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Abstract

The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you
stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965),
who proved there exist integers kn such that it is optimal to stop at n tosses when heads
minus tails is kn. Finding kn was unsolved except for finitely many cases by computer.
We prove an o(n−1/4) estimate of the stopping boundary of Dvoretsky (1967), which

then proves kn =
⌈
α
√

n − 1/2 + (−2ζ (−1/2))
√
α√

π
n−1/4

⌉
except for n in a set of den-

sity asymptotic to 0, at a power law rate. Here, α is the Shepp–Walker constant from
the Brownian motion analog, and ζ is Riemann’s zeta function. An n−1/4 dependence
was conjectured by Christensen and Fischer (2022). Our proof uses moments involv-
ing Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from
backward induction, and a generalized backward induction principle. It was motivated
by an idea of Häggström and Wästlund (2013) to use backward induction of upper and
lower Value bounds from a horizon, which they used numerically to settle a few cases.
Christensen and Fischer, with much better bounds, settled many more cases. We use
Skorohod’s embedding to get simple upper and lower bounds from the Brownian ana-
log; our upper bound is the one found by Christensen and Fischer in another way. We use
them first for yet many more examples and a conjecture, then algebraically in the tree,
with feedback to get much sharper Value bounds near the border, and analytic results.
Also, we give a formula that gives the exact optimal stop rule for all n up to about a third
of a billion; it uses the analytic result plus terms arrived at empirically.

Keywords: Chow–Robbins game; Sn/n problem; random walk; Brownian motion;
Wald identity; Catalan number; Shapiro Catalan triangle; backward induction; optimal
stopping
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1. Introduction

1.1. Background

The Chow–Robbins game (also known as the Sn/n problem) is a classical optimal stopping
problem that can be stated in the form of a simple coin-tossing game, for which the payoff is
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2 J. H. ELTON

the proportion of heads when you stop. The goal is to maximize your expected payoff. It seems
to have been first posed by Breiman [1] in 1964, but was first analyzed by Chow and Robbins
[4] in 1965. Let Sn =∑n

i=1 Xi, where the Xi are independent ±1-valued mean-zero random
variables, representing heads or tails in tossing a fair coin; this is a symmetric random walk.
The object is to find a stopping time τ which is optimal in the sense that E

[ Sτ
τ

]= supT E
[ ST

T

]
,

the sup taken over stopping times (positive integer-valued random variables which do not
anticipate the future, assumed almost surely finite). Chow and Robbins proved the existence
of integers 0< k1 ≤ k2 ≤ . . . such that the stopping time τ = inf {n:Sn ≥ kn} is optimal; no
formula was given for the kn.

Next, in 1967, Dvoretzky [6] found a representation of an optimal stopping time in terms
of a more general payoff, or Value, function. Define the Value starting from initial ‘position’
(u,n) under stopping time T as

V(u, n, T) = E

[
u + ST

n + T

]
,

where u is a real number, n is a non-negative integer, and T is a stopping time for the symmetric
random walk; and define

V(u, n) = sup
T

V(u, n, T).

In fact, Dvoretzky allowed the Xi to be more generally independent and identically dis-
tributed (i.i.d.) of mean zero and finite variance, but our paper is only concerned with
the coin-tossing case. We emphasize that u is allowed to be real, not just integers, unlike
what Chow and Robbins considered in their proofs. This turns out to be quite significant.
Dvoretzky proved that V is a continuous function of the first argument u, and the equa-
tion V(βn, n) = βn/n uniquely defines a strictly increasing sequence of positive real numbers
0<β1 <β2 < . . . such that the stop rule τ (u, n) = min

{
j : u + Sj ≥ βn+j

}
is optimal in the

sense that V(u, n) = V(u, n, τ (u, n)). In particular, τ (0, 0) = min
{
j : Sj ≥ βj

}
is optimal for the

Chow–Robbins game. For our development below, we work with the real numbers βn rather
than the integers kn because we can approximate them by approximating the Value function in
the equation they satisfy; we can use real analysis. Our approximation of the real numbers βn

will allow us to give an exact formula for kn for all n, except for a set whose density asymptot-
ically approaches zero rapidly (by a power law). Dvoretzky showed that 0.32<βn/

√
n< 4.06

for sufficiently large n, and conjectured that βn/
√

n approaches a limit.
In 1969, Shepp [13], and independently Walker [14], found a simple exact optimal stop rule

for the continuous-time Brownian motion analog, which allowed them to prove Dvoretzky’s
conjecture. Let W(t) be standard Brownian motion (Wiener process), and following Shepp’s
notation, define

VW (u, b, T) = E

[
u + W(T)

b + T

]
, VW (u, b) = sup

T
VW (u, b, T),

where u and b are real numbers with b> 0. T being a stopping time means it is a non-
negative real-valued random variable that does not anticipate the future, and the sup is
taken over stopping times for which the expectation exists. Let α be the unique real

https://doi.org/10.1017/apr.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.6


Exact solution to the Chow–Robbins game for almost all n 3

root of α = (1 − α2)
∫∞

0 exp
(
λα− λ2/2

)
dλ. Computation gives α = 0.83992 . . . . Let τα =

min
{
t:u + W(t) ≥ α√

b + t
}
. They proved τα is the almost surely unique optimal stopping

time, so VW (u, b) = VW (u, b, τα); and

VW (u, b) = (1 − α2)
∫ ∞

0
exp
(
λu − λ2b/2

)
dλ if u ≤ α√

b, else VW (u, b) = u/b. (1.1)

In other words, starting at time b, it is optimal to stop when you hit the square root boundary
α
√

b + t. Using the invariance principle (see, for example, [1, p. 281]), Shepp [13, pp. 1005–
1006] used the Brownian motion result to show that the optimal stopping boundary for the
random walk game is asymptotic to α

√
n; that is, limn→∞ βn/

√
n = α. But that does not give

a way of knowing if it is optimal to stop at any specific position (u,n) in the Chow–Robbins
game, when u is an integer. Medina and Zeilberger [10] discuss this distinction, pointing out
that, at the time of their article (2009), not even k8 was known (they refer to it as β8, but we
are adopting the notation of the original papers). They give some numerical data about early
positions, and some good insight into the difficulty.

In 2013, Häggström and Wästlund [6] showed, with a clever idea and the help of computer
calculations, how to finesse the difficulty discussed in [10], and actually decide in some ‘early’
positions whether or not stopping is optimal. Let d be the number of heads minus the number of
tails after n flips. They expressed their results in terms of the number of heads, but we will give
equivalent statements using n, to align with the usual notation. Also they expressed the stop rule
in terms of n as a function of d, the reverse of the usual. We found it very useful in our numerical
experiments below to also use this reverse formulation, so we describe it here. Using somewhat
crude upper and lower bounds for the value at any position, and using backward induction from
‘way out’ (a horizon), they computed, for d between 1 and 25, numbers ns(d) and ng(d), with
ns(d)< ng(d), such that if n ≤ ns(d) you should stop, and if n ≥ ng(d) you should go on. The
idea is that as you work backward from the horizon, those numbers should pull closer together.
For d less than 12, and for several more ds between 13 and 25, for their horizon they found
ng(d) = ns(d) + 2 (note that d and n have the same parity), in which case stopping if and only if
n ≤ ns(d) is the rigorous optimal stop rule for that d. Shepp’s asymptotic value for the stopping
rule put in this reverse formulation is ns(d) ∼= d2/α2. This is not so accurate: if you look at just
the few cases where Häggström and Wästlund actually find ns(d), you can already see that it
is off about first order in d, and actually it appears that ns(d) ∼= (d2 + d)/α2. Solving for d in
terms of n, this is consistent with the suggestion by Lai, Yao, and Aitsahlia [9, p. 768], that the
stopping boundary for d in terms of n, should be βn = α

√
n − 1/2 + o(1).

But this limited amount of numerical data is not able to suggest anything more. By having
much better upper and lower bounds, it is possible to get much more data. Christensen and
Fischer [5] (2022) gave much better upper and lower bounds for the optimal stopping value V
for the random walk, and used it to numerically settle very many more cases. They found the
stop rule for n up to 489 241, which corresponds to d up to about 588. We used the same upper
bound that they did (with a different proof), but with a different lower bound, and settled yet
again very many more cases than in [5], to attempt to get more numerical insight, as described
in Section 1.3. This eventually led to using our bounds to prove the theoretical results which
are the subject of this paper.
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4 J. H. ELTON

1.2. Embedding the random walk in Brownian motion, and Value bounds

Our proofs of the upper and lower bounds on V use the classical embedding of the random
walk in W using first-exit times, due to A. V. Skorohod (see, for example, [2, p. 293]), which
make the results seem rather intuitive. The embedding idea is quite natural: simply sample
the Brownian path each time it changes by ±1, and you get a version of the symmetric ran-
dom walk. Formally, the properties follow from the strong Markov property. Let T0 = 0, Tn =
min {t> Tn−1:|W(t) − W(Tn−1)| = 1} , n = 1, 2, . . . . Then W(Tn), n = 0, 1, . . . , has the same
distribution as the process Sn, n = 0, 1, 2, . . . , and (Tn − Tn−1,W(Tn) − W(Tn−1)), n =
1, 2, . . . , is an i.i.d. sequence, and E [Tn] = n. Since the exit boundaries W(Tn−1) +
1,W(Tn−1) − 1 are symmetric about W(Tn−1) in this case, it can be shown that the sequence
T1, T2, . . . , Tn, . . . is independent from W(T1),W(T2), . . . ,W(Tn), . . . .

Lemma 1.1. (Christensen and Fischer [5, Theorem 1, p. 3]) V(u, b) � VW (u, b).

Proof. Their proof uses superharmonic functions, in a more general setting. We give a proof
using the embedding idea, as a preliminary for using it in our lower bound proof. Let n∗ be a
stopping time for Sn. This induces a stopping time T∗ = Tn∗ on W. So

VW (u, b) ≥ E

[
u + W(T∗)

b + T∗

]
=

∞∑
n=0

E

[
u + W(Tn)

b + Tn

∣∣∣∣ T∗ = Tn

]
P(n∗ = n)

=
∞∑

n=0

E

[
u + W(Tn)

b + n

b + n

b + Tn

∣∣∣∣ T∗ = Tn

]
P(n∗ = n).

But Tn is independent of W(Tn), and is also independent of IT∗=Tn since the latter is a

function of W(T1),W(T2), . . . ,W(Tn), since T∗ is a stopping time. Thus E
[

u+W(T∗)
b+T∗

]
=

∞∑
n=0

E
[

b+n
b+Tn

]
E
[

u+W(Tn)
b+n

∣∣∣ T∗ = Tn

]
P(n∗ = n). By Jensen’s inequality, E

[
b+n

b+Tn

]
≥ b+n

E[b+Tn] =
1, so

VW (u, b) ≥
∞∑

n=0

E

[
u + W(Tn)

b + n

∣∣∣∣ T∗ = Tn

]
P(n∗ = n)

=
∞∑

n=0

E

[
u + Sn

b + n

∣∣∣∣ n∗ = n

]
P(n∗ = n)

= E

[
u + Sn∗

b + n∗

]
= V(u, b, n∗).

�
In retrospect, it is as one would think: the random walk is a just a sampling of the Brownian

motion, so naturally it cannot do any better. There is the little matter of different denominators
in the payoff, but Jensen’s inequality goes the right way for that. For a lower bound, we have
the following result.

Lemma 1.2.

V(u, b) ≥ VW (u, b)

(
1 − 5

12b

(
1 + 1√

b

))
, b> 1600.

We will give a detailed proof of Lemma 1.2 in Appendix A. But the idea for our proof of
this lemma is simple enough. For u below the Brownian boundary, run the Brownian motion
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until it hits the nearest integer to α
√

b + t − u. With that stop rule, E
[

u+W(T)
b+T

]
is about the

same as VW (u, b) because we are so close to the boundary; we will quantify this using a modi-

fied fundamental Wald identity of Shepp to obtain E
[

u+W(T)
b+T

]
≥ VW (u, b)

(
1 − 1

4b

(
1 + 1√

b

))
.

But W(T) is an integer, so in terms of the embedded random walk process Sn = W(Tn),

E
[

u+W(T)
b+T

]
=∑∞

n=0 E
[

u+Sn
b+Tn

∣∣∣ n∗ = n
]
P(n∗ = n). Proceed as in the proof of Lemma 1.1.

Jensen’s inequality goes the wrong way this time; but knowing the moments of the random

time differences of the embedding, we can show that E
[

b+n
b+Tn

]
≤
(

1 + 1
6b

)
, so E

[
u+W(T)

b+T

]
≤(

1 + 1
6b

)∑∞
n=0 E

[
u+Sn
b+n

∣∣∣ n∗ = n
]
P(n∗ = n) =

(
1 + 1

6b

)
V(u, b), implying the lemma.

