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ABSTRACT. Snow avalanches are gravity-driven flows consisting of hard snow/ice particles. Depending
on the snow quality, particularly temperature, avalanches exhibit different flow regimes, varying from
dense flowing avalanches to highly disperse, mixed flowing-powder avalanches. In this paper we
investigate how particle interactions lead to streamwise density variations, and therefore an
understanding of why avalanches exhibit different flow types. A basic feature of our model is to
distinguish between the velocity of the avalanche in the mean, downslope direction and the velocity
fluctuations around the mean, associated with random particle movements. The mechanical energy
associated with the velocity fluctuations is not entirely kinetic, as particle movements in the slope-
perpendicular direction are inhibited by the hard boundary at the bottom giving rise to a change in flow
height and therefore change in flow density. However, this volume expansion cannot occur without
raising the center of mass of the particle ensemble, i.e. an acceleration, which, in turn, exerts a pressure
on the bottom, the so-called dispersive pressure. As soon as the volume no longer expands, the
dispersive pressure vanishes and the pressure returns to the hydrostatic pressure. Different streamwise
density distributions, and therefore different avalanche flow regimes, are possible.
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1. INTRODUCTION
A key problem in avalanche science is to mathematically
describe streamwise variations in bulk flow density. This
problem is particularly important in snow engineering
applications as avalanche flow height, speed and density
define the destructive power of the avalanche (Bozhinskiy
and Losev, 1998). Avalanche flow density is strongly linked
to the avalanche flow regime and therefore runout behavior
(Issler and Gauer, 2008). For example, mixed flowing-
powder avalanches exhibit not only smaller bulk flow
densities in comparison to their dense (often wet) counter-
parts, but also larger streamwise variations in flow density
(Bozhinskiy and Losev, 1998). There is often a transition
from a disperse, fluidized-type flow structure of low density
at the avalanche front to a dense, frictional-type flow at the
avalanche tail (Salm, 1993; Sovilla and others, 2007; Gauer
and others, 2008). Avalanche measurements in Russia
(Grigoryan and others, 1982; Sukhanov, 1982; Sukhanov
and Kholobayev, 1982), Norway (Gauer and others, 2007a,
b) and Switzerland (Gubler, 1987; Sovilla and others, 2007;
Kern and others, 2009) all reveal the complex and highly
dynamic streamwise flow structure of snow avalanches.

Predicting avalanche flow regime is a problem for
existing avalanche dynamics models (e.g. Savage and
Hutter, 1989; Naaim and others, 2003; Christen and others,
2010). Existing models assume constant bulk flow densities
in the avalanche core. This restricts the usage of these
models to specific avalanche types, such as dry or wet,
where calibrated flow parameters are available. Avalanche
dynamics models rely on empirical parameters that are
fitted to model avalanche runout from event to event.
Without some physical description of how avalanche flow
density changes as a function of snow quality and terrain
roughness, it will be difficult to understand experimental
observations, let alone propose a general avalanche

dynamics model that is based on measured material
properties and flow constants.

In this paper we describe how particle interactions within
the flow lead to variations in avalanche flow density. The
principal idea behind the model is to first distinguish
between the mean, slope-parallel movements of the ava-
lanche and the production of velocity fluctuations associ-
ated with random particle movements (Bartelt and others,
2006). With the introduction of the random movement of
the snow particles, we are able to describe friction as a
dynamic process, the friction coefficients depending only on
static material properties such as temperature (Bartelt and
others, 2012). However, there are further consequences.
With this random movement the avalanche flow height must
rise to accommodate particle trajectories that are inhibited
by the hard basal boundary (Buser and Bartelt, 2011). The
increase in height implies an increase in volume, a decrease
in flow density, as well as an acceleration of the center of
mass, inducing a reactive pressure on the bottom, the
dispersive pressure. This pressure is accessible to measure-
ments (Platzer and others, 2007). Note that the source of the
energy for the expansion as well as for lifting the center of
mass is slope-perpendicular particle movements. These are
created by the shearing within the avalanche core and at the
basal boundary.

To model this behavior we derive a set of differential
equations for the movement of the avalanche core per-
pendicular to the slope. As such, we develop time-depend-
ent differential equations describing the slope-perpendicular
momentum considering a time-dependent energy input.
Because the rate of energy input is not an analytical
function, we cannot expect closed-form analytical solutions.
This result indicates that boundary conditions cannot be
imposed a posteriori in an ad hoc manner. The mechanical
feedback at the basal boundary controls the internal energy
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of the avalanche core. We use depth-integrated methods,
commonly known as the shallow water approach. That is,
we lose all details in the direction perpendicular to the flow
direction (Weiyan, 1992).

We first define the flow density of the avalanche. This is
necessary as a snow avalanche consists of mass in particu-
late form, where the particles can change their location
within the volume and therefore change the flow config-
uration of the avalanche. We then consider the total energy
within a single volume, showing how random particle
movements produce accelerations that must be accounted
for in the momentum balance in the slope-perpendicular
direction (Luca and others, 2004). The equations are then
introduced into an avalanche dynamics model. We demon-
strate that this approach is energy-conserving. The general
system of differential equations is then used to simulate a
real avalanche event captured at the Vallée de la Sionne test
site, Switzerland. We calculate the magnitude of streamwise
density variations in both dense and mixed flowing-powder
type avalanches.

2. FLOW DENSITY
The first problem we must address is to define the bulk flow
density. This requires defining a representative avalanche
volume V� and the flowing snow mass M� per unit area
(kg m� 2) in the avalanche core � (Fig. 1). An avalanche
contains snow mass in various forms, consisting of snow-
cover fragments and compacted snow granules that are
shaped by particle interactions, especially during the
churning motion of the avalanche (Bozhinskiy and Losev,
1998). The size and shape of the fragments and granules
varies from a few millimeters to >10 cm (Jomelli and
Bertran, 2001; Bartelt and McArdell, 2009). The density of
the granules forming the avalanche core varies. For
example, high-density fragments from refrozen snow layers
can be found in avalanche deposits. If the snow is cold and
dry, the particle interactions will likewise lead to the

production of ice dust. The mean particle diameters within
the ice grains in the ice-dust mixture are small, typically
only 0.1 mm (Nishimura and others, 1993; Rastello and
others, 2011).

