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1. Introduction. An MS-algebra is an algebra (L; v, A, °, 0, 1) of type (2, 2,1,0, 0)
such that (L; v, A , 0 , 1) is a distributive lattice with smallest element 0 and greatest
element 1, and x>-*x° is a unary operation such that l° = 0, x<x°° for all x e L, and
(x A y)° = x° v y° for all x, y e L. These algebras belong to the class of Ockham algebras
introduced by Berman [3]; see also [2,10,15]. A double MS-algebra is an algebra
(L, v, A, °, +, 0, 1) of type (2,2,1,1,0, 0) such that (L, °) and (Ld,

 +) are MS-algebras,
where Ld denotes the dual of L, and the operations °, + are linked by the identities
xo+=x°° and *+ o = jt++. We refer to [5,6,7,8] for the basic properties of MS-algebras
and double MS-algebras. Concerning the latter, the properties x°°° = x°, x+++ =x+, and
x°^x+ will be used frequently. The class of double MS-algebras is congruence-
distributive and consequently the results of [13] can be applied. As to general results in
lattice theory and universal algebra, the reader may consult [1,9,12].

In [8] we gave a complete description of the 22 non-isomorphic subdirectly
irreducible double MS-algebras. We can order these algebras by writing A < B if and only
if A is isomorphic to a subalgebra of B. In so doing, we obtain the Hasse diagram of
Figure 1 in which n denotes the subdirectly irreducible algebra SIn.

1 8,

Figure 1.

The lattice of subvarieties of double MS-algebras can in theory be obtained from this
by applying a theorem of Davey [11] in precisely the same way as we did in [6] to obtain
the lattice of subvarieties of MS-algebras. However, in the case of double MS-algebras
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the lattice is rather large and so we shall concentrate on some important ideal sublattices.
Specifically, if SIn denotes the subvariety generated by SIn, we shall describe here the
lattices of subvarieties of SI2i, SI20 and SI18 v SI19. We shall also obtain equational bases
for the subvarieties in these lattices, and hence in particular for all of the subvarieties
generated by the 22 subdirectly irreducible double MS-algebras. It is a pleasure for the
third author to acknowledge stimulating conversations on this topic with Pierre Goossens.

2. Semisimple double MS-algebras. Of the 22 non-isomorphic subdirectly ir-
reducible double MS-algebras listed in [8], 11 are simple. These comprise the subset

{SIn;n = 1, 2, 3, 4, 6, 7, 8, 10, 14, 15, 21},

which forms an ideal of the ordered set of Fig. 1. A double MS-algebra is said to be
semisimple if it is a subdirect product of simple double MS-algebras; in other words, if it is
a subdirect product of copies of S/21.

We can characterise the semisimple double MS-algebras as follows, in which 3>+ is
the congruence

(x,y)e<P°+O(x° = y° and x+=y+).

THEOREM 2.1. The following conditions on a double MS-algebra are equivalent:
(a0) L is semisimple;
(a)(Vx,yeL) x Ay°°<x++ v y;

Proof, (OQ) =>(<*): It suffices to observe that 5/21 satisfies (a).
(<*•)=> (aro)

: Examination of each of the subdirectly irreducible double MS-algebras
reveals that only those that are simple satisfy (or). Thus, if L satisfies (a) then by
Birkhoff s Theorem L is a subdirect product of copies of S/21.

(ar)=>(tti): Suppose that L satisfies (a) and that x,y e L are such that x° = y° and
x+=y+. Then (a) gives x =x AX°° = X Ay°°<x++ vy =y++ v_y =y. Similarly we
obtain y ^ x, whence y = x.

(a): Suppose that 5>+ = a> and consider the elements

p=xAy°°, q=x A_V°°A (x++ v_y).
We have

q° = x° v y° v (x+
 A ^°) = x° v y° = p°;

q+ = x
+

 v y° v (x+
 A y+) = x+ v y° = p+.

It follows that q =p whence (or) follows.

