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THE IDEAL GENERATION CONJECTURE FOR 
28 POINTS IN P 3 

LESLIE G. ROBERTS 

1. Introduction. The ideal generation conjecture has recently been 
proved for general points in P , (k a field) [1], [6]. The proof in [1] is 
by induction. One of the starting points for the induction (called A(5) in 
[1] ) is proved in [6]. The theoretical proof of A(5) in [6] seems to be very 
difficult, apparently even more difficult than the induction. Because of 
this, and also because [6] is not publically available, I feel it is worth 
knowing that A(5) can be proved numerically with modest readily 
available computing facilities. In this note I discuss the computation 
involved, and give a few explicit examples. In the course of working out 
these examples I found 26 points in P , that satisfy the ideal generation 
conjecture, but which cannot be extended to 27 or 28 points satisfying the 
ideal generation conjecture. This phenomenon can be interpreted 
combinatorially, leading to an infinite number of similar examples. These 
examples are perhaps surprising because n points in generic position in P" 
can always be extended to s + 1 points in generic position (k infinite). 

First let me review some definitions. Suppose we have a set X of s points 
in P", with homogeneous co-ordinate ring 

A = 0,-go A, 

The Hilbert function of X is 

a, = dim, Al (i ^ 0). 

Let / = ©,^0 Ij be the homogeneous ideal of X, with d the smallest 
integer such that Id ^ 0. That is, A = R/I, R = k[x0, . . . , xn]. The set X 
is in generic position (more properly generic ^-position) [3] if 

4 (" t '))• 
<(" : ' ) (I I is the number of monomials of degree / in n + 1 variables, so 

this means that at is "as large as possible".) The set X satisfies the 
ideal generation conjecture if X is in generic position and if the map 

f-jn + x _ > j 
JAd ^ Àd+\ 
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given by 

j(c0, . .., cn) = x0c0 + xlcl + . . . + xncn 

is of maximal rank (i.e., injective or surjective). That is, Id generates "as 
much as possible" of Id+\. To prove that the ideal generation conjecture 
holds "generically" for s points in Pw it suffices to find one set of points 
where it holds. 

A(5) is stated in [1] in the following manner: there exist subsets {X, Y), 
X a Y c P , X containing 28 points, and Y containing 29, such that 

h°(V\ 12(5) ® J ^ ) = 0 and 

/z°(P3, £2(5) ® J V ) = 0. 

(Jx or J'Y is the sheaf of ideals of X, respectively Y, in P3 , and 12 is the 
sheaf of differentials 12p3). There is an exact sequence ( [5], p. 176) 

0 -> 12(5) -» 40P3(4) ^> 0P3(5) -> 0 

which yields an exact sequence 

0 -> T(P3, 12(5) ® Jx) -* l\ -> /5. 

For 28 points in generic position in P , 

diim. I4 = 7 and dirm. I5 = 28. 

Thus (as noted in [1] ) the ideal generation conjecture (i.e.,/ is one-to-one) 
holds for 28 points in generic position in P if and only if 

dim^ T(P3, 12(5) ®JX) = fc°(P3, 12(5) ® Jx) = 0. 

If X c Y then JY c j ^ , so we have an inclusion 

T(P3, 12(5) ®JY) -> T(P3, 12(5) ® J ^ ) . 

Thus if 

h°(P\ 12(5) ®JX) = 0, 

then also 

h°(P\ 12(5) ® . / y ) = 0. 

Thus proving A(5) is equivalent to finding 28 points in P satisfying the 
ideal generation conjecture. 

2. The brute force method. In the rest of the paper k will either be the 
rationals Q, or F^ ( = Z/pZ, Z the integers,/? a prime). (One might prefer 
to work theoretically over an algebraically closed field. However a{ and 
dirm, It are preserved under field extensions, so an example over k yields 
an example over any larger field.) 28 points X in P3

k can be represented 
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by a 4 X 28 matrix M whose i column is the homogeneous co-ordinates 
of the / point. (If k = Q we can clear denominators and do all 
calculations over Z.) Let M(j) be the matrix whose rows are 
all monomials of degree j in the rows of M. That is, the columns of M(j) 
are the homogeneous co-ordinates of the images of the points of X under 
they-uple embedding ( [5], Exercise 7.1(a), p. 54). To prove that X is in 
generic position it suffices to show that rank M(\) = 4, rank M (2) = 10, 
rank M(3) - 20, and rank M(4) = 28. The matrices M(i) (1 ^ / ^ 4) are 
respectively of sizes 4 X 28, 10 X 28, 20 X 28, and 35 X 28. IA is the null 
space of M(4)1 (t = transpose). Let N be a 7 X 35 matrix whose rows are a 
basis for I4. From N we can construct the matrix T for / , which will be 
56 X 28 (taking as basis for I4 the rows of TV, and regarding I5 as a 
subspace of R5, which is of dimension 56. The basis for R5 could be the 
monomials of degree 5 in 4 variables, ordered lexicographically.) It then 
suffices to prove that T is of rank 28. 