We divide the avalanche into the core �, containing the
larger particulate mass M�, and the suspension cloud �,
containing the ice-dust mass M� (Fig. 1). In this paper we do
not consider the suspension cloud �. At any time, the mass
in the core M� is distributed within a representative volume
V� (Fig. 1). The height of the volume h� is defined by the
location of the uppermost particle (Fig. 2). This defines the
height of the avalanche core. We make no assumptions
regarding particle size: the particles can be large (say 10 cm)
or small (say 1 cm). The distribution of mass can be disperse
(Fig. 2a) or dense (Fig. 2b). When the avalanche is at rest, the
volume compacts to volume V0, which we define as the
avalanche co-volume, in analogy to the Van der Waals
equation of a non-ideal gas (Rowlinson, 2002). The co-
volume is then the deposition volume of the avalanche. The
height of the co-volume is h0 (Fig. 2c), and the density of the
co-volume is �0. The bulk flow density of the core is given
by

�� ¼ �0
h0

h�

¼ �0�: ð1Þ

The ratio of co-volume to volume height �,

� ¼
h0

h�

, ð2Þ

defines the volumetric particle content of the avalanche.
Thus, we define the bulk flow density with respect to the
avalanche flow height.

3. ENERGY COMPONENTS IN VOLUME V�

A representative element volume V� in the avalanche core
� contains four energies: (1) the kinetic energy K associated
with the mean avalanche velocity, (2) the kinetic energy RK

Fig. 1. Possible streamwise density variations in the avalanche core �. (a) Mixed flowing avalanche containing dilute, disperse and dense
flow volumes V� (see Fig. 2). The volume V� is defined by the flow height h� and the basal area A, V� = h�A. (b) Dense flowing avalanche
containing disperse and dense volumes. The powder cloud component is designated �, the snow cover �. The height of the co-volume V0 is
h0. The mass per unit area is denoted M�. For a dense flowing avalanche � = 0. For the numerical treatment the volumes are at fixed
positions, i.e. not moving with the avalanche. The avalanche is flowing through the volumes.
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associated with the random movements of the particles
(granular temperature), (3) the potential energy RV associ-
ated with particle positions within the volume (configur-
ational energy) and (4) the internal heat energy E (thermal
temperature). RK is calculated from the difference between
the individual particle velocities and the mean slope-parallel
speed of the avalanche. RV is calculated from the position of
the individual particles with respect to the co-volume height
as the reference. It completely describes the flow config-
uration of the volume. Both RK and RV are connected with
the random position of the particles. These mechanical
energies are depicted in Figure 3. The sum of RK and RV is
denoted R:

R ¼ RK þ RV: ð3Þ

Because the energy R consists of both kinetic and potential
energy it is free mechanical energy within the ensemble of
particles. However, the energies RK and RV are not
independent. They are interrelated: the presence of RK
implies the existence of slope-perpendicular granular move-
ments within the flow volume. Because particle movements
in the z-direction are inhibited by the basal boundary (see

Fig. 3), a fraction of R is transformed into RV. It is perhaps a
trivial observation, but changing the z-position of particles
(and therefore the flow configuration and potential energy of
the volume) requires particle movements in the z-direction.
Particles at the top surface are especially vulnerable as they
are free and can be ejected to significant heights. The
position of these particles also contributes to RV. We choose
as the upper boundary of the volume V� the location of the
highest particle. Because the energies RK and RV represent
the sum of all the individual particle contributions in the
volume, RV is given by the position of the center of mass
(denoted k�; Fig. 2).

Both R and E are energy densities defined per unit volume
(J m� 3) whereas K is defined per unit area (J m� 2). By
multiplying the energy densities by the height h� we have
the total internal energy ðEh�Þ and total free energy ðRh�Þ

defined per unit area. One simplification we make is to use
only depth-averaged energies defined per unit area in the
avalanche core. We consider depth-averaged homogeneous
values for R and E. With this assumption we lose information
on the distribution of energy over the flow height, but we
reduce the computational demands of the model and,

Fig. 3. Energies in a representative volume element V� in the flowing avalanche core �. The translational kinetic energy K is associated with
the mean, slope-parallel velocity of the avalanche u�. The difference between the mean velocity and the velocity of the individual particles
yields the random kinetic energy RK. Free mechanical energy R is produced by shearing at the rate _P. The production induces an increase of
volume, lifting the center of mass of the representative volume, because of the hard bottom boundary, leading to an increase of potential
(configurational) energy RV. Associated with the volume change is the dispersive pressure NK, the reaction at the hard boundary due to the
change in slope-perpendicular acceleration. An analogous argument can be used for the reverse process when the volume decreases by a
reduction of RK (e.g. by dissipation, producing heat).

Fig. 2. Different avalanche volumes in the flowing avalanche core �. The volume is given by V� = h�A, where A is the basal area. The
volumes can be dense (h� ¼ h0), disperse (h� > h0) or dilute (h� � h0). We use the terminology introduced by Gauer and others (2008),
except we use the term ‘dilute’ instead of ‘suspended’ as the particles descend under the action of gravity. The location of the center of mass
is given by k�; the co-volume center of mass is located at k0.
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perhaps more importantly, the number of free model par-
ameters. However, the total energy balance in the stream-
wise flow direction is maintained. More significant is the fact
that considering the total energy within avalanche volumes
V� confined between the basal boundary and the free upper
surface allows us to derive differential equations for the
slope-perpendicular movement of the center of mass, k�.