How good are these bounds? The data show, and we will prove later, that if integer u happens
to be just a hair more than α

√
b − 1/2, then V(u, b) = u/b, but VW (u, b) ∼= (1 + 0.25b−1

)
u/b,

so the Brownian upper bound overshoots the true value by a relative error of O(b−1) at some
places, for arbitrarily large b. The same examples give V(u, b) ∼= VW (u, b)

(
1 − 0.25b−1

)
, so

we cannot expect a lower bound of the form V(u, b) ∼= VW (u, b)
(
1 − cb−1

)
to do better than

this. Lemma 1.2 gets lower bound VW (u, b)
(
1 − 0.42b−1

)
. Theorem 5.1 later will give a

greatly improved approximation to V when u is near the boundary, showing that VW is off
from the true V by essentially a relative error of 0.25b−1 at half-integer values below the
boundary, and the true V is approximately piecewise linear in between, when the distance
below the boundary is not more than about b1/12. Theorem 5.1 does not give specific values
for the constants (though that could be done with enough pain), and it was not used in our
numerical work. Christensen and Fischer also give a lower bound, but our simple formula is
convenient for our numerical work, and more importantly, for the later proof of the theoretical
main results.

1.3. Numerical exploration and speculation

Using these good upper and lower bounds, we carried out the Häggström–Wästlund method
numerically from a horizon of n = 109, and found ng(d) = ns(d) + 2 for d up to 7995, and
almost all cases up to 20 000, so that the stop rule is settled for those. Stated another way, it
settles all cases where n< 79952/α2 ∼= 9 × 107, and most cases where n< 20 0002/α2 ∼= 5.7 ×
108, over half a billion, going considerably beyond Christensen and Fischer. Our computations
did not really take much computer time, and we could have gone a lot further, but we got
pleasantly sidetracked by discovering the theoretical arguments of this paper. Having the stop-
go boundaries as a function of d rather than n, following Häggström and Wästlund, made the
computer algorithm extremely efficient and suitable for dealing with very large numbers. The
spreadsheet for the answer has only 20 000 rows, rather than a billion. Figure 1 is a graph of
ng(d) − (d2 + d

)
/α2 for d up to 20 000, from the spreadsheet; for almost all of those cases,

and for all cases up to d = 7995, ng(d) = ns(d) + 2. It appears thick since it is oscillating with
amplitude about 1 around a square root curve.

We originally speculated that ns(d) ∼= (d2 + d
)
/α2 − π−1/2

√
d + ε, with ε wiggling

around zero with amplitude about 1. But this coefficient of
√

d turns out to be wrong, by about
1%. Theorem 1.1 will prove that the correct coefficient is −π−1/2 (−4ζ (− 1/2)/α). Since
−4ζ (− 1/2)/α = 0.990 . . ., nature had a laugh at us for jumping to conclusions! Figure 2 is
the detail for the 100 points at the large d end of the curve, showing the oscillation.

We now have, from theory, the correct coefficient for the
√

d term, but there is still some-
thing suggested by the numerics that the theory has not yet reached. Assume ε= O(1). Using
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6 J. H. ELTON

FIGURE 1. ng(d) − (d2 + d
)
/α2 versus d, d ≤ 20 000.

FIGURE 2. Last 100 points in Figure 1; horizontal coordinates shown are d − 19 900.

the binomial expansion, we can solve for d in n = (d2 + d
)
/α2 − c

√
d + ε, expressing the

boundary in the more usual way with d as a function of n. With a little algebra one arrives at
the following conjecture.

Conjecture. βn = α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 + O(n−1/2)? (1.2)

Theorem 1.1 will prove that the coefficient of n−1/4 is correct, but it will only get the error term
to O

(
n−7/24

)
. There is still theoretical work needed to catch up with the numerical speculation.

Christensen and Fischer [5] had conjectured an n−1/4 dependence, based on numeri-
cal evidence. They found that for n up to 489 241, the Chow–Robbins boundary is kn =
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⌈
α
√

n − 1/2 + 1
7.9+4.54n1/4

⌉
except for eight stray ns in that range. Note that 1

4.54 differs

from (−2ζ (−1/2))
√
α√

π
by about 2.5%.

Added after review. From recent numerical work after this paper was already refereed, we
discovered a simple formula that gives the stop rule for all cases up to a quite large number.
Let

p(d) = (d2 + d
)
/α2 − π−1/2 (−4ζ (− 1/2)/α)

√
d − 0.064 998 6 − 7/(d + 95). Then

ns(d) = nearest integer to p(d) that has the same parity as d

gives the exact optimal stop rule for all d from 2 to 15 363 (which covers all n up to over a
third of a billion). We had thought that the oscillatory behavior meant that finding a simple
exact formula was unlikely, but now it appears that it could be merely nearest-integer behavior
around an analytic asymptotic formula. For now, we have no idea how to get any such formula;
the correction terms above were purely ad hoc.

1.4. Statement of main theorems

Using the idea of Häggström and Wästlund to use backward induction from a horizon,
but proceeding algebraically rather than numerically, we will be led to a tree with weights
corresponding to Catalan numbers and Shapiro Catalan triangle numbers, and a generalized
backward induction principle. Before starting the development, we will state up front the main
theorems that eventually follow from it. The second one is a corollary of the first, and gives
a formula for the exact optimal stopping rule for the original Chow–Robbins game for all n,
except in a set whose density goes to zero at the rate O(n−7/24). The longer the game goes
on, the more likely it is that you will be able to stop optimally, and know that you did (from
the description in Theorem 1.2). Actually, using the method of proof of Theorem 1.2, the
estimate βn = α

√
n − 1/2 + o(1) suggested in [9] already implies an exact stopping rule for all

n except for a set of asymptotic density zero, although with no rate implied since there is no
quantification of the o(1) term. We thank a referee for pointing that out. As far as we know, it
had not been noticed before.

The Riemann zeta function ζ (− 1/2) = −0.207 886 . . . appears because the analysis in
Section 6 involves the asymptotic approximation of the sum of square roots of the first k
integers, the generalized harmonic number Hk

(−1/2).

Theorem 1.1.

βn = α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 + O

(
n−7/24

)
.

Theorem 1.2.

kn =
⌈
α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4

⌉
,

except for a set S of integers for which |S ∩ {1, . . . , n}|/n = O(n−7/24). Specifically, there exists
A> 0 and n0 such that for n ≥ n0, the given formula for kn holds if⌈

α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 − An−7/24

⌉

=
⌈
α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 + An−7/24

⌉
.
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8 J. H. ELTON

FIGURE 3. Graph of f1(n) and f2(n). βn is somewhere between them, shown dotted.

Proof. Figure 3 shows how Theorem 1.2 follows easily from Theorem 1.1. Let

f1(n) = α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 − An−7/24,

f2(n) = α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4 + An−7/24,

with A chosen according to Theorem 1.1 so that f1(n)<βn < f2(n) for all n ≥ n0. Let u be a
positive integer, and let n1, n2, n3 satisfy f2(n1) = u, f1(n2) = u, f2(n3) = u + 1, where for this
purpose we extend the domain of f1, f2 so that n1, n2, n3 are real, not necessarily integers.
Assume also that u is large enough so that n1 ≥ n0.

For n1 ≤ n ≤ n3, 
f1(n)� = 
f2(n)� implies n2 ≤ n ≤ n3. For integers n such that n2 ≤ n ≤
n3, we have u<βn < u + 1, so it is optimal to stop at u + 1, and for those integers kn =
u + 1 =

⌈
α
√

n − 1/2 + (−2ζ (− 1/2))
√
α√

π
n−1/4

⌉
. We are uncertain of the stop rule in

the interval [n1, n2], and S is contained in the union of those. By the mean value theorem,
f2(n2) − f1(n2) = f ′

2(n ∗ )(n2 − n1) for some n1 < n∗< n2, and f ′
2(n ∗ ) ≥ f ′

2(n2) = αn−1/2
2 /2 −

o(n−1/2)> n−1/2
2 /2 for n2 large, so n2 − n1 < An−7/24

2 /n−1/2
2 = O(n5/24

2 ) = O(u5/12). For
the intervals [n1, n2] contained in {1, . . . , n}, we have u ≤ α√

n. So |S ∩ {1, . . . , n}|/n =
O(
∑α

√
n

u=1 u5/12/n) = O(n−7/24). �
The set where we are uncertain has a simple description as a union of intervals [n1, n2]

pictured above. The ith such interval is centered halfway between where f1 and f2 cross the
horizontal line of height i, which is approximately at i2/α2. The space between the ith and
(i + 1)th interval is O (i). The length of the ith interval is O

(
i5/12

)
; if our speculation (1.2)

were true, this length would be bounded. We have not given a specific numerical value for
A, though it could be done. We resorted to expressing results in big-O notation, in spite of
originally hoping not to do that, wanting results that are usable for computer exploration. But
the calculations in later sections became too onerous.

The goal of the rest of this paper is to prove Theorem 1.1, by using a direct combinatorial
assault going backwards in a tree. It is the Shapiro Catalan triangle properties that come to the
rescue. Having gotten this far, we are more optimistic than Medina and Zeilberger [10] about
whether it is possible to get a formula for kn for all n. Conjecture (1.2) is possibly provable
with refinements of the techniques in this paper, or something similar.

Added after review: And the recently discovered formula given above at the end of
Section 1.3 makes us yet more optimistic about the existence of a simple formula that works
for all cases.
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2. Generalized backward induction and the Shapiro Catalan triangle; plan for the proof
of Theorem 1.1

We start by patiently wading through some backward induction steps, rewarding us with
a recognized pattern. We will want to decide whether to stop or continue when u is below
and near the Brownian boundary. Since we will be using the Brownian motion value func-
tion heavily for everything that follows, we switch back to using (u,b) for position, as Shepp
did in his wonderful paper [13] which inspired our theoretical work on bounds. We remark
again that in our development from now on, u is real, not just an integer, even though the
Chow–Robbins game itself has only integer values for positions. This is important because our
analysis depends on approximating V(u,b) which is continuous in u. The graphs in Section 1.4
suggest the advantage of extending to the real case to do the analysis.

The famous backward induction principle of optimal stopping (see, for example, [3])
applied to this simple random walk is

V(u, b) = max

{
u

b
,

1

2
V(u + 1, b + 1) + 1

2
V(u − 1, b + 1)

}
. (2.1)

Do not stop if
1

2
V(u + 1, b + 1) + 1

2
V(u − 1, b + 1)>

u

b
; stop otherwise.

This is the starting point for everything. Let us use it to get a preliminary result. Numerical
evidence showed that if δ = α

√
b − u is larger than 1/2 minus a hair (the hair being of the

order of b−1/4), you should not stop. Our bounds on V are not alone good enough to prove
that without any backward steps, but let us see what we get that way. Using only our lower
bound from Lemma 1.2 (assuming b> 1600), and a differential approximation VW (u, b) ≥(
1 + δ2b−1

)
u/b (from (3.6) in the next section), we get V(u, b) ≥ VW (u, b)

(
1 − 0.43b−1

)≥(
1 + δ2b−1

) (
1 − 0.43b−1

)
u/b, and this is greater than u/b if δ > 0.66. Well, that is some-

thing: continue if δ > 0.66. But just one step of backward induction with our lower bound will
show how it begins to close in on 1/2. The distance of u − 1 from the Brownian boundary is
α
√

b + 1 − (u − 1) = α
√

b + h − u + 1 = δ + 1 + h, where 0< h<αb−1/2/2. So

1

2
V(u + 1, b + 1) + 1

2
V(u − 1, b + 1) � 1

2

u + 1

b + 1
+ 1

2
VW (u − 1, b + 1)

(
1 − 0.43

b + 1

)

� 1

2

u + 1

b + 1
+ 1

2

u − 1

b + 1

(
1 + (1 + δ)2

b + 1

)(
1 − 0.43

b + 1

)

= u

b
− u

b(b + 1)

+ 1

2

u
(

1 − 1
α
√

b−δ
)

(b + 1)2

(
(1 + δ)2 − 0.43 − 0.43(1 + δ)2

b + 1

)
.

For sufficiently large b, so that we can throw out small stuff, the condition for this to be greater
than u/b is clearly (1 + δ)2 − 0.43> 2, or δ > 0.56. But to be concrete, assume b> 1600 and
u = α

√
b − δ > α

√
b − 0.66 (we already know to continue if δ greater than 0.66). Then

some arithmetic shows that δ > 0.58 is sufficient. That is an improvement. And we could go
more steps back and get a better go bound.

Similarly, we can use our upper bound and close in on 1/2 from above, and it is convenient
to do one step of that, to get a preliminary stop bound, to avoid annoyances later. Stop if
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(V(u + 1, b + 1) + V(u − 1, b + 1))/2< u/b. And α
√

b + 1 − (u − 1) = δ + 1 + h where h
is as before. Looking ahead to (3.5) of the next section, VW (u, b) ≤ u/b + αδ2b−3/2. We have

1

2
V(u + 1, b + 1) + 1

2
V(u − 1, b + 1) � 1

2

u + 1

b + 1
+ 1

2

(
u − 1

b + 1
+ α

(1 + δ + h)2

(b + 1)3/2

)

= u

b
− u

b(b + 1)
+ 1

2
α

(1 + δ + h)2

(b + 1)3/2

= u

b
− α

√
b − δ

b(b + 1)
+ 1

2
α

(1 + δ + h)2

(b + 1)3/2
.

For sufficiently large b, the condition for this to be less than u/b is clearly (1 + δ)2 < 2, or
δ < 0.414. But again to be concrete, assuming b> 1600, δ < 0.38 can be shown to be sufficient.

With just one step of backward induction, we have already narrowed the range for the
stopping boundary and proved the following lemma.

Lemma 2.1. For b> 1600, α
√

b − 0.58<βb <α
√

b − 0.38. Go if δ > 0.58, stop if δ < 0.38.

