nonnegative random variables. Then X ≤st Y if and only if
E[h(X)] ≤ E[h(Y )] for all increasing functions h or E[h(X)] ≥ E[h(Y )] for all decreasing
functions h.

The bivariate characterizations given below (see [12] and [16]) for the hazard rate, reversed
hazard rate, and likelihood ratio stochastic orders, play a significant role in the proof of the
main results of this paper.

Theorem 1. Let X, X�, Y and Y � be nonnegative random variables with X� and Y � indepen-
dent, and X

d= X� and Y
d= Y �. Then

(a) X ≤hr Y if and only if

E g(X�, Y �) ≤ E g(Y �, X�) for all g ∈ Ghr,

where Ghr is the class of bivariate functions satisfying

Ghr = {g : [0, ∞) × [0, ∞) → R | �g(x, y) is increasing in x for all x ≥ y}
with �g(x, y) = g(x, y) − g(y, x);

(b) X ≤rhr Y if and only if

E g(X�, Y �) ≤ E g(Y �, X�) for all g ∈ Grhr,

where Grhr is defined as

Grhr = {g : [0, ∞) × [0, ∞) → R | �g(x, y) is increasing in x for all x ≤ y};
(c) X ≤lr Y if and only if

E g(X�, Y �) ≤ E g(Y �, X�) for all g ∈ Glr,

where Glr is the class of bivariate functions satisfying

Glr = {g : [0, ∞) × [0, ∞) → R | �g(x, y) ≥ 0 for all x ≥ y}.
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3. DRHR and IFR properties of counting at random times

The results of this section establish sufficient conditions under which a general counting
process {N(t) : t ≥ 0} and a random time independent from the process verify that N(T )

belongs to the DRHR reliability class (see Theorem 2) or IFR reliability class (see Theorem 3).
The general counting process is defined in the following way. The renewal epochs or arrival

times of the counting process are denoted by Sn, n = 1, 2, . . . , with S0 = 0, and the interarrival
times are denoted by Xn, n = 1, 2, . . . . It is verified that

Sn =
n∑

i=1

Xi.

The only assumption in the model concerning the interarrival times is that the Xns are nonneg-
ative random variables. The process is defined, by means of the arrival times, as

N(t) = max{n nonnegative integers | Sn ≤ t}, t ≥ 0,

that is, the nth event of the process occurs at a random time Sn, n = 1, 2, . . . . If the Xns are
independent and identically distributed, the general counting process is a renewal process.

In what follows, Zn,x will denote, for n = 0, 1, . . . and x ≥ 0, the conditional distribution
of Xn+1 given that Sn = x, that is, Zn,x = Xn+1 | Sn = x. In addition, it is necessary to
assume that Sn and Zn,x are both absolutely continuous random variables. The results remain
true if Zn,x and Sn are both discrete random variables.

For n = 1, 2, . . . and x ≥ 0, let us denote by δn and fn,x the probability density functions
of Sn and Zn,x , respectively. In the case in which n = 0, δ0 is Dirac’s delta function defined
on the nonnegative real numbers, and f0,x is the probability density function of S1 = X1.

The auxiliary results presented below are key in the proofs of the main results. They provide
conditions under which an adequate bivariate function belongs to the Ghr or Grhr class associated
with the bivariate characterizations of the hazard rate and reversed hazard rate stochastic orders
(see Theorem 1).

Lemma 2. Let T be a nonnegative random variable. If

(a) T is DRHR; and

(b) Zn+1,x ≥st Zn+1,y for x ≤ y (x, y ≥ 0) and n = 0, 1, . . . ,

then, for n = 0, 1, . . . , the bivariate function gn, defined by

gn(x, y) = FT (x)

∫ ∞

0
FT (y + h)fn+1,y(h) dh, x, y ≥ 0,

belongs to Ghr.

