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Connecting Finite-Dimensional,
Infinite-Dimensional and Higher Geometry

In this chapter we will highlight an interesting connection between finite- and
infinite-dimensional differential geometry. To this end, we shall consider in
§6.2 elements from ‘higher geometry’, so-called Lie groupoids. The moniker
higher geometry stems from the fact that in the language of category theory,
these objects form higher categories. We shall not explore higher categories
or their connection to differential geometry in this book (but the reader might
consult Meyer and Zhu (2015) or the general introduction by Baez (1997)).
In previous chapters we have discussed how finite-dimensional manifolds and
geometric structures give rise to infinite-dimensional structures such as Lie
groups (e.g. the diffeomorphism and groups of gauge transformations) and
Riemannian metrics (such as the L2-metric from shape analysis). While we
have seen that every manifold determines an (in general, infinite-dimensional)
group of diffeomorphisms, we turn this observation now on its head and ask:

Can we recognise the underlying finite-dimensional geometric structure from
the infinite-dimensional object?

6.1 Diffeomorphism Groups Determine Their Manifolds

Let us examine this question for the diffeomorphism group. We have already
seen that for every compact manifold we can associate the infinite-dimensional
diffeomorphism group. Conversely, Takens (1979) has shown that the diffeo-
morphism group identifies (up to diffeomorphism) the underlying manifold.
Namely, we have the following theorem (which we cite here from the much
more general statement of Filipkiewicz (1982)):

6.1 Theorem (Takens (1979)/Filipkiewicz (1982)/Banyaga (1988)/Rubin
(1989)) If M,N are smooth compact, connected manifolds such that
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6.1 Diffeomorphism Groups Determine Their Manifolds 121

φ : Diff(M) → Diff(N ) is a group isomorphism then there exists a diffeo-
morphism φ : M → N such that Φ(γ) = φ ◦ γ ◦ φ−1.

A full proof of Theorem 6.1 would lead us too far astray, but it is possi-
ble to highlight certain aspects of the proof which are of special interest to us
with regard to the question of whether finite-dimensional objects can be recog-
nised from their associated infinite-dimensional objects. Before we begin, let
us recall two concepts for diffeomorphism groups.

6.2 Definition Let M be a smooth and compact manifold.

• For x0 ∈ M , the stabiliser is defined as

Sx0 Diff(M) � {h ∈ Diff(M) | h(x0) = x0}.

• The group Diff(M) acts n-transitive on the manifold M for n ∈ N if for
any two sets {x1, . . . , xn }, {y1, . . . , yn } of non-repeating points in M , there is
h ∈ Diff(M) with h(xi ) = yi , i ∈ {1, . . . ,n}.

We shall show how a group isomorphism of diffeomorphism groups map-
ping stabilisers to each other induces a diffeomorphism on the base manifold.
The first step towards this is Banyaga (1988, Lemma 1) (also compare Rybicki,
1995).

6.3 Lemma Let M,N be two connected smooth manifolds and φ : Diff(M)→
Diff(N ) a group isomorphism such that the following holds:

(a) For K ∈ {M,N }, Diff(K ) acts n-transitively for n ∈ {1,2}, and

(b) for each x0∈M there exists y0∈N such that φ(Sx0 Diff(M)) = Sy0 Diff(N ).

Then there is a unique homeomorphism ω : M → N such that φ( f ) = ω fω−1.

Proof Step 1: Construction of the homeomorphism ω. Fix a pair of points x0

and y0 as in condition (b). Since Diff(M) and Diff(N ) are 1-transitive, we see
that

evx0 : Diff(M) → M, h �→ h(x0) and evy0 : Diff(N ) → N, g �→ g(y0)

are surjective with ev−1
x0

(x0) = Sx0 Diff(M) (and similarly for y0). We can
thus choose for every x ∈ M an (in general) non-unique diffeomorphism
hx ∈ Diff(M) such that hx (x0) = x. Now if h̃ is another diffeomorphism
such that h̃(x0) = x we see that h̃−1hx (x0) = x0, and so h̃−1hx ∈ Sx0 Diff(M).
As by assumption, φ(Sx0 Diff(M)) = Sy0 Diff(N ), this implies φ(h̃−1hx ) =
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122 Finite-Dimensional, Infinite-Dimensional and Higher Geometry

φ(h̃−1)φ(hx ) ∈ Sy0 Diff(N ). Indeed, the value is independent of the choice of
hx , whence we obtain a well-defined map

ω : M → N, x �→ evx0 (φ(hx )) = φ(hx )(y0)

as this mapping does not depend on the choice of hx . Again by the above, the
map ω is a bijection which is even a homeomorphism (details will be checked
in Exercise 6.1.1).

Step 2: ω induces φ. Let y ∈ N and h ∈ Diff(N ) with h(y0) = y and x =
φ−1(h)(x0). By construction we have ω(x) = y. If f ∈ Diff(M) we pick
g ∈ Diff(M) with g(x0) = f (x). Then f −1(g(x0)) = x = φ−1(h)(x0) and thus
g−1 f φ−1(h) ∈ Sx0 Diff(M). We deduce that (φ(g))−1 ◦φ( f ) ◦ h ∈ Sy0 Diff(N )
or in other words φ( f ) ◦ h(y0) = φ(g)(y0). Now h(y0) = y = ω(x) and
φ(g)(y0) = ω( f (x)) (as g(x0) = f (x)). We deduce that

φ( f )(ω(x)) = ω( f (x)), φ( f ) ◦ ω = ω ◦ f ,

and using that ω is bijective, this yields φ( f ) = ω ◦ f ◦ ω−1.

