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63177 Aubiere Cedex, France (kamal.boussaf@math.univ-bpclermont.fr;

abdelbaki.boutabaa@math.univ-bpclermont.fr;
alain.escassut@math.univ-bpclermont.fr)

(Received 24 June 2005)

Abstract We study sets of range uniqueness (SRUs) for analytic functions inside a disc of an alge-
braically closed field K complete with respect to an ultrametric absolute value. The SRUs we obtain
are converging sequences. We first obtain results that look like those known in C but involve a weaker
hypothesis than in C: let (an) be a sequence of limit a in a disc d(a, r−) such that |an − a| is a strictly
decreasing sequence. If the sequence (an) does not make an SRU for the set A(d(a, r−)) of analytic
functions inside d(a, r−), then, for a certain integer k ∈ Z, the sequence(

an+k − a

an − a

)

has a finite limit in K and the sequence (
log |an+k − a|
log |an − a|

)

has a finite rational limit. Next, we show that if the sequence
log(an+1 − a)
log(an − a)

converges to a limit b � 1 in such a way that −b log |an − a| < −b log |an+1 − a| and if log |an − a| −
b log |an+1 − a| has limit 0 or +∞ and if bk /∈ Q whenever b > 1 and k ∈ N∗, then the sequence (an) is
an SRU for A(d(a, r−)). In particular, for every γ ∈ ]0, 1[ ∪ ]1, +∞[, L ∈ Q ∩ ]0, +∞[ and b � 1, there
exist SRUs for A(d(a, r−)) of the form {an | n ∈ N} such that

lim
n→+∞

− log |an − a|
bnnγ

= L.

For example, if γ ∈ N with γ �= 0, 1, there exist SRUs of the form {an | n ∈ N} such that − log |an −a| =
Lnγ for all n ∈ N∗. The latter result ceases to hold when γ = 1. Many examples and counterexamples
are provided.
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1. Introduction and results

The concept of sets of range uniqueness (SRUs) was introduced by Diamond et al . [3] for
complex analytic functions. It is a generalization of the identity theorem. Several other
papers on this topic have appeared over the last 20 years [1,5,7].
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Definition 1.1. Consider a family of functions F defined in a set D. A subset S of D

is called a set of range uniqueness for F if, given any two functions f, g ∈ F such that
f(S) = g(S), we have f = g.

In this paper, we will examine the problem in an ultrametric field and we will essentially
state some sufficient conditions for a bounded subset to be an SRU or not to be an SRU.
We will also give some examples. (Characterization of the SRUs seems to be a very
difficult problem.) The proofs that are not very short are given in the second part of the
paper.

Notation. We shall denote by F an algebraically closed field of characteristic 0 and
by K an algebraically closed field complete for a non-trivial ultrametric absolute value
denoted by | · |. For all sets S in F or in K, we put S∗ = S \ {0}.

We shall denote by ‘log’ a real logarithm function of base p > 1 and by v the valuation
function of K defined as x �→ v(x) = − log |x|. We put v(K) = {v(x) | x ∈ K∗}.

Given r > 0, we denote by d(a, r−) the disc {x ∈ K | |x − a| < r} and by K[x]
the K-algebra of polynomials in one variable, with coefficients in K. We denote by
A(K) (respectively, A(d(a, r−))) the ring of entire functions in K (respectively, analytic
functions in d(a, r−), i.e. power series converging in d(a, r−) [4]).

Remark 1.2. A subset A of K is an SRU for A(K) if and only if, for every non-
constant affine application σ, the subset σ(A) is an SRU for A(K).

Remark 1.3. A subset S of d(a, r−) is an SRU for A(d(a, r−)) if and only if, for
every bianalytic bijection Φ from d(a, r−) onto d(a, r−), the subset Φ(S) is an SRU for
A(d(a, r−)).

Example 1.4. The set of zeros S of a function f ∈ A(d(a, r−)) is not an SRU for
A(d(a, r−)) because f(S) = λf(S). For example, let (an)n∈N be a sequence in K satisfy-
ing limn→∞ |an| = ∞. The set S = {an | n ∈ N} is not an SRU for A(K) because there
exists

f(x) =
∞∏

n=0

(
1 − x

an

)

satisfying f(an) = 0 for all n ∈ N [6].

Example 1.5. Let (an)n∈N be a sequence inside a disc d(a, r−) satisfying

lim
n→∞

|an − a| = r.