Proof. Let n be a fixed nonnegative integer, and let x1, x2, and y be nonnegative real numbers
satisfying x2 ≥ x1 ≥ y ≥ 0. The property in the lemma is equivalent to verifying that

�gn(x1, y) ≤ �gn(x2, y), x2 ≥ x1 ≥ y ≥ 0. (1)

We first consider the case in which FT (y) = 0. Then,

�gn(x, y) = FT (x)

∫ ∞

0
FT (y + h)fn+1,y(h) dh, x ≥ 0,

and condition (1) is verified because FT is an increasing function.
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Now assume that FT (y) > 0. As FT is an increasing function, FT (x2) ≥ FT (x1) ≥
FT (y) > 0 and �gn(x1, y) can be written as

�gn(x1, y) = FT (x1)FT (y)

×
(∫ ∞

0

FT (y + h)

FT (y)
fn+1,y(h) dh −

∫ ∞

0

FT (x1 + h)

FT (x1)
fn+1,x1(h) dh

)
. (2)

By assumption (a) (see Definition 4) we obtain

FT (y + h)

FT (y)
≥ FT (x1 + h)

FT (x1)
≥ FT (x2 + h)

FT (x2)
, h ≥ 0.

Hence, ∫ ∞

0

FT (x1 + h)

FT (x1)
fn+1,x1(h) dh ≥

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x1(h) dh.

As an immediate consequence of Lemma 1, assumption (b), and the fact that FT is increasing,
we obtain ∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x1(h) dh ≥

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh.

Therefore, putting together these inequalities we obtain∫ ∞

0

FT (x1 + h)

FT (x1)
fn+1,x1(h) dh ≥

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh. (3)

Repeating the same arguments again leads to∫ ∞

0

FT (y + h)

FT (y)
fn+1,y(h) dh ≥

∫ ∞

0

FT (x1 + h)

FT (x1)
fn+1,x1(h) dh

≥
∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh. (4)

Thus, by (2) and (3) we obtain

�gn(x1, y) ≤ FT (x1)FT (y)

×
(∫ ∞

0

FT (y + h)

FT (y)
fn+1,y(h) dh −

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh

)

It follows from (4) that the expression inside the parenthesis is nonnegative. Therefore, as FT

is increasing, we conclude that

�gn(x1, y) ≤ FT (x1)FT (y)

×
(∫ ∞

0

FT (y + h)

FT (y)
fn+1,y(h) dh −

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh

)

≤ FT (x2)FT (y)

×
(∫ ∞

0

FT (y + h)

FT (y)
fn+1,y(h) dh −

∫ ∞

0

FT (x2 + h)

FT (x2)
fn+1,x2(h) dh

)

= �gn(x2, y),

proving (1) for the FT (y) > 0 case.
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Lemma 3. Let T be a nonnegative random variable. If

(a) T is IFR; and

(b) Zn,x ≤st Zn,y for x ≤ y (x, y ≥ 0) and n = 0, 1, . . . ,

then, for n = 0, 1, . . . , the bivariate function ḡn, defined by

ḡn(x, y) = F̄T (x)

∫ ∞

0
F̄T (y + h)fn,y(h) dh, x, y ≥ 0,

belongs to Grhr.

Proof. Let x1, x2, and y be nonnegative real numbers, and let n be a nonnegative integer.
The property stated in the lemma is equivalent to

�ḡn(x1, y) ≤ �ḡn(x2, y), x1 ≤ x2 ≤ y. (5)

If F̄T (y) = 0 then, as F̄T is decreasing and nonnegative, F̄T (y + h) = 0 for all h ≥ 0 and
�ḡn(x, y) = 0 for all x ≥ 0. Therefore, (5) is verified in this case.

For F̄T (y) > 0, the proof of property (5) is analogous to the proof of property (1) in the
FT (y) > 0 case, using the facts that assumptions (a) (see Definition 2) and (b) hold, F̄T is
decreasing and nonnegative, and Lemma 1 is satisfied. The details are omitted.

Now, we are going to prove the two main results in this paper.

