
COMPLEXES OVER A COMPLETE ALGEBRA OF 
QUOTIENTS 

KRISHNA TEWARI 

1. Introduction. Let J? be a commutative ring with unit and A be a 
unitary commutative i?-algebra. Let As be a generalized algebra of quotients 
of A with respect to a multiplicatively closed subset S of A. If (5(^4) and Oi(As) 
denote the categories of complexes and their homomorphisms over A and As 

respectively, then one easily sees that there exists a covariant functor T: 
®(A) —> &(AS) such that T is onto and T{X, d) is universal over As whenever 
(X, d) is universal over A. Actually the category ($,(AS) is equivalent to a 
subcategory $s(^4) of E(-4) where $ 5 ( 4 ) contains all those complexes (X, d) 
over A such that for each 5 in S, the module homomorphism fa: x —» sx of Xn 

into itself is one-one and onto for each » > 1. In this paper, it is shown that 
if A is an i?-algebra such that every dense ideal in A contains a finitely generated 
projective dense ideal, then there exists a covariant functor F: 6(^4)—>Ë(Q(A)), 
Q(A) being a complete algebra of quotients of A, such that F is onto and carries 
universal complexes over A to the universal complexes over Q(A). In order to 
deal with the problem, a particular covariant functor from the category of 
A -modules to the category of Q(^4)-modules is introduced and studied in some 
detail. 

2. Preliminaries. Let X and F be two graded algebras over a commutative 
ring R with unit; and let / : X —•> F be a graded i?-algebra homomorphism. 
We recall (4) that an i?-linear mapping d: X —» F is called an R-derivation of 
degree 1 if (i) d is a homogeneous linear mapping of degree 1; and (ii) for any 
x, x' in X with x homogeneous of degree n, 

d{xx') = dxf(pc') + (-l)"f(x)dx'. 

In particular, if Y = X and/ : X —» Fis the identity mapping, then a derivation 
of degree 1 of X into itself is called a derivation of degree 1 of X. For any unitary 
commutative i£-algebra A, a pair (X, d) where X is an anticommutative graded 
i£-algebra (4) such that X0 = A and where d: X —> X is an ^-derivation of 
degree 1 of X such that do d = 0, is called a complex over A. For any two com­
plexes (X, d), (F, ô) over A, a graded i?-algebra homomorphism (4 ) / : X —» F 
is called a complex homomorphism over A if (i) / maps 4̂ identically; and (ii) 
fod = 5 o / . We write/: (X, d) -> (F, 5). Moreover, a complex (£/, d) over A 
is called universal (5) if given any other complex (V, d) over 4̂ there exists a 
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unique complex homomorphism / : (U, d) —> (F, d) over A. Finally, a homo­
geneous ideal J Ç X is called a complex ideal if dJ C J. 

Next, we shall recall some basic notions regarding a complete algebra of 
quotients. An ideal D in an i^-algebra A is called dense if for all a in A, ai) = 0 
implies a = 0. In the following we list some properties of dense ideals. 

PROPOSITION 2.1. (i) A is dense. 
(ii) IfD is a dense ideal in A and D Ç.D',D' being an ideal in A, then D' is dense. 
(iii) If D and Df are dense, then so are DD' and D C\ Df. 
(iv) If Dis a dense ideal and for each dinD, Dd is a dense ideal, then 

E dDd (d G D) 

is a dense ideal. 
(v) IfRî^Q, then 0 is not dense. 

We give a proof of (iii) and (iv), the other properties being obvious. Let 
aDD' = 0. Then for any d G D, adDf = 0, and so ad = 0, since D' is dense. 
Thus aD = 0; hence a — 0, since D is dense. Therefore DD' is dense. But 
DD' C1D r\D'\ and, so, D C\D' is dense by (ii). Now to prove (v), take 
Hl.dtDadDa = 0. Then adDd = 0 for each d G D; and, so, aD — 0 since Dd 

is dense. Thus a = 0, since D is dense. Hence £Z dDd (d G D) is dense. 
It follows by known methods, as for example in (6), that if 2) is the set of all 

dense ideals of A, then 

Jim HomA(Z>, A) 

exists and is a unitary commutative i^-algebra containing an isomorphic copy of 
A. I f we denote this inj ective limit by Q (A ), then 

Q(A) = UHamA(ptA)/e 

where 0 is the following equivalence relation: "fi 6/2 if and only if /1 and /2 
agree on the intersection of their domains." This statement is equivalent to 
saying tha t / 1 0 / 2 if and only if/1 and / 2 agree on some dense ideal. Q(A) is 
called a complete algebra of quotients of yl. The natural embedding of A into 
Q(A ) is given by the mapping a —» 9 (a/1) which is called the natural mapping. 
For the sake of convenience, we shall identify A with its natural image in 
Q(A). Finally we note that, for any q in Q(A), the set q~xA = {a G A \qa G A) 
is a dense ideal in A. 