I used APL on an IBM PC to carry out the above calculations, 
(although practically any language should work). Ranks of matrices of the 
sizes above can be found easily by row reduction to upper triangular form, 
and a system of linear equations can be solved by futher row reduction. It 
took me less than 2.5 minutes to verify the ideal generation conjecture for 
a set of 28 "randomly chosen" points in P3 , over F n . A more powerful 
computer would of course be faster, but already on the small computer 
the computation time is negligible compared with the time to write the 
programs. I do all calculations over Q by working over Z. Elements of Z 
can be represented exactly in APL up to about 256. A "randomly chosen" 
set of 28 points in PQquickly leads to integers larger than this when the 
above calculations are attempted. One can get around this problem by 
reducing mod /?, by reducing modulo a non-zero divisor, or by choosing 
the points carefully, as I discuss in the next three sections. Some 
implementations of some computer languages do exact calculation over Z, 
but the need for such is not crucial here. 

3. Reduction mod p. Let M be an r X s matrix with integer coefficients. 
Let M(p) be the matrix over F^ obtained from M by taking the images in 
F^ of the coefficients. The following are readily established. 

LEMMA 3.1. Rank M(p) ^ Rank M, with equality at all but a finite 
number of p. (Rank M is computed over Q and rank M(p) over F ) 

LEMMA 3.2. M can be reduced to upper triangular form M by invertible 
row operations over Z. If M is square then Rank M(p) = Rank M for all 
primes except those that divide a diagonal entry of M. 

By "upper triangular form" I mean that the first non-zero entry of 
row / (2 ^ / ^ r) lies to the right of the first non-zero entry in the 
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preceding row. An "invertible row operation" over Z means one of 
the following (a) multiplication of a row by — 1 (b) interchanging two 
rows (c) adding a multiple of one row to another. Performing a sequence 
of invertible row operations is equivalent to multiplying on the left by an 
element of GL(r, Z). The number of non-zero rows of M is the rank of 
M. 

Definition 3.3. Let Vbe an r dimensional subspace of Qs (r ^ s), and W 
an r dimensional subspace of F*. Then we say that Wis obtained from V 
by reduction mod p if there is an r X s integer matrix M such that the rows 
of M are a basis for V, and the rows of M(p) are a basis of W. (Qs and 
F* are being thought of as s-tuples, with the "standard basis", rather than 
as abstract ^-dimensional vector spaces.) 

LEMMA 3.4. Let M be an s X r matrix with integer coefficients. Suppose 
that rank M = rank M(p). Then the null space of M(p) can be obtained 
from the null space of M by reduction mod/?. 

Proof. Let d = rank M. First interchange columns so that the first d 
colums of M(p) are linearly independent. Then if we row reduce M as in 
Lemma 3.2, M has d non-zero rows, and the d X d matrix at the upper left 
corner of M has none of its diagonal entries divisible by p. The null spaces 
of M and M(p) can now be found by corresponding computations over Q 
and F respectively. Write the resulting basis for the null space of M as the 
rows of a d X r matrix, clear denominators (which can be done by 
multiplying by an integer prime to /?), and undo the original column 
interchange. The resulting matrix expresses the null space of M(p) as 
being obtained from the null space of M by reduction mod p. 

THEOREM 3.5. Let M be an r X s matrix with integer coefficients 
(s = r + 1). The following are equivalent: 

(a) The ideal generation conjecture holds for the s points in P Q given by the 
columns of M. 

(b) The ideal generation conjecture holds for the s points in Pp given by 
the columns of M(p),for some p. 

(c) The ideal generation conjecture holds for the s points in Pp given by the 
columns of M (p), for all but a finite number of p. 