Theorem 2. Let {N(t) : t ≥ 0} be a general counting process with arrival times (Sn)n=1,2,...,
and let T be a nonnegative random variable independent of the counting process. Consider
the case in which the cumulative distribution function of T has no common discontinuity points
with the cumulative distribution functions corresponding to the (Sn)n=1,2,.... Then, N(T ) is
DRHR if the following conditions are fulfilled:

(a) T is DRHR;

(b) Sn+1 ≤hr Sn+2 for n = 0, 1, . . . ;

(c) Zn+1,x ≥st Zn+2,x for n = 0, 1, . . . and x ≥ 0;

(d) Zn+1,x ≥st Zn+1,y for x ≤ y (x, y ≥ 0) and n = 0, 1, . . . .

Proof. Let n be a nonnegative integer. Conditions (a) and (d) imply by, Lemma 2, that
the bivariate function gn considered in it belongs to the function class associated with the
bivariate characterization of the hazard rate stochastic order (i.e. gn ∈ Ghr). By condition (b)
and Theorem 1(a), we obtain

E[gn(S
�
n+1, S

�
n+2)] ≤ E[gn(S

�
n+2, S

�
n+1)], (6)

where S�
n+1 and S�

n+2 are independent random variables with S�
n+1

d= Sn+1 and S�
n+2

d= Sn+2.
Then (6) can be written as

∫ ∞

0
FT (x)δn+1(x) dx

∫ ∞

0

(∫ ∞

0
FT (y + h)fn+1,y(h) dh

)
δn+2(y) dy

≤
∫ ∞

0
FT (x)δn+2(x) dx

∫ ∞

0

(∫ ∞

0
FT (y + h)fn+1,y(h) dh

)
δn+1(y) dy. (7)
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On the other hand, using condition (c), the fact that FT is increasing, and Lemma 1, leads to∫ ∞

0
FT (y + h)fn+2,y(h) dh ≤

∫ ∞

0
FT (y + h)fn+1,y(h) dh, y ≥ 0.

Thus, ∫ ∞

0

(∫ ∞

0
FT (y + h)fn+2,y(h) dh

)
δn+2(y) dy

≤
∫ ∞

0

(∫ ∞

0
FT (y + h)fn+1,y(h) dh

)
δn+2(y) dy.

Furthermore, for j = 1, 2, . . . ,

E[FT (Sj )] =
∫ ∞

0
FT (x)δj (x) dx =

∫ ∞

0

(∫ ∞

0
FT (y + h)fj−1,y(h) dh

)
δj−1(y) dy (8)

and

FT (0) = E[FT (S0)] =
∫ ∞

0
FT (x)δ0(x) dx, (9)

which, together with (7), lead to

E[FT (Sn+1)] E[FT (Sn+3)] ≤ E2[FT (Sn+2)]. (10)

By the hypothesis of the theorem we also have

P(N(T ) ≤ n) = E[FT (Sn+1)].
Therefore, N(T ) is a discrete DRHR random variable (see Definition 5 and (10)).

Theorem 3. Let {N(t) : t ≥ 0} be a general counting process with arrival times (Sn)n=1,2,...,
and let T be a nonnegative random variable independent of the counting process. Consider
the case in which the cumulative distribution function of T has no common discontinuity points
with the cumulative distribution functions corresponding to the (Sn)n=1,2,.... Then N(T ) is IFR
if the following conditions are fulfilled:

(a) T is IFR;

(b) Sn ≤rhr Sn+1 for n = 0, 1, . . . ;

(c) Zn,x ≤st Zn+1,x for n = 0, 1, . . . and x ≥ 0;

(d) Zn,x ≤st Zn,y for x ≤ y (x, y ≥ 0) and n = 0, 1, . . . .

