Journal of Paleontology

www.cambridge.org/jpa

Articles

Cite this article: Jordan-Burmeister K.J. 2025. Global evolutionary relationships of Devonian proetide trilobites. *Journal of Paleontology*, 1–16 https://doi.org/10.1017/jpa.2025.10163

Received: 13 September 2024 Revised: 25 June 2025 Accepted: 30 June 2025

Corresponding author:

Katherine J. Jordan-Burmeister; Email: kjorda36@utk.edu

Handling Editor: Bruce Lieberman

© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Global evolutionary relationships of Devonian proetide trilobites

Katherine J. Jordan-Burmeister^{1,2}

¹Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68504, USA ²Department of Earth, Environmental, and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, Tennessee 37996

Abstract

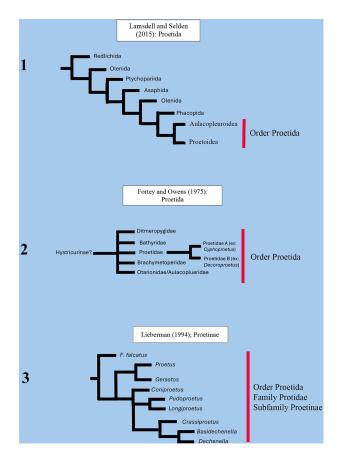
The Proetida likely represent the only surviving trilobite clade past the Devonian mass extinction event(s). Although members of order Proetida have long been studied, the global phylogenetic relationships across this pivotal time are still unresolved. I used a Bayesian phylogenetic approach to construct a subordinal level tree for members within the superfamily Proetoidea. Two models, a relaxed and strict clock model, were compared and used to assess past reconstructions of clades within the order. The trees from both models highlight key relationships among proetides across the Devonian and show paraphyly in groups that have been considered monophyletic in the past. Trees from both models also suggest that major groups, e.g., the genus *Gerastos* Goldfuss, 1843 and the family Phillispidae (which represents the most diverse post-Devonian proetide group under current taxonomic schemes) are polyphyletic. This in turn suggests, in a paleobiological context, a more complex pattern of survivorship over the Late Devonian than previously suggested as well as pervasive parallelisms toward certain '*Gerastos*' or 'phillipsid' morphotypes.

Non-technical Summary

The Proetida likely represent the only surviving trilobite clade past the Devonian mass extinction event(s). Although members of order Proetida have long been studied, the global relationships of these trilobites across the Devonian are still not well known. I used a Bayesian phylogenetic approach to construct a subordinal-level tree for members within superfamily Proetoidea. Two models, a relaxed and strict clock model, were compared and used to assess past reconstructions of clades within the Proetoidea. The trees from both models highlight key relationships among proetides across the Devonian and show groups thought to be closely related that are not. Phylogenetic trees from both models also suggest that major groups, such as the genus *Gerastos* and the family Phillispidae (which represent the most diverse post-Devonian proetide group under current taxonomic schemes) most likely to do not represent one group but many groups. This in turn suggests, in a paleobiological context, a more complex pattern of survivorship over the Late Devonian than previously suggested as well as the convergent evolution of certain '*Gerastos*' or 'phillipsid' morphologies.

Introduction

The pinnacle of trilobite diversity occurs early in their evolutionary history: peak trilobite richness and diversity occurred in the end-Cambrian-early Ordovician (490-470 Ma), followed by an overall decline in the class for the remainder of the Paleozoic (Bault et al., 2022). The end-Ordovician and end-Devonian mass extinction (or mass depletion) events both accelerated this decline, and post-Devonian trilobites might be considered an example of a 'Dead Clade Walking' (Jablonski, 2001; Hopkins et al., 2023). Despite this overall decline in class Trilobita, only one order, Proetida, defied the odds: proetides are the last of the trilobites. All trilobite diversity for the remainder of the Paleozoic came from order Proetida (Brezinski, 1999; Lerosey-Aubril and Feist, 2012; Bault et al., 2022). Proetides achieved peak diversity in the Devonian, and although their diversity declined markedly over the Late Devonian depletion events, proetides rebounded after the Devonian and reachieved peak (or near peak) diversity in the early Carboniferous (Brezinski, 1999; Lerosey-Aubril and Feist, 2012; Bault et al., 2022). However, it must be noted that larger clade dynamics (e.g., at the ordinal level) often mask the dynamics of subclades (e.g., families or genera), e.g., origination/extinction dynamics within these subclades. Within the proetides, certain families continued to show declines in diversity while rebounding diversity might have been focused within one family; the composition of order Proetidea was fundamentally altered in the Tournaisian (358.9–346.7 Ma) with the rise and proliferation of the new family Phillipsiidae (Lerosey-Aubril and Feist, 2012; Bault et al., 2022). Although other families within Proetidea went extinct, thereby lowering overall diversity, the new family Phillipsiidae, and an


older family Brachymetopidae, bolstered much of proetide diversity throughout the end-Paleozoic (Bault et al., 2022). This pattern is surprising especially when considering other prominent trilobite orders, e.g., Phacopida which, despite rebounding and holding high diversity along with proetides during the end-Devonian, ultimately went extinct while proetides persisted and experienced some diversification (Bault, 2023). Thus, a general description of trilobite diversification dynamics from the Devonian to the early Carboniferous might not adequately describe the diversification dynamics of the only post-Devonian surviving trilobite clade.

To begin to understand why proetides survived through the Devonian while other trilobites did not and continued to persist to the end of the Paleozoic, the relationships within Proetida during this interval need to be examined. I performed a phylogenetic analysis of members within the order Proetida, specifically the superfamily Proetoidea (Hawle and Corda, 1847). The proetides, often considered a 'disorderly' order (Bergström, 1977), have undergone much taxonomic revision, especially when it comes to the inclusion or exclusion of certain families (Fortey and Owens, 1975; Bergström, 1977; Lieberman, 1994; Fortey et al., 1997; Adrain, 2011; Lamsdell and Selden, 2015). Only recently, the order has been considered monophyletic (Lamsdell and Selden, 2015). My focus was to examine proetide relationships across the Devonian and into the early Carboniferous.

Proetidea taxonomic history and classification

Taxonomic history. In recent years, there has been a call to action to resolve some remaining gaps in higher-level trilobite systematics and phylogenetic relationships (Paterson, 2020). As is not uncommon with trilobite taxonomy at a higher classification level, proetide trilobites have suffered greatly from a lack of taxonomic clarity but more work is beginning to untangle proetide relationships (Adrain, 2011; Lamsdell and Selden, 2015). The relationships within the subclades of this order have been described (e.g., Fortey and Owens, 1975; Lieberman 1994; Adrain, 2011; Lamsdell and Selden, 2015). Figure 1 summarizes some of these classification schemes and the hypothesized relationships of and within superfamily Proetoidea. Membership within Proetidea has evolved based on more regional studies (e.g., Lieberman, 1994) and therefore more taxa can be incorporated into phylogenies (Fig. 1; Table 1). Additionally, Devonian-age regional proetides have been described from across the globe (e.g., Europe, China, Australia) and part of the aim of this study was to continue efforts to link these proetides to one another via phylogenetics. For the purposes of this study, I set out to build a proetide tree using the most up to data scheme presented by Lamsdell and Selden (2015).

Of interest in this study are members of Proetoidea. Clades within superfamily Proetoidea include the Proetideae, Rorringtoniidae, Scharyiidae, Tropidocorpyhidae, and the Phillipsidae (as general membership within Proetidea per Lamsdell and Selden, 2015). Some subgroups have been very contentious due to some 'unproetide-like' morphological characters (e.g., prominent eye ridges or up >10 thoracic segments in aulacopleuirds per Owens and Hammann, 1990). One such example is aulacopleuirds, which were separated from superfamily Proetoidea into superfamily Aulacopleuroidea in the Treastise on Invertebrate Paleontology (Fortey et al., 1997) and into order Aulacopleurida by Adrian (2011) (Table 1). Other studies have examined aulacopleuirds specifically and have placed these trilobites closer to other subclades (e.g., Rorringtoniidae) with little mention of Proetidea (Adrain and

Figure 1. Example visualized classification schemes of proetide trilobites throughout the years. (1) The most recent classification scheme from Lamsdell and Selden (2015) established the monophyly of order Proetidea in the context of other major trilobite orders. Note: this cladogram is abbreviated with orders though genera used in this study. (2) Fortey and Owens (1975) proposed the order Proetidea and suggested that it might have arisen from Hystricurinae trilobites in the Ordovician. No clear sister relationships were reported, only the membership and characteristics of the order. (3) Lieberman (1994) described the relationships among Devonian members of the subfamily Proetinae (within order Proetida and family Proetidae) of eastern North America. Note: some genera were excluded from this cladogram.

Chatterton, 1993). In some cases, order Proetoidea was reduced to two families (Proetideae and Tropidocorpyhidae) with 15 families now grouped with the now-order Aulacopleurida (Adrain, 2011). This was updated later by Lamsdell and Selden (2015) in which families Aulacopleuridae, Bathyruidae, Brachmetopidae, Rorringtonidae, Dimeropygidae, Tropidocoryphidae, Scharyiidae, Otarionidae, and Hystericuridae were reincluded in Proetida (Table 1). Following Lamsdell and Selden (2015), some groups (i.e., aulacopleurids, bathyurids, and other contentious subgroups) were considered part of order Proetida but were not included because their membership within superfamily Proetoidea is still unclear.

Proetides (sensu Fortey and Owens, 1975) were placed just outside order Phacopida in Trilobita by Lamsdell and Selden (2015) (Fig. 1a). Before this, Fortey and Owens (1975) branched major families of proetides, including Proetideae, Bathyuridae, and Ditermeropygidae, from the Proetidea superfamily Hystricurinae, a group with its origins in the Ordovician (Fig. 1b). Lieberman (1994) further resolved large genera within the subfamily Proetinae, e.g., *Gerastos* Goldfuss, 1843; *Proetus* Steininger, 1831; *Basidechenella* Richter, 1912; and *Crassiproetus* Stumm, 1953 (Fig. 1c). In addition, five major divisions within Proetideae

Table 1. Some examples of taxonomic assignments of proetide trilobites over time. Order Proetidea, established by Fortey and Owens (1975), has gone through much revision. Most of the revision includes subdividing the order based on a variety of morphological differences, e.g., Bergström (1977) highlighted issues with membership as described by Fortey and Owens (1975) based on enrollment and ontogeneic patterns of some groups

