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Abstract

Increase in dimensionality of the signal space for a fixed bandwidth leads to expo-
nential growth in the number of different signals which must be encoded. In this
paper we determine the best subspace of orthogonal functions which can be used
to minimise the worst ratio of peak power to RMS power. A mathematical formu-
lation of this problem has been made and it has been found that the Fourier basis
satisfies the required constraints of optimality in terms of form factor (peak/RMS
ratio).

1. Introduction

Let C[a, b] denote the collection of real-valued functions each continuous
on [a, b] and let w be a suitable weight function, e.g., w is nonnegative
and integrable on [a, b] and such that Jc w(x)dx > 0 for each interval
[c, d] contained in [a, b] with c ^ d. Define the inner product

(f,g)= I w(x)f(x)g(x)dx, f,geC[a,b],
Ja

and consider C[a, b] to be a real inner product space. For n = 1 , 2 , . . . ,
let 5p

n denote the collection of all n-dimensional subspaces of C[a, b], and
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36 P. H. Halpern et al. [2]

for / 6 C[a, b] define the norms

ll/lloo = maxl/WI,
a<x<b

\\f\\2 =
A point x0 G [a, b] such that | /(JCO)| = H/H^ will be called a norm-point
of / . Finally if 5 6 ^ let

A, = sup |5jf^ and 1 = inf As.
/ e s 11/ II2 Se<5^
f¥Q

It is clear that | | / | |2 , As , and An depend on the weight function, w , but
for simplicity our notations do not indicate this dependency. The purpose of
this paper is to determine the value of kn and to characterise those "optimal"
subspaces, S G J ^ , for which As = Xn .

Our interest in these optimal subspaces originated with an important prob-
lem in an area of application known as signal design. For our purposes a sig-
nal is a function / in C[a, b] where [a, b] is the time interval or duration
of the signal. A signal space is a finite-dimensional subspace of C[a, b].
When w(x) = 1 the quantity | | / | |2 is a measure of the energy of the signal
and H/lloo is referred to as the peak value of the signal. Due to hardware
constraints it is desirable to design signal spaces which, for a given signal en-
ergy, will make the peak values of the signals as small as possible. Therefore
those signal spaces which are optimal in the sense described above are of
particular interest. These optimal signal spaces are also important for other
considerations as mentioned in the next section.

2. Background

The concept of dimensionality in signal design stems from the idea that
in any system with bandwidth 0 there are 2/?T independent number of
coordinates which completely describe the signal every T seconds (see [2]).
For a given average power level 5 of a signal, Shannon [7] has proved that
it is possible to transmit error free at a rate c = /? Iog2(l + S/No) bits, where
No is the noise power. However, to achieve this rate of transmission, one
has to work in infinite dimensional signal space. Halpern and Mallory in
their patent (see [3]) have shown that there are practical signal designs which
achieve coding gain in modest dimensional spaces.

It can be observed that, with increase in dimensionality of the signal space
for a fixed bandwidth, two phenomena take place:

(i) The number of different signals which must be encoded grows expo-
nentially.
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(ii) The sphere hardening phenomenon (see [6]) occurs.

Those familiar with signal transmission know that the coding gain (i.e., in-
crease in minimum energy of the difference signals) that we obtain with our
signal design is independent of the actual subspace we use, but depends only
on the geometry. However, there is one important practical problem that
leads to an interesting mathematical formulation and serves as a guide to our
signal designs, and that is when the transmitter is not only average-power
limited but also peak-power limited.

The key question we ask is, what is the best subspace of orthogonal func-
tions that can be used to minimise the worst ratio of peak power to RMS
power? Mathematically, it amounts to the following:

For fixed n and fixed time duration, find the "best" set F of orthonormal
functions {/j, f2, ... , fn) , which minimises

JF = sup

where || • || above is the supremum norm. Note that the problem is meaningful
for real or complex {a(.} .

With this end in mind, we shall prove our main result in Section 3.