Proof (c) =̂> (b) is obvious. The generic position part of the equivalences 
follows from Lemma 3.1. To finish the proof for (a) =» (c) one need only 
observe that the procedure described in Section 2 can be carried out over 
Q by inverting only a finite number of elements. That (b) => (a) follows 
from Lemma 3.4 and Lemma 3.1. For let TV and Tbt as in Section 2, over 
Q, and N, Tp be over F . Lemma 3.4 says that we can choose N and A^ 
such that N(p) = N. Then T(p) = T By (b), T is of maximal rank. 
Hence so is T by Lemma 1, so (a) holds. 
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As indicated in Section 2, the computation time for verifying the ideal 
generation conjecture over F^ is not large, and Theorem 3.5 then yields an 
example over Q. However, if one can do the complete calculation over Z, 
then one can see which are the "bad" primes in 3.5(c). 

4. Reduction by a non-zero divisor. As in Section 1 let A = R/I be 
the homogeneous co-ordinate ring of s points in generic position in 
P3

k R = k[x0, X], JC2, x3]. Assume that A contains a non-zero divisor of 
degree 1, which by change of variable we can assume is x0. Let 

S = k[xx, x2, x3] and J = (/, x0)/x0. 

Then as indicated in [2, Section 1], we have 

LEMMA 4.1. For A, I, S, J as above, and d the smallest integer such that 
Ij ¥* 0, we have 

(a) J = I/x0I 

(b) Id = Jd 

(c) fh...,f generate I if and only if fx, . . . ,fr generate J (where the 
f e R are homogeneous, andf is the image off in S). 

(d) f.In
d -> J^+1 is of maximal rank if and only if the induced map 

f:Jd -> Jd+X 

is of maximal rank. (Explicitly 

f(c0, q , . . . , cn) = x0c0 + xxcx + . . . + xncn and 

J(dx, ...9dn) = xxdx + . . . + xndn). 

Using Lemma 4.1(d) we can reduce the sizes of some of the matrices 
that we have to work with. For example, let s = 28, and refer to the 
notation of the "brute force" methods of Section 2. Then we still have to 
calculate N as before, before factoring out by x0. But then we can drop the 
first 20 columns of TV (corresponding to monomials which in the 
lexicographical ordering contain x0). This leaves a 7 X 15 matrix N, and 
the matrix T f o r / will then be 21 X 21 (in this case J5 = S5 is of 
dimension 21). Thus for the final verification of the ideal generation 
conjecture we need only show that a 21 X 21 matrix has non-zero 
determinant. One can expect the largest integer occurring in the row 
reduction of T to be smaller than the largest integer occurring in the 
row reduction of T, thus improving the chances of completing an exact 
calculation over Z. In one typical example the size of the largest integer 
was reduced by a factor of 100 by reduction mod x0. 

5. Special sets of points. In [2] a method ("lifting of monomial ideals" 
based on [4] ) is given for producing explicit sets of points satisfying the 
ideal generation conjecture. The method also gives explicit generators for 
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the ideal of the points. Unfortunately, this method does not work for 27 or 
28 points in P , but it does work for 26 points. The idea explored in this 
section is to start with 26 points as in [2], and then make a "random" 
choice of two more points. In this way 26 of the points are chosen with 
"small" co-ordinates, and the risk of integers becoming too large in the 
row reductions is reduced. 

First let me review the construction. The monomials of degree 4 in S are 
represented as the upward pointing triangles, and the monomials of degree 
5 are represented as the vertices in the following graph: 

For example, the top triangle is x\, the top vertex is x\9 triangle A 
is x\x2x3, and the top, left, and right vertices of A are x]x2x3, 

and We define J to be the ideal in S generated by elements 
in S4 corresponding to the dotted triangles, that is by 

4 3 2 2 4 3 2 2 4 3 2 2 
.Xi, X1X95 X-iX2,

 xli X2X3"> X2X3^
 x^i xi>x\i X1X1. 

Because every vertex is the corner of one of these triangles, Ji is all of 
St for / ' ^ 5. The monomials that are non-zero in S/J are all those 
of degree ^ 3 (20 in all) and the 6 undotted triangles 

3 2 3 2 2 3 
X J J T , XiX2X^9 X-iX2i X-yXyX-i^ X^XjX^^ X^X-ï. 