Source	Taxonomic Level of Study	Membership includes:	
Fortey and Owens, 1975	Order (Proetidea)	Hystricurinae, Bathuridae, Glaphuirdae, Dimeopygidae, Otationidae, Brachymetopidae, Proetideae A, Proetideae B, Aulacopleuridae, Cornuproetinae (only some), Cyrtosymbolinae, Drevermannia 'group'	
Bergström, 1977 (incorporating Bergström, 1973)	Divides Proetidea into three orders	Illaenida: Proetacea (e.g., Bathyuridae, Proetideae, Brachymetopidae); Ptychopariida: Solenpleuracea (e.g., Aulacopleuridae); Odontopleurida: Odontopleuracea, Cheiruracea (e.g., Glaphuridae, celmids, Odontolpleuridae)	
Lieberman (1994)	Subfamily (Proetinae)	Proetus Steininger, 1831; Falcatoproetus Steininger, 1831; Gerastos Goldfuss, 1843; Pudoprotetus Hessler, 1963; Longiproetus Cavet and Pillet, 1958; Coniproetus Alberti, 1966; Plesiowensus Lieberman, 1994; Arcticormistonia Lieberman, 1994; Crassiproetus Stumm, 1953; Basidechenella Richter, 1912; Ormistoniella Cooper, 1982; Aayemenaytcheia Lieberman, 1994; Dec{henella Kayser, 1880; Schizoproetus Richter, 1912; Schizoproetoides Ormiston, 1967	
Whittington et al., 1997 (Treatise)	Divided into three superfamilies	Proetoidea: Proetideae; Phillipsidae; Aulacopleuroidea: Aulacopleuridae, Brachymetopidae, Rorringtoniidae; Bathyuroidea: Bathyuridae, Dimeropygidae, Celmidae, Lecanopgidae, Glaphuridae, Holotrachelidae, Delphinidae	
Adrain, 2011	Divides order Proetidea into two orders	Proetidea: Proetideae; Tropidocoryphidae; Aulacopleurida: Aulacopleuridae, Bathyuridae, Brachymetopidae, Crepicephalidae, Dimeropygidae, Ehmaniellidae, Holotrachelidae, Hystricuridae, Marjumiidae, Rorringtoniidae, Scharyiidae, Solenopleuridae, Telephinidae, Tricrepocephalidae	
Lamsdell and Selden, 2015	Order Proetidea	Proetideae, Phillipsidae, Aulacopleuridae, Bathyuridae, Brachymetopidae, Rorringtoniidae, Dimeropygidae, Tropidocoryphidae, Scharyiidae, Otarionidae, Hystricuridae	

were noted: Tropidocoryphinae, Cornuproetinae, Eremiproetinae, the 'Thebanaspis' clade, and Proetinae (Lieberman, 1994; Lieberman and Karim, 2010). The resolution of these genera within Proetinae was strictly for eastern North America and demonstrated how some genera, e.g. *Proetus*, were monophyletic in this region (Lieberman, 1994).

Characteristics and ecology. Generally, members within Proetoidea have these features: crescent-shaped holochroal eyes, opisthoparian facial sutures, a well-developed occipital ring, 8–10 thoracic segments (to 22 at most), an isopygous pygidium, and < 127 mm (5 in) in length (Fig. 2; Fortey et al., 1997; Lamsdell and Selden, 2015). Across the order, there are other prominent features (e.g., well-developed

Dorsal view

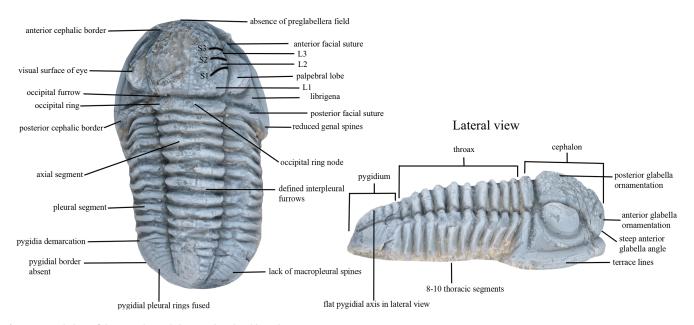


Figure 2. Morphology of the proetide exoskeleton in dorsal and lateral views.

genal spines, presence of a small preglabellar field) although these features can vary widely across the clade and across time (early vs. late proetides). For example, early proetides (Silurian, e.g., *Decoroproetus* Přibyl, 1946) are more often rounded in dorsal view whereas later proetides (Carboniferous, e.g., *Phillipsia* Portlock, 1843) have more elongate bodies in dorsal view. This, of course, varies depending on the subclade in question.

In general, proetides are considered to have lived benthically in shallow water and potential reef environments (Fortey and Owens, 1975). Early proetides (Ordovician) are associated with midshelf carbonate environments and, throughout their history, proetides typically spread out across the continental shelf into both deeper and shallower waters (Fortey et al., 1997). Some proetides that transitioned to deeper parts of the continental shelf in the Devonian showed reduced eye size or became completely blind (Clarkson, 1967; Fortey and Owens, 1975).

Most early proetides (Cambrian-Ordovician) exhibited natant hypostomes (feeding structures not attached to the ventral side of the cephalon (doublure) and can be supported by a nonfossilized membrane), associated with particle feeding. In this case, soft tissue (labrum) would support the hypostome (hard mouthpart), which would lie under the beginning of the trilobite digestive system (see El Albani et al., 2024). It is thought that some proetides shifted to coterminant and/or impendent (hypostome firmly attached to the ventral side of the cephalon by a suture and not by soft tissue) later from the Devonian to the Permian (Fortey and Owens, 1999). This modification in hypostome morphology, specifically in the 'bracing' of the feeding structure, or the expansion of the glabella and preglabellar field (Fortey and Owens, 1999; Fortey, 2014) have been thought to demonstrate the shift in feeding ecology of proetides. Many late Paleozoic proetides developed an impendent hypostome often associated with predation, and this change has been hypothesized to show that proetides began occupying vacated trilobite niche space following the end-Devonian extinction events (Fortey and Owens, 1999). Proetides are thought to display multiple meraspid (juvenile) stages and differing developmental ontogenies (Speyer and Chatterton, 1990). For the purposes of this study, the ontogenetic development of proetides was not taken into consideration; only adult specimens were taken into account for morphological coding.

Materials and methods

Data acquisition. Specimens used in this study were documented through museum specimens and literature. A complete list of sources is found in Appendix 3.

Taxon sampling and data collection. This study encompasses proetides from the mid-Silurian (Wenlock, 433–427 Ma) to the early Carboniferous (Tournaisian, 358.9–346.7 Ma). Although this does not document the entirety of proetide history, I was more interested in examining proetide phylogenetics following the Devonian mass extinction and in the recovery interval during the early Carboniferous. I used 109 characters, a mixture of binary and multistate, to morphologically code 129 proetides from a global distribution.

In this study, there are more taxa than characters. This is primarily due to the fact that: (1) proetides are considered to have low morphological disparity (Hopkins et al., 2023); (2) proetides are implied to have few novelties over their clade's history (Lieberman and Karim, 2010); and (3) the dataset for this analysis was large. In approaching this study, another factor was considered: trilobites, in comparison to other groups, demonstrate high character

exhaustion (Wagner, 2000). However, all of this does not imply that there are not enough characters to distinguish proetides from one another in a phylogenetic framework. To ensure reliable development of a phylogenetic hypothesis, the only characters that were used were clearly visible on specimens. If a character was not clearly visible, it was coded as '?'. This ensured as little 'coder-bias' as possible. Secondly, the combination of characters, not just the characters by themselves, was taken into consideration. This follows the principle that all character states are independent from one another (Sereno, 2007). Because there are infinitely more combinations of 109 characters (and far more character states) than 129 taxa that are allowed to evolve independently across the trees, there exists some degree of certainty in the hypotheses being produced. Lastly, the use of a Bayesian phylogenetic framework (see Phylogenetic analysis, below) allowed this study to produce a reliable phylogenetic hypothesis. Previous studies have demonstrated how analyses can proceed with fewer characters than taxa because additional data (e.g., temporal information) can also be included in a Bayesian analysis (Coiro et al., 2023). Therefore, the ratio of characters to taxa, although not typical, is acceptable because of character state independence and the nature of incorporating data into a Bayesian analysis.

Characters were mainly repurposed from Lieberman (1994) and Lamsdell and Selden (2015) (Appendix 1) whereas some characters were constructed to accommodate a higher taxonomic level (see those under 'Jordan-Burmeister (2025),' Appendix 1). All characters were for adult specimens; juvenile and instar characters were excluded from this study. The outgroup taxa were *Paraproetus brevifrons* Angelin, 1854 (Ordovidian proetide within family Proetideae), *Ogmocnemis irregularis* Kielan, 1960 (another Ordovician proetide within family Proetideae), and *Ascetopeltis barkingensis* Owens, 1973 (Ordovician proetide within family Tropidocoryphidae).

There are hundreds of proetides within order Proetida and superfamily Proetoidea. To ensure that the best representatives of global proetides were coded, I sampled the Paleobiology Database (PBDB, 2025) and noted the largest genera (>10 species within the genus) per each time stage of the late Silurian to the Middle Devonian. Well-known and more-globally cosmopolitan genera with more than ten species were initially coded (e.g., Gerastos, Proetus, Basidechenella). At least three species for these large (> 10 species) genera were coded. Following this, I coded species from smaller, more regional genera (< 10 species per genus or recorded from only one geographic basin, e.g., Hollandiella lebruni van Viersen and Larouge, 2020) to ensure that potential variations of proetides were represented. Taxa from modern-day North America, Europe, China, and Australia were coded and these locations were cross referenced in the literature to determine their approximate biogeographic region during the Devonian Period (Dowding and Ebach, 2018; Penn-Clarke and Harper, 2023). This served mainly for interpretation purposes and out of data exploration.

Taxon ages. Bayesian phylogenetic analyses (see below) incorporated the FBD (fossilized birth-death) tree, which required upper and lower bounds of first appearances of the analyzed taxa. These were based on the Paleobiology Database (PBDB, 2025) and were drawn from 513 occurrences from 376 localities representing 191 distinct rock units (formations and members) and assignments based on 354 taxonomic opinions. In support of this study, 134 localities and 226 occurrences were entered along with 324 taxonomic opinion records. An additional 75 localities and 47 occurrences were edited while vetting the data. I refined the ages of

occurrences using an external database that redated collections based on conodont, graptolite, and ammonoid zonations for localities or relevant rock units (see Congreve et al., 2021). These dates reflect those given by Gradstein et al. (2020). This generated much more restricted ages for individual localities than the PBDB provides, and thus much more restricted lower and upper bounds on the ages of the first appearances than otherwise would be available from the PBDB.

Phylogenetic analysis. To examine the evolutionary dynamics within proetides across the Devonian and into the early Carboniferous, a Bayesian phylogenetic analysis was conducted in BEAST2 (v2.6.7) (Bouchaert et al., 2019). Although there are many options for performing phylogenetic analyses, a Bayesian analysis provides some unique features when building trees that include but are not limited to: (1) Bayesian analyses can outperform parsimony when discrete morphological data is used (Wright and Hills, 2014); (2) Bayesian analyses can incorporate multiple sources of evidence as priors, which includes stratigraphic ages of fossil taxa (Barido-Sottani et al., 2020); and (3) Bayesian models, e.g., the fossilized birth-death (FBD) process, can be incorporated for joint description of diversification and sampling across fossil lineages (Stadler, 2010; Heath et al., 2014) (see FBD description, below). Files for BEAST2 (.xml) were built using Beauti (v2.6.7) (Bouchaert et al., 2019). Character data were separated into four partitions (five, four, three, and two states), with separate Mk character substitution models (M2, M3, etc.) used for each (see Lewis, 2001). Note that the different Mk models assume the same rate of change rather than the same rates of state transition for each partition (see Wright et al., 2021). Among-character variation was modeled using a gamma distribution. The relevant scripts and commands are included as supplementary material to this paper.