This will be useful later, so it is noted. But the goal is to get to α
√

b − 1/2 + cb−1/4 +
o(b−1/4), by continuing way down the backward induction tree.

We proceed to systematize going backward. Continued backward induction leads to the tree
in Figure 4, where further branching is stopped at u + 1, creating leaves of the tree at those
nodes, which are shown boxed. The V value at a node of the tree is greater than or equal to the
average of the V values at its two parents. Figure 4 is a picture of eight rows of the backward
induction tree. The meaning of the coefficients (weights) will be explained shortly, though it
is perhaps already obvious from the way backward induction works for this simple symmetric
random walk.

To explain the coefficients (the weights) displayed in Figure 4, consider the following
succession of inequalities, using only the basic backward induction inequality (2.1):

V(u, b) � 1

2
V(u + 1, b + 1) + 1

2
V(u − 1, b + 1),

1

2
V(u − 1, b + 1) � 1

4
V(u, b + 2) + 1

4
V(u − 2, b + 2),

1

4
V(u, b + 2) + 1

4
V(u − 2, b + 2)

� 1

8
V(u + 1, b + 3) + 1

8
V(u − 1, b + 3) + 1

8
V(u − 1, b + 3) + 1

8
V(u − 3, b + 3)

= 1

8
V(u + 1, b + 3) + 2

8
V(u − 1, b + 3) + 1

8
V(u − 3, b + 3),

2

8
V(u − 1, b + 3) + 1

8
V(u − 3, b + 3)

� 2

16
V(u, b + 4) + 2

16
V(u − 2, b + 4) + 1

16
V(u − 2, b + 4) + 1

6
V(u − 4, b + 4)

= 2

16
V(u, b + 4) + 3

16
V(u − 2, b + 4) + 1

6
V(u − 4, b + 4),

. . . .
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FIGURE 4. Backward induction tree, with leaves boxed.

That is how the weights are generated, recursively. Considering any row of the tree, V(u,b)
is greater than or equal to the sum of the weights times values at the leaves at or above that
row, plus the weights times values at the non-leaf nodes at that row. The picture shows the
weights through row 7, with the initial node at row 0. We were patient enough to carry out the
trivial calculations by hand through seven rows, at which point we recognized the leaf weight
numerators as being the Catalan numbers.

Now formalize the notation and the recursion. First, look at the nodes that are not leaves.
With m indicating row number starting from 0 and j column number starting from 0 in the
tree, let T(m,j) be the coefficient of 2−mV(u − j, b + m),m � 0, 0 � j � m, and T(m, j) = 0 out-
side this range. The initial condition is T(0, 0) = 1. The recursion T(m, j) = T(m − 1, j − 1) +
T(m − 1, j + 1) follows purely from backward induction. Using this recursion produces the
table in Figure 5, through m = 7.

In what follows we will only make use of the odd rows and columns of the tree in Figure 4,
which correspond to the rows of the tree with leaves. Let B(n, k) = T(2n − 1, 2k − 1), n ≥
1, k ≥ 1; Figure 6 shows the first four rows of B. The recursion for T implies (in two steps)
the following recursion for B: B(n, k) = B(n − 1, k − 1) + 2B(n − 1, k) + B(n − 1, k + 1), n ≥
2, k ≥ 2, with initial conditions B(1, 1) = 1 and B(1, k) = 0, k> 1. This is the recursion and
initial conditions for the Shapiro Catalan triangle [12], one of the many arrays referred to in
the literature as a Catalan triangle, or unfortunately sometimes as ‘the’ Catalan triangle. The
columns of B (omitting the leading zeros) appear as every other diagonal in another popular
‘Catalan’s triangle’, the one that appears, for example, in the Wikipedia article of that name,
which gives references to the history. But we need to reference our tree by row and column
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FIGURE 5. T(m,j), coefficient numerator in row m, col. j of tree in Figure 4.

FIGURE 6. B(n,k), the odd rows and columns of T; it is the Shapiro Catalan triangle.

indices, so B is the right one for us. Fortunately, Miana and Romero [11] have the row moments
for B (see (4.2)), which is exactly what we need for our purposes.

We now have a formula for the coefficients of the non-leaves in the odd rows of our
backward induction tree in terms of well-known numbers:

coefficient of V(u − 2j + 1, b + 2m − 1) = 2−2m+1B(m, j), m ≥ 1, j ≥ 1. (2.2)

There are simple known formulas for the entries in B:

B(m, j) = j

m

(
2m

m − j

)
=
(

2m − 1
m − j

)
−
(

2m − 1
m − j − 1

)
.

The first column is

B(m, 1) = 1

m

(
2m

m − 1

)
= 1

m + 1

(
2m
m

)
=
(

2m − 1
m − 1

)
−
(

2m − 1
m − 2

)
= Cm, m � 1,

recognized as the mth Catalan number. C0 = 1 by definition.
For the leaves, let L(n) be the coefficient of 2−2n+1V(u + 1, b + 2n − 1), n ≥ 1, where n =

1, 2, 3, 4, . . . corresponds to rows 1, 3, 5, 7, . . . of the tree of Figure 4. The first four values
of L(n) are 1,1,2,5, and from the way the tree is built, it is seen that L(n) = T(2n − 2, 0) =
T(2n − 3, 1), n ≥ 2, with L(1) = 1. But T(2n − 3, 1) = B(n − 1, 1) = Cn−1 for n ≥ 2. So, we
have the following formula for the leaf weights:

coefficient of V(u + 1, b + 2n − 1) = 2−2n+1Cn−1, n � 1. (2.3)

Returning to the inequality we started with, for any row, V(u,b) is greater than or equal to
the sum of the weights times values at the leaves at or above that row, plus the weights times
values at the non-leaf nodes in that row. Looking at only odd rows of the tree, for n ≥ 1, let
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SL(n, u, b) :=
n−1∑
m=0

2−2m−1CmV(u + 1, b + 2m + 1),

the sum of the leaves down through the row indexed by n; and

SR(n, u, b) := 2−2n+1
n∑

j=1

B(n, j)V(u − 2j + 1, b + 2n − 1),

the sum of the non-leaves across the row indexed by n (an odd row of the original tree). Define

TreeSum(n, u, b) := SL(n, u, b) + SR(n, u, b). (2.4)

Thus for any n ≥ 1, V(u, b) ≥ TreeSum(n, u, b). This inequality is the summary of the chain of
inequalities from repeated backward induction.

One property of TreeSum(n,u,b) is immediate from the basic backward induc-
tion principle (2.1): TreeSum(n + 1, u, b) ≤ TreeSum(n, u, b), n ≥ 1, which implies
TreeSum(n, u, b) ≤ TreeSum(1, u, b) = (V(u + 1, b + 1) + V(u − 1, b + 1)) /2. Thus for
any n, TreeSum(n, u, b)> u/b ⇒ TreeSum(1, u, b)> u/b ⇒ V(u, b)> u/b, so do not stop at
(u,b). To prove the other direction, let j ≥ 0, k ≥ 0. V(u, b)> u/b ⇒ V(u − j, b)> (u − j)/b
is obvious. Then V(u − j, b)> (u − j)/b ⇒ u − j<βb ⇒ u − b<βb+k, from the mono-
tonicity of Dvoretzky’s stop rules [6], so V(u − j, b + k)> (u − j)/(b + k). In other words,
if you should not stop at (u,b), then you should not stop for a smaller u or a larger b.
This implies that if TreeSum(1, u, b)> u/b, then at every non-leaf node of the backward
induction tree, the average of the values of its two children is greater than the ratio, so
TreeSum(n, u, b) = TreeSum(1, u, b) and TreeSum(n, u, b)> u/b. This leads to the following
lemma.

Lemma 2.2. (Extended backward induction principle). Let n ≥ 1. Then V(u, b) =
max {u/b, TreeSum(n, u, b)}; stop at (u,b) if TreeSum(n, u, b) ≤ u/b, else continue.
TreeSum(1, u, b)> u/b ⇒ TreeSum(1, u, b) = TreeSum(n, u, b).

Proof. From the previous paragraph, TreeSum(n, u, b)> u/b ⇒ TreeSum(1, u, b)>
u/b which implies TreeSum(n, u, b) = TreeSum(1, u, b) = V(u, b). Now suppose
TreeSum(n, u, b) ≤ u/b. If TreeSum(1, u, b)> u/b, then by the previous paragraph,
TreeSum(n, u, b) = TreeSum(1, u, b)> u/b, a contradiction. So TreeSum(1, u, b) ≤ u/b,
and V(u, b) = u/b by definition, and you may stop. �

We can now explain the plan for the proof of Theorem 1.1, and give some indication of why
it should work. The proof is accomplished in three stages.

Stage one, in Section 4, gets preliminary O(b−1/4) bounds on the stop rule βb. For this stage,
we consider ns of the form c

√
b and u near enough to the boundary, that is, δ = α

√
b − u

small enough, so that V(u + 1, b + 2m + 1) = (u + 1)/(b + 2m + 1) exactly for m< n. With a
binomial expansion of that ratio, the leaf sum can be approximated to any accuracy desired
using simple formulas for

∑n−1
m=0 2−2m−1mkCm, which we use for k = 0, 1, 2. For the row

sum, we use our simple upper and lower bounds on V in terms of VW , and approximate
VW by a Taylor expansion about the boundary using four derivatives, and this leads to sums
2−2n+1∑n

j=1 jkB(n, j), which have simple known formulas. What is the good of letting n grow
big? The point is that the larger n, the more of the weight of the tree sum is on the leaves, for
which the value is exactly known as long as n does not get out of range, and the less is on the
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row sums, where we are limited in accuracy by our approximate bounds. This is our algebraic
manifestation of Häggström and Wästlund’s idea to let the errors in the bounds wash out by
moving the horizon back. In fact these sum formulas are all just simple expressions involving

n and the central binomial 2−2n
(

2n
n

)
∼= (πn)−1/2, and n will be of order

√
b, which hints at

why b−1/4 shows up in the answer. The first stage results in O(b−1/4) upper and lower bounds
on the stop rule; this is Lemma 4.4, which in fact was our original goal. But it is not able to get
the exact coefficient of b−1/4.

Stage two, in Section 5, feeds the result of stage one back into the Value approximations
developed in stage one, to obtain a much sharper approximation for V near the boundary. It
is perhaps the most conceptually tricky part of the proof, with a repeated feedback argument
that will be better motivated when we get there. It shows that V is essentially piecewise linear
near the boundary, below and tangent at integer points of δ, to the quadratic approximation to
VW near the boundary. This is Theorem 5.1, perhaps of independent interest in showing the
manner in which the Brownian Value overestimates V .

Finally, stage three, in Section 6, uses this improved estimate of V to go a bit further down
the tree, by estimating the leaf values V(u + 1, b + 2m + 1) for a range of m such that V is
no longer just the ratio. By going just far enough down the tree, we are able to get the upper
and lower bounds to come together, within an o(b−1/4) error, finding the exact coefficient of
b−1/4 and proving Theorem 1.1. The plan is straightforward except perhaps for Section 5,
and uses standard approximations, but lots of them, so it looks worse than it is when all the
approximations and sums are written out.

3. Approximating the Brownian motion value VW

From formula (1.1), one may differentiate under the integral sign to see that all the deriva-
tives with respect to u are positive for u ≤ α√

b, so they all take their maximum value on the
boundary; we use that several times below. To compute derivatives, and also for numerical
work, it is best to write it in terms of standard functions. We have

VW (u, b) = (1 − α2)
∫ ∞

0
exp

(
λu − λ2b

2

)
dλ

= (1 − α2)b−1/2 exp

(
u2

2b

) ∫ u/
√

b

−∞
exp

(
−w2

2

)
dw

= (1 − α2)b−1/2G(u/
√

b)/g(u/
√

b)

= (1 − α2)b−1/2H(u/
√

b),

where G and g are the cumulative distribution function (CDF) and probability density func-
tion (PDF) of the standard normal distribution, respectively, and we have defined H(x) :=
G (x) /g (x). This is related to the Mills ratio by H(x) = 1/g(x) − m(x), but we do not use
that. On the boundary, u0 = α

√
b, VW (u0, b) = u0/b = αb−1/2 = (1 − α2)b−1/2H(u0/

√
b) =

(1 − α2)b−1/2H (α), so we get the equation that alpha satisfies as α= (1 − α2)H (α) , which
is useful for computing α using a library function for the Normal, or converted to an error
function representation, to use that library function instead, if needed. We did that for the
double-double precision numerical work for the extremely large number of positions we
considered.
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We will later use five derivatives of VW . Use Du for derivative operator with respect to
the first argument. Then Du

nVW (u, b) = (1 − α2)b−(n+1)/2H(n)(u/
√

b), so we need to find
the successive derivatives of H. It satisfies H′(x) = xH(x) + 1, which makes this straightfor-
ward, and can easily be made systematic in terms of polynomials in x, similar to Hermite
polynomials. One shows

H(n) = PnH + Qn, with Pn+1 = P′
n + xPn,Qn+1 = Qn

′ + Pn, P0 = 1,Q0 = 0. (3.1)

So Du
nVW (u, b) = (1 − α2)b−(n+1)/2

(
Pn(u/

√
b)H(u/

√
b) + Qn(u/

√
b)
)

.