Step 3: ω is unique. Assume that there is another homeomorphism ω̃ : M → N
inducing φ. Then

ω ◦ f ◦ ω−1 = φ( f ) = ω̃ ◦ f ◦ ω̃, for all f ∈ Diff(M).

In other words we have for ρ � ω̃−1 ◦ ω that ρ ◦ f ◦ ρ−1 = f , for all f ∈
Diff(M). Arguing by contradiction we assume that ρ � idM . Then there exists
x ∈ M with y = ρ(x) � x. Pick z ∈ M \ {x, y}. Now Diff(M) is 2-transitive,
whence there is f ∈ Diff(M) with f (x) = x and f (y) = z. We see that

ρ ◦ f ◦ ρ−1(y) = ρ( f (x)) = ρ(x) = y � z = f (y).

However, this contradicts ρ ◦ f ◦ ρ−1 = f , hence we must have ω̃ = ω. �

Sketch of the proof of Theorem 6.1 Every group isomorphism φ : Diff(M)→
Diff(N ) satisfies condition (b) in the statement of Lemma 6.3 (this is far from
trivial; see Filipkiewicz, 1982). Moreover, the group of smooth diffeomor-
phisms acts n-transitively for every n ∈ N if dim M > 1; see Michor and
Vizman (1994). Thus we can apply Lemma 6.3 to obtain a homeomorphism
ω : M → N .

We prove that ω is a diffeomorphism under the assumption that φ : Diff(M)
→ Diff(N ) is a Lie group isomorphism. Note that the statement of the theo-
rem is much stronger as, a priori, φ need not even be continuous. However,
in this case one needs a deep result on Lie group actions on manifolds; see
Filipkiewicz (1982, Step 3 on p. 173). A posteriori this implies that any group
isomorphism Diff(M) → Diff(N ) is already a Lie group isomorphism.
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6.2 Lie Groupoids and Their Bisections 123

So let us assume that φ is a Lie group isomorphism and let us study the
composition ω ◦ evx0 : Diff(M) → N . By Step 2 of the proof of Lemma 6.3
we can rewrite this as

ω ◦ evx0 (h) = evy0 (φ(h)) (and conversely ω−1 ◦ evy0 = evx0 ◦φ−1).

Now Exercise 2.3.3(a) shows that evx0 and evy0 are smooth surjective sub-
mersions. Hence the smoothness of the right-hand side together with Exercise
1.7.5 shows that ω and ω−1 are smooth. �

We have seen that diffeomorphism groups determine (up to diffeomorphism)
their underlying manifold uniquely. In the next section we shall discuss
objects, so-called Lie groupoids, which can be used to describe many finite-
dimensional geometric structures and which admit a similar connection to
infinite-dimensional groups.

Exercises

6.1.1 We are working in the setting of Lemma 6.3 and let φ : Diff(M) →
Diff(N ) be a group isomorphism which maps the stabiliser
Sx0 Diff(M) to the stabiliser Sy0 Diff(N ).

(a) Show that the mapping ω : M → N , x �→ φ(hx )(y0) is a bijec-
tion (where hx ∈ Diff(M) with hx (x0) = x).

(b) It is well known that Diff(M) satisfies the following condition:
For any non-empty connected U ⊆◦ M and x ∈ U, there exists
h ∈ Diff(M) \ {idM } such that {y ∈ M | h(x) � x} ⊆ U and x
is contained in the interior of {y ∈ M | h(x) � x}.
Let f ∈ Diff(M) and define Fix( f ) � {x ∈ M | f (x) = x}.
Show that the set B � {M \ Fix( f ) | f ∈ Diff(M)} is a basis
for the topology on M .

(c) Show that Fix(φ(g)) = ω(Fix(g)) holds and conclude that ω is
a homeomorphism.

6.2 Lie Groupoids and Their Bisections

In this section we consider a generalisation of Lie groups called Lie groupoids.
These objects allow one to treat constructions in differential geometry as dif-
ferentiable objects. For example, quotients of manifolds modulo Lie group
actions may fail to be manifolds. However, one can encode them using suitable
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124 Finite-Dimensional, Infinite-Dimensional and Higher Geometry

Lie groupoids. We motivate the construction with the following example of an
ill-behaved quotient.

6.4 Example In Chapter 5, we studied shape spaces which arise as quotients
of manifolds of mappings modulo an action of the diffeomorphism group.
Namely, we considered the canonical action of the Lie group Diff(S1) on the
open submanifold Imm(S1,R2) ⊆◦ C∞(S1,R2) (see Example 3.5 and
Lemma 2.6) via precomposition

p : Imm(S1,R2) × Diff(S1) → Imm(S1,R2), ( f , ϕ) �→ f ◦ ϕ.

The shape space S � Imm(S1,R2)/Diff(S1) is then the quotient modulo the
action. It inherits a natural topology which, however, does not turn S into a
manifold. As the action p is not free, the quotient has singular points in which
one fails to obtain charts. An example for such a point is the image of the
immersion of the circle into R2 given by the map tracing out the circle in
‘double speed’:

c : S1 → R2, eiθ �→ ei2θ .