We shall now obtain the lattice of subvarieties of semisimple double MS-algebras and
equational bases for the subvarieties in this lattice. We can construct the lattice in
question by applying Davey's Theorem [11] in precisely the same way as we did in [6]. We
can predict the size of the this lattice by means of the following ingenious result of
Berman and Kohler [4].
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THEOREM. Let F be a finite ordered set and let O(F) be its lattice of order ideals. Then,
for every x e F,

\O(F)\ = \O(F\{x})\ + \O(F\CX)\

where Cx = {y e L;y <x or y>x}.

Applying this to the ideal generated by S/21 in the Hasse diagram of Fig. 1, we see
that the lattice of subvarieties of semisimple double MS-algebras has 31 elements. By
Davey's Theorem, the lattice itself is that depicted in Fig. 2 (ignore for the moment the
other labelling).

21 (a)

(a,6) 1 4

(a,2d) 3

Figure 2.

As to the problem of establishing equational bases for each of the subvarieties in this
lattice, our strategy will be to discover first equational bases for its A-irreducible
elements. Equational bases for all the subvarieties can then be deduced from these.

For this purpose, a few preliminary considerations are necessary. Note first that

S/i, SI2, 0/3, 0/4, 5/5, SI8, SI10, o/14, 5/is, 5/2o, «J/2I, S/22

are self-dual, whereas we have the dual isomorphisms

d d d d d
5/6 = 0/7, SIg— SI\\, 0/12 ~ 0/13, 0/16 — 0/17, 0/18 = 0/19.
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For a given axiom (n) we shall denote by (n*) the axiom obtained from (n) by
replacing v, A, °, +, 0, 1, < respectively by A, V, + , ° , 1, 0, >. If (n)O(n*) then we

shall say that (n) is self-dual. Clearly, if L, satisfies (n) and Ly — L, then Lt satisfies (n*).
We shall require the following facts concerning axioms of the form xp A xq £ yr v ys

where {p, q, r, s] c {\ °, °°, +, + +} and JC1 means x. Such axioms will be considered trivial
if either side reduces to a single term, e.g. x A JC°° = x.

THEOREM 2.2. Inequalities of the form

(i)f<y++vy+, (ii)f<yvy+, (Hi) f <y°° v y+, (iv)f^y°°vyo

are equivalent. Likewise, inequalities of the form

()) X°°AX°<g, (jj) XAX°<g, (///) X++ AX°<g, (Jw) X + +AX+<g

are equivalent.

Proof. It is clear that (i) => (ii) => (Hi). That (m)=>(/) follows on writing y++ for y.
To see that (i)^>(iv), write y°° for _y; and that (iv)^(i) write _y++ for _y. The second
statement is similar.

In what follows we shall denote by S(L) the skeleton of L, i.e. the set

{x e L;x =x°°} = {x e L;x=x++} = {x e L;x°° = x++}.

THEOREM 2.3. Inequalities of the form

(v) yvy°>feS(L), (vi) y++ vy°>feS(L)

are equivalent. Likewise, inequalities of the form

(w) x A x + <geS(L) , (wj) x°°Ax+<geS(L)

are equivalent.

Proof. It suffices to apply + + and °° respectively.

THEOREM 2.4. There are 36 non-trivial axioms of the form / A X ' < / V ys. Of these,
16 are equivalent to

(a) x Ax°<y°°vy°,
16 are equivalent to

(b) x Ax°<y vy°,
3 are equivalent to

(c) x°°Ax+<y++vyo,
and the remaining axiom is

(d) x Ax+<y vy°.

Proof. That there are 36 non-trivial forms is clear from the fact each of x°, x+ can be
taken along with any one of x++, x, x°°. Now by Theorem 2.2 both sides of (a) may take
4 different forms. As for (b), this is axiom (5) of [6] which is self dual and hence
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equivalent to
(b*) x A x* <y vy+.

By Theorem 2.2, (b) has 4 equivalent forms for the left-hand side, three of which belong
to 5(L). Then, by Theorem 2.3, there are 2 equivalent forms for the right-hand side.
Similarly, there are 8 equivalent forms of (6*). As for (c), Theorem 2.3 provides 3
equivalent forms. It follows from the above count that the only remaining axiom is (d).