Two separate analyses were run using two different clock models: a strict clock, in which rates are consistent over time, and an uncorrelated relaxed clock, in which rates vary among branches following a lognormal distribution (e.g., Drummond et al., 2006). These two clock models were compared to one another for this study (and are hereafter referred to as 'the clock models').

Prior probabilities for particular trees were generated using the FBD process (e.g., Heath et al., 2014). The FBD model has been used in previous studies employing Bayesian methods and provides prior probabilities for individual phylogenies given implicit divergence times (Stadler, 2010; Heath et al., 2014). The use of the FBD model in a Bayesian analysis for extinct clades with fossil taxa has also been demonstrated (Wright, 2017; Mulvey et al., 2025). The FBD model is a birth-death-sampling model that derives prior probabilities on particular phylogenetic topologies given rates of cladogenesis, extinction, and fossil recovery (sampling) (Heath et al., 2014). In the case of this study, starting values were set as follows: an origin time was set to a rescaled value of 130.0 Ma, diversification was set to 1.0, turnover was set to 0.5, sampling proportion was set to 0.5, and rho sampling was set to 0.0 (because rho is based on sampling in the modern and trilobites are completely extinct). The origin time was rescaled using the oldest trilobites in the analysis—Paraproetus brevifrons and Ogmocnemis irregularis, ~460 Ma—and the youngest in the analysis— Eocyphinium seminiferum (Phillips, 1836), ~340 Ma. The difference in ages between the oldest and youngest trilobites was $\sim 115-$ 120 Ma. Therefore, 115 Ma was used as the minimum origin time whereas I set the maximum origin time to 130 Ma to account for any margin of error. All rates were allowed to vary depending on the tree model. In the strict-clock model, these evolutionary

processes varied equally across branches with one another. For the relaxed-clock model, however, these evolutionary processes were allowed to vary differently across the branches.

Origination rates were sampled from a gamma distribution, with the mean set using an exponential distribution and standard deviation set using another gamma distribution. Because extinction rates are not independent of origination rates, a turnover parameter following a log-normal distribution was used to establish extinction rates given the origination rate. Clade origin and sampling rates also were sampled from log-normal distributions. The total chain length for both clock models was set to 100,000,000 within a preburn-in of 1,000. Each clock model was run once and all parameters of each model reached convergence. A total of 10,000 trees was obtained for each clock model. Following this, maximum clade credibility trees for each clock model were built using the BEAST2 extension TreeAnnotator (v.2.6.7) (Bouchaert et al., 2019) (burn-in 30%, probabilities > 50% kept, mean height used). Additional model testing included running a stepping-stone-like test: nested sampling via the Nested Sampling Log Analyzer in the BEAST2 AppLauncher. From this, marginal likelihoods and standard deviations for each model could be obtained, which were in turn used to calculate a Bayes Factor (Table 2).

Repositories and institutional abbreviations. Types, figured, and other specimens examined in this study are deposited in the following institutions: American Museum of Natural History (AMNH), New York, USA; Field Museum of Natural History (FMNH), Chicago; and The Natural History Museum (NHM), London, UK.

Results

Overall, the posterior probabilities for the relaxed-clock trees were higher than those of the strict-clock trees (Table 2). This indicates that the observed data provide strong evidence to support this model and its hypothesis (evolutionary rates vary across branches) for proetide trilobites. Following the phylogenetic analysis detailed above, two maximum credibility trees for a relaxed-clock model and a strict-clock model were obtained. Although the relaxed clock

Table 2. Posterior probability and likelihood values of the relaxed-clock and strict-clock models. The posterior probability values indicate the probability of each model given the data and prior parameters. Likelihood values indicate the probability of the data given the parameters input initially. Both values are calculated from the output of BEAST2. Marginal likelihoods were calculated using the Nested Sampling Log Analyzer (NS) in BEAST2. Standard deviations (SD) are also included. Marginal likelihoods were used to calculate the Bayes Factor (Model A/Model B or relaxed-clock model/strict-clock model). The Bayes Factor of 1.51 indicates positive support for the relaxed-clock model per Kass and Raftery (1995)

Clock Model	Posterior probability value	Likelihood value	Marginal Likelihoods (via Nested Sampling)
Relaxed	-5518.410	-4565.635	-8075.94 (SD = 0.034)
Strict	-5756.207	-4650.830	-5351.51 (SD = 22.45)
Bayes Factor (relaxed clock)/ (strict clock marginal likelihoods)	-	-	1.51

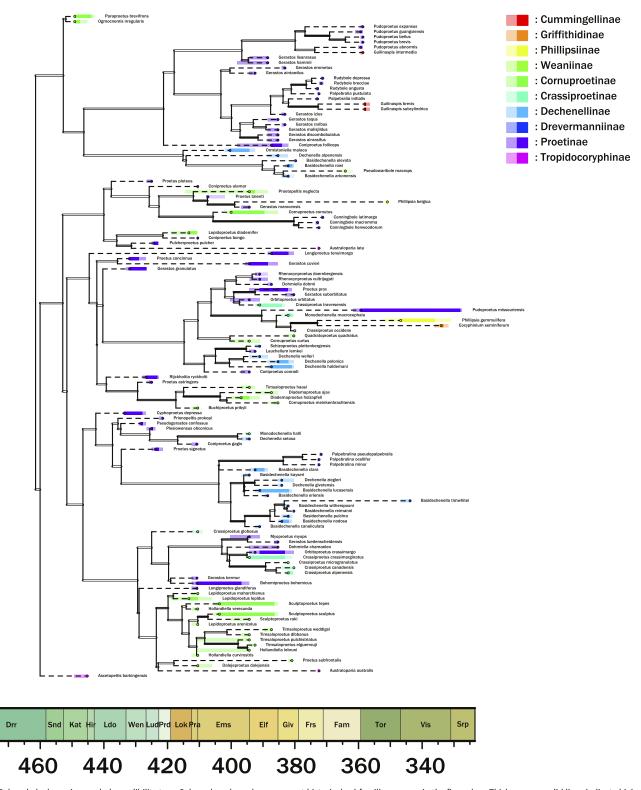


Figure 3. Relaxed-clock maximum clade credibility tree. Colors along branches represent historical subfamilies as seen in the figure key. Thicker, more solid lines indicate higher probability support (> 0.5) of branches; nonsolid lines represent lower probability support (< 0.5). Dashed lines represent the approximate age of each tip species in relation its nearest branching event. Species not otherwise mentioned in the text are: Australoparia australis (Feist and McNamara, 2013); Australoparia lata (Feist and McNamara, 2013); Basidechenella canaliculata (Hall, 1861); Basidechenella elevata (Cooper and Cloud, 1938); Basidechenella eriensis (Stumm, 1953); Basidechenella kayseri (Richter, 1909); Basidechenella lucasensis (Stumm, 1965); Basidechenella nodosa (Stumm, 1953); Basidechenella pulchra (Stumm, 1965); Basidechenella reimanni (Stumm, 1953); Basidechenella timwhitei Lieberman, 1994; Basidechenella witherspooni (Stumm, 1968); Buchiproetus pribyli (Alberti, 1969); Canningbole henwoodorum Feist and McNamara, 2013; Canningbole latimargo Feist and McNamara, 2013; Canningbole macromma Feist and McNamara, 2013; Coniproetus alamar Šnajdr, 1980; Coniproetus bongo Šnajdr, 1980; Coniproetus conradi (Hall, 1861); Coniproetus folliceps (Hall and Clarke, 1888); Coniproetus gagis (Šnajdr, 1980); Cornuproetus cornutus (Boldfuss, 1843); Cornuproetus curtus (Barrande, 1852); Crassiproetus alpenensis (Stumm, 1953); Crassiproetus canadensis (Stumm, 1953); Crassiproetus depressa (Barrande, 1846); Crassiproetus microgranulatus (Stumm, 1953); Crassiproetus occidens (Hall, 1861); Crassiproetus traversensis (Stumm, 1953); Cyphoproetus depressa (Barrande, 1846);

is the more likely model, I will discuss both phylogenetic hypotheses because both tree models demonstrate similar 'clade groupings,' which highlights the prevalence of these 'clade groupings' across both models and tree space. The results of both clock models (maximum clade credibility trees) can be seen in Table 2, Figures 3 and 4, and Appendix 2. Subfamilies are color-coded for interpretation in Figures 2 and 3.

Many pre-established clades from previous studies have high posterior probabilities (e.g., the *Pudoproetus* Hessler, 1963 branch, p.p. 0.8277). These clades are often more 'regional,' having been coded from samples in the same location (e.g., the Canning Basin, Australia) and around the same time (Late Devonian) (see Appendices 4a, b). Additionally, clades from potentially related bioregions in the Late Devonian, e.g., those from Australia and China, were more likely to be more closely related (Appendix 2). However, other clades, including pre-established ones, e.g., the *Pudoproetus* and *Palpebalina* Feist and McNamara, 2013 clades from the Late Devonian Canning Basin (Australia), were found to not be closely related, perhaps demonstrating that different lineages of proetides coexisted at least for a little while.

The maximum clade credibility tree makes subfamily dynamics apparent. The subfamily Proetinae holds much of the diversity throughout the Devonian globally (Fig. 4). This shifts slightly at the Devonian-Carboniferous boundary where, with the rise of Phillipsidae, much of the diversity is represented in Phillipsidae and holdover Proetinae members (e.g., *Basidechenella*). Polyphyly is present across both trees. This is most apparent within the genus *Gerastos* in which species fall out in different clades. Other large and 'classic' genera also display this pattern, including *Basidechenella*, *Proetus*, and *Phillipsia*.

The strict-clock results (Fig. 3) vary from the relaxed-clock results in some key ways. Firstly, the origin of the clade is different in the two clock models: the relaxed-clock model has a root much later (Darriwilian, Ordovician, 467–458 Ma) than the strict-clock model (Tremadocian, Ordovician, 485–477 Ma) (Figs. 3, 4). Consequently, this means that internal node ages are also later in the relaxed-clock model; many internal nodes for the relaxed-clock tree are in the Late Ordovician whereas internal nodes in the strict-clock tree sit in the Middle Ordovician (Figs. 3, 4). Secondly, the relatedness of many groups, e.g., the Ordovician outgroups *Paraproetus brevifrons* and *Ogmocnemis irregularis*, is now more distant and these taxa are not considered close sister taxa (Fig. 4). Thirdly, and

in general, the posterior probabilities of the internal branches are larger for the relaxed-clock model than the strict-clock model. Lastly, the resolution of clades is very different: the relaxed-clock model produced larger clades with high probabilities (> 0.2) whereas the strict-clock model produced many smaller clades with high probabilities (> 0.2), often composed of two or three species (Appendix 3). Overall, the relationships among clades was relatively different from the relaxed-clock model, providing a very different tree topology. The strict-clock model, like the relaxed-clock, placed three main subclades close to one another in the tree topology: the 'Rudybole' clade, a 'Gerastos' clade, and a 'Pudoproetus' clade, and separated the genus Gerastos across the tree (Appendix 3). The strictclock model broke up major clades, e.g., the division of Basidechenella into three notable clades (Appendix 3). Additionally, the strictclock model divided groups long considered to be related—e.g., Timsaloproetus Gibb and Chatterton, 2007; Diademaproetus Alberti, 1964; and Cornuproetus Richter and Richter, 1919—whereas the relaxed-clock model did not.