The next problem we must address is how avalanche
velocity in the slope-parallel direction induces slope-
perpendicular processes that produce random free mechan-
ical energy R. The mean translational velocities associated
with K in the ðx, y, zÞ directions of the representative volume
are denoted ðu, v,wÞ (Fig. 4). The velocities are divided into
the slope-parallel direction ðx, yÞ of the avalanche core
u� ¼ ðu, vÞT and the slope-perpendicular z-direction w.
Subsequently,

K ¼ Kxy þ Kz, ð4Þ

where the superscript xy denotes the slope-parallel direction
and superscript z the slope-perpendicular direction. As we
shall show, the slope-parallel and slope-perpendicular
components of K are determined by momentum balances
in the ðx, y, zÞ directions. Similar to the kinetic energy K, the
gravitational work Wg and frictional work Wf can be
decomposed into the slope-parallel and slope-perpendicular
directions:

Wg ¼Wxy
g � W

z
g Wf ¼Wxy

f þW
z
f : ð5Þ

Both Wg and Wf are defined per unit area. The gravitational
work rate has the important distinction of being the only
supply of mechanical energy available to the avalanche.
Because gx and gy are defined in the same direction as u and
v, the gravitational work is positive in the downslope
direction. Wz

g is negative because gz is negative in the
positive z-direction, by definition. If other accelerations
(centripetal, jerks) are present, gz is replaced by the resultant

acceleration. The gravitational work rate creates kinetic
energy that is eventually dissipated to heat by the frictional
work rate, _Wf. The frictional work rate contains the sum of
all the work done by shearing, both within the volume and
by boundary tractions, especially at the basal surface. The
frictional work rate in the slope-parallel direction is there-
fore

_Wxy
f ¼ S� � u�, ð6Þ

where S� ¼ ðS�x, S�yÞ
T is the vector of shear stresses in the

slope-parallel directions. The frictional work rate is irrevers-
ible and therefore, by definition, always positive. Shearing
in the slope-parallel direction, and therefore the frictional
work rate, is the process that controls the dissipation of
mechanical energy to heat (denoted _Q) and the production
of R (denoted _P (Bartelt and others, 2006; Buser and Bartelt,
2009)). Therefore,

_Wf ¼ _Qh� þ _Ph�: ð7Þ

Congruent to the definition of the mechanical free energy R,
the dissipation _Q and production _P are defined per unit
volume (W m� 3). Equation (7) is a general but open
statement, with little practical use. It requires a constitutive
postulate to determine how much frictional work is being
used to produce R and how much frictional work is being
dissipated to internal heat energy E. The _P and _Q are
production terms inside the test volume. However, we have
a flow through the volume (Fig. 1) for which convection
terms are required. We therefore write

DðRh�Þ

Dt
¼ _Ph� ¼ � _Wxy

f � �KRKh� ð8Þ

and

DðEh�Þ

Dt
¼ _Qh� ¼ ð1 � �Þ _Wxy

f þ �KRKh� þ _Wz
f : ð9Þ

This splitting satisfies Eqn (7). Here we use the standard
notation DðÞ=Dt to define the material derivative, containing
both the local derivative, source and convection terms. For
example, for the conservation of the internal heat energy we
have

DðEh�Þ

Dt
¼
@ðEh�Þ

@t
þ u� � rðEh�Þ ¼ _Qh�: ð10Þ

The advantage of treating R and E separately is that R is a
place holder for all mechanical energy that is created from
shearing (like heat), but not yet heat. This energy is also
responsible for changes in avalanche flow density and
modifying the flow friction.

Note that the evolution of the temperature (internal
energy Eh�) requires consideration of additional sources of
heat supply (e.g. when the avalanche entrains warm snow
during its descent). These sources are not considered in this
paper; the heat rise is only due to the dissipation of
mechanical energy, both dissipation of kinetic energy K and
dissipation of random kinetic energy RK. The parameter � is
the splitting parameter of the constitutive formulation (Buser
and Bartelt, 2009), which essentially defines how much
shear work in the slope-parallel direction is transformed to
random energy � _Wxy

f and how much is dissipated immedi-
ately to heat ð1 � �Þ _Wxy

f . The second parameter is the decay
parameter �K, which governs the dissipation of random
kinetic energy RK in the core �.

Fig. 4. Differential element volume V� used to derive momentum
and energy balances. The velocities in the x, y, z directions are
denoted u, v,w, respectively. The velocity w= _k� is associated
with the volume change. To calculate the slope-perpendicular
movement of the center of mass k�, we must find €k�, the slope-
perpendicular acceleration. Gravitational acceleration is decom-
posed into the ðx, y, zÞ directions ðgx, gy, gzÞ.
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4. MECHANICAL FREE ENERGY RK AND RV AND
THEIR PRODUCTION _PK AND _PV
The advantage of using the kinetic and potential energies RK
and RV is that the total free energy of the avalanche core
volume V� can be calculated even for complicated flow
configurations and boundary conditions. We do not con-
sider individual particle trajectories and interactions that
would defy solution. This approach is similar to the virial
theorem of mechanics which provides a relation between
the total kinetic energy and total potential of a particle
ensemble (Clausius, 1870). In the avalanche problem,
however, the interaction between RK and RV is not defined
by potential forces between particles, but particle collisions
and finally the hard basal boundary, which reflects particle
trajectories back into the flow.

When the total free energy is produced ( _P, Eqn (7)), a
fraction of the energy is true kinetic energy RK, while the
remaining fraction RV describes the changed location of the
particles. The sum of _PK (change in random kinetic) and _PV
(change in configuration) therefore defines the production of
total free energy _P in the volume V� (cf. Eqn (3)):

_P ¼ _PK þ _PV: ð11Þ

We postulate that the fraction of mechanical energy _PV with
respect to the total production of free energy is the
dimensionless coefficient �:

_PV ¼ � _P _PK ¼ ð1 � �Þ _P: ð12Þ

The parameter � clearly depends on the properties of the
snow particles, including hardness and shape. It is,
however, a bulk coefficient of the ensemble of particles.
The coefficient � resembles the coefficient of thermal
expansion since it describes the tendency of a material to
change its volume in response to a temperature change, in
this case the granular temperature. For example, when
� ¼ 1, the entire free energy production from shearing is
converted to potential energy. As RK consists of velocity
fluctuations in all three coordinate directions, it is reason-
able to suppose that

� � �max ¼
1
3

, ð13Þ

implying that only the fluctuations in the z-direction can be
used to create RV. This assumes an equal distribution of
random kinetic energy in all three coordinate directions. In
the example calculation we take � = 0.15.