Remark. Just like for the Hermites, we have P′
n = nPn−1 (an Appell sequence), so just like

for the Hermites, there is a computationally practical recurrence, not involving derivatives:
Pn+1(x) = xPn(x) + nPn−1(x), the only difference from the Hermites being the positive sign.
But we do not need to pursue this for our purposes, we just want a few derivatives.

On the boundary, x = u0/
√

b = α
√

b/
√

b = α and H(α) = α(1 − α2)−1, so

Du
nVW (u0, b) = (1 − α2)b−n/2+1 (Pn (α)H (α)+ Qn (α))

= b−(n+1)/2
(
αPn (α)+ (1 − α2)Qn (α)

)
.

To get the polynomials, turn the recursion crank in (3.1) five times, resulting in

P0 = 1,Q0 = 0; P1 = x,Q1 = 1; P2 = 1 + x2,Q2 = x; P3 = 3x + x3,Q3 = 2 + x2;

P4 = 3 + 6x2 + x4, Q4 = 5x + x3; P5 = 15x + 10x3 + x5, Q5 = 8 + 9x2 + x4. (3.2)

To prove Lemma 1.2, we use three derivatives of H, which from (3.1) and (3.2) are

H(1)(x) = xH(x) + 1,

H(2)(x) = (1 + x2)H(x) + x; (3.3)

H(3)(x) = (3x + x3)H(x) + 2 + x2.

The first five derivatives of VW on the boundary are

DuVW (u0, b) = b−1,

Du
2VW (u0, b) = b−3/22α,

Du
3VW (u0, b) = b−2

(
2 + 2α2

)
, (3.4)

Du
4VW (u0, b) = b−5/2

(
8α + 2α3

)
,

Du
5VW (u0, b) = b−3

(
8 + 16α2 + 2α4

)
.

Let δ= u0 − u = α
√

b − u. Using Taylor with just the first two derivatives,

VW (u, b) = VW (u0, b) + (u − u0)DuVW (u0, b) + (u − u0)2Du
2VW (u∗, b)/2

≤ αb−1/2 − δb−1 + δ2Du
2VW (u0, b)/2 = ub−1 + αδ2b−3/2.

The inequality is because Du
2VW (u, b) is an increasing function (recall all derivatives are

positive), so is largest on the boundary. In summary,

VW (u, b) � ub−1 + αδ2b−3/2. (3.5)
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Using the third derivative with a similar monotonicity argument gives a lower bound, the one
that we already used above in proving Lemma 2.1:

VW (u, b) ≥ ub−1 + αδ2b−3/2 − (1 + α2)δ3b−2/3 = ub−1 + α
√

bδ2b−2 − (1 + α2)δ3b−2/3

= ub−1 + (u + δ)δ2b−2 − (1 + α2)δ3b−2/3 (recall u + δ = α
√

b)

= ub−1
(

1 + δ2b−1
)

+ δ3b−2
(

1 − (1 + α2)/3
)

≥ ub−1
(

1 + δ2b−1
)

.

Thus
VW (u, b) � ub−1

(
1 + δ2b−1

)
. (3.6)

Using four derivatives, the monotonicity argument yields the upper bound

VW (u, b) � ub−1 + αδ2b−3/2 − (1 + α2)δ3b−2/3 + (4α + α3)δ4b−5/2/12. (3.7)

With the fifth derivative term, one gets the lower bound

VW (u, b) � ub−1 + αδ2b−3/2 − (1 + α2)δ3b−2/3 + (4α+ α3)δ4b−5/2/12 (3.8)

−(4 + 8α2 + α4)δ5b−3/60.

These last two inequalities are used in proving Lemma 4.2.

4. Computing bounds on tree sums

This section is based on a lot of computation. We have resorted to big-O notation rather
than getting specific constants, for which we apologized earlier. We will use big-O notation in
inequalities, since we deal with approximate upper and lower bounds. The meaning will prob-
ably be clear from the context, but to be certain, we define our notation. Let f ,g be real-valued
functions of real variable b, with g(b)> 0 for all sufficiently large b. Define f (b) ≤ O(g(b)) to
mean there exist b0 and K > 0 such that f (b) ≤ Kg(b), b ≥ b0. Usually only f (b) = O(g(b)) is
defined in texts, requiring |f (b)| ≤ Kg(b), b ≥ b0. That would not be convenient for our pur-
poses. We will write expressions such as f (b) ≤ U(b) + O

(
b−2
)
, to mean there exist b0 and

K > 0 such that f (b) ≤ U(b) + Kb−2 for all b ≥ b0. That is the same as f (b) − U(b) ≤ O
(
b−2
)

in our definition. U is an approximate upper bound for f , but f (b) could be arbitrarily far below
U(b). This seems very natural for dealing with inequalities rather than equalities, but does not
seem to be a standard notation. Similarly, still assuming g(b)> 0 for all sufficiently large b,
define f (b) ≥ O (g(b)) to mean there exist b0 and K > 0 such that f (b) ≥ −Kg(b), b ≥ b0. For
example, f (b) ≥ U(b) + O

(
b−2
)

means there exist b0 and K > 0 such that f (b) ≥ U(b) − Kb−2

for all b ≥ b0.
Here is a way to describe the situation using set language:

O(g(b)) = {h : there exist K > 0 and b0 such that |h(b)| ≤ Kg(b) for all b ≥ b0} .

Note h ∈ O(g(b)) implies |h|, −|h|, and −h are in O(g(b)), and O(g(b)) = −O(g(b)). Now
f (b) ≤ O(g(b)) means there exists h ∈ O(g(b)) such that f (b) ≤ h(b) for all b; f (b) = O(g(b))
means there exists h ∈ O(g(b)) such that f (b) = h(b) for all b; and f (b) ≥ O(g(b)) means there
exists h ∈ O(g(b)) such that f (b) ≥ h(b) for all b. That unifies the settings: for some h ∈ O(g(b)),
the inequality or equality is true when h(b) replaces O(g(b)).

Throughout this section, for integer b> 1600 and real number u, let δ = α
√

b − u. If δ <
0.38 or δ > 0.58, we already know whether to stop or keep going, by Lemma 2.1. But we will

https://doi.org/10.1017/apr.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.6


Exact solution to the Chow–Robbins game for almost all n 17

also want to estimate tree sums for a somewhat larger delta, to estimate leaf sums in proving
Theorem 5.1. For this section, we assert that δ ≤ bp, where 0 ≤ p ≤ 1/10. We also assert that
n = O(b1/2+p), where, as above, n indexes how far we go down the tree, looking at only the odd
rows (the ones with leaves). We prove Lemma 4.3 with this generality. In our first application
of Lemma 4.3, to get preliminary stop bounds, p will be 0. But in Section 5 we will use Lemma
4.3 with larger delta to get an improved estimate of Value, and then in Section 6 with larger n
to finally prove Theorem 1.1.

Let Gn := 2−2n
(

2n
n

)
, for which it is well known as a central binomial coefficient that Gn ∼=

(πn)−1/2; to be more precise,(π (n + 1/2))−1/2 ≤ Gn ≤ (πn)−1/2. The formulas that will be
needed for the moments of Catalan numbers and Shapiro Catalan triangle rows can be simply
expressed in terms of Gn.

Lemma 4.1. (Catalan and Shapiro Catalan triangle moments.) We have

n−1∑
j=0

Cj2
−2j−1 = 1 − Gn,

n−1∑
j=0

Cj2
−2j−1j = nGn + Gn − 1, (4.1)

n−1∑
j=0

Cj2
−2j−1j2 = 1

3
n2Gn − 4

3
nGn − Gn + 1;

and

2−2n+1
n∑

j=1

B(n, j) = Gn, 2−2n+1
n∑

j=1

jB(n, j) = 1

2
, (4.2)

2−2n+1
n∑

j=1

j2B(n, j) = nGn, 2−2n+1
n∑

j=1

j3B(n, j) = 3n − 1

4
,

2−2n+1
n∑

j=1

j4B(n, j) = n(2n − 1)Gn, 2−2n+1
n∑

j=1

j5B(n, j) = 15n(n − 1) + 2

8
.

Proof. The first statement in (4.1) is proved quickly by induction. The other two are easily
proved by telescoping; we omit the details. All of (4.2) can be found in Miana and Romero [9,
pp. 5–6]. �

When proving Lemma 4.4, we will be using the ratio for the value, on all the leaves, to
compute the leaf sum. For getting an upper bound we will be restricting n to be small enough
so that the ratio is in fact the correct value on all leaves, and for the lower bound we will be
restricting n to be small enough so that the ratio (which is always a lower bound) will not be
far off from the correct value. But in finally proving Theorem 1.1 in Section 6, n will be large
enough so that the values at some of the leaves will be significantly larger than the ratio, and
we have to take that into account. It will be convenient to split the leaf sum into two parts. For
general u and b, define VE(u, b) = V(u, b) − u/b, the amount the value exceeds the ratio. Let

SLR(n, u, b) :=
n−1∑
m=0

2−2m−1Cm
u + 1

b + 2m + 1
,
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the contribution from the ratio, and

SLE(n, u, b) :=
n−1∑
m=0

2−2m−1CmVE(u + 1, b + 2m + 1),

from the excess over the ratio. So

SL = SLR + SLE.

We have

SLR =
n−1∑
m=0

2−2m−1Cm
u + 1

b + 2m + 1
= u + 1

b

n−1∑
m=0

2−2m−1Cm

(
1 + 2m + 1

b

)−1

= u + 1

b

n−1∑
m=0

2−2m−1Cm

(
1 − 2m + 1

b
+ γ (m)

(2m + 1)2

b2

)
,

where 1 − 2m+1
b ≤ γ (m) ≤ 1. From (4.1),

n−1∑
m=0

2−2m−1Cm(2m + 1)2 = 4

3
n2Gn − 4

3
nGn − Gn + 1,

n−1∑
m=0

2−2m−1Cm(2m + 1)= 2nGn − 1 + Gn,

n−1∑
m=0

2−2m−1Cm = 1 − Gn.

Since γ (m) ≤ 1,

SLR ≤ u + 1

b
(1 − Gn) − u + 1

b2

(
2nGn − 1 + Gn − 4

3

n2

b
Gn + 4

3

n

b
Gn − 1

b
+ Gn

b

)

= u + 1

b
(1 − Gn) − u + 1

b2

(
2nGn − 1 + Gn − 4

3

n2

b
Gn + O(b−1/2)

)
,

where we used n = O(b1/2+p), n
b Gn = O(b−3/4+p/2) = O(b−1/2) for our range of p.

For a lower bound, use γ (m) ≥ 1 − 2b−1/2+p. Note b−1/2+p(n2Gn/b) = O(b−3/4+5p/2) =
O(b−1/2), from which it follows that the above upper bound for SLR is also a lower bound, to
that order.

Anticipating combining SLR with the row sum SR and then getting the difference between
the total and the ratio in terms of δ, write

SLR = u

b
+ 1 − (u + 1)Gn

b
− α

b3/2

(
1 + 1 − δ

α
√

b

)(
2nGn − 1 + Gn − 4

3

n2

b
Gn + O(b−1/2)

)
.

Using δ = O(bp), n = O(p1/2+p) and p ≤ 1/10, one can show
δn2Gn

b3/2
= O(b−1/2). It follows

that
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SLR =u

b
+ 1 − (u + 1)Gn

b

− α

b3/2

(
2nGn − 1 + Gn − 4

3

n2

b
Gn + 2nGn

α
√

b
− δ

2nGn

α
√

b
+ O(b−1/2+p)

)
. (4.3)

That takes care of the leaves; the row sum will be added to this. To get the row sum, we first
replace V with VW and define

SRW (n, u, b) := 2−2n+1
n∑

j=1

B(n, j)VW (u − 2j + 1, b + 2n − 1),

and use the Taylor approximation from Section 3 to compute it. This will be an upper bound
for SR.

Lemma 4.2. (Row sum with VW ) We have

SRW (n, u, b) = (u + 1)Gn − 1

b
+ α

b3/2
X,

where

X := 2nGn − 2 + 2Gn + 2(α+ 1/α)
nGn√

b
− (4 + α2)

3

n2Gn

b

+2δ

(
1 − Gn − (α+ 1/α)

nGn√
b

)
+ δ2Gn + O(b−1/2+2p).

The proof is along the lines of the above calculation of SLR except using (4.2) instead of
(4.1). But it is very much longer, so we defer the proof to Appendix B.

To get a lower bound for SR, using Lemma 1.2 we can multiply SRW by

1 − 5/12

b + 2n − 1

(
1 + 1√

b + 2n − 1

)
= 1 − 5

12b
+ O

(
b−3/2+p

)
.

Now

5

12b
SRW = 5

12b

uGn + 1

b
+ O(b−2) = α

b3/2

5Gn

12
+ O(b−2+p),

so

SRW − α

b3/2

5Gn

12
+ O(b−2+p) ≤ SR.