Since c traces the circle twice we see that p(c, ϕ) = c ◦ ϕ = c for the diffeo-
morphism ϕ : S1 → S1, eiθ �→ ei (θ+π) , and we deduce that the immersion c
has a non-trivial stabiliser under the action ρ. Thus, in particular, the quotient
S is not a manifold (though every singularity is mild in the sense that it is gen-
erated by a finite group, i.e. one obtains an infinite-dimensional orbifold; see
Michor, 2020, Section 7.3). As manifolds are the basic setting for differential
geometry, one needs to pass to the subset generated by the free immersions
(i.e. those immersions with trivial stabiliser). These indeed form a dense open
subset which is a manifold.

The last example exhibits that quotients of Lie group actions will, in general,
not be manifolds. While in this special example one could still say a lot about
the structure of the quotient, it shows that quotient constructions with man-
ifolds are, in general, very badly behaved (not only in infinite dimensions).
Thus we would like to avoid quotients and obtain an object which contains
the same information as the quotient: a (Lie) groupoid. There are many liter-
ature accounts for the basic theory of (finite-dimensional) Lie groupoids such
as Mackenzie (2005) and Meinrencken (2017). While the finite-dimensional
examples will be most important for us as they describe geometric construc-
tions, the concept of a Lie groupoid can also be formulated in the infinite-
dimensional context (as the notion of submersion makes sense in this
setting).
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6.5 Definition (Groupoid) Let G,M be two sets with surjective maps
s, t : G → M (source and target) and a partial multiplication m : G × G ⊇
(s, t)−1(M × M) → G, (a,b) �→ ab which satisfies:

(a) s(ab) = s(b) and t(ab) = t(a), and (ab)c = a(bc);
(b) identity section 1 : M → G with 1(t(g))g = g and g 1(s(g)) = g for all

g ∈ G;
(c) inverses for all g ∈ G there is g−1 ∈ G with g−1g = 1(s(g)) and gg−1 =

1(t(g)).

We call G (or G = (G ⇒ M)) a groupoid and the set M is called the set
of units. If G,M are smooth manifolds, such that the structure maps s, t are
smooth submersions and m,1 and the inversion map i : G → G, i(g) = g−1 are
smooth maps, we say that G = (G ⇒ M) is a Lie groupoid.

Standard Notation for Lie Groupoids Throughout this section (if nothing
else is said), we write G = (G ⇒ M) for a Lie groupoid with structure maps
1, s, t, m, i as in the definition of a groupoid.

6.6 Remark In this book manifolds are required to be Hausdorff. Thus Def-
inition 6.5 excludes by design Lie groupoids G = (G ⇒ M) whose space
of arrows G is not Hausdorff. A broad (and important) class of Lie groupoids
with non-Hausdorff space of arrows are the so-called foliation groupoids, aris-
ing from the treatment of foliations in a groupoid framework; see Moerdijk and
Mrčun (2003). In principle many of the results presented here are also valid in
the non-Hausdorff setting; see, for example, Rybicki (2002).

A useful mental image to keep in mind is to picture the units of the groupoid
as dots connected by arrows which represent the elements of the groupoid
which are not units. This is illustrated in Figure 6.1. Obviously two arrows
can then be composed only if one of them ends where the other starts. This
picture also immediately shows in which way a groupoid generalises the con-
cept of a group: It can possess more units and its elements are not necessarily
composable.

6.7 Definition For G ⇒ M a groupoid, and a ∈ M a unit, we consider the
fibres s−1(a) and t−1(a) of all arrows starting, resp. ending at a. The intersec-
tion Ga � s−1(a) ∩ t−1(a) forms a group, called the vertex group at a of the
groupoid.

If (G ⇒ M) is a Lie groupoid, s−1(a) and t−1(a) are submanifolds of
G by Corollary 1.59. A natural question is then whether the vertex groups
Ga inherit a Lie group structure. In general (for arbitrary infinite-dimensional
Lie groupoids), this question is still open as the finite-dimensional argument

https://doi.org/10.1017/9781009091251.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.007


126 Finite-Dimensional, Infinite-Dimensional and Higher Geometry

•

A groupoid with one unit •
aka a group

• •

• •

Figure 6.1 Picturing groups and groupoids. In the right picture we suppressed all
arrows between the two nodes with looping arrows. As arrows tracing a path from
one node to the other can always be composed, a picture of all groupoid elements
would also need to represent these arrows.

(Mackenzie, 2005, Corollary 1.4.11) establishing the Lie group structure breaks
down in infinite dimensions. However, it has recently been proven in Beltiţă
et al. (2019) that if G,M are Banach manifolds, then the vertex groups of
G ⇒ M are (Banach) Lie groups. Before we finally give examples for Lie
groupoids, let us first define groups which will play roles similar to the diffeo-
morphism group in the previous section in relation to a manifold.

6.8 Definition The group of bisections Bis(G) of G is given as the set of
smooth maps σ : M → G such that s ◦σ = idM and t ◦σ : M → M is a
diffeomorphism. The group structure is given by the product

(σ � τ)(x) � σ((t ◦τ)(x))τ(x) for x ∈ M. (6.1)

The identity section 1 : M → G is the neutral element and the inverse of σ is

σ−1(x) � i(σ((t ◦σ)−1(x))) for x ∈ M. (6.2)

The definition of bisection is not symmetric with respect to source and tar-
get. This lack of symmetry can be avoided by defining a bisection as a set (see
Mackenzie, 2005, p. 23). However, this point of view does not fit well into the
function space perspective we take. Thus we shall stick with the asymmetric
definition.