We end this section by stating the following well-known lemma, which we 
shall need later. 

LEMMA 2.1. Let M and N be A-modules. If either N or M is a finitely generated 
projective A-module, then the natural homomorphism 

UomA(M,A) ®AN-+ HornA(M, N) 

is an isomorphism. 
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3. The functor if*. The set 35 of dense ideals of A is directed under 
inclusion since the intersection of any two dense ideals is again a dense ideal. 
Also, for an ,4-module M, (HomA(D, i f ) ) (D 6 3)) is a family of ^4-modules 
indexed by the directed set 35. For each D Ç E, for D and E in 35, the mappings 

\DE: HomA(E, i f ) -» HomA(£>, i f ) 

given by XM(f) = f\ D, where / | D denotes the restriction of / to D, have the 
following properties: 

(i) XDE € HomA(HomA(£, Af), HomA(X>, AT)), for each 2? C E; 
(ii) XZ>D is the identity on HomA (D, i f ) ; and 

(hi) D Q E Q F implies \DE o \EF = ^DF since (f \ E) \ D = f \ D for all 
fe Uom A(F,M). 

Hence, (HomA(D, i f ) , XDE) (D C E) is an injective system of A -modules. 
Set 

M* = jim_ HomA(D,M). 

Then 

M* = U H o m A ( A ¥ ) / = 
D£Z) 

where = is the following equivalence relation: 

fi == f2 if and only if fi and / 2 coincide on some dense ideal. 

Remarks. (1) If/ belongs to HomA(D, i f ) for some dense ideal D, then the 
equivalence class of/will be denoted by [/]. 

(2) Each x G M determines the homomorphism a —» ax of 4̂ into M ; 
if TTMOO G if* denotes the equivalence class of this homomorphism, then the 
mapping TM: X —» 7rM(x) is a homomorphism of i f into M*, called the natural 
homomorphism. TM(X) = 0 if and only if the homomorphism a —> ax is zero on 
some dense ideal D, i.e., the order ideal {a\a G A, ax = 0} of x is dense. 

(3) If i f is the ̂ -module A, then 4 * = <?(4). 

PROPOSITION 3.1. M* is a Q(A)-module for each A-module M. Moreover, if 
<j>: M —> N is an A-module homomorphism, then <f> induces a uniqe Q (A)-module 
homomorphism #* : if* —> iV* such that wN o <t> = </>* o wM. Finally, if 

is an exact sequence of A-modules, then 

0 -> i f * ^-> iV* ^> P* 

is aw exacJ sequence of Q (A ) -modules. 

Proof. To begin with, we have to define an additive mapping 

h: Q{A) ® A i f * - > i f * 
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such that h (1 ® x) = x for all x in M*. For this we first define 

A°M: H o i M A A) X HomA(£, M) -> M* 

for any two dense ideals D and E of A as follows. If 0: D —» ^4, then ^(E) is 
again a dense ideal, for it contains ED since <j)(ED) = E<J>(D) C £ , and EZ) is 
dense. Thus the homomorphism / o (0 |# - 1(£)) is defined on a dense ideal for 
/ : E —> Jkf, and we can put 

AW*,/) = Lfo (*|r1(£))]. 
Clearly, /&°M is 4̂ -bilinear and hence determines an A -homomorphism 

hDE: HomA(£>, 4 ) 0 A HomA(E, M) -> If*. Moreover, if D' C £> and £ ' Ç £ 
are two other dense ideals and [iD>D and \#/^ are the respective restriction 
homomorphisms, then hDE = lfiD>E> o (MZ>D' ® ^E'E)- Therefore, hDE induces a 
homomorphism into M* on the infective limit of the infective system, 

(HorruCD, A) ®A HomA(E, M), [iD>D ® \E>E). 