To describe the energy fluxes within the avalanche core,
we introduce three parameters: �, the splitting of the
frictional work rate in the slope-parallel direction into heat
and random kinetic energies; �K, the rubbing and collisional
dissipation of random energy; and �, the partitioning of the
production of the free mechanical energy _P into random
kinetic _PK and potential parts _PV. We can now derive the
relationship between the change in configurational energy
RV and the change in avalanche volume V�.

5. VOLUME CHANGES IN THE AVALANCHE
CORE �

To model the change in volume, we first define the
acceleration associated with a change of the center of mass
of the element volume. We explicitly postulate that
avalanche flow is located between a hard boundary, the

ground, and an open boundary, the top surface of the
avalanche. This implies that with basal area A

_V� ¼ A _h�, ð14Þ

i.e. the change in volume is directly related to the change in
flow height. We have no diffusion of heat or free energy
through the volume walls. Defining the location of the
center of mass to be located at a distance k� from the
bottom, then the upward, positive acceleration of the center
of mass is

€k� ¼ c€h�, ð15Þ

where the location k� is related to the avalanche flow height
h� by the constant c. Similarly, k0 defines the location of the
co-volume center of mass, k0 = ch0. The integral over the
height h� of the density distribution defines the location of
the center of mass k�. We see that c is a constant as long as
the density distribution does not change. In the following we
assume a homogeneous density distribution which yields
the value c= 1/2 for all times. This assumption is made for
simplicity as we have no reliable information concerning
the density distributions in height. This defines the (positive)
reaction at the ground, the dispersive pressure NK,

NK ¼ M�
€k� ¼ M�c€h�, ð16Þ

as well as the time rate of change of the dispersive pressure
_NK,

_NK ¼ M�
€k�
€ ¼ M�c€h�

€ : ð17Þ

We can consider states far from equilibrium by writing the
normal pressure in terms of the total perpendicular
acceleration g0 of the center of mass of the flow volume:

N ¼ M�gz þM�fz þM�
€k� ¼ M�g0 ¼ Ng þNf þNK: ð18Þ

The quantity Ng is the pressure from the self-weight, Ng ¼

M�gz. The centripetal acceleration fz defines the pressure
Nf ¼ M�fz. The magnitude and direction of Nf depend on
the curvature of the track (Pudasaini and Hutter, 2007). The
centripetal acceleration fz is determined from the track
curvature � using the vector relationship (Fischer and
others, 2012),

fz ¼ u�� uT
�: ð19Þ

The pressures (reactions) Ng and Nf are always the same,
independent of the position of k�, and depend only on the
total mass in the volume. That is, the pressures Ng and Nf

induce no movement, but determine the total reaction N.
Thus, the model reduces to the standard Coulomb–Voellmy
model when NK = 0. The time rate of change of N is

_N ¼ _NK ¼ M�
€k�
€ : ð20Þ

Moreover, no jerk (€k�
€ Þ is associated with the normal

pressure _Ng = 0 or centripetal pressures _Nf = 0. In our
representative volume, the mass does not change during
the jerk, _M� = 0. The total work done per unit time by the
normal pressure at the bottom of the avalanche N (which
includes the normal pressure Ng, centripetal pressure Nf and
the dispersive pressure NK) must be in balance with the total
working of the particle interactions per unit volume. We
have termed this change in potential energy as the
configurational energy production _PV. Therefore, the total
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change in the volume is

@ðNV�Þ

@t
� _PVV� ð21Þ

and with @ðNV�Þ=@t= _NV� +N _V�,

_NþN
_V�

V�

¼ � _P ¼ _PV: ð22Þ

This equation states that the volume expansion by particle
interactions with the ground is not a quasi-static process and
therefore must include the accelerations and changes in
acceleration of the avalanche flow mass. We note that the
ratio _V�=V� physically represents the upward expansion of
the avalanche in the z-direction, expressed as a strain rate _�:

_� ¼
_V�

V�

¼
_h�

h�

¼
_k�

k�

: ð23Þ

In a first approximation the configurational strain � in the
z-direction is linearly distributed from the bottom to upper
surface of the avalanche. We find that with the substitution
for N (Eqn (18))

_Nþ ðNg þNf þNKÞ _� ¼ _PV: ð24Þ

The change in pressure at the base of the avalanche is equal
to the rate of working of _PV (the free energy used to expand
the volume). However, this energy must work against the self-
weight of the avalanche. The sign of the centripetal pressure
Nf will depend on the curvature and thus will either work
against or exacerbate the configurational changes. Because
the sum ðNg þNf þNKÞ is multiplied by the strain rate _�, the
pressures serve as a type of material strength resisting the
dispersive pressure and the expansion or contraction of
the avalanche body. Interestingly, Eqn (22) can be written as
a third-order differential equation in k� using Eqn (20),

M�
€k�
€ þM� gz þ fz þ €k�

h i _k�

k�

¼ _PV ð25Þ

or, directly, in terms of the avalanche flow height h� and the
constant c,

M�c€h�
€ þM� gz þ fz þ c€h�

h i _h�

h�

¼ _PV: ð26Þ

The practical significance of the triple dot – the rate of change
of the acceleration or jerk – is that we no longer assume that
the avalanche is near equilibrium, NK =M�

€k� = 0. This
indicates that the dispersive pressure NK cannot be empiric-
ally defined using closed-form functions because it arises
from the shear work in the avalanche core �ðS� � u�Þ (see Eqn
(6)). The shear rate, and therefore the dispersive pressure, is
not an algebraic time function. Because the production _PV is
always changing we must integrate the path-dependent
motion of the avalanche core to find the dispersive pressure.
For the numerical solution we must first decompose Eqn (25)
into a series of three first-order equations in terms of
the center-of-mass height k�, velocity w� and dispersive
pressure NK:

@k�

@t
¼ w� ð27Þ

@ðM�w�Þ

@t
¼ NK ð28Þ

@NK

@t
þ

N
k�

� �

w� ¼ _PV: ð29Þ

Note that the quantity k� – k0 is a positive definite func-
tion: the volume can never collapse below the co-volume
height h0. The production _PV can be both positive and nega-
tive, corresponding to an increase or decrease in volume, and
is the only process to change the potential energy of the
avalanche core. The core will collapse when the decay of free
energy overcomes the production. Settlement of detached
particles will be modeled as an additional loss of potential
energy RV in Section 9. Equations (27–29) cannot be used in
numerical solutions because they are attached to a volume
moving with the avalanche. In numerical solutions we
consider control volumes that are fixed in space and therefore
must account for the convective transport of k�, w� and NK.
Similar to the mechanical free energy Rh� or the internal heat
energy Eh�, the quantities k�, w� and NK are transported
with the avalanche. We neglect diffusive processes as we
consider them to be too slow in comparison to the convective
transport. There is also a jerk and a volume expansion arising
from the convective transport of mass within the avalanche.
In order to consider these convective terms it is necessary to
change the local time derivative of Eqns (27–29) to material
derivatives including the convective terms. The equations for
fixed volumes are stated in the next section.

6. MODEL EQUATIONS WITH STREAMWISE
DENSITY VARIATIONS
The problem now is to introduce Eqn (25) (the volume
change of the avalanche) into a general system of depth-
averaged differential equations that describe avalanche flow
in general terrain. We exploit the fact that Eqn (25) can be
decomposed into three first-order differential equations:
Eqns (27) (volume conservation), (28) (momentum conser-
vation in the z-direction) and (29) (rate of change of
dispersive pressure). These equations are already in depth-
averaged form as we considered the total volume of an
element between the basal boundary (z= 0) and the top
surface of the avalanche (z=h�). The equations represent
the analytical solution to the problem of how the boundary
conditions influence the movement of the center of mass in
the z-direction. We do not discretize the equations in the
z-direction as they are already in closed form; however, in
the avalanche flow direction we must modify the existing
depth-averaged equations to account for change in accel-
eration in the slope-perpendicular direction.

All quantities describing the movement of the center of
mass must be convected in the flow direction. For simplicity
we take k� = 1/2h�, c= 1/2. Thus, we always have a
homogeneous distribution of mass M� in the volume V�

corresponding to a constant density. By formulating the
equations within a depth-averaged framework, we facilitate
the introduction into existing avalanche dynamics models.
However, we must demonstrate not only that the depth-
averaged equations satisfy mass and momentum balances
(in all directions) but also that the total energy of the
movement is conserved.

We begin by considering an avalanche volume in the x-y
plane (Fig. 4). Depth-averaged mass, momentum and energy
balances can be constructed for this volume element
(Weiyan, 1992). These equations can be written in many
forms; we chose the general form

@U�

@t
þ
@�x

@x
þ
@�y

@y
¼ G� ð30Þ
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with the four unknown state variables

U� ¼ ðM�,M�u�,M�v�,Rh�Þ
T
: ð31Þ

The vector U� includes the mass M� and the avalanche
momentum in the directions tangential to the slope, M�u�

and M�v�. The velocities u� and v� are defined in the x and
y directions, parallel to the avalanche slope (Fig. 4). Christen
and others (2010) describe the terrain coordinate system.
The flux components (�x, �y) are

�x ¼

M�u�

M�u2
� þ

1
2 M�g0h�

M�u�v�

Rh�u�

0

B
B
@

1

C
C
A, �y ¼

M�v�

M�u�v�

M�v2
� þ

1
2 M�g0h�

Rh�v�

0

B
B
@

1

C
C
A:

ð32Þ

The vector G� contains the source terms:

G� ¼

_M�!�

Gx � S�x
Gy � S�y

� S� � u�½ � � �KRKh�

0

B
B
@

1

C
C
A: ð33Þ

The flowing avalanche is driven by the gravitational
acceleration in the tangential directions G= ðGx,GyÞ=
ðM�gx,M�gyÞ. The initial avalanche mass is defined by the
release slab. The snow cover, however, supplies the
avalanche with additional mass. Here we simulate entrain-
ment using the method proposed by Russian authors
(Bozhinskiy and Losev, 1998). This method assumes (1) a
stationary snow cover that is entrained into the avalanche at
the rate _M�!�, (2) _M�!� is always positive and (3) the
entrained mass is accelerated immediately to the speed of
the avalanche. There are no gradients in avalanche velocity
in the z-direction. Removal of mass from the avalanche is
not considered, _M�!� = 0.

Frictional resistance is given by the Voellmy-type shear
stress S� ¼ ðS�x, S�yÞ, with

S� ¼
u�

ku�k
�ðRVÞNþ �gg

ku�k
2

�ðRVÞ

" #

; ð34Þ

that is, the shear stress is a function of the avalanche velocity
u�, configurational energy RV and the total normal pressure
N (Coulomb friction). Fluctuation energy is produced from
the rate of working of the total shear work �ðS� � u�Þ (Bartelt
and others, 2006); the model parameter � describes the
production rate 0 � � � 0:2 (Buser and Bartelt, 2009;
Bartelt and others, 2012). Because the snow particles are
inelastic, their interactions cause the fluctuation energy to
decay at the rate �K (Buser and Bartelt, 2009). Useful, but
empirical, relationships for the functional dependency of (�,
�) on RV are