3. Main Results

The important results in this paper are corollaries of a single theorem
whose proof is elementary. Before stating this theorem we introduce addi-
tional notation. If S e S?n and {/,, . . . , fn} is an orthonormal basis for S
let

Ms =

This notation might seem inappropriate, since it appears that Ms depends
not only on S but also on the choice of the orthonormal basis for S.
However, it can be shown that if { / , , . . . , / „} and {g{, ... , gn} are both
orthonormal bases for S, then Y!k=\fl = S t= i 8k • T o s e e this, write
gk = Y!]=\ Ckjfj » £ = 1, • • • , « • It is easy to verify that the n x n ma-
trix [Ckj] is orthogonal. A straightforward computation then shows that

S)t=i fk ~ £/t=i 8k • We now state the key theorem.
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THEOREM 1. If S eJ/^ then As = s/Ws. Moreover, the supremum As is
attained if and only if f e S? has the form

(1)

where {/,, . . . , fn} is any orthonormal basis for S, Ck — fk(x0), and x0 is
any norm-point of £ £ = I fk .

PROOF. Let { / , , . . . , fn) be any orthonormal basis for S. It is clear that

A- = sup k=\

. 2
1/2 *

Ufc=i

Given any choice of Cx, ..., Cn (not all 0) let xl be a norm-point of
Y?k=i Ckfk • Using the Cauchy-Schwarz inequality we obtain

E c / - - - »
* = i k=\ U=i U = l U = l

(2)
Therefore A s < \fMs. Now let JC0 be a norm-point of J2l=i fk an<^ ' e t

Ck = -4(xo) > k = \,...,n. Then

Ut=l

k=\

bk=i Lk=l

^ < A S .

(3)
Therefore As = y/Ms. Moreover this implies that the last inequality in
(3) is an equality and so the supremum, As, is attained when / is of the
form described by (1). Conversely, suppose / = 5Zfc=i Ckfk is such that
11/11 oo/11/112 = As anc* *et xi ^e a norm-point of / . Then the inequalities in
(2) would be equalities, from which it would follow that xt is a norm-point

o f a n d ck = cfk(x\)' k = l,...,n,foT some C # 0.

COROLLARY 1. For n — 1, 2,...

w(x)dx )]
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Moreover a subspace S e S?n is optimal (i..e, As = Xn) if and only if Y?k=\ fk
is a constant function whenever {/ , , . . . , fn} is an orthonormal basis for S.

PROOF. If 5 e S?n and ( / , , - - , / „ } is an orthonormal basis for S then

" = £ \f"rv(x)^(x)dx\ = f"
k=\ lJa i Ja

rb 2 rb

<MS w(x)dx = As w(x)dx.
Ja Ja

Moreover, the inequality above is equality if and only if 5Zjt=i •/* *s a c o n*
stant. Therefore the proof will be complete once we show the existence of
an orthonormal set { / [ , • • . , /„} for which Y!k=\fk *s a c o n s tan t - For
this purpose, let W(x) = Af*w(t)dt where A = 2n/[fb w(t)dt], and
let kx, ... ,km be m distinct positive integers. Then when n — 2m,
{(A/n^^sin^Wix), (A/'n)]l/2cosA;(.^(x)}^, is an orthonormal set of n
functions whose sum of squares is constant. Adding the constant function

^2 to this set handles the case when n = 2m + 1.

4. Remarks

It is worth noting the following "pointwise" version of Theorem 1, whose
proof is also an immediate consequence of the Cauchy-Schwarz inequality.

THEOREM 2. If S e S?n and {/,, . . . , fn} is any orthonormal basis for S
then for any x0 e [a, b],

f€S
yyo

Moreover, if we assume £ £ = 1 fl{xQ) > 0, then this supremum is attained if
and only if f e S has the form

n

f = c £ fk(
xo)fk. f°r some c * o.

k=l

By applying Theorems 1 and 2 to the case where S is the subspace of
real algebraic polynomials of degree < n - 1, [a,b] = [ -1 ,1] and w
is one of the weights defined by 1, l/Vl - x2 , or Vl - x2 we obtain the
following results, some of which can be found in [5], pp. 89-90. Let Pk , Tk,
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Uk,k = 0,1,2,..., denote respectively the Legendre and TschebyshefF
polynomials of the first and second kind (see [1]).