According to [6] there exists f ∈ A(d(a, r−)) such that f(an) = 0 for all n ∈ N. Hence,
the set S = {an | n ∈ N} is not an SRU for A(d(a, r−)).

Remark 1.6. Given a family of functions F such that KF ⊂ F or FF ⊂ F , if a
set S is included in the set of zeros of a function f ∈ F , it is not an SRU for F . As a
consequence, if K[x] ⊂ F , an SRU for F is always infinite.

Remark 1.7. In the same way, given a set S ⊂ K and a K-algebra of functions F , if
there exists f ∈ F such that f(S) is a finite set, then S is not an SRU for F because there
exists a polynomial P (whose zeros are the points of f(S)) such that P ◦ f(S) = {0}.
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We observe that this property is shown in [3].

Proposition 1.8. Let a subset S of d(a, r−) be an SRU for A(d(a, r−)) and let
b ∈ d(a, r−). Then the subsets S ∪ {b} and S \ {b} are also SRUs for A(d(a, r−)).

Remark 1.9. Adding or removing a finite number of points to or from a set does not
change the property that this set is an SRU or a non-SRU.

Remark 1.10. On the contrary, adding or removing infinitely many points can dete-
riorate the property of range uniqueness (see Examples 1.18 and 1.19 below).

Remark 1.11. A set S that is preserved by an affine mapping φ is not an SRU for
polynomials (and therefore for any family of function containing polynomials) because
any polynomial P satisfies P (S) = P ◦ φ(S). For instance, if Z is included in K, it is not
an SRU for polynomials.

Example 1.12. Let A be a subset of K and let σ be a non-constant affine application
different from the identity. For an integer n � 1 we put σ[n] = σ ◦ · · · ◦σ (n times). If
n < 0, we put σ[n] = σ−1 ◦ · · · ◦σ−1 (−n times) and σ[0] = identity. Then it is easy to
see that Aσ =

⋃
n∈Z σ[n](A) is not an SRU for K[x].

In particular, let A be a subset of K, let n ∈ N and let ζ ∈ K, ζ �= 1, be such that
ζn = 1. Then the set Aζ =

⋃n−1
i=0 ζiA is not an SRU for K[x].

Proposition 1.13. Let p be a prime integer, consider that Q is a subfield of F and
let S ⊂ Q be a set included in a disc d(a, r−) in Cp that is an SRU for the Cp-algebra
A(d(a, r−)). Then S is an SRU for F [x].

Proof. Let f, g ∈ F [x] satisfy f(S) = g(S) and let E be a finite extension of Q

containing all coefficients of f and g. There exists a Q-isomorphism from E into Cp;
hence, f and g belong to Cp[x], and therefore f = g. �

Proposition 1.13 will be applied in Examples 1.19, 1.25 and 1.29. Now, Proposition 1.14
lets us obtain a bounded sequence that is not an SRU for polynomials, and therefore not
an SRU for every class of functions containing them.

Proposition 1.14. Let q ∈ N, q � 3. Then the subset S = {ζ ∈ F \ {1} | ∃j ∈
N∗, ζqj

= 1} is not an SRU for F [X].

Remark 1.15. In particular, Proposition 1.14 applies to C[x].

Following the same kind of method as in [3], but using specific ultrametric properties of
analytic functions, we can obtain the following theorem, which looks like [3, Theorem 3],
but is a little more general.

Theorem 1.16. Let (an)n∈N be a sequence of limit a in the disc d(a, r−) satisfying
|an+1 − a| < |an − a| for all n ∈ N and suppose that the set {an | n � 0} is not an SRU
for A(d(a, r−)). There then exist k ∈ Z∗ and d ∈ N∗ such that the sequence

(
an+k − a

an − a

)d
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has a limit in K and the sequence (
log |an+k − a|
log |an − a|

)

converges to a limit in Q.

Corollary 1.17. Let (an)n∈N be a sequence of limit a in d(a, r−) satisfying |an+1−a| <

|an − a| for all n ∈ N, such that the sequence∣∣∣∣an+k − a

an − a

∣∣∣∣
has no limit, for any fixed k ∈ N∗. Then {an | n ∈ N} is an SRU for A(d(a, r−)).