Discussion

Phylogenetic status of traditional taxonomic units. Traditional taxonomic units and phylogenetic studies are important building blocks for studies such as this one. This is partially due to the finer scale and detail (e.g., regional taxa, well-documented, multiple specimen representatives) on which previous studies built these taxonomies. When Devonian proetides were incorporated into a phylogeny with more global representation, some pre-established clades were maintained while others were fractured. Both the relaxed-clock and the strict-clock tree models highlighted polyphyletic relationships in some clades, e.g., the Phillipsidae, or within large genera, e.g., Gerastos (Fig. 5). The Phillipsidae clade, which is an important maintainer of proetide diversity for the remainder of the Paleozoic, fell along multiple branches and seemed to indicate the persistence of a 'phillipsid morphology' more than a phillipsid taxonomic unit (see Clade relationships and ecology, below). Evolutionarily, this could indicate that proetides that persisted through the end-Devonian might not have been closely related but could have shared some key morphological features. One prominent subfamily, Proetinae (which has classically encompassed the genera Gerastos and Proetus), is paraphyletic. Species within Gerastos and

Figure 3. (Continued)

Dalejeproetus dalejensis (Přibyl, 1971); Dechenella haldemani (Hall, 1861); Dechenella polonica Gürich, 1896; Dechenella setosa Whidborne, 1889; Dechenella welleri (Stauffer, 1909); Diademaproetus ajax Basse, 1997; Diademaproetus holzapfeli (Novák, 1890); Dohmiella chamaeleo (Richter and Richter, 1918); Dohmiella dohmi (Richter and Richter) ainrasifus Gibb and Chatterton, 2010; Gerastos aintawilus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos discombobulatus Gibb and Chatterton, 2010; Gerastos cuvieri (Steininger, 1831); Gerastos cuvieri (Steininge Gerastos emmetus Gibb and Chatterton, 2010; Gerastos granulatus (Lindström, 1885); Gerastos hammii Gibb and Chatterton, 2010; Gerastos izius Gibb and Chatterton, 2010; Gerastos luedenscheidensis (Basse, 1996); Gerastos lisanrasus Gibb and Chatterton, 2010; Gerastos malisjildus Gibb and Chatterton, 2010; Gerastos marocensis (Chatterton et al., 2006); Gerastos raribus Gibb and Chatterton, 2010; Gerastos suborbitatus (Holzapfel, 1895); Gerastos taqus Gibb and Chatterton, 2010; Guilinaspis intermedia Yuan and Xiang, 1998; Hollandiella curvirostris van Viersen and Larouge, 2020; Hollandiella verecunda van Viersen and Larouge, 2020; Lauchellum lemkei (Basse, 1997); Lepidoproetus arenicolus van Viersen and Larouge, 2020; Lepidoproetus diademifer (Chlupac and Vanek, 1965); Lepidoproetus lepidus (Barrande, 1846); Lepidoproetus maharchianus Johnson and Fortey, 2012; Longiproetus glandiferus (Novák, 1890); Longiproetus tenuimargo (Richter, 1909); Monodechenella halli (Stumm, 1953); Monodechenella macrocephala (Hall, 1861); Myoproetus myops (Barrande, 1846); Orbitoproetus crassimargo (Roemer, 1850); Orbitoproetus orbitatus (Barrande, 1846); Ormistoniella malaca (Lake, 1904); Palpebralia initialis Feist and McNamara, 2013; Palpebralia pustulata Feist and McNamara, 2013; Palpebralina minor Feist and McNamara, 2013; Palpebralina ocellifer Feist and McNamara, 2013; Palpebralina pseudopalpebralis Feist and McNamara, 2013; Plesiowensus obconicus (Lindström, 1885); Prionopeltis prokopi Šnajdr, 1976; Proetopeltis neglecta (Barrande, 1852); Proetus astringens Owens, 1973; Proetus concinnus (Dalman, 1827); Proetus Pluteus Whittington and Campbell, 1967; Proetus prox (Richter and Richter, 1956); Proetus signatus Lindström, 1885; Proetus subfrontalis Whidborne, 1889; Proetus talenti (Chatterton, 1971); Pseudogerastos confossus (Owens, 1973); Pudoproteus abnormis Yuan and Xiang, 1998; Pudoproteus bellus (Yuan and Xiang, 1998); Pudoproteus brevis Yuan and Xiang, 1998; Pudoproetus expansus Yuan and Xiang, 1998; Pudoproetus guangxiensis (Zhai Ling, 1988); Pudoproetus missouriensis (Shumard, 1855); Pulcherproetus pulcher (Nieszkowski, 1857); Quadratoproetus quadratus (Maurer, 1885); Rhenocynproetus cultrijugati (Richter and Richter, 1918); Rhenocynproetus doernbergensis (Basse, 1996); Rijckholtia ryckholti (Barrande, 1846); Rudybole angusta Feist and McNamara, 2013; Rudybole brecciae (Richter, 1913); Rudybole depressa Feist and McNamara, 2013; Schizoproetus plettenbergensis Basse, 1997; Sculptoproetus raki van Viersen and Larouge, 2020; Sculptoproetus sculptus (Barrande, 1846); Sculptoproetus tepes Šnajdr, 1980; Timsaloproetus dibbanus Gibb and Chatterton, 2007; Timsaloproetus elguerrouji Gibb and Chatterton, 2007; Timsaloproetus van Viersen and Larouge, 2020; Timsaloproetus weddigei van Viersen and Larouge, 2020.

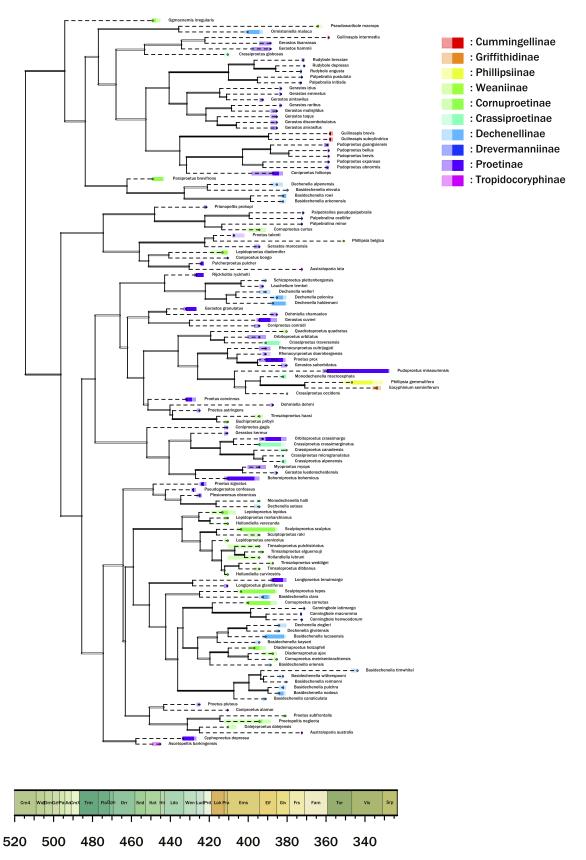


Figure 4. Strict-clock maximum clade credibility tree. Colors along branches represent historical subfamilies as seen in figure key. Thicker, more solid lines indicate higher probability support (> 0.5) of branches; thin or nonsolid lines represent lower probability support (< 0.5). Dashed lines represent the approximate age of each tip species in relation its nearest branching event. For species not otherwise mentioned in the text, see Figure 3.

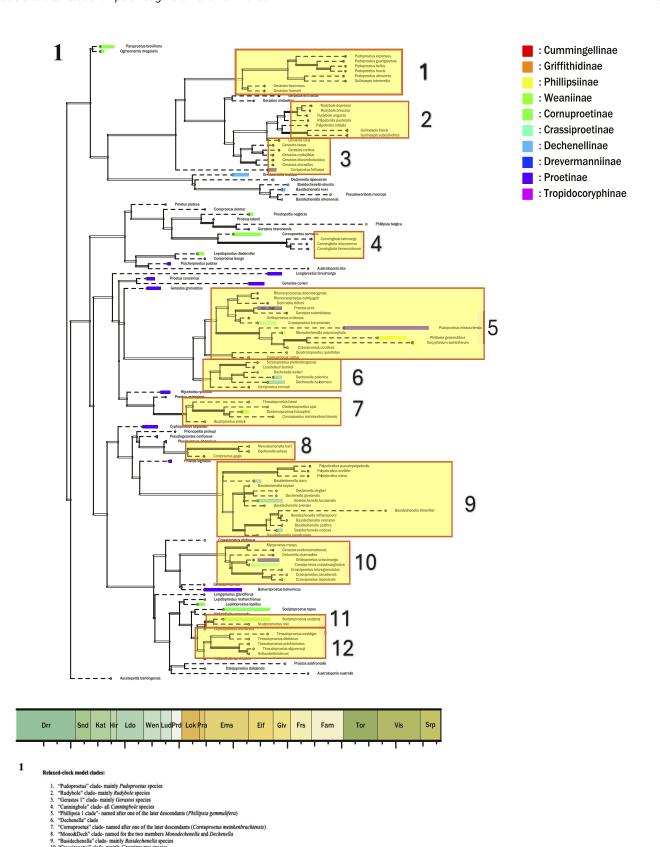


Figure 5. Clades shared across both tree hypotheses. (1) Relaxed-clock groups and (2) strict clock groups as identified and labelled for this study. Subclades were determined by the strength of the posterior probabilities (at least 0.4) of an internal node. Subclades were numbered and given a label (below) to help in visualizing the trees. Many subclades translate across both tree hypotheses and correspond to historical groupings. Subclades are more finely split for strict clock model (2). For species not otherwise mentioned in the text, see Figure 3.

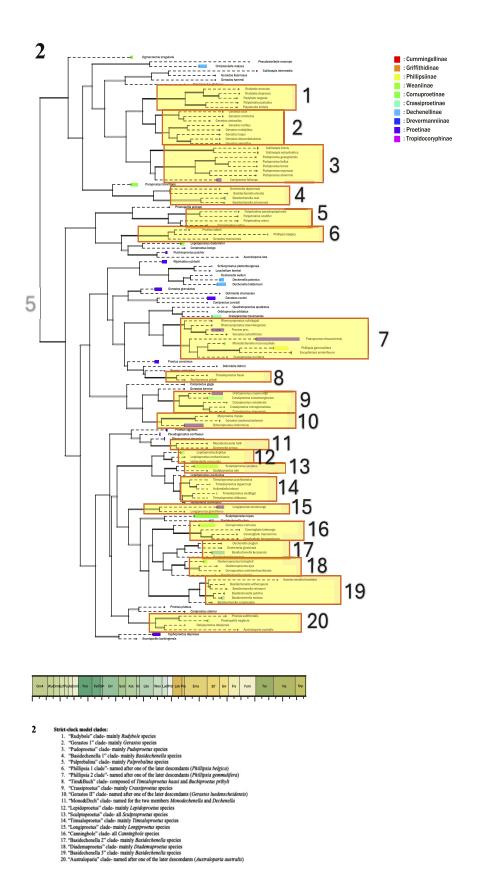


Figure 5. (Continued).

