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Quasi-copure Submodules
Saeed Rajaee

Abstract. All rings are commutative with identity, and all modules are unital. In this paper we
introduce the concept of a quasi-copure submodule of a multiplication R-module M and will give
some results about it. We give some properties of the tensor product of finitely generated faithful
multiplication modules.

1 Introduction

Let R be a commutative ring with identity and let M be a unitary R-module. We will
show that the set of quasi-copure submodules of multiplication modules on arith-
metical rings is a lattice. An R-module M is called a multiplication module if for ev-
ery submodule N of M, there exists an ideal I of R such that N = IM = [N:M|M
(see [6,7,11]). An R-module M is called a cancellation module if IM = JM for some
ideals I and J of R implies I = ]J. Equivalently, [IM:M] = I for all ideals I of R.
If M is a finitely generated faithful multiplication R-module, then M is a cancella-
tion module (see [11, Corollary to Theorem 9]), from which one can easily verify that
[IN:M] = I[N:M] for all ideals I of R and all submodules N of M.

A ring R is said to be an arithmetical ring if, for all ideals I, ], and K of R, we have
I+(JnK) = (I+])n(I+K). Obviously, Priifer domains and, in particular, Dedekind
domains are arithmetical. A module M is called distributive if one of the following two
equivalent conditions holds:

(i) Nn(K+L)=(NnK)+ (NnL) forall submodules N, L, K of M;
(i) N+(KnL)=(N+K)n (N +L) forall submodules N, L, K of M.

For any submodule N of an R-module M, we define V(N) to be the set of all prime
submodules of M containing N. For any family of submodules N, (A € A) of M,
Niea V(N)) = V(X jea N ). The M-radical of a submodule N of an R-module M is
the intersection of all prime submodules of M containing N, i.e., rad(N) =N V(N).
Of course, V(M) is just the empty set and V(0) = Spec(M). Every finitely generated
multiplication module on an arithmetical ring is distributive. By [5], a submodule N
of M is called copure if for each ideal I of R, [N:pI] = N + [0: pI]. An R-module
M is called fully copure if every submodule N of M is copure. We will denote the
set of all copure prime submodules of M containing N by CV(N). We will show
that for submodules N and K of M, CV(N) n CV(K) = CV(N + K). Moreover,
if M is a multiplication module on an arithmetical ring R, then the intersection of a
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finite collection of copure submodules of M is also copure. If M is a finitely generated
faithful multiplication module, then CV(N) n CV(K) = CV(NK).

A submodule N of M is called a pure submodule in M if IN = N n IM for every
ideal I of R. Hence, an ideal I of a ring R is pure if for every ideal J of R, JI = J n I.
Consequently, if I is pure, then J = JI for everyideal J € I.

Let R be a domain, K the field of fractions of R, and M a torsion free R-mod-
ule; then a nonzero ideal I of R is said to be invertible if II"' = R, where
I"' = {x e K:xI € R}. The associated ideal 6(M) = ¥, [Rm:M] and the trace
ideal Tr(M) = ¥ fettom(m,r) f (M) of a module M play analogous but distinct roles
in the study of multiplication and projective modules respectively.

If M is projective, then M = Tr(M)M, ann(M) = ann(Tr(M)), and Tr(M) is
a pure ideal of R (see [8, Proposition 3.30]). In particular, if M is a finitely gener-
ated faithful multiplication R-module (hence projective), then pure ideals are flat,
and hence Tr(M) is flat. Let M be an R-module and N a submodule of M; then
[(N) = [N:M]Tr(M). Obviously, T (M) = Tr(M). It is shown in [4, Theorem 3]
that if N is a submodule of a faithful multiplication or locally cyclic projective mod-
ule M, then Tr(rad N) = \/T(N) = I'(rad N).

2 Preliminary Notes

Definition 2.1 Let N be a submodule of an R-module M. We will denote the set of
all copure prime submodules of M containing N by CV(N):

CV(N)={PeV(N): Pis copure.}
Definition 2.2 A submodule N of M is called quasi-copure (or weak-copure) if every

proper prime submodule P containing N is a copure submodule of M. Equivalently,
if V(N) = CV(N), then N is a quasi-copure submodule of M.