Example 1.18. Let (an)n∈N be a sequence in Cp such that
∣∣∣∣an+1

an

∣∣∣∣ =
1
p

when n is not of the form ps and ∣∣∣∣an+1

an

∣∣∣∣ =
1
p2

when n is of the form ps.
Let k be fixed in N∗ and let n > k + 2. As ps > k + 1 and p � 2, we have∣∣∣∣an+k

an

∣∣∣∣ =
∣∣∣∣an+1

an

∣∣∣∣
∣∣∣∣an+2

an+1

∣∣∣∣ · · ·
∣∣∣∣ an+k

an+k−1

∣∣∣∣.
First let n = ps + 1. For every j = 0, . . . , k − 1 we have ps + 1 � n + j < ps+1. Indeed,

as ps > k + 1 and p � 2, we can check that

n + j < n + k = ps + 1 + k < ps + ps = 2ps � ps+1.

Hence, ∣∣∣∣an+j+1

an+j

∣∣∣∣ =
1
p

for each j = 0, . . . , k − 1 and, consequently,∣∣∣∣an+k

an

∣∣∣∣ =
1
pk

.

Now, let n = ps. We see that n + 1 = ps + 1 and then∣∣∣∣an+2

an+1

∣∣∣∣
∣∣∣∣an+3

an+2

∣∣∣∣ · · ·
∣∣∣∣ an+k

an+k−1

∣∣∣∣ =
1

pk−1 .

Since ∣∣∣∣an+1

an

∣∣∣∣ =
1
p2 ,
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we have ∣∣∣∣an+k

an

∣∣∣∣ =
1

pk+1 .

Thus, the sequence |(an+k)/an| has no limit. Hence, by Theorem 1.16, the set S = {an |
n � 0} is an SRU for A(d(0, r−)) with r > |a0|.

In particular, let r be > 1 and

S = {pn | n ∈ N \ (pN∗)} = {1, p, p2, . . . , p2p−1, p2p+1, p2p+2, . . . }.

Then S is an SRU for A(d(0, r−)).
Now, owing to Proposition 1.13, we obtain the following example.

Example 1.19. For every prime integer p, the set S = {pn | n ∈ N \ (pN∗)} =
{1, p, p2, . . . , p2p−1, p2p+1, p2p+2, . . . } is an SRU for F [x]. Now, considering S as a subset
of C, we observe that it is an SRU for C[x].

Remark 1.20. It is natural to ask whether an SRU for polynomials is also an SRU
for analytic functions either in C or in a p-adic field. The set S of Example 1.19 shows
that it is not an SRU for the algebra of complex entire functions A(C) because there do
exist non-zero f ∈ A(C) satisfying f(S) = {0}.

Also, given a prime number p, consider the set

Tp =
{

1
p(n!) , n ∈ N∗

}
.

By [3, Theorem 3] we can check that Tp is an SRU for the C-algebra of analytic functions
in a neighbourhood of zero and, therefore, that it is an SRU for Cp[x]. But, in the field
Cp, we have

lim
n→∞

∣∣∣∣ 1
pn!

∣∣∣∣ = +∞.

Hence, there exist non-zero functions f ∈ A(Cp) such that f(Tp) = {0} and therefore Tp

is not an SRU for A(Cp).

Corollary 1.21. Let (an)n∈N be a sequence of limit a in d(a, r−) satisfying |an+1−a| <

|an − a| for all n ∈ N such that the sequence

log |an+1 − a|
log |an − a|

admits a limit l that is transcendental over Q. Then the set {an | n ∈ N} is an SRU for
A(d(a, r−)).

Proof. For all k ∈ N∗,

lim
n→∞

log |an+k − a|
log |an − a| = lk.

Since lk �∈ Q, by Theorem 1.16, {an | n � 0} is an SRU for A(d(a, r−)). �
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Example 1.22. Let (un)n∈N be the sequence of decimal approximations of 1/π. After
choosing a0 ∈ Cp, with |a0| < 1, we can define a sequence (an)n∈N in Cp such that
v(an+1) = unv(an). Therefore, all terms an lie in the disc d(0, 1−) of Cp and satisfy
log |an+1|/ log |an| = un. Hence,

lim
n→∞

log |an+1|
log |an| =

1
π

,

and therefore {an | n � 0} is an SRU.

Corollary 1.23. Let (an)n∈N be a sequence of limit a in d(a, r−) satisfying |an+1−a| <

|an − a| for all n ∈ N, such that the sequence log |an+1 − a|/ log |an − a| is unbounded.
Then {an | n � 0} is an SRU for A(d(a, r−)).