Basidechenlla were scattered across both clock-model trees with varying degrees of posterior probabilities. Large clades exist that include or are sister to the outgroups *Ogmocnemis irregularis* and *Paraproetus brevifrons*, but with no sampled Silurian members. This could be because I included few Silurian members (in keeping within a strict Devonian time constraint) or because parallelisms between that clade and those two Ordovician species distorted the tree.

Other major subfamilies, e.g., Cornuproetinae and Dechenellinae, are also polyphyletic, but there are large clades composed mostly or entirely of species assigned to those subfamilies. Overall, survivorship of the major clades in the Devonian (i.e., those clades that have members into the Carboniferous) is polyphyletic, but both trees suggest some concentration of survivors in particular subclades. For example, 'Phillipsia 1 Clade' (labelled 5 in Fig. 4a) have members that persist past the end-Devonian that do not belong in the same genus (e.g., Phillipsia; Eocyphinium Reed, 1942; and Pudoproetus).

Clade relationships and ecology. The way in which major, well-studied genera, e.g., Gerastos or Basidechenella, were resolved is one of the more significant results. The genus Gerastos has undergone much revision since its conception (Šnajdr, 1980; Lutke, 1980, 1990; Ellermann, 1992; Lieberman, 1994). Gerastos has been considered a monophyletic sister group to the genus Proetus in the past (Šnajdr, 1980; Kobayashi, 1985; Ellermann, 1992; Lieberman, 1994). Others, e.g., Lutke (1990), have considered Gerastos to be broken in two subgenera: one of which, Devonoproetus Lutke, 1990, gave rise to Dohmiella Lutke, 1990 and potentially Longiproteus Cavet and Pillet, 1958, and the other subgenus giving rise to other members, e.g., Coniproetus Alberti, 1966 and Bohemiproetus Pillet, 1969 (Lutke, 1990; van Viseran and Lerouge, 2021).

The relaxed-clock maximum clade-credibility tree result shows Gerastos spp. appearing in at least five different proetide subclades, typically with good support values. One species, Gerastos kermur Šnajdr, 1980, appeared closely related to *Bohemiproetus bohemicus* (Hawle and Corda, 1847), giving at least some credence to the Lutke (1990) theory of Gerastos' division into subgenera. Conversely, Gerastos spp. do not appear to be very closely related to Dohimella or *Longiproetus* spp., although there are very few representatives in this study. Results from this study indicate that *Gerastos* most likely constitutes multiple subgenera and/or is a large group linked by homoplasies. Other large proetide genera, e.g., Phillipsia or Basidechenella, also demonstrated this pattern (i.e., appearing multiple times on the tree, not closely related). Notably, Basidechenella rowi (Green, 1838) and Basidechenella arkonensis (Stumm, 1953) appeared more closely related to certain species, e.g., Dechenella alpenensis (Stumm, 1953) and Pseudowaribole macrops Yuan, 1988, whereas other Basidechenella spp. plotted distantly away from this subclade. All species (Basidechenella rowi, Basidechenella arkonesis, Dechenella alpenesis, and Pseudowaribole macrops) share distinct morphological features, e.g., long genal spines, a glabella indentation near S2, and large eyes. The other Basidechenella spp. correspond with other Dechenella spp. (e.g., Dechenella ziegleri Struve, 1992 and Dechenella givetensis Bignon and Crônier, 2011). These taxa, although having similar morphologies to the other Basidechenella spp. from which they are separated, seem to present a unique feature: heavy granulation on the cephalon. Although this is not universal, this might be partially responsible for both clock models parsing Basidechenella into two subclades. The character:taxa ratio might also have contributed to this. Adding more characters, especially instar characters, could alter this in the future.

Two species of *Phillipsia* were described as not closely related in the relaxed-clock and strict-clock models. These species, *Phillipsia belgica* (Osmólska, 1970) and *Phillipsia gemmulifera* (Phillips, 1836), often showed up in discourse together and have been considered related (Osmólska, 1970). In both clock models, the posterior probability of these taxa belonging with another sister group was at least 0.4.

Given the collection location (i.e., UK) and occurrence time (i.e., early Carboniferous) of Phillipsia gemmulifera and its sister Eocyphinium seminiferum, this relationship seems to be likely. All species—Phillipsia gemmulifera, its sister Eocyphinium seminiferum, Phillipsia belgica, and its sister Gerastos tuberculatus marocensis (Chatterton et al., 2006)—are all epifaunal deposit feeders so little can be determined from looking at environmental data. Lastly, it is hard not to notice morphological similarities between the *Phillipsia* spp. and their sister taxa. When looking at the Phillipsia spp. (Fig. 4a, b) with their respective sisters, the narrowness of the anterior glabella or its inflation seems to carry over as does eye size (small or large, respectively). This gives credence to the idea of a 'Phillipsia-type morphology' persisting rather than the taxonomic unit. Additionally, if phillipsids are indeed divided, then there could be two 'Phillipsia' clades: Phillipsia A (including Phillipsia belgica) with an earlier divergence time and Phillipsia B (including Phillipsia gemmulifera), which might have persisted slightly longer into the Carboniferous (Figs. 3, 4). This pattern, of morphological disparity and taxonomic disparity being decoupled and significant during a mass extinction event, has been observed in other invertebrate groups (Foote, 1993; Wan et al., 2021). Future work could include a systematic revision of both Gerastos and *Phillipsia* with these patterns in mind.

In terms of major morphological changes, many of the species in this study exhibit small eyes or eye reduction through time (e.g., many Gerastos spp.). As is observed in other trilobite orders, a number of proetides included in this study lost their eyes completely. Eye loss in trilobites is often associated with moving deeper along the continental shelf into aphotic waters (Richter, 1926; Clarkson, 1967; Feist and Clarkson, 1989). The blind trilobites in this study—species of Rudybole Feist and McNamara, 2013 and Palpebralia (Late Devonian, Australia; Feist and McNamara, 2013)—are not only closely related to some Gerastos spp. showing eye reduction but are also most closely related to two species of Guilinaspis Yuan and Xiang, 1998 (Carboniferous, China; Yuan and Xiang, 1998). Interestingly, one species of Guilinaspis, Guilinaspis subcylindrica Yuan and Xiang, 1998, has large eyes, larger than what is considered 'normal' (plesiomorphic) for a proetide. The other species of Guilinaspis did not have eyes that could be coded (missing a portion of the cephalon). The blind Rudybole and Palpebralia spp. were collected in fossil-rich Late Devonian forereef environments, found in association with cephalopods and crinoids, and given a red color by abundant hematite in the limestone (Feist and McNamara, 2013). Feist and McNamara (2013) noted that blindness might have an earlier (more ancestral) origin in the Rudybole lineage and does not seem to coincide with the movement of this group into deeper waters. In fact, many trilobites (including nonproetides) shifted to eyeless forms in the Famennian (Bault, 2023). Additionally, although proetide diversity is cut dramatically between stages in this basin (Canning Basin, Australia), the blind species not only persisted but rose during the aftermath of the Lower Kellwasser event (Feist and McNamara, 2013). Looking at the relationships between the blind Australian trilobites and the large-eyed Chinese trilobites, many members of the clade reduced or lost their eyes, and a later sister branch

secondarily reobtained this feature, possibly due to changing environments from the end-Devonian through the early Carboniferous in the Southern Hemisphere (Girard et al., 2020). This, perhaps, adds credence to the idea that proetides were extremely plastic in their morphology, aiding in their survival through the extinction event(s) and recovery interval.

In terms of other major morphological changes, feeding structures and behavior potentially changed in one branch of the proetides. One species included in this study, Timsaloproetus haasi (Alberti, 1971), has been well described as having a forked hypostome (Gibb and Chatterton, 2007) that might have been used for processing large prey items (predation) or scavenging (Fortey and Owens, 1999; van Viersen and Lerouge, 2021). This is unusual for proetide trilobites, which were mainly detrital feeders with a natant hypostome (Fortey and Owens, 1975, 1999). Timsaloproetus hassi was separated from other members of its family and grouped with Diademaproetus and Cornuproetus. Timsaloproetus and Diademaproetus have long been considered related to Cornuproetus (Chatterton et al., 2006; Crônier et al., 2018; van Viersen and Lerouge, 2021), which was reflected in the relaxed-clock model tree for at least one species. All other species of Timsaloproetus were placed close to species of Sculptoproetus Erben, 1951 and Hollandiella van Viersen and Larouge, 2020 on the relaxed-clock tree. Diademaproetus spp. are morphologically odd proetides, having an extended, flat portion of their anterior cephalon that resembles a scoop or a spoon. A thickening or alteration of the anterior cephalic border can be seen as 'bracing' for the ventral doublure and hypostome, which is associated with predation/scavenging (Fortey and Owens, 1999) although *Diademaproetus* has yet to be described as such. It is difficult not to hypothesize that the group consisting of Timsaloproetus hassi, Diademaproetus spp., and Cornuproetus meinkenbrachtensis Basse, 1997 (which also has a thicker, lip-like anterior cephalic border) are an odd-ball or experimental group of proetides that incorporated predation into the order in the early Devonian.

More work in the future should be done to investigate the morphological changes (e.g., hypostome attachment, changing body shape, body-size calculations) of proetide trilobites across the latter half of the Paleozoic. Ecological niche space opened when other trilobites went extinct following the end-Devonian events. It has been hypothesized that proetides were able to move into some of this vacated niche space (Fortey and Owens, 1975), although not much has been done to test this idea. This query is especially interesting because proetides persisted for another 100 Myr, representing the bulk of trilobite existence on Earth. Additionally, the question of biogeographic changes and dispersal patterns of proetides across the end-Devonian are still in question. When looking at the biogeographic locations of taxa and their branches (based on the bioregions of Dowding and Ebach, 2018), there does not seem to be a clear pattern of clade survivorship other than that some of the longest living clades were from more northernly regions (e.g., eastern Americas or Cordellian) (Appendix 4). Additionally, many clades appear to be spread across two regions (e.g., Rhenish-Bohemian and eastern Americas) although this does not seem to have a bearing on clade survivorship (Appendix 4).

Contrasting clock models and future directions. The relaxed-clock results are the focus of the discussion here, although the strict-clock model results do have some strong groupings. For example, some of the *Guilinaspsis* spp.—specifically *Guilinaspsis brevis* (Yuan and Xiang, 1998) and *Guilinaspsis subcylindricus*—grouped with some of the *Pudoproetus* in the strict-clock tree rather than with

Palpebralia Richter and Richter, 1927 in the relaxed-clock model, which seems likely because these Guilinaspsis and Pudoproetus species originated in the South China Sea (i.e., geographically and temporally closer). In this case, the strict-clock model identified a possible stratigraphic and temporal relationship between some of the species of Guilinaspsis and Pudoproetus whereas it seems the relaxed-clock model, with different rates among branches, determined that some Guilinaspsis spp. were closer to Palpebralia (and that stratigraphy and time were not the deciding factors in their relationship). The results of this study highlight the importance of global sampling when examining the relationships within a large group (e.g., ordinal-level analysis) rather than regional pools.