Example 2.3 We consider M = Zg @ Zg as a Z-module and N = (2) @ (3) as a
submodule of M. We show that N is not a copure submodule of M and also that
L = Zg ® (3) and K = (2) @ Z are proper prime submodules of M contained N,
where both are copure submodules of M; therefore, N is a quasi-copure submodule
of M:

[N:m2Z) = {(m,7) € Zs ® Z | 2Z(m,70) < (2) @ (3)} = Zs & (3)
N+ [{0} @ {0}:m2Z] = (2) @ (3) + { (1, 70) € Zs ® Z | 2Z(m,70) < (0) ® (0)}
=(2)e(3)+(4) @ (3) = (2) ® (3).

Therefore, N is not a copure submodule of M. We know that L = Zg @ (3) and K =
(2) ® Zg are proper prime submodules of M contained N.

Case I: If k = p > 3 is a prime number, then
[L:mpZ] = { (m,7) € Zs ® Zg | pZ(m,71) € Zs & (3)} = Zs @ (3)
L+[{0} @ {0}:mpZ] =Zs & (3) + { (m.7) € Zs ® Zs | pZ(m,7) < (0) & (0) }
=7Zg® <§) + (6) ® (6) =7Zg ® <§)
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Case 2: Otherwise, we have that
[L:m2Z] = {(m,7) € Zs ® L | 2Z(1m,71) € Zs & (3)} = Zs @ (3)
L+ [{5} ® {6}:MZZ] =Zs® (3) + { (m,n) ez 8@ Zs | 2Z(m,n) < (0) ® (5)}
=Zs®(3)+{(4)® (3)=Zs ® (3)

(L:m3Z] = { (m,7) € Zs ® L | 3Z(m,71) € Zs & (3)} = Zs & Zg
L+[{0} @ {0}:m3Z] =Zs @ (3) + { (m,7) € Zs ® Zg | 3Z(7m, 1) < (0) & (0) }
=Zs®(3)+(0) @ (2) = Zs ® Zs
(L:mAZ] = { (m,7) € Zs & Zs | 4Z(m,71) € Zs & (3)} = Zs & (3)
L+[{0} @ {0}:mAZ] = Zg ® (3) + { (m,7) € Zs ® Z | AZ(m, 71) < (0) & (0) }
=Zs®(3)+(2) ® (3) =Zs ® (3).

Definition 2.4 Let R be a ring and M an R-module. An ideal I of R is called an
M-cancellation module (resp., M-weak cancellation module) if for all submodules K
and N of M, IK = IN implies K = N (resp. K + [0: 1] = N + [0: ;I]). Equivalently,

we have [IN: pI] = N (resp. [IN:pI] = N + [0: p1]) for all submodules N of M (see
(1]).

3 Main Results

Definition 3.1 Let M be a multiplication R-module andlet N = IM and K = JM be
submodules of M. The product of N and K is denoted by NK and is defined by IJM.
Clearly, NK is a submodule of M and contained in N n K.

Lemma 3.2 Let M be a multiplication R-module.

(i)  If M be finitely generated faithful, then M is a cancellation module.

(ii) Every proper submodule of M is contained in a maximal submodule of M and P
is a maximal submodule of M if and only if there exists a maximal ideal m of R
such that P = mM # M.

Proof (i) By[11, Corollary1to Theorem 9], M is a cancellation module, and therefore
IN = [IN:M]M = I[N:M]M = [IN:M] = I[N: M]

for all ideals I of R and all submodules N of M.
(ii) [7, Theorem 2.5] |

Theorem 3.3 Let M be an R-module and let N and K be submodules of M.

(i) IfNcLcMandN is quasi-copure, then L is also quasi-copure. In particular, if
one of the N or K are quasi-copure submodules, then N + K is also a quasi-copure
submodule of M.

(ii) Let M be a multiplication R-module on an arithmetical ring R. If N and K are
copure submodules, then N n K is also a copure submodule of M. Moreover, if
V(N) is a finite set and N quasi-copure, then rad(N) is copure.
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(iii) If M is a multiplication module and N and K are quasi-copure submodules of M,
then NK is also a quasi-copure submodule of M. Therefore, CV(NK) = CV(N)n
CV(K).

Proof (i) Let P € CV(N), then P o L 2 N, since N is quasi-copure, hence P is
copure. Therefore, P € CV(L). For the second part we set L = N + K, which contains
N and K.