Example 1.24. Let (an)n�0 be a sequence of d(0, r−) such that, for all n,
|an+1| < |an| and limn→+∞ an = 0. Suppose that (λn)n�0 is a sequence of R such that
limn→+∞ λn = +∞ and, for all n, |an+1| < |an|λn . Then the subset S = {an | n � 0} of
d(0, r−) is an SRU for A(d(0, r−)).

In particular, when K = Cp, for every q ∈ N \ {0; 1}, the set Sq = {ppnq

| n � 0} is an
SRU for any K-algebra A(d(0, r−)).

Example 1.25. Let p be a prime integer and let q be an integer greater than or equal
to 2. Then the set Sq = {ppnq

| n � 0} is an SRU for F [x].

Example 1.26. Let (an) be a sequence of limit a in a disc d(a, r−) with r < 1,
such that |an+1 − a| = |an − a|2 whenever n is of the form qd, with q, d ∈ N∗ and
|an+1 − a| = |an − a|3, otherwise. Then the set S = {an | n ∈ N} is an SRU for
A(d(a, r−)).

Indeed, suppose S is not an SRU for A(d(a, r−)). There exists k ∈ Z∗ such that the
sequence (log |an+k − a|/ log |an − a|) has a rational limit l. Let d ∈ N be such that
qd > |k|. Suppose first that k > 0. Let n be of the form qm with m > d. Since all
integers n + 1, . . . , n + k lie in ]qm, qm+1[, we have log |an+k − a|/ log |an − a| = 2.3k−1

and, hence, l = 2.3k−1. Now, however, we check that all integers n+1, . . . , n+ k +1 also
lie in ]qm, qm+1[; hence,

log |an+k+1 − a|
log |an+1 − a| = 3k,

and l = 3k, which is a contradiction. A similar proof applies when k < 0.

Theorem 1.16 suggests that a converging sequence (an) of limit a which is an SRU for
analytic functions inside a disc d(a, r−) should be such that (log |an+k − a|/ log |an − a|)
admits no rational limit. Actually, this sufficient condition is far from necessary, as is
shown in Theorem 1.27. Recall that the values group of K is a Q-vector space.

Theorem 1.27. Let b ∈ [1, +∞[ and let (λn)n∈N be a sequence of positive numbers
satisfying the following conditions.

(i) λn ∈ v(K) for all n ∈ N.

(ii) limn→+∞(λn) = +∞.
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(iii) There exists an integer m ∈ N such that λn+1 > bλn for all n > m.

(iv) limn→+∞(λn+1 − bλn) = Ω, where Ω = 0 or Ω = +∞. Moreover, if Ω = +∞, then
either b = 1 or bk /∈ Q for all k ∈ N∗.

(v) lim
n→+∞

(λn+1/λn) = b.

Let (an)n∈N be a sequence of d(a, r−) such that log |an − a| = −λn for every n > m.
Then the subset S = {an | n ∈ N} is an SRU for A(d(a, r−)).

Corollary 1.28. Let L ∈ v(K) be such that L > 0 and let (an)n�0 be a sequence of
d(a, r−) such that, for all n, log |an −a| = −Lnγ , with γ an integer greater than or equal
to 2. Then the subset S = {an | n � 0} of d(a, r−) is an SRU for A(d(a, r−)).

Example 1.29. Let r > 0 and c ∈ d(0, r−) such that |c| < 1. For all integers q � 2,
the sets Sq(c) = {cnq | n � 1} are SRUs for A(d(0, r−)). In particular, if K = Cp, we can
take c = p (with r > 1/p).

Example 1.30. As an application of Proposition 1.13 and Corollary 1.28, assuming
that the characteristic of the field F is zero, we can see that in F , for every prime integer
p and for every integer q � 2, the set {pnq | n ∈ N} is an SRU for F [x].

In the same way, the same set in Cp is an SRU for any K-algebra A(d(0, r−)) with
r > 1/p.

The following proposition shows how to construct a sequence (λn)n∈N satisfying the
hypotheses of Theorem 1.27.

Proposition 1.31. Let γ ∈ ]0, 1[ ∪ ]1, +∞[. Let L be > 0 and, furthermore, let
b ∈ [1, +∞[ satisfy bk /∈ Q for all k ∈ N∗ whenever γ > 1 and b > 1. For every n ∈ N, let

λn ∈ v(K) ∩
[
bnLnγ , bnLnγ +

1
n + 1

]
.