The results of this study help resolve part of the proetide tree but there are limitations that could be resolved with future work. For example, internal nodes and branches for the trees have lower posterior probabilities than the external tips and branches for both clock models. This is an artifact of sampling mainly Devonian taxa. To better understand order Proetida as a whole, older proetides (i.e., Silurian, or older in age) will be sampled in the future, which should help resolve some of the uncertainty within the tree(s). In general, more work needs to be done with earlier proetides (Ordovician-Silurian), which could help resolve their Cambrian ancestry. Among trilobites, there exists the 'cryptogenesis problem' (Stubblefield, 1959; Paterson, 2020). The cryptogenesis problem essentially states that the Cambrian origins of many post-Cambrian taxa are unknown or unresolved (Paterson, 2020). Currently, the Cambrian sister group to proetides is still unknown (Edgecombe, 1992; Fortey, 2001; Lamsdell and Selden, 2015; Paterson, 2020). Resolving the proetide part of the trilobite tree can only have a positive effect on resolving higher trilobite taxonomy.

In addition to increased sampling of older taxa, different and more complex character models can be incorporated to assess large groups like proetides. The evolution of large groups is, without a doubt, a complicated process to encapsulate. Although Bayesian models like the FBD model are an incredible tool to help unravel complexities of a group's macroevolution, these models can benefit from the addition of more priors and are versatile enough for users to do this. One possible way is create a multitype Bayesian analysis with morphological data and geographic data using an FBD-type model with a dispersal parameter (Vaughan and Stadler, 2025; Kühnert et al., 2016). Although this has been demonstrated on viral data to simulate the way in which viruses evolve across space, there is an exciting future in which this could be used for fossil data. As a final note, it always benefits a phylogenetic analysis to reexamine characters. This is especially true for characters used to initially describe smaller taxonomic units and then used to describe large taxonomic groups as seen in this study (and echoed by van Viersen and Lerouge, 2021). Trilobites are known to have unique issues when it comes to constructing their phylogenetic hypotheses based on character data; mainly, trilobites demonstrate more homoplasy and per-taxon decay rates in comparison with other clades and are therefore more prone to character exhaustion (Wagner, 2000). Future work will include reevaluating characters, especially as additional older taxa are incorporated.

Conclusions

Major subgroupings within the Proetoidea, e.g., Phillipsidae and other taxonomic groupings, appear to be very polyphyletic. This is most apparent in the genus *Gerastos*, which grouped with at least four other subclades across the tree. Some major groupings are composed

largely of members of particular subfamilies, e.g., the 'Dechenella' clade (Fig. 4a). Other genera, e.g., Phillipsia, which have been considered monophyletic in the past, were found to be polyphyletic. Their updated sister clades are not only plausible morphologically but also spatially. There is a possibility that differential survivorship at the end-Devonian of certain subclades based on morphology, e.g., 'Phillipsia A' (labelled 5) and the 'Basidechenella' (labelled 9) clades, might have occurred but future work needs to examine this more closely. Certain clades linked together by changes in their morphologies and ecologies including those having gone completely blind and those who demonstrated some alteration of feeding strategy. This study demonstrates the strength of morphological units over taxonomic units in the last of the Devonian trilobites.

Acknowledgments. The author would like to thank the Paleontology Society and the Geological Society of America for providing funding for collections visits. The author would also like to thank those working at the museum institutions where samples were documented (P. Mayer, FMNH; M. Hopkins, AMNH; R. Howard, NHM). The author would like to thank P.J. Wagner for his advising and edits of this work. The author would also like to thank the Lyons-Wagner laboratory (Luke, Matthew, Alex, Quentin, and Will) for proofreading drafts of this article.

Thank you to R. Warnock and M. Nikolic for helping me learn BEAST2. Thank you to my reviewers for your insights. Lastly, thank you to D. Wright and S. Cole for giving me valuable advice on how to present my work.

Competing interests. The author has no competing interests.

Data availability statement. Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.fbg79cp7d

References

- Adrain, J.M., 2011, Class Trilobita Walch, 1771, in: Zhang, Z.-Q., ed., Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness: Zootaxa, v. 3148, p. 104–109, https://doi.org/10.11646/zootaxa.3148.1.15
- Adrain, J.M., and Chatterton, B.D., 1993, A new rorringtoniid trilobite from the Ludlow of Arctic Canada: Canadian Journal of Earth Sciences, v. 30, no. 8, p. 1634–1643.
- Alberti, G.K.B., 1964, Neue Trilobiten aus dem marokkanischen und deutschen Unter-und Miteldevon: Senckenbergiana Lethaea, v. 45, p. 115–133.
- Alberti, G.K.B., 1966, Uber einige Trilobiten aus dem Silurium und Devon, besonders von Marokko: Senckenbergiana Lethaea, v. 47, p. 111–121.
- Alberti, G.K.B., 1969, Trilobiten des juengeren Siluriums sowie des Unter- und Mitteldevons: 1. Mit Beitraegen zur Silur-Devon-Stratigraphie einiger Gebiete Marokkos und Oberfrankens: Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft. v. 520, p. 1–692.
- Alberti, G.K.B., 1971, Cornuproetus (Sculptoproetus) haasi n. sp. (Trilobita, Proetidae) aus dem Devon des Rheinischen Schiefergebirges: Senckenbergiana Lethaea, v. 52, v. 371–377.
- Angelin, N.P., 1854, Palaeontologia Scandinavica: 1. Crustacea Formationis Transitionis, Fascicule 2: Stockholm, T.O. Weigel, p. i–ix, 21–92, pls. 20–45.
- Barido-Sottani, J., Vaughan, T.G., and Stadler, T., 2020, A multitype birth-death model for Bayesian inference of lineage-specific birth and death rates: Systematic Biology, v. 69, no. 5, p. 973–986, https://doi.org/10.1093/sysbio/syaa016
- Barrande, J., 1846, Notice préliminaire sur le Systeme Silurie et les trilobites de Boheme: Leipzig, Germany, C.L. Hirshfeld, 97 p.
- Barrande, J., 1852, Systeme Silurien du centre de la Boheme, Part 1, Recherches paléontolo-giques, 1. Crustaces: Trilobites: Prague, 935 p.
- Basse, M., 1996, Trilobiten aus mittlerem Devon des Rhenohercynikums: 1. Corynexochida und Proetida (1): Palaeontographica Abteilung A, v. 239, nos. 4–6, p. 89–182.
- Basse, M., 1997, Trilobiten aus mittlerem Devon des Rhenohercynikums:

 Proetida (2), Ptychopariida, Phacopida (1): Palaeontographica Abteilung
 A, v. 246, nos. 3–6, p. 53–142.

- Bault, V., 2023, Trilobites showed strong resilience capacity through the Late Devonian events despite an inexorable decline: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 630, no. September, n. 111807, https://doi.org/ 10.1016/j.palaeo.2023.111807
- Bault, V., Balseiro, D., Monnet, C., and Crônier, C., 2022, Post-Ordovician trilobite diversity and evolutionary faunas: *Earth-Science Reviews*, v. 230, n. 104035, https://doi.org/10.1016/j.earscirev.2022.104035
- Bergström, J., 1973, Organization, life, and systematics of trilobites: in: Martinsson, A., ed., Organization, Life, and Systematics of Trilobites: Oslo, Universitetsforlaget, p. 1–69.
- Bergström, J., 1977, Proetidea—a disorderly order of trilobites: Lethaia, v. 10, no. 2, p. 95–105.
- Bignon, A., and Crônier, C., 2011, Middle Devonian trilobites from the Mont d'Haurs section in Givet, France, with two new species of *Dechenella*: Earth and Environmental Science, *Transactions of the Royal Society of Edinburgh*, v. 102, p. 1–15.
- Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., et al., 2019, BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis: *PLoS Computational Biology*, v. 15, no. 4, n. e1006650, https://doi.org/10.1371/journal.pcbi.1006650
- **Brezinski, D.K.**, 1999, The rise and fall of late Paleozoic trilobites of the United States: *Journal of Paleontology*, v. 73, no. 2, p. 164–175.
- Cavet, P., and Pillet, J., 1958, Les trilobites des Calcaires à polypiers siliceux (Eifelian) du synclinal de Vil-lefranche-de-Confluent (Pyrenees-Orientales): Bulletin de la Société Géologique de France, v. 8, p. 21–37.
- Chatterton, B.D.E., 1971, Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales: *Palaeontographica Abteilung A*, v. 137, nos. 1–3, p. 1–108.
- Chatterton, B., Fortey, R.A., Brett, K.D., Gibb, S.L., and McKellar, R.C., 2006, Trilobites from the upper Lower to Middle Devonian Timrhanrhart Formation, Jbel Gara el Zguilma, southern Morocco: *Palaeontographica Canadiana*, v. 25, p. 1–177.
- Chlupac, I., and Vanek, J., 1965, Einige neue Arten von Trilobiten aus dem mittlebohmischen Devon: Acta Universitatis Carolinae, Geologica, v. 1, p. 61–74.
- Clarkson, E.N.K., 1967, Environmental significance of eye-reduction in trilobites and Recent arthropods: *Marine Geology*, v. 5, no. 5/6, p. 367–375.
- Coiro, M., Allio, R., Mazet, N., Seyfullah, L.J., and Condamine, F.L., 2023, Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity: *New Phytologist*, v. 240, no. 4, p. 1616–1635, https://doi.org/10.1111/nph.19010
- Congreve, C.R., Patzkowsky, M.E., and Wagner, P.J., 2021, An early burst in brachiopod evolution corresponding with significant climatic shifts during the Great Ordovician Biodiversification Event: *Proceedings of the Royal Society B*, v. 288, no. 1958, n. 20211450, https://doi.org/10.1098/rspb.2021.1450
- Cooper. R., 1982, A revision of the Devonian (Emsian–Eifelian) Trilobita from the Bokkeveld group of South Africa: Annals of the South African Museum, v. 89, p. 1–174.
- Cooper, G.A., and Cloud, P.E., 1938, New Devonian fossils from Calhoun County, Illinois: *Journal of Paleontology*, v. 12, no. 5, p. 444–460.
- Crônier, C., Abbache, A., Khaldi, A.Y., Oudot, M., Maillet, S., and Mehadji, A.O., 2018, Middle Devonian trilobites of the Saoura Valley, Algeria: insights into their biodiversity and Moroccan affinities: *Geological Magazine*, v. 155, no. 4, p. 811–840, https://doi.org/10.1017/S001675681600100X
- Dalman, J.W., 1827, Om Palæaderna eller de så kallade Trilobiterna: Kungliga Svenska Vetenskaps-Akademiens Handlingar, v. 1827, p. 1–78.
- Dowding, E.M., and Ebach, M.C., 2018, An interim global bioregionalisation of Devonian areas: *Palaeobiodiversity and Palaeoenvironments*, v. 98, no. 4, p. 527–547, https://doi.org/10.1007/s12549-018-0319-2
- **Drummond, A.J., Ho, S.Y.W., Phillips, M.J., and Rambaut, A.,** 2006, Relaxed phylogenetics and dating with confidence: *PLoS Biology*, **v. 4**, no. 5, n. e88, https://doi.org/10.1371/journal.pbio.0040088
- Edgecombe, G.D., 1992, Trilobite phylogeny and the Cambrian-Ordovician 'event': cladistic reappraisal, in: Novacek, M.J., and Wheeler, Q.D., eds., Extinction and Phylogeny: New York, Columbia University Press, p. 144–177.
- El Albani, A., Mazurier, A., Edgecombe, G.D., Azizi, A., El Bakhouch, A., et al. 2024, Rapid volcanic ash entombment reveals the 3D anatomy of