Lie groupoids simultaneously generalise Lie groups and (differentiable)
equivalence relations. To emphasise this, we recall the following standard
examples (see Mackenzie, 2005).

6.9 Example In the following, we denote by {•} the one-point manifold.

(a) Let G be a Lie group. Then the Lie group structure yields a Lie groupoid
G ⇒ {•}, that is, a Lie group is a Lie groupoid and conversely every Lie
groupoid whose set of units contains only one element is a Lie group. In
this case Bis(G ⇒ {•}) = G.
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6.2 Lie Groupoids and Their Bisections 127

(b) Let π : M → N be a submersion. Then the fibre product of M with itself
gives rise to a Lie groupoid M ×N M ⇒ M . Its source and target maps are
given as s = pr2 and t = pr1. Multiplication is then given by concatenation
(m,n) · (n, k) � (m, k). Using Lemma 1.60, it is not hard to see that
this construction yields a Lie groupoid encoding the equivalence relation
x ∼ y ⇔ π(x) = π(y). We mention two special cases of this construction:

• If π = idM , we obtain the unit groupoid u(M) � (M ⇒ M) (where all
structure mappings are the identity). Clearly Bis(u(M)) = {idM }.

• The map π : M → {•} yields the pair groupoid, p(M) = (M×M ⇒ M).
We shall see in Exercise 6.2.2 that Bis(p(M)) � Diff(M).

6.10 Example Consider a (left) Lie group action α : G × M → M , (g,m) �→
g · m. We form the action groupoid Aα = (G × M ⇒ M), where s(g,m) � m
and t(g,m) � α(g,m). Now multiplication is defined as (g,hm) · (h,m) �
(gh,m). The associated bisection group can be identified as

Bis(Aα ) = {σ ∈ C∞(M,G) | m �→ α(σ(m),m) is a diffeomorphism}. (6.3)

Now C∞(M,G) → C∞(M,M), f �→ α∗( f ×idM ) is smooth. Continuity of this
map together with Diff(M) ⊆◦ C∞(M,M) yields Bis(Aα ) ⊆◦ C∞(M,G). How-
ever, the bisections are not an open subgroup of the current group C∞(M,G)
(see §3.4) as the multiplication is σ � τ(m) = σ(τ(m) · m) · m instead of the
pointwise product.

It is important to note that an action groupoid contains the same informa-
tion as the group action and the quotient space. So instead of the ill-behaved
quotient of the Lie group action

p : Imm(S1,R2) × Diff(S1) → Imm(S1,R2)

from Example 6.4, one could instead work with the (infinite-dimensional) Lie
groupoid Ap = (Imm(S1,R2) × Diff(S1) ⇒ Imm(S1,R2)) and carry out the
geometric analysis on the groupoid instead of the quotient shape space. Since
this quotient is of interest in shape analysis, Riemannian structures compatible
with the Lie groupoid structure would then be needed to replace the metric on
the quotient space. A suitable concept for such metrics has been worked out in
del Hoyo and Fernandes (2018).

6.11 Remark Another interesting perspective on Lie groupoids is that they
model symmetries which cannot be described by a global group action. A class
of groupoids which fits well to this theme are the orbifold atlas groupoids (Mo-
erdijk and Pronk, 1997). Recall that an orbifold is a manifold with mild singu-
larities, that is, a Hausdorff space which is locally homeomorphic to a manifold
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modulo a finite group of diffeomorphisms. The key point here is that the local
group acting is allowed to change. As a visual example consider the sphere S2

where the upper half is rotated around the north pole by a rotation group of or-
der p, while the lower half is rotated around the south pole by a rotation group
of order q and the results are glued together. Topologically the space is still
S

2 but the manifold structure breaks down at the two fixed points. It has been
shown that these structures are equivalent to certain Lie groupoids. We refrain
from discussing the rather technical details and refer instead to Moerdijk and
Pronk (1997) as well as Moerdijk and Mrčun (2003) for a detailed account.

The concept of a Lie groupoid carries over without any changes to infinite-
dimensional settings (using submersions as defined in §1.7). For example, the
action Lie groupoid modelling (6.4) is infinite dimensional. Let us mention
further examples: In Beltiţă et al. (2019) Lie groupoids modelled on Banach
spaces were studied. These arise naturally in studying certain pseudo-inverses
in C∗-algebras. As a more concrete example of a genuine infinite-dimensional
Lie groupoid consider the following.

6.12 Example Let G = (G ⇒ M) be a finite-dimensional Lie groupoid
and K a compact manifold. Then the pushforwards of the groupoid operations
yield a Lie groupoid, called the current groupoid C∞(K,G) � (C∞(K,G)
⇒ C∞(K,M)). It is an easy exercise (Exercise 6.2.3) to verify that the current
groupoid is a Lie groupoid. The theory for such groupoids was developed in
Amiri et al. (2020). There it was shown that current groupoids inherit many
structural properties from the finite-dimensional target groupoids.

However, it should be noted that from the rich theory available for finite-
dimensional Lie groupoids (Mackenzie, 2005) virtually nothing is known for
Lie groupoids modelled on general locally convex spaces. It is, for example,
unclear as to whether the vertex groups always inherit a Lie group structure
from the ambient groupoid.