Then the sequence λn satisfies the hypotheses of Theorem 1.27.

Corollary 1.32. Let a ∈ K, r ∈ ]0, +∞[, γ ∈ ]0, 1[ ∪ ]1, +∞[ and L ∈ R∗
+. Let

b ∈ [1, +∞[ satisfy bk /∈ Q for all k ∈ N∗ whenever b > 1.
There exist sequences (an)n∈N in d(a, r−) such that {an | n ∈ N} is an SRU for

A(d(a, r−)), satisfying

lim
n→∞

v(an − a)
bnnγ

= L.

Remark 1.33. We note that, in the hypothesis of Corollary 1.32, for every fixed
k ∈ N, we have

lim
n→∞

log |an+k − a|
log |an − a| = 1.

Remark 1.34. In Proposition 1.31, when the valuation group of K is equal to R,
we can take λn = nγ whenever n ∈ N. But in the most usual case when the valuation
group is isomorphic to Q, as it is when K = Cp, if γ is not an integer, we have to choose
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the λn different from nγ , and, more precisely, such that we can find points an satisfying
v(an −a) = λn. Thus, we can take for λn a suitable upper rational approximation of Lnγ

and then define a sequence (an).

Remark 1.35. In Proposition 1.31 and Corollaries 1.28 and 1.32, the hypothesis γ �= 1
is necessary, as shown in the following example.

Example 1.36. Let a ∈ K. Then the set S1(a) = {an | n � 0} is not an SRU for K[X].
Indeed, if we consider the f(x) = (1−x)(a−x) and g(x) = f(ax) = a(1−x)(1−ax), we
have f(1) = f(a) = 0, f(an) = a(1 − an−1)(1 − an), n � 2 and g(1) = 0, g(an) = a(1 −
an)(1 − an+1), n � 1. Hence, f(S1(a)) = g(S1(a)) = {0, a(1 − an−1)(1 − an) | n � 2}.

In particular, in the field Cp, the subset S1(p) = {pn | n � 0} is not an SRU for Cp[X].

Now, we can ask whether a closed open set might be an SRU. Without answering the
question, we give some immediate remarks.

1.1. Definitions and notation

Given A, B ⊂ K, we denote by δ(A, B) the distance from A to B.
Let D be an infinite set in K and let a ∈ D. If D is bounded of diameter r, we denote

by D̃ the disc d(a, r) = {x ∈ K | |x−a| � r} and, if D is not bounded, we set D̃ = K. It is
known that D̃ \ D̄ admits a unique partition of the form (d(ai, r

−
i ))i∈I , with ri = δ(ai, D)

for each i ∈ I. The discs d(ai, r
−
i ), for all i ∈ I are called the holes of D [4].

Let D be a subset of K. We call the number δ(D, K \D) the codiameter of D (denoted
by codiam(D)).

We can now describe a large class of sets D that are not SRUs for K[X] and therefore
are not SRUs for any larger class of functions.

Theorem 1.37. Let D be a set such that codiam(D) > 0. Then D is not an SRU
for K[X].

Remark 1.38. If codiam(D) > 0, then D is a closed and open set. The converse is
not true: there exist closed open subsets of K with a codiameter equal to 0.

Corollary 1.39. An affinoid set of K is not an SRU for K[X]. In particular, a disc
or an annulus is not an SRU for K[X].

Among the questions which remain, we can consider the following.

(1) Having shown that a set D of codiameter greater than 0 cannot be an SRU for
K[X], is it possible to show this for other sets by considering the family R(D) of
rational functions h ∈ K(x) with no pole in D (respectively, the family H(D) of
analytic elements on D [4])?

(2) All SRUs we have found are countable sets. This leads us to wonder whether an
SRU might be uncountable.