Cambrian trilobites: Science, v. 384, no. 6703, p. 1429–1435, https://doi.org/ 10.1126/science.adl4540

- **Ellermann, I.**, 1992, Trilobiten aus dem Unterdevon der karnischen Alpen/Österreich: *Palaeontographica*, **v. 221**, p. 1–62.
- Erben, H.K., 1951, Beitrag zur Gliederung der Gattung *Proetus* Stein. 1831 (Trilobitae): Neues Jahrbuch für Geologie und Paläontologie, *Abhandlungen*, v. 94, p. 5–48.
- Feist, R., and Clarkson, E.N., 1989, Environmentally controlled phyletic evolution, blindness and extinction in Late Devonian tropidocoryphine trilobites: *Lethaia*, v. 22, no. 4, p. 359–373.
- Feist, R., and McNamara, K.J., 2013, Patterns of evolution and extinction in proetide trilobites during the Late Devonian mass extinction event, Canning Basin, Western Australia: *Palaeontology*, v. 56, no. 2, p. 229–259, https://doi. org/10.1111/j.1475-4983.2012.01191.x
- Foote, M., 1993, Discordance and concordance between morphological and taxonomic diversity: *Paleobiology*, v. 19, no. 2, p. 185–204.
- Fortey, R.A., 2001, Trilobite systematics: the last 75 years: *Journal of Paleontology*, v. 75, no. 6, p. 1141–1151, https://doi.org/10.1017/S0022336000017194
- Fortey, R., 2014, The palaeoecology of trilobites: Journal of Zoology, v. 292, no. 4, p. 250–259, https://doi.org/10.1111/jzo.12108
- Fortey, R.A., and Owens, R.R.T.M., 1975, Proetida—a new order of trilobites: Evolution and Morphology of the Trilobita, Trilobitoidea and Merostomata, Proceedings of the Oslo Meeting, 1973: Fossils and Strata, v. 4, p. 227–239, https://archive.org/details/evolutionmorphol0000nato/mode/2up
- Fortey, R.A., and Owens, R.M., 1999, Feeding habits in trilobites: *Palaeontology*, v. 42, no. 3, p. 429–465, https://doi.org/10.1111/1475-4983.00080
- Fortey, R.A., Shergold, J.H., Kelly, S.R.A., Owens, R.M., and Whittington, H. B., 1997, Evolutionary history; classification; explanatory notes for the Cambria correlation chart; morphological terms applied to Trilobita, *in* Kaesler, R. L., ed., *Treatise on Invertebrate Paleontology, Part O, Arthropoda 1 (Revised), Volume 1, Chapter 3*: Boulder, Colorado, Geological Society of America (and University of Kansas Press), p. O249–O329.
- Gibb, S.L., and Chatterton, B.D.E., 2007, Timsaloproetus new genus (Proetida: Trilobita) and included species from Lower and Middle Devonian strata of southern Morocco: Journal of Paleontology, v. 81, p. 352–367, https://doi.org/10.1666/0022-3360(2007)81[352:TNGPTA]2.0.CO;2
- Gibb, S., and Chatterton, B.D.E., 2010, Gerastos (order Proetida; class Trilobita) from the Lower to Middle Devonian of the southern Moroccan Anti-Atlas region: Palaeontographica Canadiana, v. 30, p. 1–89.
- Girard, C., Cornée, J.J., Joachimski, M.M., Charruault, A.L., Dufour, A.B., and Renaud, S., 2020, Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 549, n. 108852, https://doi.org/10.1016/j.palaeo.2018.06.046
- Goldfuss, A., 1843, Systematische Übersicht der Trilobiten und Beschreibung einiger neuen Arten derselben: Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, v. 1843, p. 537–567.
- Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., 2020, Geologic time scale 2020, 2 Volumes: Amsterdam, Elsevier, https://doi.org/10.1016/C2020-1-02369-3
- Green, J., 1838, Description of a new trilobite: American Journal of Science, v. 33, p. 406–408.
- Gürich, G., 1896, Das Paläozoicum in polnischen Mittelgebirge: Verhandälungen der Russischen Kaiserlichen Gesselschaft zu St. Petersburg 2, v. 32, p. 1–539.
- Hall, J., 1843, Geology of New York: Part 4, Comprising the Survey of the Fourth Geological District: Albany, New York Geological Survey, Natural History of New York, 683 p.
- Hall, J., 1861, Descriptions of new species of fossils from the Upper Helderberg, Hamilton and Chemung groups; with observations upon previously described species: Annual Report of the Regents of the University of the State of New York on the State Cabinet of Natural History and the Historical and Antiquarian Collection Annexed Thereto, v. 14, p. 29–109.
- Hall, J., and Clarke, J.M., 1888, Descriptions of the trilobites and other Crustacea of the Oriskany, Upper Helderberg, Hamilton, Portage, Chemung,

- and Catskill groups: New York Geological Survey, Natural History of New York, Paleontology, v. 7, 342 p.
- Hawle, I., and Corda, A.J.C., 1847, Prodrom einer Monographie der Boehmischen Trilobiten: Prague, J.G. Calves'chen, 176 p.
- Heath, T.A., Huelsenbeck, J.P., and Stadler, T., 2014, The fossilized birth-death process for coherent calibration of divergence-time estimates: Proceedings of the National Academy of Sciences of the United States of America, v. 111, no. 29, p. E2957–E2966, https://doi.org/10.1073/pnas.1319091111
- **Hessler, R.R.**, 1963, Lower Mississippian trilobites of the family Proetidae in the United States: *Journal of Paleontology*, **v. 37**, p. 543–563.
- Holzapfel, E., 1895, Das Obere Mitteldevon (Schichten mit Stringocephalus Burtini und Maeneceras terbratum) in Rheinischen Gebirge: Abhandlungen der Preuβischen Geologischen Landesanstalt, v. 16, p. 1–460.
- Hopkins, M.J., Wagner, P.J., Jordan, K.J., and Hopkins, M.J., 2023, Permian trilobites and the applicability of the 'living fossil' concept to extinct clades: Frontiers in Ecology and Evolution, v. 11, n. 1166126, https://doi.org/10.3389/ fevo.2023.1166126
- Jablonski, D., 2001, Lessons from the past: evolutionary impacts of mass extinctions: Proceedings of the National Academy of Sciences, v. 98, no. 10, p. 5393–5398, https://doi.org/10.1073/pnas.101092598
- Johnson, R.G., and Fortey, R.A., 2012, Proetid trilobites from the Lower Devonian (Pragian) Ihandar Formation, Anti-Atlas, Morocco: Journal of Paleontology, v. 86, no. 6, p. 1032–1050, https://doi.org/10.1666/ 12-021R.1
- Kass, R.E., and Raftery, A.E., 1995, Bayes factors: Journal of the American Statistical Association, v. 90, no. 430, p. 773–795.
- Kayser, E., 1880, Dechenella, eine Devonische Gruppe der Gattung Philipsia: Zeitschrift für Deutschen Geologischen Gesellschaft, v. 32, p. 703–707.
- Kielan, Z., 1960, Upper Ordovician trilobites from Poland and some related forms from Bohemia and Scandinavia: Palaeontologia Polonica, no. 11, 198 p., 36 pls.
- Kobayashi, T., 1985, On two Silurian trilobite genera, Prantlia and Latiproetus: Proceedings of the Japan Academy, ser. B, v. 61, no. 9, p. 419–421.
- Kühnert, D., Stadler, T., Vaughan, T.G., and Drummond, A.J., 2016, Phylodynamics with migration: a computational framework to quantify population structure from genomic data: *Molecular Biology and Evolution*, v. 33, no. 8, p. 2102–2116, https://doi.org/10.1093/molbev/msw064
- Lake, P., 1904, The trilobites of the Bokkeveld Beds: Annals of the South African Museum, v. 4, p. 201–220.
- Lamsdell, J.C., and Selden, P.A., 2015, Phylogenetic support for the monophyly of proetide trilobites: *Lethaia*, v. 48, no. 3, p. 375–386, https://doi.org/ 10.1111/let.12113
- Lerosey-Aubril, R., and Feist, R., 2012, Quantitative approach to diversity and decline in late Palaeozoic trilobites, in Talent, J.A., ed., Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time: Dordrecht, Netherlands, Springer, p. 535–555, https://doi.org/10.1007/ 978-90-481-3428-1
- Lewis, P.O., 2001, A likelihood approach to estimating phylogeny from discrete morphological character data: Systematic Biology, v. 50, no. 6, p. 913–925, https://doi.org/10.1080/106351501753462876
- Lieberman, B.S., 1994, Evolution of the trilobite subfamily Proetinae Salter, 1864, and the origin, diversification, evolutionary affinity, and extinction of the Middle Devonian proetide fauna of eastern North America: Bulletin of the American Museum of Natural History, v. 223, p. 1–176.
- Lieberman, B.S., and Karim, T.S., 2010, Tracing the trilobite tree from the root to the tips: a model marriage of fossils and phylogeny: Arthropod Structure and Development, v. 39, no. 2/3, p. 111–123, https://doi.org/10.1016/j.asd.2009. 10.004
- Lindström, G., 1885, Förteckning på Gotlands Siluriska Crustacéer: Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, v. 6, p. 37–100.
- Lutke, F., 1980, Zur Evolution der altpalaozoischen Proetina (Trilobita): Senckenbergiana Lethaea, v. 61, p. 73–144.
- Lutke, F., 1990, Contributions to a phylogenetical classification of the subfamily Proetinae Salter, 1864 (Trilobita): Senckenbergiana Lethaea, v. 71, p. 1–83.