Equational bases for each of the subvarieties in the class of MS-algebras may be
found in [6]. They also appear in a more general setting in [15]. As all of the axioms that
are involved there will play an important role in what follows, we list them here for
convenience.

( 2 ) x v x ° = l (5) XAX°<y vy°

(3) x =x°° (7) (x A x°) v y v y° = (x°° Ax°)vyvy°

(4) x AX° = X°° AX° (8) x v / v y o o = x M v / v } ' M

(4d) x v x° = x°° v x° (9) (JC A x°) v y° v y°° = (x°° A X°) V y° v y°°

The complete list of implications between these identities was given in [6, Theorem
2.2]. In [7] we showed that if L is a double MS-algebra then (8) => (7), and the axioms (1),
(2), (2d), (3), (5), (6), (7) are self-dual. Recently, Noor [14] succeeded in showing that
(9) is also self-dual.

Observe from [6] that (4) is equivalent to (8d) and so the axiom

(4*) xvx+=x++vx+

is equivalent to (8*) which is equivalent to (8).
Also, (9) is equivalent to

(9') x° AX°° Ay+^y° v y°°.

Indeed, applying + to (9) gives

(*+ v x°°) A y°° A y° = (x° v *°°) A y°° A y°,

whence x+ A y°° A y°-z x° v x°° and (9') follows on interchanging x and y. Conversely,
applying ° to (9') yields

x°°vx°vy++>y°° Ay°.

Since also x°° v x° v y° >y°° A y° it follows that x°° v *° v (y+ + A y°) >y°° A y° and so

x00 v x° v (y++ A y°) > JC00 v x° v (y°° A y°).

Consequently x°° v x° v (y A y°) e S(L), from which (9) follows on interchanging x and y.
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In this section we shall consider the following inequalities. They have, of course,
been chosen with a considerable amount of hindsight.

(1), (2d), (4), (4*), (6), (9'),

(10) x°AxooAy+^x++vyo,

(11) x+ AxooAy+<x++vy°vy++,

(12) x° A x°° A y+ <x+ + v / v y++,
(13) x° A x°° A y+ <*+ + vy°v y°°,
(a) x Ay°°<x++ vy.

Note that relation (10) is self-dual. To see this, apply ° to each side of (10) then
interchange x and y to obtain x°° A y+ sy°° v y° v JC++. Now write y A X+ for y to obtain

x°° A (y+ v x++) ^ (y°° A x+) v (y° v x++) v JC++,

from which (10*) follows. The reverse implication is established similarly.
Also, (11) is self-dual. This follows from the fact that (11) is equivalent to

x°° A x+ < * + + v x°. Indeed, taking y =x in (11) we obtain this relation; and (11) follows
from this relation on writing x v v for JC.

By Theorem 2.1, the relation (a) describes the subvariety SI21. Observe now that,
the ordering being logical implication, we have the Hasse diagram of Figure 3.

(a,6)

(a,2H)

Of the implications in Figure 3, only the following is non-trivial:
(4)=>(10): By (4) we have *°° A * ° < x so x AX°^X++ and hence X°AX°° A V+

x + + v y °
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THEOREM 2.5. In the lattice of subvarieties of semisimple double MS-algebras the
A-irreducible elements have the following equational bases:

S M I ) , SI3:(or,2d)

SI3 v SIo v SI8: (a, 4), SI3 v SI7 v SI8: (a-, 4*),

SI14:(a,6), SI8vSI14:(ar,9'),

SI3 v SI15:(a, 10), SI10 v SI15:(a, 11),

SI3 v SI.o v SI15: (a-, 12), SI14 v SI15: (a, 13),

SI21:(or).