Since the latter is isomorphic to Q(A) ®A M*, we have thereby obtained a 
homomorphism h: Q(A) ®A M* —> M*. Now take x G M*. Letf£HomA(D,M) 
be chosen such that [f] = x. II iD denotes the natural injection D —> A, one has 

h°(iD>f) = [foiD] = [/] = *, 
and this shows that h(l ® x) = x for all x G M*. 

Now, let (HomA(D, M), \DE) and (Horn A CD, iV), nDE) be in injective sys­
tems whose limits are M* and N* respectively. For each D in 3), 0 induces 
an ^4-module homomorphism 0£>: Horn A CD, M) —» HomA(jD, TV) given by 
4>D(J) = <t>of for all / in HomA(D, M). Moreover, for each E C D, the 
diagram 

Hom^CD, M) >HomA(£, M) 

<PD\ <PE\ 

HomA (D, N) > HomA (£, JV) 

commutes since 

(0* o XM) (/) = (* o / ) |E = (M^D O fo) (/) 

for any / G HomA(.D, Af). Thus (#£>) (D G 3)) is an injective system of ^4-
module homomorphisms. Set 

<£* = lim <j>D. 
> 

Clearly, <j>* is an ^4-homomorphism. In order to show that 0* is a (?C4)-homo­
morphism, take any q £ Q(A) and m G -M*. Then for some suitable dense 
ideal D of i , one has / G HomA(J9, M) and a G HomA(J9, A) such that 
w = If]y <L = M» a n d hence gra = [ /oa] , Then 

<t>*(qrn) = [<l> o (f o a)], # * M = gfoof] = [ ( * o / ) o a ] , 
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which shows that <j>* (qm) = qQ* (m). Also, for any x £ M, 

M >N 

TÏM 7TN 

M* >N* 
0* 

irN(<t>(x)) = [<t>(x)] = [h<f>(X)] w h e r e Â0 (z ): ^4 —> Nis g i v e n b y 

^ (* ) a = a<j>(x) = <t>{ax). 

Since </>*(7rM(x)) = 0*[&x] = [<t>okx] where kx: A -^ M maps each a onto ax, 
it follows that TrN(<f)(x)) — 4>*TM(X). 

We next show that the exactness of the sequence 

implies the exactness of the sequence 

that is, we have to show that (i) ker(<£) = 0 implies ker(0*) = 0 and (ii) 
ker(^) = <t>(M) implies ker(^*) = 4>*(M*). 

(i) Let m be any element in ker (<£*). Then <t>*(m) = 0 implies [<t>of] = 0 
for eve ry / £ HomA(Z>, M) such that [f] = m. Therefore ( 0 o / ) (£>') = 0 for 
some dense ideal Df in A; and so f(D') = 0 since ker <£ = 0. Thus [f] = m = 0 
since Z>' is dense. Hence ker </>* = 0. 

(ii) Take n Ç ker(^*) arbitrary. Then n — [g] for some g g HomA(E, N), 
E a dense ideal in A, \l>*(n) = 0 implies (^ o g) (Df) = 0 for some dense ideal 
D'inA. Thus, g(D') Q<t>(M). Define f:D'->M by /(d) = <t>~l(g(d)) = md 

for each d 6 D'. Since <j> is one-one,/ is well defined. Clearly,/ £ HomA(D / , M) 
and <j> of = g on £>'. So 

» = fe] = [*o/] = **(/! G **(M*). 
Therefore,ker(tf*) C ^ ( I * ) . 

Conversely, choose (j>*(m) 6 0*(M) arbitrarily. Then 

tf*(0*(ro)) = [ t f o 0 o / ] 

where/ 6 Hoiru(J9, M) such that [/] = m. Since/(D) C ikf, (^ o 0 o / ) (£>) C 
tf(0(Af))=O. Thus [ # o 0 o / ] = O ; and so 0*(M*) C kerty*). Hence 
<j>* (If*) = ker (\f*) and the proposition is proved. 

Remark. The association of M* with every ^4-module ikf, and the association 
of 0* with every A -module homomorphism <t>: M —> N is a covariant functor 
from the category of A -modules into the category of Q (A ) -modules. 