Proof. Let n be a nonnegative integer. The bivariate function ḡn defined in Lemma 3
verifies that ḡn ∈ Grhr by conditions (a) and (d) (see Lemma 3). Therefore, by condition (b)
and Theorem 1(b), we have

E[ḡn(S
�
n, S

�
n+1)] ≤ E[ḡn(S

�
n+1, S

�
n)],

where S�
n and S�

n+1 are independent random variables with S�
n

d= Sn and S�
n+1

d= Sn+1. The
expression above can be written as∫ ∞

0
F̄T (x)δn(x) dx

∫ ∞

0

(∫ ∞

0
F̄T (y + h)fn,y(h) dh

)
δn+1(y) dy

≤
∫ ∞

0
F̄T (x)δn+1(x) dx

∫ ∞

0

(∫ ∞

0
F̄T (y + h)fn,y(h) dh

)
δn(y) dy. (11)

https://doi.org/10.1239/jap/1300198136 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1300198136


Hazard rate properties 63

Moreover, by Lemma 1, the fact that F̄T is decreasing, and condition (c), we obtain∫ ∞

0
F̄T (y + h)fn+1,y(h) dh ≤

∫ ∞

0
F̄T (y + h)fn,y(h) dh, y ≥ 0.

Thus, ∫ ∞

0

(∫ ∞

0
F̄T (y + h)fn+1,y(h) dh

)
δn+1(y) dy

≤
∫ ∞

0

(∫ ∞

0
F̄T (y + h)fn,y(h) dh

)
δn+1(y) dy.

Combining previous results, (8) and (9) applied to F̄T instead of FT , with inequality (11) we
deduce that

E[F̄T (Sn)] E[F̄T (Sn+2)] ≤ E2[F̄T (Sn+2)].
Also, by the hypothesis of this theorem we have

P(N(T ) ≥ n) = E[F̄T (Sn)].
So, N(T ) is a discrete IFR random variable (see Definition 3).

As a simple consequence of Theorems 2 and 3, we obtain the corollary below. This corollary
has been proved in [1, Theorem 4.7 and Remark 4.8].

Corollary 1. (i) Let {N(t) : t ≥ 0} be a general counting process with independent and IFR
interarrival times (Xn)n=1,2,..., verifying that Xn ≥st Xn+1, n = 1, 2, . . . , and let T be a
nonnegative random variable independent from the DRHR process. Then N(T ) is discrete
DRHR.

(ii) Let {N(t) : t ≥ 0} be a general counting process with independent and DRHR interarrival
times (Xn)n=1,2,..., verifying that Xn ≤st Xn+1, n = 1, 2, . . . , and let T be a nonnegative
random variable independent from the IFR process. Then N(T ) is discrete IFR.

Proof. Let us first consider the case when the Xns are IFR, Xn ≥st Xn+1, n = 1, 2, . . . , and
T is DRHR. Since the interarrival times are independent, we have Zn,x

d= Xn+1, n = 0, 1, . . .,
and x ≥ 0, and conditions (c) and (d) of Theorem 2 are verified. Furthermore, if the interarrival
times (Xn)n=1,2,... are IFR, by Theorem 1.B.4 of [15], it can be deduced that

Sn =
n∑

i=1

Xi ≤hr Sn+1 =
n+1∑
i=1

Xi, n = 1, 2 . . . ,

and condition (b) of Theorem 2 holds. Then, by Theorem 2 we find that N(T ) is DRHR. The
proof in the other case is similar using Theorem 3 and Theorem 1.B.45 of [15].

4. Application to generalized renewal processes

The generalized renewal process was introduced by Kijima and Sumita [8] to model the
failures of a repairable system and has been widely analyzed in the literature. The arrival times
(Sn)n=0,1,... and interarrival times (Xn)n=1,2,... in a generalized renewal process satisfy

P(Zn,x > z) = P(Xn+1 > z | Sn = x) = F̄ (z + qx)

F̄ (qx)
(12)

for a nonnegative integer n, where q, z, x ≥ 0, Zn,x is the random variable defined in Section 3,
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and F̄ is the reliability function of S1 = X1, that is, the time to the first renewal of the process.
The corresponding probability density function is denoted by f . The model was defined in
terms of the virtual age of the system, represented by Vn, n = 0, 1, . . . , which is related to the
renewal epochs or failure times of the system by means of the equation

Vn = qSn.

The model has the following interpretations, depending on the values of the parameter q. If
q = 0, the model is the classical renewal process, whereas it corresponds to the nonhomo-
geneous Poisson process if q = 1. For those cases where 0 < q < 1, the repair restores the
system somewhere between as-good-as-new and as-bad-as-old, and is better than new after
repair for q > 1.