We get some simplification when we add

SLR + SRW = u

b
+ α

b3/2
Y,

where

Y := −1 + Gn + 2α
nGn√

b
− α2

3

n2Gn

b
+ 2δ

(
1 − Gn − α

nGn√
b

)
+ δ2Gn + O(b−1/2+2p).
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Thus

α

b3/2
Y ′ ≤ SLR + SR − u

b
≤ α

b3/2
Y,

where Y ′ = Y − 5

12
Gn. We have proved the following result.

Lemma 4.3. (Bounds on tree sum.) Let 0 ≤ p ≤ 1/10, n = O(b1/2+p) and δ ≤ bp, where δ =
α
√

b − u. Then

α

b3/2

(
C′ + δB + δ2A

)
≤ TreeSum(n, u, b) − SLE − u

b
≤ α

b3/2

(
C + δB + δ2A

)
,

where

C := −(1 − C1Gn) + O(b−1/2+2p), C′ := −(1 − C′
1Gn) + O(b−1/2+2p), A := Gn,

B := 2(1 − B1Gn), with C1 := 1 + 2
αn√

b
− 1

3

α2n2

b
,C′

1 := C1 − 5/12, B1 := 1 + αn√
b

.

We can use this immediately to get preliminary O(b−1/4) bounds on the stop rule. If we do
not go too far down the tree, SLE will be zero. By Lemma 2.1, the value V(u + 1, b + 2n − 1) at
the leaf will be just the ratio if α

√
b + 2n − 1 − (u + 1)< 0.38. But α

√
b + 2n − 1 − (u + 1) =

α
√

b
(

1 + 2n−1
b

)1/2 − (α
√

b − δ + 1)<αn/
√

b + δ − 1 ≤ 0.38 if αn/
√

b ≤ 0.8 and δ ≤ 0.58,

and then SLE = 0. We make note of this for use later:

αn/
√

b ≤ 0.8 and δ ≤ 0.58 implies SLE = 0. (4.4)

If SLE = 0 and C + δB + δ2A ≤ 0, the tree sum will not exceed the ratio, and if C′ + δB +
δ2A ≥ 0, the ratio will not exceed the tree sum. Let δ0 and δ′0 be the positive numbers satisfying
C + δ0B + δ2

0A = 0 and C′ + δ′0B + δ′20 A = 0, respectively. From Lemma 2.2, it follows that
α
√

b − δ′0 ≤ βb ≤ α√
b − δ0 . In (a) of the next lemma, we will estimate δ0 and δ′0 using

some convenient ns to get preliminary stop bounds from this. In addition, in (b) below we will
estimate δ0 and δ′0 for a value of n that will be used throughout Section 5 for convenience.

Lemma 4.4. (Preliminary bounds on stop rule)

(a) α
√

b − 1/2 + 0.231√
π

b−1/4 + O(b−1/2) ≤ βb ≤ α√
b − 1/2 + 0.429√

π
b−1/4 + O(b−1/2).

(b) Let n = �√b/2�, and let δ0 and δ′0 be the positive numbers satisfying C + δ0B + δ2
0A = 0

and C′ + δ′0B + δ′20 A = 0, respectively, where A, B, C, and C’ are as in Lemma 5.2. Then there
exists b0 such that

1/2 − 0.44√
π

b−1/4 ≤ δ0 ≤ δ0
′ ≤ 1/2 − 0.13√

π
b−1/4, b ≥ b0.
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Proof. We will have n =�(b−1/2) in all cases here, so A = Gn = O(n−1/2) = O(b−1/4). For
δ0, approximate the solution to the quadratic equation

δ0 = −B + √
B2 − 4AC

2A

= −B + B
(
1 − 2ACB−2 − 2A2C2B−4 + O(A3)

)
2A

= −C

B
− AC2

B3
+ O(b−1/2)

since A = O(b−1/4). Now

−C

B
− AC2

B3
= 1 − C1Gn + O(b−1/2+2p)

2(1 − B1Gn)
− Gn

(
1 − C1Gn + O(b−1/2+2p)

)2
8(1 − B1Gn)3

= 1

2
(1 − C1Gn)(1 + B1Gn) − Gn

8
+ O(b−1/2+2p)

= 1

2
− 1

2

(
C1 − B1 + 1

4

)
Gn + O(b−1/2+2p).

This gives

δ0 = 1

2
− 1

2

(
αn√

b
− 1

3

α2n2

b
+ 1

4

)
Gn + O(b−1/2+2p). (4.5)

Changing C to C’ in the above calculation gives

δ′0 = 1

2
− 1

2

(
αn√

b
− 1

3

α2n2

b
− 1

6

)
Gn + O(b−1/2+2p). (4.6)

To get an upper bound on the stop rule, we may assume δ ≤ 0.58 by Lemma 2.1. Take
n = �0.8

√
b/α�, so αn/

√
b ≤ 0.8 and SLE = 0, and αn/

√
b = 0.8 + O(b−1/2), and p = 0. Then

A = Gn = 1√
πn

(
1 + O(n−1)

)
=
√
α

0.8

b−1/4

√
π

(
1 + O(b−1/2)

)
.

By (4.5),

δ0 = 1

2
− 1

2

(
0.8 − 1

3
0.64 + 1

4

)
Gn + O(b−1/2)

= 1

2
− .4184

√
α

0.8

b−1/4

√
π

+ O(b−1/2)

≥ 1

2
− 0.429√

π
b−1/4 + O(b−1/2),

which proves the upper bound.
For the lower bound, we decide to take n = �1.1

√
b/α� so αn/

√
b = 1.1 + O(b−1/2), to get

a slightly better result. For this n, it is not quite true that SLE = 0, but the expression is still a
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lower bound. With that choice, (4.6) gives

δ′0 = 1

2
− 1

2

(
1.1 − 1

3
1.21 − 1

6

)√
α

1.1

b−1/4

√
π

+ O(b−1/2)

≤ 1

2
− 0.231√

π
b−1/4 + O(b−1/2),

completing the proof of (a).
For (b), we take n = �√b/2�, to be used in the next section with larger δ, where p is not

zero. Then (4.5) and (4.6) with this n yield

1/2 − 0.433√
π

b−1/4 + O(b−1/2+2p) ≤ δ0 ≤ δ′0 ≤ 1/2 − 0.137√
π

b−1/4 + O(b−1/2+2p),

which for some b0 implies the result in (b). �

5. Improving estimate of V near the boundary, using feedback

Our next goal is to use the above to get an improved estimate of V that is very accurate
when not too far from the boundary. This will allow us to go further down the backward
induction tree by estimating the leaf values V(u + 1, b + 2m − 1) for larger m, for which u + 1
is more than 1/2 below the boundary and the value is no longer just the ratio. This is used in
Section 6 to obtain the correct coefficient for the b−1/4 term. We shall show V is approximately
piecewise linear near the boundary: that is Theorem 5.1. As a first step, Lemma 4.4 showed that
V(u, b) = u/b if δ ≤ 1/2 − 0.43b−1/4/

√
π for b sufficiently large, already an improvement

over our previous upper bound V(u, b) ≤ u/b + αδ2b−3/2 coming from the Brownian motion
case. The Brownian upper bound is too big by about αb−3/2/4 when delta is near 1/2.

We introduce a bit more notation. In this section and the next, we will be doing some
estimates, in a chained fashion, an unbounded number of times, which could cause a prob-
lem if just using big-O notation. The book [7] gives notation (attributed to de Bruijn) which
will be convenient. We let f (b) = L(g(b)) mean that |f (b)| ≤ |g(b)| for all b. In set language,
L(g) = {f : |f (b)| ≤ |g(b)| for all b}. Also, let L+(g) = {f ∈ L(g):f (b) ≥ 0 for all b}. Similarly,
we let O+(g) be the non-negative members of O(g).

We assert that throughout Section 5, n = �√b/2�. Lemma 4.4 (b) showed that using this n,
1/2 − 0.44b−1/4/

√
π ≤ δ0 ≤ δ′0 ≤ 1/2 − 0.13b−1/4/

√
π, b ≥ b0, where δ0 satisfies C + δ0B +

δ2
0A = 0, and δ′0 satisfies C′ + δ′0B + δ′20 A = 0. A,B,C,C’ are defined in Lemma 4.3. We assert

b0 > 1600. Now n ≥ √
b/2 − 1 = √

b/2
(

1 − 2/
√

b
)

, so Gn ≤ 1/
√
πn ≤ √

2.14/πb−1/4 ≤
0.83b−1/4 for b ≥ b0, a bound that will be used several times in the following. In going further
away from boundary, we will use the following lemma. Recall that VE(u, b) = V(u, b) − u/b.

Lemma 5.1. For 1/2 ≤ δ ≤ bp, with p ≤ 1/10, n = �√b/2�, and b ≥ b0,

VE(u, b) = α

b3/2

(
2(δ− 1/2) + L

(
max{δ2, 1}b−1/4

))
+ SLE(n, u, b).

Proof. Let 1/2 ≤ δ ≤ bp. The Value is the same as the tree sum because δ ≥ δ′0, so u is below
the stop boundary. δ′0 = 1/2 − γ ′b−1/4 for some 0.13/

√
π ≤ γ ′ ≤ 0.44/

√
π . Let x = δ − δ′0 =
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δ − 1/2 + γ ′b−1/4. From Lemma 4.3 in the lower bound case,

VE(u, b) − SLE ≥ αb−3/2
(

C′ + Bδ + Aδ2
)

= αb−3/2
(

C′ + Bδ′0 + Aδ′0
2 + Bx + Ax2 + 2Axδ′0

)
= αb−3/2

(
Bx + Ax2 + 2Axδ′0

)
.

Now B = 2 (1 − B1Gn)= 2 − 2
(

1 + αn/
√

b
)

Gn ≥ 2 − (2 + α)Gn and A = Gn,

so Bx + Ax2 + 2Axδ′0 ≥ 2(δ− 1/2) + 2γ ′b−1/4 + (− (2 + α) x + x2 + 2xδ′0
)

Gn =
2(δ − 1/2) + 2γ ′b−1/4 + x

(
x − α − 1 − 2γ ′)Gn. But x

(
x − α − 1 − 2γ ′) has a mini-

mum of −(α + 1 + 2γ ′)2/4>−1, so x
(
x − α− 1 − 2γ ′)Gn >−b−1/4, so VE(u, b) − SLE ≥

αb−3/2
(
2(δ− 1/2) − b−1/4

)
.

Next, let x = δ− δ0 = δ− 1/2 + γ b−1/4, where 0.13/
√
π ≤ γ ≤ 0.44/

√
π . From Lemma

4.3 in the upper bound case, similar to lower bound case, we get

VE(u, b) − SLE ≤ αb−3/2(Bx + Ax2 + 2Axδ0).

Now B ≤ 2 − 2Gn, so

Bx + Ax2 + 2Axδ0 ≤ 2(δ− 1/2) + 2γ b−1/4 − 2xGn + (x2 + x)Gn

= 2(δ − 1/2) + 2γ b−1/4 + (x2 − x)Gn.

If δ ≤ 1, then x ≤ 1, so 2γ b−1/4 + (x2 − x)Gn ≤ 2γ b−1/4 < b−1/4. If δ > 1, then x2 − x =
(δ − δ0)2 − (δ− δ0) = δ2 − δ− δ0(2δ − δ0 − 1) ≤ δ2 − 1. So 2γ b−1/4 + (x2 − x)Gn ≤(
.88/

√
π
)

b−1/4 + (δ2 − 1)
(√

2.14/
√
π
)

b−1/4 ≤ δ2b−1/4. �

Now we look at SLE, first considering a few small ranges of delta, to establish a pattern.
If 0 ≤ δ ≤ 1/2, then from (4.4), SLE = 0. If δ ≤ δ0, V(u, b) = u/b. Now assume δ0 ≤ δ ≤ 1/2.
Let x = δ − δ0, so x ≤ γ b−1/4. From Lemma 4.3, proceeding as in the above proof, VE(u, b) ≤
αb−3/2

(
C + Bδ + Aδ2

)= αb−3/2
(
Bx + Ax2 + 2Axδ0

)
. With this x, it is easy to see that Bx +

Ax2 + 2Axδ0 ≤ b−1/4; we do not care to be any more precise than that. We get

0 ≤ δ ≤ 1/2 implies VE(u, b) = α

b3/2

(
L+(b−1/4)

)
, b ≥ b0. (5.1)

When 1/2 ≤ δ, the value V(u,b) is the tree sum, bigger than the ratio. The
leaf sum part involves V(u + 1, b + 2m + 1), where m ≤ n − 1. The distance of u +
1 below the boundary is d = max

{
α
√

b + 2m + 1 − (u + 1), 0
}
. But α

√
b + 2m + 1 −

(u + 1) = α
√

b(1 + (2m + 1)/b)1/2 − α
√

b + δ− 1. Standard estimates give 1 + mb−1 ≤
(1 + (2m + 1)/b)1/2 ≤ 1 + mb−1 + b−1/2, so αmb−1/2 ≤ α√

b(1 + (2m + 1)/b)1/2 − α
√

b ≤
αmb−1/2 + αb−1/2/2. Thus for m ≤ n − 1,

d =
(
α
√

b + 2m + 1 − (u + 1)
)+ =

(
αm√

b
+ δ − 1 + L+ (αb−1/2/2

))+
. (5.2)

We will use this in several places below.
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Consider 1/2 ≤ δ ≤ 1. Since δ ≤ 1, d ≤ αm/
√

b + L+ (αb−1/2/2
)
. But m ≤ √

b/2, so d ≤
α/2 + L+ (αb−1/2/2

)
, and computation shows this is less than 1/2 − 0.44b−1/4/

√
π if b ≥ b0,

assumed. So VE(u + 1, b + 2m + 1) = 0 (that is, the value is just the ratio), and SLE = 0. Then
Lemma 5.1 gives

1/2 ≤ δ ≤ 1 implies VE(u, b) = α

b3/2

(
2(δ − 1/2) + L(b−1/4)

)
, b ≥ b0. (5.3)

Our improved estimate so far for VE(u, b), 0 ≤ δ ≤ 1, is piecewise linear plus an O(b−1/4)
correction; zero for delta from 0 to 1/2, then slope 2αb−3/2 from 1/2 to 1. The piecewise-linear
part is accurate to order b−1/4, relative to b−3/2. Compare this to our previous upper bound
estimate from the Brownian value, VE ≤ VW (u, b) − ub−1 ≤ αb−3/2δ2, and about equal to that
for delta small compared to

√
b; that is, quadratic for delta not too big. Our piecewise-linear

function matches the quadratic one at δ = 0 and δ= 1, and is tangent to the parabola at those
points. At δ = 1/2, the piecewise-linear function is below the parabola by 1/4. That is where
the upper bound from the Brownian is worst.