Proof. We refer to Fig. 2 in which the A-irreducible elements have been labelled
accordingly. Observe that in this lattice the ordered set of A-irreducible elements is
isomorphic to the ordered set of Fig. 3. Also, it is readily verified that the strongest of the
above relations that are satisfied by each of the A-irreducible elements are as listed in the
statement of the theorem. It follows that the lattice of relations whose set of A-irreducible
elements is that of Fig. 3 is isomorphic to the lattice of Fig. 2 and the quational bases are
as asserted.

It should be remarked that Theorem 2.5 can also be established by considering each
A-irreducible element in turn. For example, consider the relation (10). This is not
satisfied by 5/21. But, as can readily be verified, it is satisfied by SIU and SIi5. It follows
that an equational basis for SIU v SIi5 is (a, 10). Indeed, it was this kind of consideration
that led to the above list of relations. The advantage of having equational bases for the
A-irreducible elements lies in the fact that we can use them to obtain equational bases for
all of the subvarieties in the lattice. This we do first for the subvarieties generated by the
subdirectly irreducibles, and for this purpose we list the following additional axioms:

(14): x°° Ay+<x++ vy°,

(15): x°°Ax+<y
++vy°,

(16): x A x+ ^y v y".

COROLLARY 2.6. An equational basis for SI15 is {a, 14).

Proof. It is clear that (14) implies both (10) and (11), so it suffices to show that (10)
and (11) together imply (14). For this purpose, observe that writing x Ay++ for x in
(10) gives

(x° v y+) A x°° A y++
 A y+ < (x++

 A y++) v y°
and therefore

Also, by (11) we have JC+ A X°°^X++ V X° and so

X+ A (X° V X°°) =X+ A (X° V X ++).

Now applying ° to (10) we obtain x+ A y°°<x°° v x° v y++. Interchanging x, y in this we
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have, making use of the above observations,

A y
+ =x°° A y+ A

= (x + + A y+) v [JC°° A y + A (j>° v y°°)]

= (x + + A y + ) v [x°° A y + A (y° v j ; + + ) ]

= (*++
 A y+) v (xo° A y°) v (x°° A >>+

 A v + + )

=x
++vy°,

as required.
COROLLARY 2.7. An equational basis for SI8 is (3).

/. It suffices by Corollary 2.6 to show that (4), (4*) and (14) together imply (3).
Now, takings =x in (14) gives x°° AX+ ̂ x++ v x° and so, by (4),

= (X + + AX+)V(XAX°).

Applying + + to this we obtain x°° A X+ = x++
 A X+ and S O X A X + 6 5(L). But by (4*) we

have xvx+eS(L). Since 5(L) is semiconvex [in the sense that if avbeS(L) and
a A b e 5(L) then a, fe e 5(L)], it follows that x e S(L), whence we have (3).

COROLLARY 2.8. An equational basis for SI10 is (a, 15).

Proof. It suffices to show that (6) and (11) together imply (15). Now from (11) we
have x°° A X+ £ x++ v x° and so

X°° A X+ = JC°° A X+ A ( * + + V JC°) = (X + + A X+) V (x°° A X°).

By Theorem 2.2, (6) is equivalent to x++ A ^:+ <^°° v y° and also to x°° A x° <_y00 v v°.
Thus we see that x°° AX+ ̂ y°° vy°, which is equivalent to x°° AX+ <y++ vy+.
Consequently,

x°° A X + < ( y 0 0 vy°) A (v+ + vy + )

= y++v(y°°Ay+)vy°

<y
++vy++vyovy° by (11)

as required.

COROLLARY 2.9. Equational bases for SI2, SI4, SI6, SI7 are (2), (3, 5), (or, 4, 15),
(a-, 4*, 15) respectively.

It is possible to find two-relation equational bases for other subvarieties in this
lattice. The following are two examples.

COROLLARY 2.10. An equational basis for SI3 v SI8 v SI10 is (a, 7).
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Proof. Observe that (7) gives x°° AX°<X v y v y° and hence x°° A X° < x + + v y++ v
y° from which (12) follows. It also gives JC°° A X° < x++ v y°° v y° from which (9') follows
on applying ° and interchanging x and y. It suffices, therefore, to show that (9') and (12)
together imply (7). For this purpose, note that on writing x++ for x in (9'), then applying
+ , then interchanging x and y, we obtain

Using this and (12), we then have

x++ vy++vy° = x++vy++vy°v (x°° Ax°Ay+)

= (x°° v y++ v y°) A (x++ v / v y++ v y°) A (X++ V y++ v y+)

>*ooA;toA;tooAjc°

= X°°AX°.