�ðRVÞ ¼ �0 exp �
RV

R0

� �

ð35Þ

and

�ðRVÞ ¼ �0 exp
RV

R0

� �

: ð36Þ

With this frictional ansatz, �0 and �0 are the static friction
coefficients associated with non-fluidized flowing snow,
RV = 0. The model parameter R0 defines the activation
energy required to fluidize the core (Bartelt and others,
2012). The friction does not depend on the granular
temperature RK, but on the configurational energy RV,
which determines the flow density of the avalanche. The

acceleration €k� is calculated by extending the depth-
averaged equations (four state variables) to include the
unknowns h� (flow volume), M�w� (momentum in the
z-direction) and NK (dispersive pressure):

U� ¼ ðM�,M�u�,M�v�,Rh�,h�,M�w�,NKÞ
T
: ð37Þ

The extended flux components (�x, �y) and driving term
G� are:

�x ¼

M�u�

M�u2
� þ

1
2 M�g0h�

M�u�v�

Rh�u�

h�u�

M�w�u�

NKu�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

, �y ¼

M�v�

M�u�v�

M�v2
� þ

1
2 M�g0h�

Rh�v�

h�v�

M�w�v�

NKv�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð38Þ

and

G� ¼

_M�!�

Gx � S�x
Gy � S�y

� S� � u�½ � � �Kð1 � �ÞRh�

w�

NK
2� _P � 2Nw�=h�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: ð39Þ

Thus, instead of four equations, we now have seven
equations that must be solved numerically. In the numerical
calculations, it might happen that k� � k0 becomes nega-
tive. We treat this problem by reflecting w� at the boundary
k� = k0. We apply second-order HLLE (Harten, Lax, Van Leer
and Einfeldt) schemes to solve the equations on general
quadrilateral grids (Christen and others, 2010).

7. TOTAL ENERGY CONSERVATION
Momentum balances in the slope-parallel and slope-
perpendicular directions place two additional constraints
on the total change in avalanche kinetic energy (Luca and
others, 2004). In the slope-parallel xy direction we have

_Kxy ¼ _Wxy
g �

_Wxy
f ð40Þ

and in the z direction,

_Kz ¼
DðRVh�Þ

Dt
� _Wz

g �
_Wz

f : ð41Þ

These energy relations are automatically satisfied when
solving momentum balance equations with any constitutive
model for shear (e.g. Anderson, 1995). The summation of
these two equations, with the substitution of Eqns (7–9) for
the total frictional work rate, leads to

_K þ
DðEh�Þ

Dt
þ

DðRh�Þ

Dt
¼ _Wg þ

DðRVh�Þ

Dt
: ð42Þ

This is the total energy conservation for the avalanche. The
equation states that the total change of kinetic energy,
thermal energy and free mechanical energy is equal to the
change in potential energy. The potential energy change is
with respect to the center of mass. The quantity _Wg is the
gravitational work rate given by the terrain, and the RV term
arises from the internal configurational changes.
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8. DAMPING OF RV AND SETTLEMENT TO
CO-VOLUME
At present we treat the movement of the avalanche in the
z-direction as a reversible process. There is no friction and
therefore no dissipation of RV during the volume expansion
or compression. The frictional work rate in the slope-
perpendicular direction _Wz

f is at present undefined,
although it is included in the total energy balance,
Eqn (41). Friction in the z-direction can be added to the
model formulation. However, of great importance is the fact
that we are not free to select this friction independent of the
frictional processes that we assume to act on RK. The
frictional work in the z-direction undergoes the same
dissipative process as the random kinetic energy RK, which
is governed by the decay parameter �K. This places
constraints on the constitutive formulation of _Wz

f . The
dissipation of RK is governed by �KRK. Therefore,

_Wz
f ¼ �VRVh� ¼ �KRKh�: ð43Þ

However, RV and RK are both related to the total R by �.
Therefore,

�V ¼
�

1 � �
�K ð44Þ

and

_Wz
f ¼

��K

1 � �
RVh�: ð45Þ

Since _PV is the rate of working of the particle collisions at the
boundary, raising the center of mass k�, we have that RV is
the total potential energy with respect to the co-volume
height h0:

RVh� ¼
M�gz

2
h� � h0ð Þ ¼

M�gzh�

2
1 � �½ �: ð46Þ

Thus,

_Wz
f ¼

�

1 � �
M�gz

2
�K h� � h0ð Þ: ð47Þ

A salient feature of this energy relation is that it ensures that
all volumes of the avalanche settle to the co-volume height
h0, which then becomes the deposition height of the
avalanche. No additional model parameters are required
to describe the dissipation of energy in the z-direction. In the
absence of any production of free mechanical energy R, the
volume will decay according to the gravitational acceler-
ation gz, which always opposes the volume expansion. The
settlement of particles is stronger on flatter slopes. However,
the volume cannot be compressed to dimensions smaller
than the co-volume height h0. As a volume cannot sustain its
height without mechanical energy R, any volume with
h� > h0 contains potential energy RV that must be removed
during the settlement process (negative _k�). By formulating
the loss of potential energy according to Eqn (47), we
enforce the settlement condition that all volumes go to the
co-volume height h� ! h0 when the free energy R! 0. No
additional model parameters are needed.

9. EXAMPLE CALCULATION
In the example calculation we will demonstrate how �

controls the streamwise variation in avalanche flow density
��. For this purpose we will use Vallée de la Sionne ava-
lanche No. 628, released on 19 January 2004. This avalanche

has a well-documented starting zone allowing an estimation
of the release volume (Vr = 20 000 m3, �r = 250 kg m� 3). The
starting mass was calculated at 4800–5300 t. The avalanche
entrained a modest amount of snow (on average, he = 0.25 m,
�e = 250 kg m� 3). The numerical treatment of entrainment is
described by Christen and others (2010). The flowing core
was obscured by the suspension cloud; however, frequency-
modulated continuous-wave (FMCW) radars recorded the
passage of the avalanche, allowing us to make direct
comparisons between measured and calculated flow heights
(and therefore streamwise variations in flow density). The
avalanche did not strike the measurement pylon directly, but
several pressure sensors were struck, providing us with some
indication of the avalanche flow height.