LEMMA 3.1. For any A-module M, TM* = 7r*M. 
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Proof. Let x G M* arbitrary. Then x = [f] w i t h / G HomA(D, M) for some 
dense ideal D in A. Now irM* (x) = [<t>x] where ^ : A —» If* is given by 

0* (a) = ax = [af] 

for each a G ./I. Thus, for each a, ^ in Z>, a/(J) = dfia) = $ / ( a ) (d) implies 

[a/] = [0/(a)] = TrM(f(a)) = (wMof)(a) 

for each a £ D. Thus ^ (a) = (TTM of) (a) for each a £ D; and so 

[*a] = K O / ] = T*M\f] = K*M{X). 

Therefore TM*(X) = T*M (X); hence irM* = w*M> 

DEFINITION. M is torsion free if x G M, Dx = 0 for some dense ideal D 
implies x = 0. 

For any A -module M, the set T of those x G M for which there exists a dense 
ideal D in A with Z>x = 0 is an ^4-submodule of M and ikf/T is a torsion-free 
^4-module. Let v: M -* M/The the natural -4-homomorphism. Then 

LEMMA 3.2. *>*: M* —> (M/T)* is one-one. 

Proof. Let x G ker(i^). Then x = [f] for some / G HomA(Z), ikf), Z> being a 
dense ideal in ^4. Now v*(x) = 0 implies [vof] = 0 and so (vof) (Dr) = 0 
for some dense ideal D' in A. Thusf(D') C ker(*>) = 7\ In view of the definition 
of r , for each d £ D', there exists a dense ideal Dd such that / (d) A* =f(dDd) = 0. 
T h u s / vanishes on the ideal Y,<IÇD' dDd which, by Proposition 2.1, is dense. 
So [/*] = x = 0. 

LEMMA 3.3. For any A-module M, M* is torsion free. 

Proof. Let m be an element in M* such that Em = 0 for some dense ideal 
E in A. To show that m = 0, we recall that m G M* implies m — [f] with 
/ G HomA(Z), Af), JD being a dense ideal. Since Em = 0 implies xw = x[f] = 
[x of] = 0 for each x G E, it follows that for each x £ E, there exists a dense 
ideal £>* in A such that */(£>*) = f(xDx) = 0. Thus / ( £ * € * xDx) = 0. But, 
by Proposition 2.1, (iv) X ^ ^ x Z ^ is dense; and, so [/] = m = 0. Hence M* is 
torsion free. 

PROPOSITION 3.2. Let M be a torsion-free A-module and D be a dense ideal. 
Thenf G HomA (D, M*) has a unique extension A —* M*. 

Proof (B. Banaschewski). First we show that the ideal 

E =f-i(TM(M)) = {x G D\f(x) G TM(M)} 

is dense. For any a G D, f{a)~lM = {x| x/(a) G 7rM(Af)} contains Z>a, the 
domain of <j> G / (« ) ; and hence f(a)~1M is dense. Now let x G f(a)~lM. Then 
/(xa) = x/(a) G 7rM(Af). Thus xa G E; hence af(a)~lM C £ and so ^ a £ Z ) 

af(a)~xM C E. Therefore, in view of Proposition 2.1, (iv), E is dense. 
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Now, x G E implies f(x) — irM(mx) for some mx in M; and so f(x) = h% 
with hx : Dx-+ M given by hx(y) = ymx for each y Ç P^. For any z ^ A, 
zf(%) — f(zx) implies ymzx = zymx = xymz for all y in some dense ideal; 
then for z Ç E, xymz = ywM; or 

y(xmz — mzx) = 0 for all y in some dense ideal. 

Since M is torsion free, it follows that xmz = mzx for all xy z m E; that is, 
A*(z) = zmx = xmz for all x, z in E. Since the natural homomorphism wM: 
M —> M* is one-one in this case, the mapping g: E —> M given by g(x) =mx 

is well defined and A -linear. Also, hx(z) — xg(z) implies/(x) = x[g] for all x, 
z in E. Hence for x £ E, y £ D, x(f(y) — y[g]) = 0. Since £ is dense and M 
is torsion free,/(;y) = y[g] for all y £ D. Then the mapping &: ̂ 4 —» Af given by 
x —» x[g] is an ^4-module homomorphism and extends/. Since M is torsion free, 
h is clearly unique. 