- Maurer, F., 1885, Die Fauna der Kalke von Wald girmes bei Gieûen: Abhandlungen der Groûherzoglich Hessischen Geologischen Landesanstalt zu Darmstadt, v. 1, p. 1–340.
- Maximova, Z.A., 1960, [Paleozoic strata of Rudnig Altai, 7. Devonian and Carboniferous trilobites of Rudnig Alta]: Trudy Vsesoiuznogo Nauchno-Issledovatel'skogo Geologicheskogo Instituta (VSEGEI), v. 7, p. 1–123, pls. 1–9. (in Russian)
- Mulvey, L.P., Nikolic, M.C., Allen, B.J., Heath, T.A., and Warnock, R.C., 2025, From fossils to phylogenies: exploring the integration of paleontological data into Bayesian phylogenetic inference: *Paleobiology*, v. 51, no. 1, p. 214–236, https://doi.org/10.1017/pab.2024.47
- Nieszkowski, J., 1857, Versuch einer Monographie der in den silurischen Schichten der Ostseeprovinzen vorkommenden Trilobiten: Dropat, H. Laakmann, 112 p.
- Novák, O.P., 1890, Vergleichende Studien an einigen Trilobiten aus dem Hercyn von Bicken, Wildungen, Greifenstein und Böhmen: Jena, Gustav Fischer, 46 p., 5 pls.
- Ormiston, A.R., 1967, Lower and Middle Devonian trilobites of the Canadian arctic islands: Geological Survey of Canada Bulletin, v. 153, p. 1–148.
- **Osmólska, H.**, 1970, Revision of non-cyrtosymbolinid trilobites from the Tournasian-Namurian of Eurasia: *Palaeontologia Polonica*, v. 23, p. 1–165.
- Owens, R.M., 1973, British Ordovician and Silurian Proetidae (Trilobita): *Palaeontographical Society Monograph*, v. 127, no. 535, p. 1–98.
- Owens, R.M., and Hammann, W., 1990 Proetide trilobites from the Cystoid Limestone (Ashgill) of NW Spain, and the suprageneric classification of related forms: *Paläontologische Zeitschrift*, v. 64, no. 3, p. 221–244.
- Paleobiology Database (PBDB), 2025: https://paleobiodb.org/#/ (accessed August 2025).
- Paterson, J.R., 2020, The trouble with trilobites: classification, phylogeny and the cryptogenesis problem: Geological Magazine, v. 157, no. 1, p. 35–46, https:// doi.org/10.1017/S0016756819000426
- Penn-Clarke, C.R., and Harper, D.A., 2023, The rise and fall of the Malvinox-hosan (Malvinokaffric) bioregion in South Africa: evidence for Early-Middle Devonian biocrises at the South Pole: Earth-Science Reviews, v. 246, n. 104595, https://doi.org/10.1016/j.earscirev.2023.104595
- Phillips. J., 1836, Illustrations of the Geology of Yorkshire; or a description of the strata and organic remains; accompanied by a geological map, sections and diagrams, and figures of the fossils: London, J. Murray, 236 p.
- **Pillet, J.**, 1969, La classification des Proetidae (Trilobites): *Bulletin de la Société d'Études Scientifiques de l'Anjou, n. ser.*, **v. 7**, p. 53–78.
- Portlock, J.E., 1843, Report on the Geology of the County of Londonderry and Parts of Tyrone and Fermanaugh: Dublin, Andrew Milliken, 784 p., 38 + A–I pls.
- Přibyl, A., 1946, Notes on the recognition of the Bohemian Proetidae (Trilobitae): Académie Tchèque des Sciences (Česká Akademie Věd a Uměni), 46th Annee (1945), Prague, p. 91–131.
- Přibyl, A., 1971, Proetidni trilobite z nových sbýrů v českém siluru a devonu: Část 3: Časopis Národního Muzea v Praze Přírodověd, Muzea, Oddíl Přírodovědný, v. 40, p. 81–89.
- Reed, F.R.C., 1942, Some new Carboniferous trilobites: Annals and Magazine of Natural History, ser. 11, v. 9, p. 649–672.
- Richter, R., 1909, Beitragezur Kenntnis Devonischer Trilobitenaus dem Rheinischen Schiefer- gebirge: Vorberichtzu einer Monographie der Trilobiten der Eifel [Dissertation]: Marburg, Germany, Philipps-Universität Marburg, 96 p.
- Richter, R., 1912, Beitrige zur Kenntnis devonischer Trilobiten: 1. Die Gattung Dechenella und einige verwandte Formen: Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, v. 31, p. 239–340, pls. 18–21.
- Richter, R., 1913, Beiträge zur Kenntnis devonischer Trilobiten: Oberdevonische Trilobiten: Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, v. 31, p. 341–393.
- Richter, R., 1926, Die Trilobiten des Oberdevons: Beiträge zur Kenntnis devonischer Trilobiten, 4: Abhandlungen der Preußischen Geologischen Landesanstalt, Neue Folge, v. 99, p. 1–314.
- Richter, R., and Richter, E., 1918, Neue Proetus-Arten aus dem Eifler Mitteldevon: Centralblatt für Mineralogie, Geologie und Paläontologie, v. 1918, p. 64–70.
- Richter, R., and Richter E., 1919, Der Proetidenzweig Astycoryphe—Tropidocoryphe—Pteroparia: Senckenbergiana, v. 1, p. 1–17, 25–51.
- Richter, R., and Richter, E., 1927, Unterlagen zum Fossilium Catalogus: Trilobitae 4: Senckenbergiana, v. 9, p. 248–252.

- Richter, R., and Richter, E., 1956, Annular-Teilung bei Trilobiten am Beispiel besonders von *Proetus* (Pr.) *cuivieri* und *prox: Senckenbergiana Lethaea*, v. 37, p. 343–381.
- Roemer, F.A., 1850, Beiträge zur geologischen Kenntniss des nordwestlichen Harzgebirges, Volume 1: Cassel, France, Theodor, Fischer, 67 p., 10 pls.
- Sereno, P.C., 2007, Logical basis for morphological characters in phylogenetics: Cladistics, v. 23, no. 6, p. 565–587, https://doi.org/10.1111/j.1096-0031.2007. 00161 x
- **Shumard, B.F.**, 1855, Description of new species of organic remains: *Missouri Geological Survey*, v. 2, p. 185–208.
- Šnajdr, M., 1980, Bohemian, Silurian, and Devonian Proetideae (Trilobita): Rozpravy Ústředního ústavu Geologického, v. 45, 325 p.
- Speyer, S.E., and Chatterton, B.D., 1990, Trilobite larvae, larval ecology and developmental paleobiology: Short Courses in Paleontology, v. 3, p. 137–156.
- Stadler, T., 2010, Sampling-through-time in birth-death trees: Journal of Theoretical Biology, v. 267, no. 3, p. 396–404, https://doi.org/10.1016/j.jtbi.2010.09.010
- Stauffer, C.R., 1909, The Middle Devonian of Ohio: *Ohio Geological Survey, ser.* 4, *Bulletin*, v. 10, 201 p.
- Steininger, J., 1831, Observations sur les fossiles du calcaire intermediaire de l'Eifel:. Mémoires de la Société Géologique de France, v. 1, no. 15, p. 331–371.
- Struve, W., 1992, Neues zur Stratigraphie und Fauna des rhenotypen Mittel-Devons: Senckenbergiana Lethaea, v. 71, p. 503–624.
- Stubblefield, C.J., 1959, Evolution in trilobites: Quarterly Journal of the Geological Society of London, v. 115, p. 145–162.
- Stumm, E.C., 1953, Trilobites of the Devonian Traverse Group of Michigan: Contributions from the Museum of Paleontology, *University of Michigan*, v. 10, no. 6, p. 101–157.
- **Stumm, E.C.**, 1965, Two new species of trilobites from the Middle Devonian Silica Shale of northwestern Ohio: Contributions from the Museum of Paleontology, *University of Michigan*, v. 221, p. 109–122.
- **Stumm, E.C.**, 1968, Two unusually well-preserved trilobites from the Middle Devonian of Michigan and Ohio: Contributions from the Museum of Paleontology, *University of Michigan*, v. 22, p. 33–35.
- van Viersen, A.P., and Lerouge, F., 2020, Cornuproetine (proetide) trilobites with nine thorax segments from the Devonian of Morocco, Germany and the Czech Republic: *Palaeontologische Zeitschrift*, v. 94, p. 227–254, https://doi.org/10.1007/s12542-019-00491-w
- van Viersen, A., and Lerouge, F., 2021, *Timsaloproetus alissae* sp. nov. (Trilobita: Proetideae) from the Lower Devonian of southern Morocco: *PalZ*, v. 95, no. 2, p. 223–230, https://doi.org/10.1007/s12542-020-00543-6
- Vaughan, T.G., and Stadler, T., 2025, Bayesian phylodynamic inference of multi-type population trajectories using genomic data: *Molecular Biology* and Evolution, v. 42, no. 6, n. msaf130, https://doi.org/10.1093/molbev/ msaf130
- Wagner, P.J., 2000, Exhaustion of morphologic character states among fossil taxa: *Evolution*, v. 54, no. 2, p. 365–386, https://doi.org/10.1111/j.0014-3820. 2000.tb00040.x
- Wan, J., Foster, W.J., Tian, L., Stubbs, T.L., Benton, M.J., Qiu, X., and Yuan, A., 2021, Decoupling of morphological disparity and taxonomic diversity during the end-Permian mass extinction: *Paleobiology*, v. 47, no. 3, p. 402–417, https://doi.org/10.1017/pab.2020.57
- Whidborne, G.F., 1889, A monograph of the Devonian fauna of the south of England, volume 1: The fauna of the limestones of Lummaton, Wolborough, Chircombe Bridge, and Chudleigh, part 1: *Palaeontographical Society Monograph*, v. 1889, 46 p.
- Whittington, H.B., and Campbell, K.S.W., 1967, Silicified Silurian trilobites from Maine: Bulletin of the Museum of Comparative Zoology, v. 135, p. 447–482.
- Whittington, H.B., Chatterton, B.D.E., Speyer, S.E., Fortey, R.A., Owens, R. M., et al., 1997, Trilobita: Introduction, Order Agnostida, Order Redlichiida, in Kaesler, R.L., ed., Treatise on Invertebrate Paleontology, Part O, Arthropoda 1 (revised), Volume 1: Boulder, Colorado, Geological Society of America (and University of Kansas Press), 530 p.
- Wright, A.M., and Hillis, D.M., 2014, Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data: *PLoS ONE*, v. 9, no. 10, n. e109210, https://doi.org/10.1371/journal.pone.0109210

Wright, D.F., 2017, Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata): *Journal of Paleontology*, v. 91, no. 4, p. 799–814, https://doi.org/10.1017/jpa. 2016.141

- Wright, A., Wagner, P.J., and Wright, D.F., 2021, Testing Character Evolution Models in Phylogenetic Paleobiology: a Case Study with Cambrian Echinoderms: Elements of Paleontology: Cambridge, UK, Cambridge University Press, 42 p.
- Yuan, J., 1988, Proetiden aus dem Jungeren Oberdevon von Sud-China: *Palaeontographica A*, v. 210, p. 1–102.
- Yuan, J., and Xiang, L.-W., 1998, *Trilobite fauna at the Devonian-Carboniferous boundary in South China (S-Guizhou and N-Guangxi)*: Taichung, Taiwan, National Museum of Natural Science, 281 p.
- Zhai-Ling, Zhu, 1988, Trilobites, in Chang-Min, Yu, ed., Devonian-Carboniferous Boundary in Nanbiancun, Guilin, China—Aspects and Records: Beijing, Science Press, p. 199–208.