It follows that

^ A / < (X++ v y + + v y°) AX°< (x++ A x°) v y++ v >-°

and hence that (JC°° A X°) V y v _y° = (x++
 A JC°) V _y v y0 from which (7) follows.

COROLLARY 2.11. An equational basis for SI3 v SI10 is (a, 5).

Proof. In [6] we showed that (6) A (7) is (5).

Of course, equational bases are not unique and it is possible to derive other
two-relation bases. By way of example:

COROLLARY 2.12. An equational basis for SI3 v SI10 is (a, 16).

Proof. Observe that if in (a) we write x A X+ for x and y v y° for y then we obtain

(*) x AX+A(y°°vy°)<(x++Ax+)vyvy°.

Now by (5) and Lemma 2.2 the right-hand side of (*) reduces to y v y°. Since (5) is
self-dual, we have x A X+ S J V y+, equivalent to X A X+ ̂ y°° v y°, and so the left-hand
side of (*) reduces to x A X+.

3. Locally convex skeletons. We shall say that a double MS-algebra has a locally
convex skeleton if every interval sublattice of the form [x°, x+] belongs to the skeleton.

THEOREM 3.1. Let (L, °, +) be a double MS-algebra. Then the following statements are
equivalent:

(j80) L has a locally convex skeleton;

(p)(Vx,yeL) x°°Ay+<x++ v.y°;

(ft) LeSI20.

Proof. (j80)O(/S): Clearly, z e [y°, y+] if and only if z is of the form (x v y°) A y+,
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and this is in the skeleton if and only if

(x°° v y°) Ay+ = (x++ v y°) A y+,

which is equivalent to

(x°° A >>+) v y° = (x°° v y°) A V+ < X + + V y°,

which is equivalent to (/?).
(/3)o(/3!): It suffices to check, with reference to Fig. 1, that (/3) is satisfied by SI20

but is not satisfied by 5/10 or 5/3.

It follows from Theorem 3.1 that the double MS-algebras having locally convex
skeletons form a variety, namely SI2o-

As before, we can construct its lattice of subvarieties. This has 25 elements and is
depicted in Fig. 4.

(P. 15)

Figure 4.

As for equational bases, we apply the same technique as before, determining first
equational bases for the A-irreducible elements in the lattice. For this purpose, consider
the following relations:

(1), (2), (4d), (4J), (15)

(17) xAX+Ay°°<x++vy,

(17*) XAy°°<x++vyvy°,

(18) jt°oA;t+A.yoo<Jt++vy++v/',

(19) xAX+Ay°°<x++vy vy°,

x°°Ay+<x++vyo.
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Under logical implication, these relations give rise to the Hasse diagram of Fig. 5.

11

(P.17)

Obviously, (18) and (19) are self-dual; and in Fig. 5 all of the implications are clear
except for (4<,)=>(18), (2)=>(j8), and (4rf)=>(/3).

Now if (4rf) holds then yoo<y°°vy° = y vy° = y++ v y° whence (18) follows.
As for (2)^(j8), it suffices to observe that (2) implies (3) which is equivalent to

To see that (4d) => (P), recall from [6] that (4d) is equivalent to

(45) x v y v / = x M v y v / .

It follows from these that
x°°<x++vy vy°.

But, as we have seen, (4d) also gives y°°^y vy° whence we have y°^y+ Ay°° and
consequently

These observations give
y° = y+ A y° Ay.

= (x++ A y+) v (v A v+) v y°

which is (/3).
Using Figs 4 and 5, we can argue as in Theorem 2.5 to obtain the following result.