The next result provides necessary conditions under which the arrival times of a generalized
renewal process are increasing in the likelihood ratio stochastic order.

Lemma 4. Let {N(t) : t ≥ 0} be a generalized renewal process with arrival times (Sn)n=1,2,...,
probability density function of the time to the first renewal f , and a nonnegative real number q.
If 0 ≤ q ≤ 1 and f is log-concave or q > 1 and f is log-convex, then Sn ≤lr Sn+1,

n = 0, 1, . . . .

Proof. As a consequence of (12), it is simple to obtain the following recursive relationship
between the probability density functions of the arrival times of the generalized renewal process:

δn+1(x) =
∫ x

0

f (x + (q − 1)y)

F̄ (qy)
δn(y) dy, x ≥ 0, n = 0, 1, . . . . (13)

According to Definition 9, the claim in the lemma is equivalent to showing that, for n = 0, 1, . . . ,

δn+1(x)

δn(x)
(14)

is increasing in x. The proof of this is accomplished by an induction procedure. Let us assume,
without loss of generality, that all the functions involved in this proof are derivable. The
derivative of a function h is denoted by h′.

The case in which n = 0 is obvious by Definition 9 and the fact that δ0 is Dirac’s delta
function. Let n be a nonnegative number greater than 0, and suppose that the function defined
in (14) is increasing for n − 1. We need to show that the function defined in (14) is also
increasing for n. The sign of the derivative of such a function for n is the same as the sign of
δ′
n+1(x)δn(x) − δ′

n(x)δn+1(x), which can be expressed, using (13), as

f (qx)

F̄ (qx)
(δ2

n(x) − δn−1(x)δn+1(x))

+
∫ x

0

∫ x

0

f ′(x + (q − 1)y)δn(y)f (x + (q − 1)u)δn−1(u)

F̄ (qy)F̄ (qu)
dy du

−
∫ x

0

∫ x

0

f ′(x + (q − 1)u)δn−1(u)f (x + (q − 1)y)δn(y)

F̄ (qy)F̄ (qu)
dy du, x ≥ 0. (15)

Using (13) and the induction hypothesis for n − 1, we obtain

δn+1(x) =
∫ x

0

f (x + (q − 1)y)

F̄ (qy)

δn(y)

δn−1(y)
δn−1(y) dy ≤ δ2

n(x)

δn−1(x)
,
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and so the first term in (15) is nonnegative. Moreover, the second term in (15) can be written as

E[Bq,x(S
�
n−1, S

�
n)] − E[Bq,x(S

�
n, S

�
n−1)], x ≥ 0,

where Bq,x is the bivariate function defined as

Bq,x(u, y) = f ′(x + (q − 1)y)f (x + (q − 1)u)

F̄ (qy)F̄ (qu)
1[0,x](u) 1[0,x](y), y ≥ 0, u ≥ 0,

where 1A is the indicator function of the set A, and S�
n−1 and S�

n are independent variables
with the same distribution as Sn−1 and Sn, respectively. It is simple to verify that, for u ≥ y,
0 ≤ q ≤ 1, and f log-concave,

f ′(x + (q − 1)y)

f (x + (q − 1)y)
≤ f ′(x + (q − 1)u)

f (x + (q − 1)u)
.

Thus, Bq,x(u, y) ≤ Bq,x(y, u), u ≥ y, and, consequently, −Bq,x ∈ Glr and, by Theorem 1(c)
and the induction hypothesis, we conclude that

E[Bq,x(S
�
n−1, S

�
n)] − E[Bq,x(S

�
n, S

�
n−1)] ≥ 0, x ≥ 0.

Hence, the second term in (15) is nonnegative and the induction procedure is completed because
the function in (14) is increasing in x.

The proof in the case when f is log-convex and q > 1 is analogous to the previous case
because, for all x ≥ 0,

f ′(x + (q − 1)y)

f (x + (q − 1)y)
≤ f ′(x + (q − 1)u)

f (x + (q − 1)u)
, u ≥ y.