Now we show that same linear piece continues up to 3/2. Let 1 ≤ δ ≤ 3/2. The dis-
tance of u + 1 from the boundary α

√
b + 2m + 1 is, from (5.2), d = αmb−1/2 + δ − 1 +

L+ (αb−1/2/2
)≤ α/2 + 1/2 + L+ (αb−1/2/2

)≤ 1, for b ≥ b0. If also d ≥ 1/2, we can feed
this into (5.3) with d in the role of δ and b + 2m + 1 in the role of b. This is the key feedback
idea that will be used in proving Theorem 5.1. If d< 1/2, (5.3) still holds if we replace d − 1/2
by (d − 1/2)+. So VE(u + 1, b + 2m + 1) = α(b + 2m + 1)−3/2 (2(d − 1/2)+ + L(b−1/4)

)
.

Note d − 1/2 ≤ αmb−1/2 + αb−1/2/2. Using (4.1),

SLE ≤
n−1∑
m=0

2−2m−1Cmα(b + 2m + 1)−3/2
(

2αmb−1/2 + αb−1/2 + b−1/4
)

≤ αb−3/2
(

nGn2αb−1/2 + αb−1/2 + b−1/4
)

≤ αb−3/2
(

2b−1/4
)
, for b ≥ b0.

Using Lemma 5.1 and adding in this estimate of SLE gives the same answer as (5.3), except for
increasing the error bound, which then covers (5.3) as well:

1/2 ≤ δ ≤ 3/2 implies VE(u, b) = α

b3/2

(
2(δ − 1/2) + L(5b−1/4)

)
, b ≥ b0. (5.4)

Now that we see that the piecewise-linear function below and tangent to the quadratic at inte-
gers gets us this far, we guess that this pattern continues (up to some error), and Theorem 5.1
will prove this. By stepping along one 1/2 unit at a time, and feeding the result back into the
previous step the way we did to get to 3/2, we will get our piecewise-linear estimate that will
be good enough for our purpose.

Theorem 5.1. (Value near the boundary.) Assume b ≥ b0. Then

VE(u, b) = α

b3/2

{
2j(δ− 1/2) − j(j − 1) + L

(
Mjb

−1/4
)}
, j − 1/2 ≤ δ ≤ j + 1/2,

0 ≤ j ≤ b1/10,

where j is integral, M0 = 1, and Mj ≤ 5j3, j ≥ 1.

Figure 7 is a graph of the piecewise-linear function 2j(δ − 1/2) − j(j − 1) for 0 ≤ δ ≤ 2.5,
compared to δ2. which is shown dashed. The j changes at the half-integer points. It is tangent to
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FIGURE 7. Graph of piecewise-linear approximation to scaled excess value, α−1b3/2VE, as a function of
distance δ from boundary. The dashed curve is δ2, the quadratic approximation to the scaled excess value
that comes from the Brownian upper bound.

the parabola at integers, and 1/4 below the parabola at half-integers, with a straight-line graph
between half-integer points.

The induction proof of this theorem uses the same feedback logic above that established the
case j = 1 at (5.4), but it is long and tedious, so we put it in Appendix C.

6. Proof of Theorem 1.1

In this section, let n0 = �√b/α�, so αn0/
√

b = 1 − L+(αb−1/2) and α/
√

b = 1/n0 −
L+(αb−1); we will see that replacing

√
b/α by its integer part is not going to matter, to the order

of interest. Let 0< p ≤ 1/10, to be decided later (in the end, it will be 1/12). Let J + 1 = �bp�,
so J ∼ bp. In this section, we are going to let n = (J + 1)n0, so n will go to infinity faster than√

b, but only slightly. This larger n will cause some of the leaf values to be more than just
the ratio. By dividing n into J stretches of size n0, we will get a linear approximation to the
extra part of the leaf values, VE(u + 1, b + 2m + 1), on each stretch, via Theorem 5.1; that is
Lemma 6.1.

Assume throughout this section that b ≥ b0 and δ = α
√

b − u. In this section, where we
seek the stop rule, we only consider δ in the range 1/2 − 0.44π−1/2b−1/4 ≤ δ ≤ 1/2 −
0.13π−1/2b−1/4, because we already know that the exact stop value occurs for some delta
in this range. So δ = 1/2 − γ b−1/4, for some 0.13π−1/2 ≤ γ ≤ 0.44π−1/2.

We will estimate VE(u + 1, b + 2m + 1) by using results from Section 5, when u + 1 is
further away from α

√
b + 2m + 1, but in this section we will use d instead of δ to denote that

distance, since δ is fixed throughout this section to be α
√

b − u. To avoid confusion, note that
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we will be using results from Section 5 with d in the role of δ there, and b + 2m + 1 in the role
of b.

By letting J go to infinity with b, at just the right rate, we can make the upper and lower
bounds from Lemma 4.3 come together, to order o(b−1/4), as we will see later.

Lemma 6.1. There exists K such that for δ = 1/2 − L+(b−1/4) and for j = 1, . . . , J,

VE(u + 1, b + 2m + 1) = α

b3/2

{
2j

m

n0
− j(j + 1) + L

(
Kj3b−1/4

)}
, jn0 ≤ m ≤ (j + 1)n0.

Proof. Let jn0 ≤ m ≤ (j + 1)n0. Then d = α
√

b + 2m + 1 − (u + 1) =
α
√

b(b + 2m + 1)1/2 − (α
√

b − δ+ 1). This can be estimated using the binomial expan-
sion, similar to what was done to get (5.2), but now m is bounded below by n0 and
above by bpn0, so the result is different. One can show 1 + m/b − b−1+2p/(2α2) ≤
(1 + (2m + 1)/b)1/2 ≤ 1 + m/b, so d ≤ αm/

√
b + δ − 1 ≤ m/n0 − 1/2 − γ b−1/4; and

d ≥ αm/
√

b − b−1/2+2p/(2α) + δ− 1 ≥ m/n0 − mα/b − b−1/2+2p/(2α) − 1/2 − γ b−1/4 ≥
m/n0 − 1/2 − b−1/4. Putting it all together, d = m/n0 − 1/2 −ψb−1/4, for some 0 ≤ψ ≤ 1,
is good enough. Note j − 1/2 ≤ m/n0 − 1/2 ≤ j + 1/2.

(i) If j − 1/2 ≤ d = m/n0 − 1/2 −ψb−1/4 ≤ j + 1/2, then Theorem 5.1 gives

VE(u + 1, b + 2m + 1) = α(b + 2m + 1)−3/2
{

2j
(
m/n0 − 1/2 −ψb−1/4 − 1/2

)
−j(j − 1) + L

(
5j3b−1/4

) }
.

Approximating α(b + 2m + 1)−3/2 and with an argument similar to earlier ones,

VE(u + 1, b + 2m + 1) = αb−3/2
{

2jm/n0 − j(j + 1) + L
(

(5j3 + 2j2 + 2j)b−1/4
)}

.

(ii) Suppose, however, that d = m/n0 − 1/2 −ψb−1/4 ≤ j − 1/2: the ψb−1/4 term bumped
us down into the next interval below. But just barely: m/n0 − 1/2 ≥ j − 1/2, and m/n0 −
1/2 −ψb−1/4 ≤ j − 1/2, so m/n0 = j + L+(ψb−1/4). Using Theorem 5.1, but with j − 1
in place of j,

VE(u + 1, b + 2m + 1) = α(b + 2m + 1)−3/2
{

2(j − 1)
(
m/n0 − 1/2 −ψb−1/4 − 1/2

)
−(j − 1)(j − 2) + L

(
5(j − 1)3b−1/4

) }
.

Using m/n0 = j + L+(ψb−1/4) and arguments similar to previous ones,

VE(u + 1, b + 2m + 1) = αb−3/2
{

2jm/n0 − j(j + 1)
+L
((

5(j − 1)3 + 2j2 + 2j
)

b−1/4
)} .

Cases (i) and (ii) are covered by VE(u + 1, b + 2m + 1)= αb−3/2{
2jm/n0 − j(j + 1) + L

(
9j3b−1/4

)}
, so K = 9 is good enough. �

To prove the main theorem, we have to put in the extra contribution SLE to the leaf sum that
comes from the leaf values that exceed the ratio, when going down to n = (J + 1)n0.

Lemma 6.2.

SLE = α

b3/2

{
CLEGn + O

(
J5/2b−1/2

)}
,
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where

CLE := 1

3
J2 − 1

3
J − 4ζ (− 1/2)

√
J + 1 + O(1).

Proof. Let SLE(j) denote the contribution to SLE from summing 2−2m−1CmVE(u + 1, b +
2m + 1) over m in the range jn0 ≤ m< (j + 1)n0. Let W(j) = SLE(j)b3/2/α. W(0) = 0. Now let
j ≥ 1. By Lemmas 6.1 and 4.1,

W(j) = 2j

n0

(j+1)n0−1∑
m=jn0

m2−2m−1Cm −
(

j(j + 1) + L
(

Kj3b−1/4
)) (j+1)n0−1∑

m=jn0

2−2m−1Cm

= 2j

n0

(
(j + 1)n0G(j+1)n0 − jn0Gjn0

)−( 2j

n0
+ j(j + 1) + L

(
Kj3b−1/4

)) (
Gjn0 − G(j+1)n0

)
= 3j(j + 1)G(j+1)n0 − j(3j + 1)Gjn0 + L

(
(K + 1)j3b−1/4

) (
Gjn0 − G(j+1)n0

)
.

Now

Gjn0 − G(j+1)n0 ≤ 1√
π

(
1√
n0j

− 1√
n0(j + 1) + 1/2

)
≤ j−3/2

2
√
πn0

≤ j−3/2b−1/4

2
√
π

,

and

1√
kπ

(
1 − 1

4k

)
≤ Gk ≤ 1√

kπ
=⇒ Gjn0

G(J+1)n0

=
√

J + 1√
j

(
1 + L

(
1

4jn0

))
.

Using the latter to express Gjn0 and G(j+1)n0 in terms of G(J+1)n0 ,

W(j) =
(

3j
√

j + 1
(
1 + L

(
(4(j + 1)n0)−1))

−√
j(3j + 1)

(
1 + L

(
(4jn0)−1))

)√
J + 1G(J+1)n0 + L

(
(K + 1)j3/2b−1/2

)
=
(

3j
√

(j + 1) − 3(j − 1)
√

j − 4
√

j
)√

J + 1Gn + L
(

(K + 2)j3/2b−1/2
)

.

We wrote it that way so that telescoping occurs for the first two terms when summing

J∑
j=1

W(j) =
⎛
⎝ J∑

j=1

(
3j
√

(j + 1) − 3(j − 1)
√

j
)

− 4
J∑

j=1

√
j

⎞
⎠√

J + 1Gn + O
(

J5/2b−1/2
)

=
⎛
⎝3J

√
(J + 1) − 4

J∑
j=1

√
j

⎞
⎠√

J + 1Gn + O
(

J5/2b−1/2
)

.

At this point we are through summing over an unbounded range, so we replaced
the big-L with big-O notation, with no harm. There is a well-known asymp-
totic formula for the sum of square roots as a generalized harmonic number:

HJ
(−1/2) =

J∑
j=1

√
j = 2J3/2/3 + J1/2/2 + ζ ( − 1/2) + O

(
J−1/2

)
[7, p. 594]. And

√
J + 1 =

J1/2 + J−1/2/2 + O
(
J−3/2

)
, so 4HJ

(−1/2)
√

J + 1 = 8J2/3 + 10J/3 + 4ζ ( − 1/2)
√

J + 1 +
O(1), and 3J(J + 1) − 4HJ

(−1/2)
√

J + 1 = J2/3 − J/3 − 4ζ ( − 1/2)
√

J + 1 + O(1). So SLE =
αb−3/2

{(
J2/3 − J/3 − 4ζ ( − 1/2)

√
J + 1 + O(1)

)
Gn + O

(
J5/2b−1/2

)}
. �
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We can now conclude the proof of Theorem 1.1.
Proof of Theorem 1.1. Go back to Lemma 4.3, to get the bounds on the tree sum using

this n, adding in the SLE term from Lemma 6.2. Our assumption about J implies n =
O(b1/2+p) with p ≤ 1/10, so Lemma 4.3 applies. For the upper bound,
TreeSum(n, u, b) − u/b ≤ αb−3/2

{
C + δB + δ2A

}+ SLE = αb−3/2
{
C∗ + δB + δ2A

}
, where

C∗ = − (1 − (C1 + CLE)Gn)+ O(J
5/2

b−1/2). Proceeding as done in the proof of Lemma 4.4,

δ0 = −B + B
(
1 − 2AC∗B−2 − 2A2C∗2B−4 − O(A3)

)
2A

= −C∗

B
− GnC∗2

B3
+ O(b−1/2−p),

since A = Gn = O(b−1/4−p/2). As in the earlier proof,

−C∗

B
− GnC∗2

B3
= 1

2
− 1

2

(
C1 + CLE − B1 + 1

4

)
Gn + O(J5/2b−1/2).