6.13 Example Let (E, p,M,F) be a principal G-bundle, where E,M are
Banach manifolds and G is a Banach Lie group (see Definition 3.52). De-
note by e · g the right-G action on E and consider the diagonal G-action
(e, f ) · g � (e · g, f · g) on E × E. Then the quotient Q � (E × E)/G is a man-
ifold (with the unique structure turning the quotient map into a submersion).
We obtain a Lie groupoid, called the Gauge groupoid Gauge(E) = (Q ⇒ M),
associated to the principal G-bundle. The groupoid is given by the following
source, target and identity maps (see Exercise 6.2.5):

s([e, f ]) � p( f ), t([e, f ]) � p(e), 1(m) � [u,u],
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where u ∈ p−1(x) is arbitrary. Then we use the difference map δ : E×M E → G,
[e · g,e] �→ g to define the multiplication

m([e, f ], [ẽ, f̃ ]) � [e, f̃ δ( f , ẽ)], where ( f , ẽ) ∈ E ×M E.

So we can associate to every principal bundle (of Banach manifolds) a Lie
groupoid. Conversely, one can show that the gauge groupoid uniquely iden-
tifies the principal bundle (see Mackenzie, 2005, Proposition 1.3.5). Hence
a gauge groupoid contains the same information as a principal bundle. The
bisection group Bis(Gauge(E)) is the automorphism group

Aut(E, p,M) =

{ f ∈ Diff(E) | p ◦ f ∈ Diff(M), f (v · g) = f (v) · g, for all v ∈ E,g ∈ G}.

This group is known to be an infinite-dimensional Lie group (see Abbati et al.,
1989) which contains the group of gauge transformations from Definition 3.56
as a (proper) Lie subgroup.

We have now seen in several examples that Lie groupoids can be used to
formulate concepts from finite-dimensional differential geometry such as Lie
group actions and principal bundles. Moreover, they come with an associated
group, the bisection group, which in some instances can be identified with
infinite-dimensional Lie groups. The next proposition shows that this is no
accident.

6.14 Proposition Assume that for a Lie groupoid G, G is finite dimensional
and M is compact. Then Bis(G) is a Lie group and t∗ : Bis(G) → Diff(M),
σ �→ t ◦σ is a Lie group morphism.

Proof Recall from Example 3.5 that Diff(M) is an open submanifold of
C∞(M,M). Further, the pushforward t∗ : C∞(M,G) → C∞(M,M), f �→ t ◦ f
is smooth by Corollary 2.19. Since s : G → M is a submersion, the Stacey–
Roberts lemma, 2.24, asserts that s∗ : C∞(M,G) → C∞(M,M) is a submer-
sion, whence the restriction θ � s∗ |t−1

∗ (Diff(M )) is a submersion. We deduce

that θ−1(idM ) = Bis(G) is a submanifold of C∞(M,G). To see that this mani-
fold structure turns Bis(G) into a Lie group, we rewrite the formulae (6.1) and
(6.2) as follows:

σ � τ = m∗
(
Comp(σ, t∗(τ))

)
, τ) σ−1 = 1∗ ◦Comp(σ, ι ◦ t∗(σ)),

where m is groupoid multiplication, i is groupoid inversion and ι the inversion
in the Lie group Diff(M) (see Example 3.5). Since M is compact, pushfor-
wards and the composition map are smooth by Proposition 2.23. In conclusion
the group operations are smooth as composition of smooth mappings.
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As Bis(G) ⊆ C∞(M,G) is a submanifold, the smoothness of t∗ on Bis(G)
follows from the smoothness of pushforwards on manifolds of mappings;
Corollary 2.19. To see that t∗ is a group morphism, we observe that

(t∗(σ�τ)(x) = t(σ(t(τ(x)))τ(x)) = t(σ(t(τ(x)))) = (t∗(σ) ◦ t∗(τ))(x). �

6.15 Remark The assumptions on G in the formulation of Proposition 6.14
are superfluous. The same proof (see Amiri and Schmeding, 2019, Proposition
1.3) works for any finite-dimensional Lie groupoid (dropping the compact-
ness assumption on M), while in Schmeding and Wockel (2015, Theorem A) a
proof for compact M but infinite-dimensional G was given (thus dropping the
assumption on G). The latter proof is believed to generalise to non-compact M
(and infinite-dimensional G).

6.16 Remark The Lie group structure of the bisections turns Bis(p(M)) �
Diff(M) into an isomorphism of Lie groups. Note however, that
Proposition 6.14 cannot replace the classical construction of the Lie group
structure on Diff(M) as we exploited this structure already in the proof of
the proposition.

6.17 Remark The kernel of the Lie group morphism t∗ : Bis(G) → Diff(M)
is the group of vertical bisections vBis(G). Under certain assumptions on the
Lie groupoid, it was shown in Schmeding (2020) that the vertical bisections
form an infinite-dimensional Lie group.

If G is a gauge groupoid of some principal bundle, the vertical bisections
coincide with the group of gauge transformations of the bundle. Moreover, in
this case, the Lie group structure of the vertical bisections coincides with the
Lie group structure on the group of gauge transformations; Remark 3.59.

Note that similar to the diffeomorphism group acting via evaluation on the
underlying manifold, there is a canonical smooth action of the bisection group
on the manifold of arrows of the groupoid.