The corollary below gives sufficient conditions for a generalized renewal process stopped
at a random time independent from the process to be either DRHR or IFR, using Theorem 2
or 3, respectively. The proof also uses Lemma 4 along with the fact that the likelihood ratio
stochastic order implies both the hazard rate and the reversed hazard rate stochastic orders.

Corollary 2. Let {N(t) : t ≥ 0} be a generalized renewal process, and let T be a nonnegative
random variable independent from the process. Then

(i) N(T ) is discrete DRHR if

(a) f is log-concave and 0 ≤ q ≤ 1; and

(b) T is DRHR;

(ii) N(T ) is discrete IFR if

(a) f is log-convex and q > 1; and

(b) T is IFR.

Proof. Let us consider the case when f is log-concave, q ∈ [0, 1], and T is DRHR.
The reliability function of Zn,x for n a nonnegative integer and x a nonnegative real number

is given by (12). The right-hand side of (12) does not depend of n and, thus, condition (c) of
Theorem 2 is verified (see Definition 6). Moreover, it is well known that, if f is log-concave,
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the random variable associated with the time to the first renewal is IFR and then the right-
hand side is decreasing in x (see Definition 2). Hence, the random variables Zn,x verify the
condition (d) of Theorem 2 (see Definition 6). Furthermore, by Lemma 4, the arrival times
satisfy condition (b) of Theorem 1 because the likelihood ratio stochastic order implies the
hazard rate stochastic order. So, under the assumptions of this corollary, all the hypotheses of
Theorem 2 are verified and so N(T ) is a discrete DRHR random variable.

The proof in the other case is similar using Theorem 3 and Lemma 4.

5. Applications to trend-renewal processes

The trend-renewal process (TRP) was introduced in [10] as a generalization of the non-
homogeneous Poisson process. Let us consider the following definition of a TRP.

Definition 10. Let λ(t) be a nonnegative function defined for t ≥ 0, satisfying �(t) =∫ t

0 λ(u) du < ∞ for each t ≥ 0 and �(∞) = ∞. Furthermore, let F be a positive dis-
tribution function (i.e. F(0) = 0) with expected value 1. The process {N(t) : t ≥ 0} with
arrival times S1, S2, . . . is called TRP(F, λ(·)) if the time transformed process with arrival
times �(S1), �(S2), . . . is a classical renewal process with common interrenewal distribution
function F , that is, �(Si)−�(Si−1), i = 1, 2, . . . , are independent and identically distributed
random variables with distribution function F .

Note that a TRP(F, λ(·)) with F being an exponential distribution with mean equal to 1 is
a nonhomogeneous Poisson process with intensity function λ(·).

The next corollary establishes conditions under which a TRP stopped at a random time
independent from the process is DRHR or IFR. The results obtained are similar to Theorem 5.2
of Ross et al. [13], who analyzed the same question for the nonhomogeneous Poisson process
and the IFR reliability class.

Corollary 3. Let {N(t) : t ≥ 0} be a TRP(F, λ(·)), and let T be a nonnegative random variable
independent from the process. Then

(i) N(T ) is discrete DRHR if

(a) F is IFR; and

(b) qT (x)/λ(x) is decreasing with x;

(ii) N(T ) is discrete IFR if

(a) F is DRHR; and

(b) rT (x)/λ(x) is increasing with x.

Proof. It is easy to check from Definition 10 that

N(t)
d= N∗(�(t)), t ≥ 0,

where {N∗(t) : t ≥ 0} is a renewal process with common interarrival distribution F . Then, by
Corollary 1, N(T ) is discrete DRHR or IFR if �(T ) is DRHR or IFR, respectively. Simple
calculations allow us to show that the reversed hazard rate and the hazard rate of �(T ) are
given by

q�(T )(x) = qT (�−1(x))

λ(�−1(x))
and r�(T )(x) = rT (�−1(x))

λ(�−1(x))
,
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respectively. The results follow from previous expressions of q�(T ) and r�(T ), conditions (b)
of the corollary, Definitions 2 and 4, and the fact that �−1(x) is increasing in x.
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