(ii) Every finitely generated multiplication module M on an arithmetical ring R is
a distributive module. Since N and K are copure submodules of M, hence for every
ideal I of R,

[NNK:yI] = [N:yI]n [KiyI] = (N +[0:pI]) 0 (K + [0:1])
= NN K+[0:pI].

Therefore, N n K is a copure submodule of M.

Since N is quasi-copure by definition, each P € V(N) is copure, and therefore
rad(N) = Npey(n) P is copure.

(iii) Let P € CV(N)n CV(K) and P € V(NK). By [7, Corollary 2.11], there exists
a prime ideal p 2 ann(M), where P = pM and [P:M] = [pM:M] = p. Let N = IM
and K = JM for some ideals I and J of R; then NK = IJM c pM. Since M is a finitely
generated faithful multiplication module, it is cancellation module [11, Corollary 1 to
Theorem 9], hence IJ c p. Therefore, I c p or J c p, and this implies that N c P or
K c P, respectively. In each of those two cases, P is copure, and hence P € CV(NK).
It follows that NK is a quasi-copure submodule of M. Conversely, let P € CV(NK);
then P 2 NK and by [7, Theorem 3.16 and Corollary 3.17], P 2 N or P 2 K. It follows
that P € CV(N) u CV(K) 2 CV(N) n CV(K). n

Corollary 3.4 Let M be a nonzero multiplication R-module.

(i) If M is a faithful prime and N a copure submodule of M, then N = IN for every
nonzero ideal I of R.

(ii) If M be finitely generated and Q a quasi-copure primary submodule of M, then
rad(Q) is a copure submodule of M.

(iii) For every two copure submodules N1, N, of M, if IN; = IN,, then Ny = N,.

(iv) If M is Noetherian and R an arithmetical ring, then for quasi-copure submodules
N and K of M, rad(N n K) is copure.

Proof (i) M is faithful, anng (M) = 0, and M is prime, hence for each submodule
N of M, anng(N) = anng(M) = 0; then annp (N) = anng(N)M = 0. Now M is a
multiplication R-module therefore for each ideal I of R and every submodule L of M,
[L:mI] = [L:mIM]. In particular, anny (I) = [0: ] = annpy (IM) = 0. Since N is
copure, [N:pI] =N +[0:3I] = N. It follows that N = IN.

(ii) Since Q is primary submodule, \/[Q: M] is a prime ideal containing ann(M).
Therefore, by [9, Lemma 3 and Theorem 4], rad(Q) = \/[Q:M]M is a prime sub-
module of M and Q is quasi-copure, hence rad(Q) is copure.

(iii) The proof follows from (i) immediately.

(iv) Since the radical of any submodule of a Noetherian multiplication module is
a finite intersection of prime submodules, by Theorem 3.3(ii), rad(N) and rad(K)
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are copure submeodules of M. By [7, Theorems 1.6 and 2.12] it follows that rad(N) n
rad(K) = rad(N n K), and by Theorem 3.3(ii) rad(N n K) is also copure. [ |

Theorem 3.5 Let (R, m) be a Noetherian local ring and M a cancellation multipli-
cation R-module. If P is a copure maximal submodule of M, then for every ideal I of R,
anny (I) € P. Moreover, for every submodule N of M, annp(I) = annp(N) € P.

Proof Since P is a copure submodule of M, for every ideal I of R,
Pc[P:iyl]=P+[0:yI] S M

Therefore, by maximality of P, P = P+[0: pI] or P+[0: 1] = M. Let P+[0: pI] = M;
then IP + I[0: pI] = IM hence IP = IM. Since M is cancellation, hence [IN: M] =
I[N:M] for all ideals I of R and all submodules N of M, and also [P: M] = m, there-
fore
Im=I[P:M] = [IP:M] = [IM:M] = I.

By Nakayama’s lemma, since I is a finitely generated R-module and m = Jac(R) and
I = mI, we have I = 0; therefore, P = P + [0: pI] = P+ M = M, which is a contradic-
tion. It follows that P = P + [0: I] and so anny;(I) < P.

Let N = IM be a submodule of M. Since M is a multiplication R-module, for every
ideal I of R and submodule K of M, [K: yI] = [K:yN] = [K: yIM]. In particular,
for K = 0, annp(I) = anny (IM) = annpy(N) € P. [ |

Corollary 3.6 Let M be an R-module and I an M-cancellation ideal of R. If P is a
copure maximal submodule of M, then anny(I) C P.