(3) Might an SRU for A(K) included inside a disc d(a, r−) be a non-SRU for
A(d(a, r−))?
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2. The proofs

Proof of Proposition 1.14. Consider an integer 
 � 2 prime to q. Let us show that
the function f� : x �→ x� is a permutation of S. Indeed, if x and y are two distinct elements
of S such that x� = y�, then x = ξy, with ξ �= 1 and ξ� = 1. But then there exist i, j ∈ N∗

such that xqi

= yqj

= 1. Without loss of generality we can suppose that j � i. Then
xqj

= yqj

= 1 and, thus, ξqj

= 1: a contradiction to the fact that (qj , 
) = 1 and ξ� = 1.
Thus, f� is injective. On the other hand, if ζ is an element of E, there exists j ∈ N∗

such that ζqj

= 1. Let u, v ∈ Z be such that u
 + vqj = 1. Then we have ζ1−vqj

= (ζu)�.
If we set η = ζu, we can easily check that η ∈ E and ζ = f�(η). Hence, f� is surjective
and is therefore bijective. Thus, we see that, if 
 and 
′ are two distinct integers both
prime to q, then f� and f�′ are two distinct polynomials satisfying f�(S) = f�′(S) = S.
This means that S is not an SRU for F [x]. �

Notation. Let f ∈ A(d(a, r−)) be such that f(x) =
∑

n�0 αn(x − a)n. For every
ρ ∈]0, r[ we set |f |a(ρ) = supn�0 |αn|ρn. In order to write this relation additively, we set
va(f, µ) = infn�0(v(αn) + nµ), where µ = − log ρ.

To learn more about the properties of the functions ρ �→ |f |a(ρ) and µ �→ va(f, µ),
see [2,4].

We shall need the following lemma, whose proof is based on the classical properties of
analytic functions over ultrametric fields [4].

Lemma 2.1. Let f(x) =
∑∞

m=d αmxm ∈ A(d(0, r−)) with αd �= 0 and let (an)n∈N

be a sequence in d(0, r−) such that limn→∞ an = 0. There then exists q ∈ N such that
|f(an)| = |αd| |an|d for all n � q.

The next lemma is the main tool to use when starting the proofs of Theorems 1.16
and 1.27.

Lemma 2.2. Let (an)n∈N be a sequence in d(0, r−) of limit 0 and such that |an+1| <

|an| for all n ∈ N. Let f, g ∈ A(d(0, r−)), f �= g, satisfy {f(an)} = {g(an)} and f(0) =
g(0). There then exist k ∈ Z∗ and q ∈ N such that f(an) = g(an+k) for all n � q.

Proof. For every n ∈ N we denote by k(n) ∈ Z an integer such that f(an) =
g(an+k(n)). Let f(x) =

∑∞
m=c αmxm and let g(x) =

∑∞
m=d βmxm with αcβd �= 0 and

c, d ∈ N∗. Without loss of generality we may obviously assume that f(0) = g(0) = 0.
Consequently, we have cd �= 0.

We first note that limn→∞(n + k(n)) = +∞. However, suppose this is not true. There
then exist A > 0 and a strictly increasing sequence (ns)s∈N of N such that ns +k(ns) < A

for all s ∈ N. Since the set of integers ns + k(ns) such that ns + k(ns) < A is finite,
we see that {f(ans), s ∈ N} is a finite set. Since lims→∞ ans = 0 and since f(0) = 0,
we see that f(ans) = 0 has an infinity of solutions converging to zero: a contradiction
to the properties of analytic functions stating that zeros are isolated. Consequently, we
have limn→∞ n + k(n) = +∞. Therefore, by Lemma 2.1, there exists t ∈ N such that
|f(an)| = |αc| |an|c and |g(an)| = |βd| |an|d for all n � t.
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Consequently, since c, d > 0, the sequences (|f(an)|)n�t and (|g(an)|)n�t are strictly
decreasing. Also, we can find s � t with the following property: if m, l ∈ N are such that
m < t and l � s, then f(am) �= g(al). Moreover, since limn→∞ n + k(n) = +∞, there
exists q � t such that n + k(n) � s for all n � q.

Now, take n � q. We have |g(an+1+k(n+1))| = |f(an+1)| < |f(an)| = |g(an+k(n))|. Since
n + k(n) � s � t and n + 1 + k(n + 1) � s � t, this implies that |an+1+k(n)| < |an+k(n)|,
and hence n + 1 + k(n + 1) > n + k(n).

On the other hand, by hypothesis there exists j ∈ N such that f(aj) = g(an+1+k(n)).
Taking into account the definition of s, this j must satisfy j � t because n+1+k(n) � s.
Now, since

|f(aj)| = |g(an+1+k(n))| < |g(an+k(n))| = |f(an)|
and since (|f(an)|)n�t is strictly decreasing, we must have j > n. Hence, we obtain

|f(aj)| � |f(an+1)| = |g(an+1+k(n+1))| � |g(an+1+k(n))| = |f(aj)|.