6.18 Lemma The evaluation map induces a Lie group action:

γ : Bis(G) × G → G, (σ,g) �→ σ(t(g)) · g.
Proof Setting in the definition, it is immediately clear that γ is a group action.
Now rewrite γ as γ(σ,g) = m(ev(σ, t(g)),g), σ ∈ Bis(G),g ∈ G. Exploit-
ing the smoothness of the evaluation map, Lemma 2.16, we see that the action
is smooth. �

With the help of the action one can identify the Lie algebra of the diffeo-
morphism group (see Exercise 6.2.6). We will focus here on global aspects of
the theory and thus do not go into the details of the construction. However,
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it should be remarked that the Lie algebra of the bisection group is closely
connected to the infinitesimal level of Lie groupoid theory. To make sense
of this, let us mention that every Lie groupoid admits an infinitesimal object
called a Lie algebroid (its role is similar to that of a Lie algebra associated to
a Lie group). A Lie algebroid is a vector bundle together with certain addi-
tional structures. Equivalently, a Lie algebroid can be formulated as a special
type of Lie algebra, called Lie–Rinehart algebra. In the present case, the Lie–
Rinehart algebra turns out to be the Lie algebra of the bisection group. This is
left as Exercise 6.2.7 and we refer to Schmeding and Wockel (2015) as well as
Mackenzie (2005) for more information.

Exercises

6.2.1 Let G = (G ⇒ M) be a Lie groupoid. Show that:

(a) the domain of the multiplication m is a smooth manifold
(whence it makes sense to require it to be smooth in the
definition of a Lie groupoid);

(b) the unit map 1 : M → G is a section of s and t and as a conse-
quence, 1 is a smooth embedding (i.e. an immersion which is a
homeomorphism onto its image);

(c) if only s is a submersion, so is t (vice versa if t is a submersion,
so is s). Hence the submersion requirements in the definition of
a Lie groupoid can be weakened.

6.2.2 Let M be a manifold and α : G × M → M a Lie group action.

(a) Show that the bisection group of the pair groupoid p(M) is iso-
morphic (as a group) to the diffeomorphism group Diff(M).

(b) Assume, in addition, that M is compact. Show that the group
isomorphism from (a) becomes a Lie group isomorphism where
the Lie group structure of Bis(G) is as in Proposition 6.14 and
the one on Diff(M) as in Example 3.5.

(c) Work out the bisection group Bis(Aα ) of the associated action
groupoid. When is this group isomorphic to the current group
C∞(M,G)?

6.2.3 Use the Stacey–Roberts Lemma, 2.24, to prove that the current
groupoid C∞(K,G) is a Lie groupoid for a finite-dimensional Lie
groupoid G.

6.2.4 Let G ⇒ M be a Lie groupoid such that G,M are manifolds modelled
on Banach spaces. Show that the multiplication map m : G×MG → G
is a submersion. Deduce that the multiplication in every Banach Lie
group is a submersion.

https://doi.org/10.1017/9781009091251.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.007


132 Finite-Dimensional, Infinite-Dimensional and Higher Geometry

Hint: Since we are in the Banach setting, a submersion is a mapping
which admits smooth local sections (see Exercise 1.7.5).

6.2.5 Let (E, p,M,F) be a principal G-bundle, where E,M are Banach
manifolds and G is a Banach Lie group. We check that the associ-
ated gauge groupoid is a Lie groupoid. Show that:

(a) One can construct a manifold structure on the quotient (E ×
E)/G turning the quotient map E × E → (E × E)/G into a
submersion.
Hint: Cover M by domains of sections of the submersion p and
use the sections to construct charts for the manifold. For the
submersion use Exercise 6.2.4.

(b) The structure maps s, t,1,m are smooth and that s, t are submer-
sion. Conclude that the gauge groupoid is a Lie groupoid.
Hint: Assume p is a surjective submersion and q a smooth map
between Banach manifolds. Then if q ◦ p is a submersion so is
q (Margalef-Roig and Domínguez, 1992, Proposition 4.1.5).

6.2.6 Let G = (G ⇒ M) be a Lie groupoid. Show that by applying the
tangent functor T to every manifold and structure map of G, one
obtains a Lie groupoid TG. One calls TG the tangent (prolongation)
groupoid of G.

6.2.7 In this exercise we identify the Lie algebra of the bisections Bis(G)
as a Lie algebra of sections of a certain vector bundle. Note that this
is precisely the algebra of sections induced by the Lie algebroid L(G)
associated to G. The Lie algebroid is the infinitesimal object associ-
ated to G (similar to the Lie algebra associated to a Lie group). As we
have no need for a discussion of Lie algebroids, we will not discuss it
but refer instead to Mackenzie (2005, 3.5).

(a) Exploit that s is a submersion, and use submersion charts to
show that

T sG �
⋃

g∈G
Tg s−1(s g) =

⋃

g∈G
kerTg s

is a submanifold of TG and even a subvector bundle of TG.
(b) Use Exercise 1.7.3 to show that

T1 Bis(G) = kerT1 s∗

= { f ∈ C∞(M,TG) | f (m) ∈ T1(m)G for all m ∈ M }

and deduce that T1 Bis(G) � Γ(1∗ T sG) are vector spaces (where
the right hand denotes sections of the pullback bundle T sG).
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(c) Observe that m(g, ·) : s−1(s g) → s(g), h �→ gh is smooth for
every g ∈ G and show that every X ∈ Γ(1∗ T sG) extends to a
vector field on G via the formula

−→
X (g) � T (m(g, ·))(X (t(g))).