Proof Bythe proofof Theorem 3.5 we have IP = IM, and since I is an M-cancellation
ideal of R, P = M, which is a contradiction. Then P = P + [0:I], and therefore
anny (I) ¢ P. Therefore,

anny(I) € N P.

P=maximal copure

Moreover, if {I) } cx is a collection of M-cancellation ideals of R, then

(anny (1)) = Y anny(I)) € N P. [ |

AeA AeA P=maximal copure

Theorem 3.7  Let M, and M, be finitely generated faithful multiplication R-modules.
The following hold.

(i) IfK and N are invertible in My and M, respectively, or if one of K or N is flat,
then T(K ® N) = T(K)I'(N). Moreover T(K ® M,) = T(K) Tr(Ms,).
(ii) If My and M, are free R-modules, then Tr(rad(K ® M;)) = I'(rad K) Tr(M_).

Proof (i) By [2, Theorem 2] M; ® M, is a finitely generated faithful multiplication
R-module. If K is a nonzero submodule of multiplication R-module M, such that
[K:M]isan invertible ideal of R, then K is invertible in M;. The converse is true if we
assume further that M; is finitely generated and faithful (see [10, Lemmas 3.2 and 3.3]).
Therefore, [K:M; ] and [N:M,] are invertible ideals of R, and Tr(M;) and Tr(M;)
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are flat ideals, hence Tr(M;) Tr(M,) = Tr(M;) ® Tr(M,) = Tr(M; ® M;). Also, since
M, ® M, is projective, ann(M; ® M;) = ann(Tr(M; ® M;)) = 0. It follows that

[K@N:M; ® My 2 [K:M;]® [N:M,] = [K: M;][N:M,].

Therefore,

I'(K®N)=[K®N:M; ® My | Tr(M, ® M3)

[
[K:M;][N:M,] Tr(M;) ® Tr(M;)
[
[

112

11

K:M;][N:M,] Te(M;) Te(M;)
K:M;] Te(M,)[N:M,] Te(M,) = T(K)I(N).

Also, if K or N is flat, then [K: M;] or [N: M,] is a flat ideal, and hence
[K:M;] ® [N:M,] = [K:M;][N: M,],
and the result is true. Since M; ® M, is a faithful multiplication R-module,
Ke@N=T(K®N)(M;® M) 2T(K)I(N)(M;® M;) 2T(K® N)(M; ® M>).
(ii) Since M; ® M, is a faithful multiplication free R-module, therefore for some ideal
I of R, K = IM; and then
rad(K ® M,) = rad(IM; ® M,) = rad(I(M; ® M,)) = VI(M; ® M,)
2\VIM, ® M, = (radK) ® M,
By [4, Theorem 3], and (i) and also since Tr(M;) is flat, it follows that
Tr(rad(K ® M,)) = Tr(rad K ® M) 2 Tr(rad K) ® Tr(M;)

= Tr(rad K) Tr(M;) = /I'(K) Tr(M,)
=T (radK) Tr(M,) = T (rad K)T'(M,). [ |

Theorem 3.8 Let M be a finitely generated faithful multiplication R-module and let
Ny (A € A) be a finite collection of submodules of M, where for all A # y, Ny + N, is a
multiplication module.

(i) IfN =Njeca Ny, then for every pure ideal I of R, T(IN) = IT(N) =InT(N).
(ii) IfK is a pure idempotent submodule of M, then K = T(K)K.

Proof (i) By [3, Theorem 1], IN = N IN) and by [4, Lemma 2],

I(IN) = F(IADA Ny) = F(ADA IN)) = N TN

= M[INy:M]Tr(M) = N I[N, :M] Te(M)
AeA AeA
= NIT(Ny)=INT(N,)=IT(N)=InT(N).
AeA AeA
(ii) By [11, Theorem 11], if M is a finitely generated multiplication R-module such
that ann(M) = Re for some idempotent e, then M is projective, and hence, finitely
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generated faithful multiplication modules are projective and M = Tr(M)M. Since K
is pure and idempotent,

Tr(M)K = KnTr(M)M =Kn M =K,
K = [K:M]K = Tr(M)K = Tr(M)[K:M]K = T(K)K.
It follows that K = T(K)K = KN T[(K)M. [ |
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