COROLLARY 2. If p is any real algebraic polynomial of degree <n — \ and
xQ e [ - l , 1] then

max \p(x)\ < -=
1<*<1 /2 /-',

1/2

max \p(x)\<

[£
p\x)

>/2

X'2

1/2

1/2

fc=o

1/2

\x)\j\-x 2dx\

(4)

(5)

(6)

(7)

(8)

(9)

For each of the inequalities in the above corollary, necessary and sufficient
conditions for equality can be deduced from Theorems 1 and 2. For example,
there is equality in (4) if and only if

n-\ n - l

= C^2(2k+l)Pk or p = for some C # 0.
k=0

We note also that Theorem 2 holds when [a, b] is an infinite interval pro-
vided the weight, w ,and the subspace S, are chosen appropriately, i.e.,
J* w(x)f(x)g(x) dx is a real number for all / , g e S; as a consequence
we obtain (see [5], pp. 89-90):

C O R O L L A R Y 3 . If p is any real algebraic polynomial of degree <n-\ then

HJ{xQ)
1/2

if p (x)e x dx
1/2

— 00 < XQ < OO ,

(10)
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and

H «>-i,*o>o.
(11)

Here Hk and Lk
a^, k = 0, 1, 2, . . . , are the Hermite polynomials with

weight e~x and the generalised Laguerre polynomials respectively, e.g. see

As a final remark, we note that an orthonormal system whose span is
an optimal space (i.e., an optimal orthonormal system) may be of interest,
and the construction of such an optimal system (using sines and cosines) is
demonstrated in the proof of Corollary 1. The following proposition gives
another method for producing optimal systems for weight 1.

PROPOSITION. Suppose

(i) a > 0, / € C[0, a], /o
a f{x) dx = \ , max o ^ , f l | / (x) | = /(0) = ^

and f(a - x) = -f(x) for xe[0,a];
(ii) g(x) = [/2(0) - f\x)]l/2 for xe[0,a];

(iii) F is the even periodic extension with period 2a off to ^ = (-00,00),
e.g., require f(x) = f(-x) for x € [-a, 0] and then f(x + 2a) —
f(x) each x;

(iv) G is the odd periodic extension with period 2a of g to 31.

Then the system (2a)1/2, F(x), G{x), F(2x), G(2x), ... , F{2lx), G(2lx)
is an optimal orthonormal system on [-a, a], I = 0, 1, 2, ... . Moreover the
system with the constant term deleted is also an optimal orthonormal system.

For a proof of the proposition, one verifies that F and G defined by (iii)
and (iv) are continuous functions on (-00, 00), have period 2a, and satisfy

for each x. Then, by using induction and properties of F and G, one
verifies that the system of functions (with or without the constant term) is
orthonormal on [-a, a]. The conclusion that the system of functions is an
optimal orthonormal system on [-a, a] follows from Corollary 1.

Conclusion In this paper we have considered a problem concerning channel
coding by characterising finite dimensional signal spaces of orthogonal func-
tions which minimise the worst ratio of peak power to RMS power. It has
been shown that the Fourier basis satisfies the required constraints of opti-
mality in terms of the form factor(peak/RMS ratio). In the last proposition,
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a method of obtaining other optimal systems is outlined. Based on our result,
one can conclude that the alphabets of signals should use a chosen subset of
harmonics.

We thank the referee for pointing out that our construction of optimal
functions in the proposition may be related to the construction of orthonor-
mal wavelet bases considered by I. Daubechies, "Orthonormal bases of com-
pactly supported wavelets," Comm. Pure Appl. Math. 41 (1988), 909-986.
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