But
αn√

b
= J + 1 + O

(
(J + 1)b−1/2

)
, so C1 + CLE − B1 + 1

4
= CLE + αn√

b
− α2n2

3b
+ 1

4
=

1

3
J2 − 1

3
J − 4ζ ( − 1/2)

√
J + 1 − 1

3
J2 + 1

3
J + O(1) = −4ζ ( − 1/2)

√
J + 1 + O(1). The

higher-power terms miraculously canceled, exposing the dominant zeta term. So

δ0 = 1

2
− 1

2

(
−4ζ (− 1/2)

√
J + 1 + O(1)

) 1√
π (J + 1)n0

+ O
(

J5/2b−1/2
)

= 1

2
− 1

2

(
−4ζ (− 1/2) + O(J−1/2)

) √
α√
π

b−1/4 + O(J5/2b−1/2)

= 1

2
− (−2ζ (− 1/2))

√
α√

π
b−1/4 + O(J−1/2b−1/4) + O(J5/2b−1/2).

Since J ∼ bp, the best we can do with this is to let p = 1/12. We get

δ0 = 1

2
− (−2ζ (− 1/2))

√
α√

π
b−1/4 + O(b−7/24).

For the lower bound, to get δ′0, the only change is that C1 is replaced by C′
1 = C1 − 5/12,

which does not affect the calculation to order O(b−7/24). This completes the proof of
Theorem 1.1. �

As a final remark, we could say that we expected those higher terms to cancel, based on
the idea that going further down the tree leads to less weight on the row and more weight on
the leaves, where, at least for a while, the errors are quite small thanks to Theorem 5.1. But
honestly, when that happened with just the right choice of p, we thanked Tyche rather than
crediting our insight, since we did not really know if it would happen before doing it.

Appendix A. Proof of Lemma 1.2

We will need the following estimate of the expected reciprocal which goes the other way.

Lemma A.1.

E

[
b + n

b + Tn

]
≤ 1 + 1

6b
, where Tn is as in Section 1.2.
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Proof. We use the central moments E
[
(T1 − 1)2

]= 2/3, E
[
(T1 − 1)3]= 16/15; this is

from the Laplace transform f (t) = E[e−tT1 ] =
(

cosh
√

2t
)−1

, t> 0 [2, p. 289]. Now

b + n

b + Tn
= b + n

b + n + Tn − n
=
(

1 + Tn − n

b + n

)−1

= 1 − Tn − n

b + n
+
(

Tn − n

b + n

)2(
1 + Tn − n

b + n

)−1

= 1 − Tn − n

b + n
+ (Tn − n)2

(b + n)2
− (Tn − n)3

(b + n)2 (b + n + Tn − n)
.

Note that Tn − n =∑n
j=1 (Tj − Tj−1 − 1)is the sum of n i.i.d. mean-zero random vari-

ables, so E
[
(Tn − n)2

]=∑n
j=1 E

[(
Tj − Tj−1 − 1

)2]= nE
[
(T1 − 1)2

]= 2n/3, and similarly,

E
[
(Tn − n)3

]= nE
[
(T1 − 1)3

]= 16n/15. In both cases, the cross terms disappear because of
independence and mean zero. Note the function f (x) = x3/(c + x) is convex for x ≥ −3c/2, and
Tn − n ≥ −3(b + n)/2 is always true because Tn ≥ 0. By Jensen,

E

[
(Tn − n)3

(b + n + Tn − n)

]
≥ E

[
(Tn − n)3

]
(b + n + E [Tn − n])

= n

b + n
> 0.

Thus

E

[
b + n

b + Tn

]
� 1 − E [Tn − n]

b + n
+ E

[
(Tn − n)2

]
(b + n)2

= 1 + (2/3)n

(b + n)2
.

It is easy to show that n(b + n)−2 ≤ 1
4b , so

E

[
b + n

b + Tn

]
≤ 1 + 1

6b
.

�
We need to estimate the loss in Value for the Brownian motion case if we get as close to the

optimal boundary as possible while restricted to only stopping at integer steps from the start of
the Brownian motion. Let b be an integer, and u<α

√
b. Let f (t) = �α√

b + t − u + 1/2�.
Let T be the first time t that W(t) = f (t) (set T = ∞ if there is no such t). Let F(t) = P[T ≤ t].
We will follow Shepp [13], using his Wald fundamental identity argument, except with this f .

Lemma A.2. For λ� 0,
∫∞

0 dF(t) exp
{
λ
(⌊
α
√

b + t − u + 1/2
⌋)− λ2t/2

}= 1.

Proof. This follows immediately from [13, Theorem 2, p. 996 and immediately below].
That theorem stipulated that f be continuous, but the continuity was used only to justify the
implication T ≥ t ⇒ W(t) ≤ f (t), and this is true when f is monotone non-decreasing, without
requiring continuity. �

Proof of Lemma 1.2. As in [13], multiply both sides in Lemma A.2 by exp
(
λu − λ2b/2

)
and integrate over λ from 0 to ∞, getting

I :=
∫ ∞

0
dF(t)

∫ ∞

0
exp
{
λ
(⌊
α
√

b + t − u + 1/2
⌋

+ u
)

− λ2(b + t)/2
}

dλ

=
∫ ∞

0
exp
(
λu − λ2b/2

)
dλ= VW (u, b)/(1 − α2).
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Define r(t) = ⌊α√
b + t − u + 1/2

⌋− α
√

b + t + u, so
⌊
α
√

b + t − u + 1/2
⌋= α

√
b + t −

u + r(t), where −1/2 ≤ r(t)< 1/2. Let ε= ε(t) = r(t)(b + t)−1/2, so

I =
∫ ∞

0
dF(t)

∫ ∞

0
exp
{
λ
√

b + t (α + ε)− λ2(b + t)/2
}

dλ.

Making the change of variable w = λ
√

b + t − (α+ ε) to complete the square in the integral
yields

I =
∫ ∞

0
dF(t)(b + t)−1/2 exp

(
(α+ ε)2/2

) ∫ ∞

−(α+ε)
exp
(
−w2/2

)
dw

=
∫ ∞

0
dF(t)(b + t)−1/2G(α + ε)/g(α + ε) =

∫ ∞

0
dF(t)(b + t)−1/2H(α+ ε),

where G and g are respectively the CDF and PDF of the standard normal, and H = G/g was
defined in Section 3. To summarize so far,

VW (u, b) = (1 − α2)
∫ ∞

0
dF(t)(b + t)−1/2H(α+ ε). (A.1)

This is a perturbation of what it would be for the Brownian optimal boundary, for ε=
0. To approximate the perturbation, the derivatives of H given in Section 3 will be useful.
H(α+ ε) = H(α) + εH′(α) + ε2H′′(α)/2 + ε3H′′′(z)/6 for some z between α and α+ ε (note
ε can be negative). From (3.3), and recalling H(α) = α/(1 − α2), using the terms through the
second derivative gives

H(α) + εH′(α) + ε2H′′(α)/2

= H(α) + ε (αH(α) + 1)+ ε2
((

1 + α2
)

H(α) + α
)
/2

= H(α)
{

1 + ε
(
α + (1 − α2)/α

)
+ ε2

((
1 + α2

)
+ (1 − α2)

)
/2
}

= H(α)
{

1 + ε/α + ε2
}

.

For the third derivative term, we just want to bound it. Section 3 noted all derivatives of H
are positive, so for ε≤ 0, ε3H′′′(z) ≤ 0. For ε > 0, ε3H′′′(z) ≤ ε3H′′′(α+ ε), and also, since H′
is increasing, H(α+ ε)≤ H(α) + εH′(α+ ε)= H(α) + ε ((α+ ε)H(α+ ε) + α + ε). Solving,
H(α+ ε)≤ H(α)

(
α + ε(1 − α2)

)
(1 − ε(α + ε))≤ 1.0152H(α) assuming b> 1600 so that ε=

r(t)(b + t)−1/2 ≤ 1/80. Then from (3.3),

H′′′(α+ ε) ≤
{(

3(α + ε) + (α+ ε)3
)

(1.0152) +
(

2 + (α+ ε)2
)
/H(α)

}
H(α) ≤ 4.2H(α).

Thus

H(α+ ε) = H(α) + εH′(α) + ε2

2
H′′(α) + ε3

6
H′′′(z) ≤ H(α)

{
1 + ε

α
+ ε2 + .7|ε|3

}

≤ α

1 − α2

{
α
√

b + t + r(t)

α
√

b + t
+ 1

4(b + t)
+ .7

8(b + t)3/2

}
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≤ α

1 − α2

α
√

b + t + r(t)

α
√

b + t

{
1 + α

√
b + t

4(b + t)
(
α
√

b + t − 1/2
) (1 + .35

(b + t)1/2

)}

≤
√

b + t

1 − α2

W(t) + u

b + t

{
1 + 1

4b

(
1 − 1

2α
√

b

)−1 (
1 + .35√

b

)}

≤
√

b + t

1 − α2

W(t) + u

b + t

{
1 + 1

4b

(
1 + 1

b1/2

)}
, using b> 1600 in the last step.

Referring back to (A.1),

VW (u, b) = (1 − α2)
∫ ∞

0
dF(t)(b + t)−1/2H(α + ε)

≤
∫ ∞

0
dF(t)

W(t) + u

b + t

{
1 + 1

4b

(
1 + 1√

b

)}

= E

[
W(T) + u

b + T

] {
1 + 1

4b

(
1 + 1√

b

)}
,

or

E

[
W(T) + u

b + T

] {
1 + 1

4b

(
1 + 1√

b

)}
� VW (u, b). (A.2)

Now embed the random walk in the Brownian motion as in Section 1.2, with Sn = W(Tn);
whenever W(t) is an integer, W(t) = W(Tn) for some n. For stop rule T , W(T) only takes integer
values. Let n∗ be the first n such that W(T) = W(Tn).

E

[
W(T) + u

b + T

]
=

∞∑
n=0

E

[
u + Sn

b + n

b + n

b + Tn

∣∣∣∣ n∗ = n

]
P(n∗ = n)

=
∞∑

n=0

E

[
b + n

b + Tn

]
E

[
u + Sn

b + n

∣∣∣∣ n∗ = n

]
P(n∗ = n) ≤

(
1 + 1

6b

)
V(u, b),

using Lemma A.1. Combining with (A.2),

V(u, b) ≥ VW (u, b)

(
1 − 1

4b

(
1 + 1√

b

))(
1 − 1

6b

)
≥ VW (u, b)

(
1 − 5

12b

(
1 + 1√

b

))
.

�

REMARK. Numerical data suggests V(u, b) ≥ VW (u, b)

(
1 − 1

4b

(
1 + 1√

b

))
.

Now the inequality n(b + n)−2 � 1/(4b) used in proving Lemma A.1 is a gross overestimate
when u is near the boundary α

√
b, because in that case the time to crossing will probably be for

n small compared to b. On the other hand, when u is far below α
√

b, our replacing (b + t)−1/4
by b−1/4 in steps leading up to (A.2) is a significant overestimate, because t will be typically of
order b in order to get to the boundary. But we will not pursue these things, because improving
5/12 to 1/4 in Lemma 1.2 would only slightly improve the lower estimate in Lemma 4.3, and
the real goal is to prove Theorem 1.1.
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Appendix B. Proof of Lemma 4.2

Proof of Lemma 4.2. V(u − 2j + 1, b + 2n − 1) ≤ VW (u − 2j + 1, b + 2n − 1), and the dis-
placement of u − 2j + 1 from the Brownian boundary is

d = u − 2j + 1 − α
√

b + 2n − 1

= u − 2j + 1 − α
√

b

(
1 + 2n − 1

2b

(
1 − τ (n)

2n − 1

b

))
= − [2j − (1 − δ−ψ(n))

]
,

where ψ(n) = α
n − 1/2√

b

(
1 − τ (n)

2n − 1

b

)
, 0< τ (n)< 1/4. Now ψ(n) ≤ αn/

√
b, and

ψ(n) = αn/
√

b − O(b−1/2+2p). Thus, from (3.7),

VW (u − 2j + 1, b + 2n − 1) ≤ u − 2j + 1

b + 2n − 1
+ α

[
2j − (1 − δ −ψ(n))

]2
(b + 2n − 1)3/2

(B.1)

−
(
1 + α2

)
3

[
2j − (1 − δ −ψ(n))

]3
(b + 2n − 1)2

+ α
(
4 + α2

)
12

[
2j − (1 − δ −ψ(n))

]4
(b + 2n − 1)5/2

.