Now choose 3 distinct non-zero elements of k (say 1, 2, 3). (To work over 
the prime field we thus need characteristic ^5 ) . To the monomials 
in S/J we let correspond the point (\,a,b,c) e P^. To the 9 generators of 
J we let correspond respectively 

J\ = -̂ 1 C*i ~ xo)(x\ ~ 2XQ)(XJ — 3x0), 

J 2 = x\(x\ ~~ *o)(*i ~ 2JC0)X2, 

J3 = x\(x\ ~ -x:o)-x:2(x2 ~ x o ) ' 

JA = xl(.x2 ~ •xo)(x2 ~ 2 x 0 ) ( x 2
 — 3 -XQ), 

J5 = xlix2 ~ xo)(x2 ~ ^xo)x3^J6 = x 2 ( x 2 — -^O^C*^ ~ xo)> 
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Ji ~ -^C*^ ~~ •xo)(-x:3 ~~ 2JCO)(X3 — 3x 0 ) , 

A = x?f<x'} ~~ ^ o X ^ ~~ 2 x 0 ) x j , 

y 9 = X3(X3 — X Q ) X J ( X | — XQ). 

Let / be the ideal in R generated by ft (1 ^ i i 9). Then Theorem 2.2 
(and Definition 1.7) of [2] say that / is the ideal in R of the 26 points 
obtained from the monomials in S/J. Explicitly these 26 points are the 
columns of the matrix 

rl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 
M 

0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 

0̂ 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 

1 1 1 1 1 1 1 1 1 T 

0 0 0 0 3 2 1 1 1 0 

3 2 1 0 0 1 3 2 1 1 

0 1 2 3 1 1 0 1 2 3̂  

Now pick two more points. Let H be the ideal of all 28 points. Then H4 is 
a subspace of 74, and a basis for H4 can be obtain by solving a system of 
2 equations in 9 unknowns. If dim H4 = 1 then our 28 points are in 
generic position. The rest of the ideal generation conjecture can be verified 
for all 28 points, by constructing T as in Section 4, and determining its 
rank. Recall that T is 21 X 21. Thus the amount of computation required 
to verify the ideal generation conjecture for 28 points has been reduced 
to solving one system of 2 equations in 9 unknowns, and verifying that one 
21 X 21 matrix has rank 21; much less than required in Section 2. 

Example 5.1. Let P21 = (1, 6, - 4 , 5) and P28 = (1, 7, 5, - 3 ) . Then the 
28 points are in generic position for all/? except 2, 3, 5 and satisfy the ideal 
generation conjecture for all p except 2, 3, 5, 673, and 2113. 

Example 5.2. Let P21 = (1, 2, 3, 4) and P28 = (1, 4, 1, 3). Then the 28 
points are in generic position for all p except p = 2 and p = 3. They 
satisfy the ideal generation conjecture for all p except 2 and 3. (I was 
surprised to find an example with no large primes.) 

Example 5.3. Let P21 = (2, - 3 , 1, - 1 ) and P2S = (1, - 1 , - 5 , 3). Then 
the 28 points are in generic position for all/? except/? = 2 and/? = 3. They 
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satisfy the ideal generation conjecture for all p except 2, 3, 5, and 
135141739. 

Note that P^ (k = F ) contains (p4 - \)/(p - 1) /c-rational points. 
If p = 2 then P3

k contains only 15 points, so there is no hope of satisfying 
the ideal generation conjecture with /c-rational points. If p = 3, then 
P3

k contains 40 ^-rational points, so one might expect to satisfy the ideal 
generation conjecture with /c-rational points. However, there are only 27 
points in which x0 is a non-zero divisor, and also F^ does not contain 3 
distinct non-zero elements, so the methods of Sections 4-5 cannot be used. 
I have tried to find 28 /c-rational points in F3 satisfying the ideal 
generation conjecture by the "brute force" method of Section 2, and have 
not succeeded. Enough examples were tried to suggest there might not be 
28 such points, but I have not been able to prove this. There appear not to 
be even 27 points satisfying the ideal generation conjecture, but 26 points 
satisfying the ideal generation are readily found. (Ballico in [1] has 
observed that Y c X, #X = /', # Y = j , 20 ^ y < / ^ 28, X, Y sets of 
points in generic position P^, and X satisfies the ideal generation conjec­
ture, then so does Y.) 

6. Inappropriate choices of points. Suppose in the method of Section 5 
that we choose J c S to be the ideal generated by the monomials of degree 
4 corresponding to the dotted triangles 

Figure 6.1 

That is, 
r _ / 4 2 2 2 2 2 4 3 2 2 3 4x 

J — v ^ l 5 • ^ 1 ^ ' 2 ' *^1 •^2*^3> •^l-^3? *^2> X'TpC'Xi X^X^y XyX^i) • ^ 3 / ' 

The undotted triangles correspond to 
3 3 3 2 2 3 

X i X o ? •^•1-^3? X I - X T , X-iXyX'i^ X-iXyX^i^ X\X~Ï. 