THEOREM 3.2. In the lattice of subvarieties of double MS-algebras having locally
convex skeletons the A-irreducible elements have the following equational bases:

SMI) , SI2:(2),
SI8vSI9:(4j), SI8vSIu:(4d),
SlsvSInrOUS), SI9vSI15:(/S, 17),
SIn v SI15: (ft 17*), SI8 v SI9 v SIn: (/3, 18),
SI9vSIuvSI15:G8, 19), SI2O:(j8).
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COROLLARY 3.3. Equational bases for SIn , SI9 are (4d, 15), (4*, 15) respectively.

4. Kleene skeletons. We shall now turn our attention to the subvariety SI18 v SI19.
We begin by identifying this as the subvariety consisting of those MS-algebras whose
skeleton is a Kleene algebra.

THEOREM 4.1. On a double MS-algebra (L, °, +) the following conditions are
equivalent:

(y0) L has a Kleene skeleton;
(y) (Vx,y€L) xAx°<yvy+;

(y,) LeSI18vSI19.

Proof. (y0) holds if and only if x°° A X° == y°° v y° and by Lemma 2.2 this is
equivalent to (y). The equivalence of (y) and {yx) results from the fact that only the
subdirectly irreducibles contained in SIm or SI19 satisfy (y).

The lattice of subvarieties of double MS-algebras with a Kleene skeleton can be
constructed using the same technique as before. The lattice in question has 99 elements
and can be visualised using Figs. 6a, 6b, 6c. Add Fig. 6b as a second layer on top of Fig.
6a projecting down onto it, with SI3 directly above SI2, then Fig. 6c as a third layer
projecting down onto Fig. 6b with SI5 directly above SI3.

To determine equational bases in this case, we consider the following relations:

(1), (2d), (4), (4*), (10), (11), (12), (19),

(20) XAy°°^x++vyvy+,

(20*) xAx°Ay°°<x++vy,

(21) XAy°°AZ+<x++vy vy+vz°,

(21*) x A x° A y°° A z+ < x++ v y v z°,

(22) x A f A Z ° ° A Z + < X + + vy vy+ v z°,

(22*) x A x° A y°° A z+ < JC++ v y v z++ v z°,

(23) x Ay°° AZ AZ+<X++ vyvy+v z°,

(23*) x A x° A y°° A z+ < x + + v y v z v z°,

(y) = (6) x Ax°<y v y+.

Ordered by implication, these relations give rise to the Hasse diagram of Fig. 7.
Of the implications in Fig. 7, the following are non-trivial:
(10)=>(21*): By (10), x°° AX° A Z+<X++ V Z" whence X A I ° A Z + < X + + V : ° and

(21*) follows.
(12)=>(22*): By (12), JC°° A X° A Z + < J C + + V Z++ V Z° whence XAX°AZ+<X++V

z++ v z° and (22*) follows.
(12, y)=>(22): By Corollary 2.11, (12, y) = (12, 6) is equivalent to x A X°< y v y°.

Applying + to this, we obtain y+ Ay°°^x+ v x°°. Writing x++ for x, we obtain

y+ Ay°°<x+ vx++ <x+ v i
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(Y.23)

i(Y.H)

Now write 2 for y and y for x to obtain z + A Z ° ° ^ y + v y from which (22) follows.
(11, y)=>(19): By Corollary 2.8, (11, y) is equivalent to x°° AX+<y++v y°. This

gives x A X + £ / V / from which (19) follows.

(19) => (23): Writing x A Z for x in (19), we obtain

X A Z A ( j t + V 2 > f < (* + + A Z + + ) V y V V°.

Consequently, * A V°° A Z A Z + ^ A T + + v y v / which implies (23).

THEOREM 4.2. /n the lattice of subvarieties of double MS-algebras with a Kleene
skeleton the A-irreducible elements have the following equational bases:

M)
SI12vSI13vSI14:(y,19),
SI5vSI9:(y,4),
SI5vSI9vSI l i : (y , 10),
SI19:(y,20),
SI12vSI19:(y,22),
SI18:(y,20*),
SI13vSI18:(y,22*),
SI18vSI19:(y).