Prove that X =
−→
X ◦ 1, whence the linear map Γ(1∗ T sG) →

V (G), X �→ −→
X must be injective and we can define a Lie bracket

on Γ(1∗ T sG) via [ X,Y ] � [
−→
X ,
−→
Y ] ◦ 1 (where the Lie bracket

on the right is the Lie bracket of vector fields).
(d) Adapt the proof identifying the Lie bracket of the algebra for

the diffeomorphism group to bisection groups, that is, show that
if XR is a right-invariant vector field on Bis(G) then the vector

field XR × 0G ∈ V (Bis(G) × G) is γ-related to
−−−→
X (1). Deduce

from this that the Lie bracket can be identified with the negative
of the bracket from (c).

6.2.8 Let G1,G2 be Lie groupoids. A morphism of Lie groupoids is a pair of
smooth maps F : G1 → G2 and f : M1 → M2 such that s2 ◦F = f ◦s1,
t2 ◦F = f ◦ t1 and F (gh) = F (g)F (h) (whenever, g,h ∈ G1 are com-
posable). If f = idM1 , we say F is a morphism over the identity.
Show that every morphism F over the identity induces a Lie group
morphism F∗ : Bis(G1) → Bis(G2), σ �→ F ◦ σ.
Remark: So far we have avoided Lie groupoid morphisms as Lie

groupoids and general morphisms exhibit a more complicated inter-
play as they form a 2-category (thus the moniker higher geometry).
We will not delve into the details of this construction.

6.3 (Re-)construction of a Lie Groupoid from Its Bisections

We shall now consider whether a Lie groupoid is determined by its group of
bisections or can even be reconstructed from this group. For the reconstruction,
we consider again the Lie group action of the bisections on the manifold of
arrows. This action turns out to be a submersion.

6.19 Proposition Let G be a finite-dimensional Lie groupoid. Then the fol-
lowing mappings are submersions:

(a) γm : Bis(G) → s−1(m), σ �→ σ(m), for all m ∈ M,
(b) ev : Bis(G) × M → G, σ �→ σ(m),
(c) γ : Bis(G) × G → G, (σ,g) �→ σ(t(g)) · g.

https://doi.org/10.1017/9781009091251.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.007


134 Finite-Dimensional, Infinite-Dimensional and Higher Geometry

Proof (a) In Exercise 2.3.4 we saw that the tangent of evm : C∞(M,G) →
G, f �→ f (m) is given by Tf evm : C∞

f (M,TG) → Tf (m)G, h �→ h(m). By

assumption, s−1(m) ⊆ G is a finite-dimensional manifold, whence 1.56 shows
that it suffices to prove that for each σ ∈ Bis(G) the tangent map Tσ Bis(G) →
Tσ (m) s−1(m) is surjective.1 By construction (s∗)−1(idM )∩ (t∗)−1(Diff(M)) =
Bis(G) ⊆ C∞(M,G) and since s∗ is a submersion we have, with Exercise 1.7.3
and arguments as in Exercise 6.2.6(b), that

Tσ Bis(G) = kerTσ (s∗) = ker(T s)∗ |TσC∞ (M,G) � Γ(σ∗T sG) ⊆ C∞
σ (M,G).

This shows that Tσγm = Tσ evm |Tσ BisG is surjective as every element of
T s
σ (m)G can be written as X (σ(m)) for some X ∈ Γ(T sG) � Γ(σ∗T sG) (see

Exercise 6.3.2). We deduce that γm is a submersion.

(b) The proof turns out to be quite involved and involves a reduction step to the
case already dealt with in (a). Note that this is not obvious as T s−1(m) is, in
general, properly contained in TG. For similar reasons we cannot deduce the
submersion property of ev from the submersion property of ev : C∞(M,G) ×
M → G. For the proof and the necessary details we refer to Schmeding and
Wockel (2016, Proposition 2.8 and Corollary 2.10).

(c) First note that we can write γ(σ,g) = m(ev(σ, t(g)),g) and both t and m
are submersions (see Exercise 6.2.4). Hence γ is a submersion as ev: Bis(G)×
M → G is a submersion by (b). �

We now have a submersion ev: Bis(G) × M → G which is a Lie group
action of the bisections on the arrow manifold of the groupoid from which we
constructed the bisections. Note that the unit embeds M as a submanifold of
G and t∗(Bis(G)) ⊆ Diff(M) Exercise 6.2.1 (b). This observation allows us to
prolong the action of the bisections to an action on M:

A : Bis(G) × M → M, (σ,m) �→ t(σ(m)).

We will now show that the action groupoid constructed from this action deter-
mines (under certain conditions) the Lie groupoid G.

6.20 Definition Let G = (G ⇒ M) be a Lie groupoid and A : Bis(G)×M →
M the canonical Lie group action of the bisections on the units. Then we call
the action groupoid Bis(G) � M � (Bis(G) × M ⇒ M) the bisection action
groupoid. Furthermore, the map ev: Bis(G)×M → G induces a Lie groupoid
morphism ev over the identity.2

1 While the above formula immediately shows that evm is a submersion, we cannot directly
conclude this for γm without identifying the subspace of C∞

σ (M, G) associated to
Tσ Bis(G).