The monomials in S/J yield 26 points satisfying the ideal generation 
conjecture, namely 20 points with homogeneous co-ordinates the first 20 
columns of M (of Section 5), and corresponding to the above 6 monomials, 
points with co-ordinates the columns of 
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1 1 1 1 1 1 

3 3 1 1 1 1 

1 0 3 2 1 0 

, 0 1 0 1 2 

I claim that these 26 points cannot be extended to 27 or 28 points 
satisfying the ideal generation conjecture. Note from Figure 6.1 that 9 of 
the monomials in S5 are multiples of a generator of J only by xx (the top 
vertices of the dotted triangles). If we let these 9 monomials come first 
then the matrix (T)1 (for any choice of two additional points) looks like 

where the columns correspond to the 21 monomials of S5. The rows of 
(A, B) correspond to multiples of the rows of TV by xx, (0, C) corresponds 
to multiples of the rows of TV by x2, and (0, D) corresponds to multiples 
by x3. Since A is 7 X 9 T cannot be of rank 21, so our 26 points cannot 
be extended to 28, satisfying the ideal generation conjecture. If we were 
trying to extend to 27 points A would be 8 X 9, T would be 24 X 21, and 
again T could not be of maximal rank, so our 26 points cannot be 
extended to 27 satisfying the ideal generation conjecture. 

As usual let S = k[xx, x2, x3] and Sd = degree d part of S. The above 
example can then be generalized in the following manner: 

THEOREM 6.2. Suppose we have m elements X of Sd which cover Sd+ x {that 
is, every element of' Sd+ j is a multiple by xt (1 = / = 3) of some element of 
X). Suppose I ^ m of the vertices of Sd+X are multiples of an element of X 
only by x} (i.e., the 'free tops" in the graph). Suppose there exists an integer 
h = 1 such that 

(a) m — h < I 

(b) 3(m-h)^ [d + 3 ) = #Sd+l. 

Then there exist N = I ^ J — m points in generic position in P satis­

fying the ideal generation conjecture, which cannot be extended to N + h 

points satisfying the ideal generation conjecture. 

Proof. J generated by m elements of Sd corresponds to 
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= (dV) (#Rd) -m = \ , | - m 

points in P 3 , under the construction of Section 5, so yielding the 
expression for N. As in the discussion of 28 points, the matrix (T)1 for 
N + h points looks like 

fA B 

0 D 

where A is (m — h) X /, C and D each have m — h rows, and B, C, D have 

I 9 I — / colums ( # 5 J + 1 = ( 9 I). Condition (b) ensures that 

the matrix has more rows than columns (so to be of maximal rank the 
columns must be linearly independent). Condition (a) says that A has 
more columns than rows. Thus (T) r is not of maximal rank, and Theorem 
6.2 follows. 

Example 6.3. Examples satisfying 6.2 can be obtained in the following 
manner. 

(a) If d is even choose as generators of / alternate rows of triangles in 
the graph of Sd (i.e., 

J == \X -\XyXn J, 

with a -\- b + c = d, a even). Then 

. . , - ( - ± i ) * . 

and 6.2 is satisfied with h = 1, for d ^ 4 (d = 4 being the example earlier 
in this section). One must check that 

'((^-M'î3) 
which simplifies to d(d + 2) ^ 12. 

(b) If d is odd choose as generators of / alternate rows of triangles, 
starting at the bottom, together with the top vertex (that is, 

with a + b + c = d, a even). Then 

m = (d2 + Ad 4- 7)/4 and / = m - 2. 

In order to satisfy 6.2(a), h must be at least 3. Finally 6.2 is satisfied for 
h = 3, so long as d ^ 5. The inequality 6.2(b) is 
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which simplifies to d(d + 2) ^ 27. Note that this fails for <i = 3. 
(c) More specifically there exist 26 points satisfying the ideal generation 

conjecture which cannot be extended to 27 or 28 (also satisfying the ideal 
generation conjecture), 43 points which cannot be extended to 46, 68 
points that cannot be extended to 69, 70, 71, or 72 and 99 points that 
cannot be extended to 102, 103, 104, 105. The number of permissible h 
goes to 00 as d —» 00. 

(d) Note that the N points in Theorem 6.2 cannot be extended to N + h 
points satisfying the ideal generation conjecture, even if we are allowed to 
choose the new points over a ground field extension. 
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