By (3.8), we get a lower bound for VW (u − 2j + 1, b + 2n − 1) by subtracting

(
4 + 8α2 + α4

)
60

[
2j − (1 − δ −ψ(n))

]5
(b + 2n − 1)3

from this. To get SRW , these terms are to be weighted by 2−2n+1B(n, j) and summed for j from
1 through n. But 2−2n+1∑n

j=1 j5B(n, j) = O
(
n2
)
, so this last term would add O

(
n2b−3

)=
O
(
b−2+2p

)
, so the upper and lower bounds of the sum are the same to that order, and only

involve the terms up through the fourth power of j. We break the sum into four pieces,
s1, . . . , s4, corresponding to the four terms of the Taylor approximation on the right side of
(B.1). The sums are done using (4.2) throughout. Some of the detail in obtaining the O bounds
from the asserted bounds on n and δ is left to the reader. Let

s1 = 2−2n+1
n∑

j=1

B(n, j)
u − 2j + 1

b + 2n − 1

= u + 1

b + 2n − 1
2−2n+1

n∑
j=1

B(n, j) − 2

b + 2n − 1
2−2n+1

n∑
j=1

jB(n, j) = (u + 1)Gn − 1

b + 2n − 1

= (u + 1)Gn − 1

b

(
1 − 2n − 1

b
+ (2n − 1)2

b2
+ O(n3b−3)

)

= (u + 1)Gn − 1

b
− (u + 1)Gn

b2

(
2n − 1 − 4n2

b

)
+ 2n

b2
+ O(b−2+p).
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The first term will conveniently cancel when we add to the leaf sum, so we leave that as is, but
rewrite the second with δ rather than u as the variable:

s1 − (u + 1)Gn − 1

b
= −α

√
b + 1 − δ

b2

(
2nGn − Gn − 4

n2Gn

b

)
+ 2n

b2
+ O(b−2+p)

= − α

b3/2

(
1 + 1 − δ

α
√

b

)(
2nGn − Gn − 4

n2Gn

b

)
+ α

b3/2

2n

α
√

b
+ O(b−2+p).

Simplifying,

s1 − (u + 1)Gn − 1

b
= α

b3/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2nGn + Gn + 2
n

α
√

b
− 2

nGn

α
√

b
+ 4

n2Gn

b

+2δ

(
nGn

α
√

b

)
+ O(b−1/2+p)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B.2)

Let h = 1 − δ −ψ(n), to simplify the writing for the next three terms. Let

s2 = α

(b + 2n − 1)3/2
2−2n+1

n∑
j=1

B(n, j)
[
2j − (1 − δ −ψ(n))

]2

= α

b3/2

(
1 − 3

2

(2n − 1)

b
+ O(b−1+2p)

)
2−2n+1

n∑
j=1

B(n, j)
[
4j2 − 4jh + h2

]

= α

b3/2

(
1 − 3n

b
+ O(b−1+2p)

) [
4nGn − 2h + Gnh2

]
.

This can be arranged to give (recall ψ(n) = αn/
√

b − O(b−1/2+2p))

s2 = α

b3/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4nGn − 2 + 2α
n√
b

+ Gn −
(

12 − α2
) n2Gn

b

−2α
nGn√

b
+ 2δ

(
1 − Gn + α

nGn√
b

)
+ δ2Gn + O(b−1/2+2p)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B.3)

For the next two terms, note h = O (bp) to help simplify. Let

s3 = − (1 + α2)

3(b + 2n − 1)2
2−2n+1

n∑
j=1

B(n, j)
[
2j − (1 − δ −ψ(n))

]3

= − (1 + α2)

3b2

(
1 − 4n

b
+ O(b−1+2p)

)
2−2n+1

n∑
j=1

B(n, j)
[
8j3 − 12j2h + 6jh2 − h3

]

= − α

b3/2

(1 + α2)

3α
√

b

(
1 + O(b−1/2+p)

) [
6n − 2 − 12nGnh + 3h2 − Gnh3

]
.

The h2 and h3 terms contribute only O(b−2+2p), so this becomes

s3 = α

b3/2

(1 + α2)

α

{
− 2n√

b
+ 4nGn√

b
− 4αn2Gn

b
− δ

(
4nGn√

b

)
+ O(b−1/2+2p)

}
. (B.4)

https://doi.org/10.1017/apr.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.6


34 J. H. ELTON

Let

s4 = α(4 + α2)

12(b + 2n − 1)5/2
2−2n+1

n∑
j=1

B(n, j)
[
2j − (1 − δ −ψ(n))

]4

= α(4 + α2)

12b5/2

(
1 + O(b−1/2+p)

)
2−2n+1

n∑
j=1

B(n, j)

[
16j4 − 32j3h

+24j2h2 − 8jh3 + h4

]

= α

b3/2

(4 + α2)

12b

(
1 + O(b−1/2+p)

) [ 16n(2n − 1)Gn − 8(3n − 1)h

+24nGnh2 − 4h3 + Gnh4

]
.

This reduces to

s4 = α

b3/2

{
8(4 + α2)

3

n2Gn

b
+ O(b−1/2+2p)

}
. (B.5)

Combining (B.2) through (B.5),

SRW − (u + 1)Gn − 1

b
= α

b3/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2nGn − 2 + 2Gn + 2(α + 1/α)
nGn√

b
− (4 + α2)

3

n2Gn

b

+2δ

(
1 − Gn − (α+ 1/α)

nGn√
b

)
+ δ2Gn + O(b−1/2+2p)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

�

Appendix C. Proof of Theorem 5.1

Proof of Theorem 5.1. The proof is by induction. The case j = 0 is (5.1). The base case for
the induction proof is j = 1, which was done at (5.4). Assume true for j, show true for j + 1.
That is, assume formula is true for j − 1/2 ≤ δ ≤ j + 1/2. Continue to use n = �√b/2�. Now
consider j + 1/2 ≤ δ ≤ j + 3/2. Break the proof into cases.

Case (a): j + 1/2 ≤ δ ≤ j + 1. We need to estimate V(u + 1, b + 2m + 1) for 0 ≤ m< n.
From (5.2), the distance of u + 1 from boundary is d = αmb−1/2 + δ − 1 + L+ (αb−1/2/2

)
, so

αmb−1/2 + j − 1/2 ≤ αmb−1/2 + δ− 1 + L+ (αb−1/2/2
)≤ αmb−1/2 + j + L+ (αb−1/2/2

)
.

Thus for 0 ≤ m< n ≤ √
b/2, we have j − 1/2 ≤ d ≤ j + α/2 + L+ (αb−1/2/2

)
< j + 1/2 since

b ≥ b0, so the induction hypothesis applies with d in the place of δ, and b + 2m + 1 in the place
of b. So VE(u + 1, b + 2m + 1) = α(b + 2m + 1)−3/2

{
2j (d − 1/2)− j(j − 1) + L(Mjb−1/4)

}
.

But α(b + 2m + 1)−3/2 = αb−3/2
(
1 − L+(1.5b−1/2)

)
, and 2j (d − 1/2)− j(j − 1)

≤ j2 + j. Using j ≤ b1/10 and b ≥ b0, VE(u + 1, b + 2m + 1) = αb−3/2{
2j
(
αmb−1/2 + δ− 3/2

)− j(j − 1) + L
(
(Mj + 2)b−1/4

)}
. So α−1b3/2SLE =

n−1∑
m=0

2−2m−1Cm
{(

2j
(
αmb−1/2 + δ− 3/2

)− j(j − 1) + L
(
(Mj + 2)b−1/4

))}= (nGn − 1 +Gn)

2jαb−1/2 + (2j(δ − 3/2) − j(j − 1)) (1 − Gn)+ L
(
(Mj + 2)b−1/4

)
. But 0 ≤ (nGn − 1 + Gn)

2jαb−1/2 ≤ αjb−1/4, and 0 ≥ − (2j(δ− 3/2) − j(j − 1))Gn ≥ −j2b−1/4, and j2 ≥ αj, so
α−1b3/2SLE = (2j(δ− 3/2) − j(j − 1))+ L

((
Mj + j2 + 2

)
b−1/4

)
. From Lemma 5.1, to get

α−1b3/2VE, add this to 2(δ − 1/2) + L(δ2b−1/4). Noting δ ≤ j + 1, this gives

b3/2

α
VE(u, b) = (2(j + 1)(δ − 1/2) − j(j + 1))+ L

(
(Mj + 2j2 + 2j + 3)b−1/4

)
. (C.1)
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Case (b): j + 1 ≤ δ ≤ j + 3/2. Let m0 = min
{⌊

j+3/2−δ
α

√
b
⌋
, n
}

. Break m into ranges.

Range (i): For 0 ≤ m ≤ m0 − 1, αmb−1/2 ≤ αm0b−1/2 − αb−1/2 ≤ j + 3/2 − δ −
αb−1/2, so d = αmb−1/2 + δ − 1 + L+ (αb−1/2/2

)≤ j + 3/2 − δ − αb−1/2 + δ − 1 +
L+ (αb−1/2/2

)≤ j + 1/2, so the induction hypothesis applies with d in place of δ

and b + 2m + 1 in place of b. The same argument that was used in (a) then shows
VE(u + 1, b + 2m + 1) = αb−3/2

{
2j
(
αmb−1/2 + δ − 3/2

)− j(j − 1) + L
(
(Mj + 2)b−1/4

)}
.

Range (ii): Suppose m0 + 1 ≤ m< n (this could be empty). Then m ≥ m0 + 1 ≥ j+3/2−δ
α

√
b,

so d = αmb−1/2 + δ− 1 + L+ (αb−1/2/2
)≥ j + 3/2 − δ + δ − 1 + L+ (αb−1/2/2

)≥ j + 1/2.
And αmb−1/2 + δ− 1 + L+ (αb−1/2/2

)≤ α/2 + j + 1/2 + L+ (αb−1/2/2
)≤ j + 1 for b ≥ b0.

Thus (C.1) applies with d in place of δ and b + 2m + 1 in place of b. Using the asserted
bounds and arguments similar to those in used in (a) leads to VE(u + 1, b + 2m + 1) =
αb−3/2

{
2(j + 1)

(
αmb−1/2 + δ− 3/2

)− j(j + 1) + L
((

Mj + 2j2 + 2j + 6
)

b−1/4
)}

.
Range (iii): For m = m0, either d ≤ 1/2 or d ≥ 1/2, so one of the two formulas

applies. But m0 = j+3/2−δ
α

√
b − f , 0 ≤ f < 1, so αm0b−1/2 − 3/2 + δ = j − αf b−1/2, so

2j
(
αm0b−1/2 + δ− 3/2

)− j(j − 1) = 2(j + 1)
(
αm0b−1/2 + δ − 3/2

)− j(j + 1) + 2αf b−1/2,

which differ by only 2αf b−1/2. We can use the formula from (ii) for m = m0 regardless, and
the result is the same, since (Mj + 2)b−1/4 + 2αf b−1/2 = L

((
Mj + 2j2 + 2j + 6

)
b−1/4

)
.

Summing over the formulas for ranges (i)–(iii),

α−1b3/2SLE =
m0−1∑
m=0

2−2m−1Cm

(
2j
(
αmb−1/2 + δ − 3/2

)− j(j − 1)
+L
(
(Mj + 2)b−1/4

) )

+
n−1∑

m=m0

2−2m−1Cm

(
2(j + 1)

(
αmb−1/2 + δ − 3/2

)− j(j + 1)
+L
((

Mj + 2j2 + 2j + 6
)

b−1/4
) )

.

The error terms can be gotten out of the sum since
∑n

m=0 2−2m−1Cm < 1. Algebra gives

α−1b3/2SLE = 2αb−1/2

(
j (nGn − 1 + Gn)

n−1∑
m=m0

2−2m−1Cmm + 2 (δ − j − 3/2) (Gm0 − Gn)

)
+

(2j (δ − 1/2)− j(j + 1)) (1 − Gn)+ L
((

Mj + 2j2 + 2j + 6
)

b−1/4
)

. Estimating terms,

2jαb−1/2 (nGn − 1 + Gn)≤ 2jα(2/n)nGn ≤ jα
√

2.14/πb−1/4,

(2j (δ− 1/2)− j(j + 1))Gn ≤ (j2 + j)Gn ≤ (j2 + j)
√

2.14/πb−1/4,

2αb−1/2
n−1∑

m=m0

2−2m−1Cmm ≤ 2αb−1/2(nGn) ≤ α√2/πb−1/4,

2 (j + 3/2 − δ) (Gm0 − Gn) ≤ 2αb−1/2 (m0 + 1)Gm0 ≤ 2αb−1/2nGn + 2αb−1/2

(because mGm is an increasing function), so 2 (j + 3/2 − δ) (Gm0 − Gn) ≤ α√
2/πb−1/4 +

2αb−1/2 = L
(
b−1/4

)
. Using these estimates,

SLE = αb−3/2
{

2j (δ − 1/2)− j(j + 1) + L
((

Mj + 3j2 + 4j + 8
)

b−1/4
)}

.

Add this to αb−3/2
(
2(δ− 1/2) + L(δ2b−1/4)

)
from Lemma 5.1, using δ ≤ j + 3/2, to get

VE(u, b) = α

b3/2

{
(2(j + 1)(δ− 1/2) − j(j + 1))+ L

((
Mj + 4j2 + 7j + 11

)
b−1/4

)}
, valid

over the range j + 1/2 ≤ δ ≤ j + 3/2, and the induction proof is complete, upon letting
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Mj+1 = Mj + 4j2 + 7j + 11. This recursion, with M1 = 5, is easily seen to imply Mj ≤ 5j3. Of
course a much smaller upper bound on Mj is possible. �
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