SI12vSI13:(y, 11),
SI5:(2rf),
SI5vSIn:(y,4*),
SI5vSI12vSI13:(y, 12),
SI9vSI19:(y,21),
SI16vSI19:(y,23),
SInvSI18:(y,21*),
SI17vSI18:(y,23*),

COROLLARY 4.3. Equational bases for SI17 and SI16 are (y, 17*) and (y, 17)
respectively.

Proof. It suffices to prove that (19) and (20) together imply (17*). Now, writing
y v x+ for y in (20) we have x A y°° ̂  x++ v x+ v y. Using this and (19), we then have

v y° = x++ v y v y° v (x AX+ Ay°°)

= (x v y v y°) A (x++ v x+ v y v y°) A

> ^ A(X A / 3 0 ) A};00

v _y°

as required.
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COROLLARY 4.4. Equational bases for SI13 and SI12 are (15, 17*) and (15, 17)
respectively.

Proof. For example, SI13 = (SI12 v SI13) A S I I 7 and by Theorem 4.2 an equational
basis for SI12 v SIJ3 is (y, 11) which, as shown in the proof of Corollary 2.8, is equivalent
to (15). The result now follows by Corollary 4.3.

Further subvarieties that have interesting equational bases are the following, the first
two of which have been noted above.

COROLLARY 4.5. An equational basis for S\x2 v SI13 is (15).

COROLLARY 4.6. An equational basis for SI5 v SI12 v SI13 is (5).

COROLLARY 4.7. An equational basis for SI3 v SI12 v SIi3 is (16).

Proof. Observe that since

SI3 v SI12 v SI13 = (SI5 v SI,2 v SII3) A (SI12 v SII3 v SI14)

it suffices to show that (y), (12), (19) together imply (16). Now we have observed above
that (y, 12) is equivalent to x A X° < y v y°. It follows from this that x°° A X° A y+ < y + + v
y°. Applying ° to this, then interchanging x and y, we obtain x°° A X+ ^X++ V y°° V y°.
This, together with (19), gives

x++ v y v y° = x++ v y v y° v (x A X+ A y°°)

= (x v y v y°) A (x++ v x+ v y v y°) A (JC++ V y°° V >-°)

= X A X .

Consequently, (x A X + ) vy vy° = (x++ AX+) vy vy° = y v v°, by Theorem 2.2, and
hence x A X+ ^y v y".

5. Concluding remarks. From the above results we can compile the following list of
equational bases for the subvarieties generated by the non-trivial subdirectly irreducible
double MS-algebras.

SI2:
SI*:

SIio
SI,4

(2),
(a, 4, 15),
: (a, 15),
: (a> y)>
:(y,20*),

SI3:
SI7:
Sin
SIl5

SI,9

(a, 2d),
(a, 4*, 15),
:(4,,5),
•(a,P),
:(y,20),

SI4:
SI8:
SI12

SI16

SI20

(3,5),
(3),
:(15,17),
: (y, 17),
:(/3),

SI5:
SI9:
SI13

Sin

(2d)
(4J,

:(y.

y

5),
, 17*),
17*),

Of the above classes, five are worthy of especial mention, namely SI2, SI4, SI8, SIS, SI3.
These are respectively the classes of boolean, Kleene, de Morgan, double Stone, and
three-valued Lukasiewicz algebras. The first four assertions are clear since the axioms (2),
(2d), (3), (y) are self-dual. As for the final assertion:

THEOREM 5.1. SI3 is the class of three-valued Lukasiewicz algebras.
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Proof. A three-valued Lukasiewicz algebra is a double Stone algebra (L, *, + ) which
satisfies the Moisil determination principle <&+ = « ; i.e. an algebra in SI5 which is
semisimple, ue. an algebra in SI3.

COROLLARY 5.2. An equational basis for SI3 is (2d, 16).

Proof. In the lattice of subvarieties we have

SI3 = (SI3 v SI12 v SI13) A SI5,

so the result follows by Corollary 4.7.
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