We simulated the avalanche using a 5m grid resolution.
The starting and entrainment conditions were selected
according to the measurements. We varied the parameter
� from �= 0.025 (dense flow regime) to �= 0.100 (disperse–
dilute flow regime). When �= 0, the simulation reduces to
the standard Voellmy model (Christen and others, 2010). In
the model calculations we take � to be a constant � = 0.15,
being aware, however, that the partitioning of R into a
kinetic part RK and volume change part RV can depend on
local terrain features, snow granularization and, most likely,
entrainment processes at the avalanche front. At present it
would be highly speculative to introduce the influence of
these processes on � without better experimental data. Here
we wish to demonstrate the range of � that allows us to
predict the streamwise density variation of dense flowing
avalanches as well as mixed-flowing avalanches. We will
not investigate the role of other model parameters
(�K = 0.80, R0 = 2.0 kJ m� 2, �0 = 0.55, �0 = 1800 m s� 2) which
have been reported at length elsewhere (e.g. Buser and
Bartelt, 2009; Christen and others, 2010). The selected
parameters are the same as from other numerical investiga-
tions of other avalanches recorded at Vallée de la Sionne
(Bartelt and others, 2012).

The calculated avalanche velocities are reported in
Figure 5. These varied between 30 m s� 1 (�= 0.025;
Fig. 5a) and 50 m s� 1 (�= 0.100; Fig. 5d). The calculated
avalanche runout varied accordingly. For small � values, the
avalanche stopped 250 m above the measurement pylon; for
higher values the avalanche ran to the counterslope. The
best match to the measured avalanche runout and velocity is
obtained with �= 0.100, suggesting a highly fluidized
mixed-flowing avalanche, in agreement with the obser-
vations. The model results reflect the strong influence of the
flow regime (density variations) on the simulation results.
The maximum measured avalanche velocity was slightly
more than 50 m s� 1; the avalanche core ran up the
counterslope and covered the observation bunker with
granular debris (Fig. 5).

The avalanche flow density varies in space and time.
Spatial variations are depicted in Figure 6; variations in time
at the location of the FMCW radar are presented in Figure 7.
The parameter � controls the flow regime: with �= 0.025,
the avalanche does not fluidize, but remains in a disperse–
dense flow regime. Flow densities at the avalanche front are
approximately �� = 300 kg m� 3 (Fig. 7a). The core heights are
too small, h� = 1.5 m, far from the observed heights measured
with the FMCW radar of 7.5 m. Flow densities behind the
front are �� > 300 kg m� 3. That is, the avalanche tail
densifies quickly. Runout distances are short and avalanche
velocity reaches only 30 m s� 1. For increasing values of �,
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the calculated core height h� increases and flow density
decreases. For �= 0.100, the avalanche core fluidizes
completely, �� < 300 kg m� 3. Flow densities at the ava-
lanche front are low, �� � 200 kg m� 3. Not only are the
calculated core heights in good agreement with the FMCW
radar observations, but also the time duration of the
avalanche passage (a total of 35 s) is correctly represented
(Fig. 8). The total avalanche mass flux at this particular
location appears to be correctly modeled. However, the
model predicts that the entire core, from the front to the tail,
should be fluidized. The flow densities at the tail of the
avalanche are 300 kg m� 3 for �= 0.075 and <200 kg m� 3 for
�= 0.100. Even with experimental data it is difficult to state
which value of � correctly models the tail motion, especially
the densification after the passage of the front. It is important
to note that we use only constant values of � for the entire
avalanche and therefore do not take into account such effects
as the smoothing of the running surface or the increase in
avalanche temperature which will affect the static properties
of the flowing snow.

For completeness we also present the calculated ava-
lanche velocity w� in the slope-perpendicular direction for
the four different values of � (Fig. 9). We find that for low
values of �= 0.025, the velocities are small. In this case the
velocities are negative, indicating that the flow, especially at
the tail, is densifying. For larger values of � > 0:025,
oscillations in w� are clearly visible. These occur primarily
at the front of the avalanche. However, for larger values
�= 0.100, the oscillations persist in the tail, leading to low-
density flows behind the front. In this case the peak

velocities can be w� > 3 m s� 1 in both the upward and
downward directions.

As expected, the calculated dispersive pressures increase
with increasing � (Fig. 10). They are small for �= 0.025 and
large for �= 0.100. The largest variations in dispersive
pressure are encountered at the avalanche front. For large
�, the calculated dispersive pressures are a significant
fraction of the pressure Ng. For example, for a 1 m flow on
flat ground Ng = 4.5 kPa; the calculated values in Figure 10d
vary between NK = –1.0 kPa and NK = 2 kPa at the location
of radar B. This will not only increase (and decrease) the
frictional shearing stress (which is a function of Ng þNK),
but also suggests that the self-weight can easily be
overcome to fluidize the avalanche core. Figure 10 also
exemplifies the fact that the shape of the signals will vary
from position to position, depending on the streamwise
variation in flow mass. At the front of the avalanche the
increase in core height is associated with a decrease in
flow density. This indicates that sufficient configurational
energy has been produced to fluidize the core. An increase
in flow height accompanied by an increase in density is an
indication not only that the core is collapsing, but also that
the frictional shear stress is increasing, producing strong
gradients in flow height (pile-ups, levees). The calculated
dispersive pressures appear to have many features similar to
measured seismic signals (Vilajosana and others, 2007a,b).
The measurement pylon was not hit directly by the
avalanche core. The peak pressure measured at the mast
reached 150 kPa at 2.5 m above ground. The signal lasted
�10 s. Measured velocities using optical velocity sensors

Fig. 5. Calculated maximum flow velocities of avalanche No. 628 with four different fluidization parameters �. Starting conditions,
entrainment conditions and remaining flow parameters are all the same. (a) �= 0.025. (b) �= 0.050. (c) �= 0.075. (d) �= 0.100. The best
match to the measured velocities and runout distance is (d). The measured maximum velocity was slightly more than 50 m s� 1; the
avalanche ascended the counterslope and covered the observation bunker.
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(Kern and others, 2009) revealed considerable noise, with
velocities fluctuating between 20 and 30 m s� 1. The simu-
lated velocities are in this range; the simulated flow

density at the front varied between 200 and 300 kg m� 3.
Towards the middle of the flow, the velocities increase and
densities decrease.