2 A Lie groupoid morphism over the identity is a smooth map f : G → G′ (for groupoids
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The question is now of course whether the bisection action groupoid
completely determines the Lie groupoid from which the bisections were con-
structed. In general, this will not be the case as there will not be enough bisec-
tions to obtain all elements in the arrow manifold of a Lie groupoid.

6.21 Example Let M be a compact manifold with two connected compo-
nents M = M1�M2 such that M1 and M2 are not diffeomorphic. We have seen
in the previous chapter that for the pair groupoid p(M) = (M × M ⇒ M),
the bisection group can be identified as Bis(p(M)) � Diff(M). Now con-
sider an element (m1,m2) ∈ M such that m1 ∈ M1 and m2 ∈ M2. If there
were a bisection σ such that σ(m2) = (m1,m2), this would imply that there
must be a diffeomorphism φ : M → M such that φ(m2) = m1. As this entails
φ(M2) = M1 (since diffeomorphisms permute the connected components of
a manifold), this is clearly impossible. We conclude that for every pair such
that the elements come from different components, there cannot be a bisection
through this element of the Lie groupoid.

So if there should be any hope that the bisection group identifies the Lie
groupoid from which it was derived, we need to require that there are enough
bisections in the following sense.

6.22 Definition A Lie groupoid G = (G ⇒ M) is said to have enough
bisections if for every g ∈ G there exists a bisection σg ∈ Bis(G) with
σg (s(g)) = g.

Fortunately, sufficient conditions for a Lie groupoid to possess enough
bisections are known. Indeed it turns out that the deficiency pointed out in
Example 6.21 is caused by a lack of connectedness. This can be remedied by
requiring that the groupoid G is source connected, that is, for every m ∈ M the
source fibre s−1(m) is connected.

6.23 Remark If G is the pair groupoid of a manifold, Bis(G) � Diff(M), the
groupoid is source connected if and only if M is connected. Our next result will
entail that Diff(M) acts transitively on M . We remark that connectedness of M
was required in the statement of the Takens–Filipkiewicz result in §6.1. Note
that transitivity of the group action was an essential ingredient in the proof of
the result.

6.24 Lemma If G is source connected, then G has enough bisections.

G ⇒ M and G′ ⇒ M which relates the structural maps of the groupoids, that is, s′ ◦ f = s,
t ◦ f = t, m′ ◦ ( f , f ) = f ◦m and i′ ◦ f = f ◦ i. We verify the conditions for ev in
Exercise 6.3.2.
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Proof The image U � ev(Bis(G) × M) contains the image of the object
inclusion 1, that is, 1(m) ∈ U for all m ∈ M . Define for m ∈ M the set Um =

U ∩ s−1(m) and note thatUm = ev(Bis(G) × {m}). Clearly the setU contains
1(M) and forms a subgroupoid U ⇒ M of G of G ⇒ M (see Exercise 6.3.3).
As submersions are open maps, U is an open Lie subgroupoid of G. Now as
evm : Bis(G) → s−1(m) is a submersion by Proposition 6.19(a) we infer that
Um is an open subset of s−1(m). However,Um is also closed: The complement
s−1(m) \ Um is the union

⋃
g∈s−1 (m)\Um

Ut(g) · g. As Ut(m) ⊆◦ s−1(t(g)), we
see thatUt(g) ·g is open, whenceUm is also closed. We deduce that the clopen
set Um ⊆ s−1(m) equals s−1(m) as G is source connected. �

If G has enough bisections, the evaluation map ev: Bis(G) × M → G
becomes a surjective submersion. Hence the Lie groupoid structure of G is
completely determined by the group of bisections. One can moreover show that
the original groupoid is a quotient groupoid of the bisection action groupoid in
this case (see Schmeding and Wockel, 2016, Theorem B). As we do not wish
to introduce deeper concepts in groupoid theory, we do not go into details con-
cerning this result. The main upshot, however, is that for a Lie groupoid with
enough bisections, the groupoid is uniquely determined by the action of the
bisection group.

6.25 Remark The results presented so far in this section are reconstruc-
tion results. This means that starting from a Lie groupoid, we can recover the
Lie groupoid (under certain topological assumptions) as the quotient of a Lie
groupoid we cook up from the action of the bisection group. One can of course
ask whether there are construction results for Lie groupoids which do not
require starting from a Lie groupoid. Instead, one would like to start from
an action of a suitable infinite-dimensional group and construct a Lie groupoid
such that, in the case we started with the canonical action of a bisection group,
one would recover the Lie groupoid. At least partial answers to these ques-
tions exist. We refer to Schmeding and Wockel (2016), where transitive pairs,
that is, a principal bundle version of Klein geometries (Sharpe, 1997, Chapter
3), are proposed as a starting point for a construction result.

Exercises

6.3.1 Let G = (G ⇒ M) be a Lie groupoid. Show that the image of the
canonical action E � ev(Bis(G) × M) ⊆ G is closed under multipli-
cation and inversion in G. Hence with the induced structure maps we
obtain a subgroupoid E ⇒ M of G.
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6.3.2 Prove that ev : Bis(G) × M → G induces a Lie groupoid morphism
Bis(G) � M → G over the identity.

6.3.3 Let π : E → M be a finite-dimensional vector bundle. Show that for
every e ∈ E there is Xe ∈ Γ(E) with Xe (π(e)) = e.
Hint: Construct locally in trivialisations using bump functions. Note
that the assumption of being finite dimensional can be replaced by
requiring the existence of suitable bump functions.
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