Thus, the above inequality is actually an equality. Consequently, n + 1 + k(n + 1) =
n + 1 + k(n), which proves that k(n + 1) = k(n) = k ∈ Z for every n � q. Obviously,
k �= 0 because otherwise we would have f(an) = g(an) for all n � q and then f = g. �

Proof of Theorem 1.16. Without loss of generality, we can obviously assume that
a = 0. Suppose that {(an) | n ∈ N} is not an SRU for A(d(0, r−)) and let f, g ∈
A(d(0, r−)) satisfy f �= g and {f(an)} = {g(an)}. By extracting subsequences of {(an)},
we can see that f(0) = g(0). Hence, we can also assume that f(0) = g(0) = 0.

Let

f(x) =
∞∑

j=c

αjx
j , g(x) =

∞∑
j=d

βjx
j

with αcβd �= 0 and c, d > 0.
By Lemmas 2.1 and 2.2 there exist q ∈ N and k ∈ Z∗ such that |f(an)| = |αc| |an|c,

|g(an)| = |βd| |an|d and f(an) = g(an+k) for all n � q. Moreover, without loss of gener-
ality we can assume that k > 0 because f and g play the same role. Thus, we have

|αc| |an|c = |βd| |an+k|d for all n � q. (2.1)

Consequently, by (2.1) we obtain

log |an+k|
log |an| =

log |αc| − log |βd|
d log |an| +

c

d

and, since limn→∞ an = 0, we see that

lim
n→∞

log |an+k|
log |an| =

c

d
.

Next, we can write f(x) = xc(αc + ε(x)), g(x) = xd(βd + µ(x)) with limx→0 ε(x) =
limx→0 µ(x) = 0. Take n � q. We have

f(an) = ac
n(αc + ε(an)), g(an+k) = (an+k)d(βd + µ(an+k)).
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Since f(an) = g(an+k), we see that ac
n(αc + ε(an)) = (an+k)d(βd + µ(an+k)). Therefore,

we obtain (
an+k

an

)d

= (an)c−d

(
αc + ε(an)

βd + µ(an+k)

)
. (2.2)

On the other hand, since limn→∞ ε(an) = limn→∞ µ(an) = limn→∞ an = 0 and since
|an+k/an| < 1, we have c � d. If d < c, then, by (2.2), an+k/an → 0. And if c = d, then

lim
n→∞

(
an+k

an

)d

=
αc

βd
.

This completes the proof of Theorem 1.16. �

Proof of Theorem 1.27. By hypothesis (iv) we first observe that

lim
n→∞

(λn+k − bkλn) =
( k−1∑

j=0

bj

)
Ω. (2.3)

Without loss of generality, we may assume that a = 0. Let f, g ∈ A(d(0, r−)) be two non-
constant functions such that f(S) = g(S). By property (ii), obviously limn→∞ an = 0, so
we may also assume that f(0) = g(0) = 0. Since λn+1 > bλn for n > m, we may observe
that the sequence (|an|)n>m is strictly decreasing. Let

f(x) =
∞∑

j=c

αjx
j , g(x) =

∞∑
j=d

βjx
j , αcβd �= 0.

By Lemma 2.2, there exists an integer q � m and there exists k ∈ Z such that f(an) =
g(an+k) for all n � q. Since f and g play the same role, we may assume that k � 0
without loss of generality. We want to show that k = 0, and hence f = g.

There exists s ∈ ]0, r[ such that f and g have no zero inside d(0, s) except 0. There-
fore, by Lemma 2.1, we have |f(x)| = |αc| |x|c, |g(x)| = |βd| |x|d for all x ∈ d(0, s).
Consequently, there exists t ∈ N such that t � q + k and

|f(an)| = |αc| |an|c, |g(an)| = |βd| |an|d for all n > t.

Thus, we obtain |αc| |an|c = |βd| |an+k|d, and hence c log |an| = d log |an+k| − h for all
n > t, with h = log |αc| − log |βd|. Now, by hypothesis we have log |an| = −λn for all
n > m. Hence,

cλn = dλn+k + h for all n > t. (2.4)

Suppose that k > 0. Assume first that c �= d. By (v) we can check that each sequence
(un,j)n∈N, j = 0, . . . , k − 1, defined as

un,j =
(

λn+j

λn

)
,
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has limit bj and, therefore, by (v) again, each sequence (θn,j)n∈N, j = 0, . . . , k−1, defined
as