Fig. 7. Calculated core height h� and density �� at FMCW radar position B. (a) �= 0.025. (b) �= 0.050. (c) �= 0.075. (d) �= 0.100. The
measured core heights were between 7.0 and 8.0 m.

Fig. 6. Calculated streamwise density variation of avalanche No. 628 with four different fluidization parameters �. Starting conditions,
entrainment conditions and remaining flow parameters are all the same. (a) �= 0.025. (b) �= 0.050. (c) �= 0.075. (d) �= 0.100. For
� � 0.050, the avalanche remains in a disperse–dense flow regime. Flow densities at the avalanche front are approximately
�� = 300 kg m� 3. Flow densities behind the front are �� > 300 kg m� 3. Runout distances are short, and avalanche velocities reach only
30 m s� 1. For � > 0.050, the avalanche core fluidizes, �� < 300 kg m� 3. Flow densities at the avalanche front are low, �� � 200 kg m� 3.
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10. CONCLUSIONS
The purpose of avalanche dynamics models is to predict
impact pressures and runout distances. These are a
function of the avalanche flow regime and therefore the
density of the avalanche core. We present a method to
calculate how avalanche flow density changes in the
streamwise flow direction. We first distinguish between the
avalanche core � and suspension layer �. In the core � we
will find mass in the form of hard snow particles. The
particles can be densely packed (frictional flow regime) or

somewhat dispersed (disperse flow regime). In extreme
cases, such as at the front of mixed-flowing avalanches, we
encounter dilute flow densities in which the particle
interactions are completely collisional. In all cases, it is
possible to define a center of mass of the flowing ensemble
to study the energy fluxes associated with the random
particle movements. Particle movements, and therefore
random energy R, are constrained at the basal boundary of
the avalanche, giving rise to energy, momentum and mass
fluxes in the slope-perpendicular direction. Because of the
free top surface of the avalanche, the volume of the core
can increase or decrease depending on the energy input.
We define the dispersive pressure as the change in slope-
perpendicular acceleration induced by the particle inter-
actions giving rise to the configurational changes in the
avalanche core.

As we consider the volume change of an ensemble of
free particles, the starting point of our investigations cannot
be the depth-averaging of the Navier–Stokes equations.
These equations do not consider the change in slope-
perpendicular acceleration caused by the interaction of
particles with the basal boundary. Moreover, we cannot
depth-integrate a full-three-dimensional system of fluid
equations and then add ad hoc boundary conditions to
account for the dilatative effects of granular movements.
Only when we introduce changes in accelerations can we
separate the effects of the dispersive pressure and gravity in
theory and experiments. It is the change in pressure that we
measure in chute experiments with snow (Platzer and
others, 2007). An important feature of the model equations
is that when we consider the transfer of energy from the
slope-parallel mean flow to the slope-perpendicular
direction, we equally account for momentum conservation
in the z-direction. Therefore, the proposed method

Fig. 9. Calculated time variation in slope-perpendicular velocities w� at the FMCW radar position B. (a) �= 0.025. (b) �= 0.050.
(c) �= 0.075. (d) �= 0.100. For the dense flow case � = 0.025, the velocities are small and always negative, implying densification. For
values � > 0.025, the velocity oscillates, particularly at the avalanche front. Only for the case � = 0.100 do the oscillations persist in the
avalanche tail. For the dilute–disperse flow regime (d), the slope-perpendicular velocities of the avalanche center of mass are large,
w� � 3.0 m s� 1.

Fig. 8. Comparison between measured and calculated flow height
h� at the FMCW radar position B, � = 0.100. Both the magnitude
and the duration of the signal are in good agreement. However, the
second peak behind the front is not represented in the simulations.
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satisfies conservation of mass and volume as well as
momentum conservation in the slope-parallel and slope-
perpendicular directions.

At present we do not consider variations of density in the
z-direction. We do not account for changes in the �, �K and
� due to the mechanical working of the snow, which will
greatly change the calculated density in the slope-parallel
xy-direction. These parameters depend on temperature and
on snow quality (Naaim and others, 2013). This leads to
results that can be explained within the closed template of
the model, but are perhaps not quite correct for snow
avalanches. For example, in our calculations with � > 0:5
we find that the tail of the avalanche fluidizes. This is a result
of a continual input of R-energy. As the height of the
avalanche decreases at the tail, the density will decrease,
leading to fluidized motion at the tail. The overburden
pressure is simply not enough to damp the energy input.
This behavior has been observed in granular chute experi-
ments (Bartelt and others, 2007; Bugnion and others, 2013);
whether it is valid for the movement of mixed snow
avalanches requires more detailed experimental observa-
tions. We hope in the near future to propose relationships
for �, �K and � that account for snow temperature, the
smoothing of the flow surface during the passage of the
avalanche and the granularization of snow.

The model equations for streamwise density variation
presently assume a rigid basal boundary. For simplicity,
snow-cover entrainment is considered as a simple mass flux
across this stationary boundary. However, in future, more
advanced entrainment models can be considered that
couple the volume expansion in the core with a moveable
basal boundary. The production of fluctuation energy and
intake and expulsion of air can be included as the avalanche
consumes the snow cover.

Finally, another point is remarkable. We do not use any
explicit distribution, neither the size nor velocity of the
particles, in the z-direction. We only state that there is a

distribution, such that the energy attributed to the random
velocity exists.
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