θn,j = bk−j−1
(

λn+j+1 − bλn+j

λn+j

)(
λn+j

λn

)
, j = 0, . . . , k − 1,

has limit 0. Consequently, we can check that

lim
n→∞

[
λn+k − bkλn

λn

]
= 0

and therefore

lim
n→∞

c(λn − b−kλn+k)
λn+k

= 0. (2.5)

We will show that

lim
n→∞

|cλn − dλn+k − h| = +∞. (2.6)

Let us write

|cλn − dλn+k − h| = |c(λn − b−kλn+k) + λn+k(cb−k − d) − h|. (2.7)

Suppose first that cb−k �= d. By (2.5) and (ii), we have

lim
n→∞

|c(λn − b−kλn+k) + λn+k(cb−k − d) − h| = +∞,

which shows that (2.6) holds.
Suppose now that cb−k = d. By (2.7) we see that

|cλn − dλn+k − h| = |c(λn − b−kλn+k) − h|. (2.8)

However, since we have supposed that c �= d, we then have b �= 1. Hence, by (iv) we
have Ω = +∞. So, by (2.1), we see that relation (2.6) is clearly satisfied again. Thus,
(2.6) is satisfied anyway: a contradiction to (2.4). Consequently, c = d.

Thus, by (2.4), we arrive at
c(λn − λn+k) = h. (2.9)

But λn+k > bkλn, and hence c(λn+k − λn) > cλn(bk − 1). If b > 1, by (ii) we see that
limn→∞ λn+k − λn = +∞: a contradiction to (2.9). Consequently, we are now led to
assume that b = 1.

By (2.3) we have limn→∞[λn+k − λn] = kΩ. But since Ω = 0 or +∞, and h is finite,
by (2.8) we actually see that Ω = h = 0.

Consequently, λn = λn+k for all n > t: a contradiction of (iii). Therefore, we have
k = 0 in every case, and hence f = g. This finishes the proof that {an | n ∈ N} is an
SRU for A(d(a, r−)). �
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Proof of Proposition 1.31. Without loss of generality, we may clearly assume that
L = 1. First, (i) and (ii) are obviously satisfied. In order to check the three last conditions,
we first observe the following inequalities:

λn+1 − bλn � bn+1((n + 1)γ − nγ) − b

n + 1
, (2.10 a)

λn+1 − bλn � bn+1((n + 1)γ − nγ). (2.10 b)

Suppose that γ ∈ ]0, 1[. With the help of the finite increasing theorem, by (2.10), we
obtain

λn+1 − bλn � γbn+1(n + 1)γ−1 − b

n + 1
, (2.11 a)

λn+1 − bλn � γbn+1nγ−1, (2.11 b)

respectively.
Thus, by (2.11 a), (iii) may easily be checked when n is sufficiently large. Moreover, if

b > 1, then by (2.11 a) we can see that

lim
n→∞

bn+1((n + 1)γ − nγ) − b

n + 1
= +∞,

so (iv) is satisfied. Conversely, if b = 1, by (2.11 b) we see that

lim
n→∞

((n + 1)γ − nγ) − 1
n + 1

= 0,

which shows (iv) again.
Finally, for all b � 1, we have

λn+1 − bλn

λn
� bγ((n + 1)γ − nγ)

nγ
.

Hence by (2.11 b) we obtain

λn+1 − bλn

λn
� bγ((n + 1)γ−1)

nγ
,

which shows (v).
Now suppose γ > 1. By (2.10) we have

λn+1 − bλn � γbn+1nγ−1 − b

n + 1
, (2.12 a)

λn+1 − bλn � γbn+1(n + 1)γ−1. (2.12 b)

By (2.12 a), (iii) is obviously satisfied and so is (iv) because limn→∞ λn+1 − bλn = +∞,
whereas we have assumed that bk /∈ Q for all k ∈ N whenever b > 1. And by (2.12 b) we
can also check that

λn+1 − bλn

λn
� bγnγ−1

nγ
,

which shows (v) again. �
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Proof of Theorem 1.37. Let r = codiam(D) and λ ∈ d(0, r−) \ {0}. Let f(x) = x

and g(x) = x + λ. Since |g(x) − f(x)| < r for all x ∈ D, we check that g(x) lies in D for
every x ∈ D, and hence g(D) ⊂ D = f(D). Conversely, given x ∈ D, we see that x − λ

lies in D and satisfies g(x − λ) = x. Hence, g(D) = D. �
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