COROLLARY. If Mis torsion free, then wM*: M* —» Af** is aw isomorphism. 

Proof. Since Af* is torsion free, ker rM* = 0. To show irM* is onto, take any 
[/] in Af**. By the above lemma we can take / to be defined on A. Then 
/ ( l ) 6 Af* and clearly tf] = TTM*/(1). 

PROPOSITION 3.3. (M/T)* is isomorphic to Af**. 

Proof. We recall that ker (TM) = T = ker J>. Therefore, there exists an 
A -module monomorphism <j>: M/T —» if* such that the diagram 

AT——> Af* 

M/T' 

commutes; that is 4> o v = xM. But i> induces the monomorphism 

v*\ Af*-> (Af/r)* 

such that the following diagram commutes: 

KM 
M > M* 

M/T > (M/T)* 

i.e., such t h a t v* o nM = TM/T O V. Since 7rM = <£ o J>, it follows tha t 

v* o <j> o v = it MIT o ^; 

hence y* o <f> = ITM/T since p is an epimorphism. T h u s 

(v*o<t>)* = v**Q<f>* = 7r*M/5r = 7r (M/r )*; 
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where v**, <£* are the monomorphisms induced by v* and <j> respectively. Thus 
we have the following diagram: 

^M - KM* — TT*M 

M > M > M** 

M/T > (M/T)* > (M/T)** 

Since 7rM/T is an isomorphism (by Proposition 3.2, Corollary), it follows that 
v** is an epimorphism. Hence, v**\ M** —> (M/T)** is an isomorphism. Hence 
<£* is an isomorphism, which proves that (M/T)* is isomorphic to M**. 

LEMMA 3.4. For any A -module M, M* is a rational extension of TM (M). 

Proof. We first show that for any y £ M, the ideal 

y - 1 M = {a £ A\ya £ TM(M)} 

is dense. For this recall that y = [f] with / Ç HomA(D, M) for some dense D. 
Therefore, 

^ = Lfld = ifod] = 0 / (d) = H-MC/W) G TTM(M) for each d £ D, 

and hence Z) C y~1M. Since Z) is dense, it follows that y-"1 ikf is dense. 
Now we show that M* is a rational extension of irM(M). For this we have 

to show that to any x, y Ç ikT*, x ^ O , there is an a Ç yl such that xa ^ 0 
and 3>a Ç wM(M). By its very definition for every a 6 3/-1 M C ^4, 3>a G 7rM(M). 
Moreover, since ilf* is torsion free, xa 5̂  0 for at least one a G :y~W. This 
proves the assertion. 

COROLLARY 1. If Mis torsion free, then M* is a rational extension of M. 

COROLLARY2. Q(A) = (Q(A))*. 

Proof. Since Q(A) is torsion free, (Q(A))* is a rational extension of Q(A). 
Now our assertion follows from the fact that (Q(A ))* is rationally complete. 

PROPOSITION 3.4. Let A be an R-algebra such that every dense ideal in A contains 
a finitely generated projective dense ideal. Then 

(i) the natural mapping Q(A) ® A M —> M* given by 

q ® m —> qirM(m) for all m (E M, q Ç. Q(A) 

isaQ(A )-module isomorphism. 
(ii ) Q (A ) is a flat A -module. 

(iii) For any Q(A)-module N, the natural homomorphism TN: N —» N* is an 
isomorphism. 

Proof, (i) Let J) ' denote the set of all finitely generated projective dense ideals 
in A. Then since for each dense ideal D in 35 there exists a D' in 35' with 
D' Ç D, it follows that 35' is a co-initial subset of 35. Thus, 

QlomA(D,A),vDS) (D,Ee £)') 
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is an injective system of A -modules and 

Q'(A) = lim HomA(D,A) 

is isomorphic to 

Q(A) = lim H o m ^ A ^ ) . 

Similarly, (HomA(D, M), \DE) (Z>, E G J)') is an injective system and 

M* = jim_ HomA(D',M) 

is isomorphic to 

M* = lim Hom^(A M) 

as Q(A)-modules. Now 

Q(A) ®AM = (umHomA(D,A)\ ®AM, 
\ De® I 

^( lim H o m ^ ( A ^ ) ) ®A M, 
\ £>€©' / 

^ lim ( H o m ^ p , A) ®A i f ) , 

~ lim Hon^ (D,M), (by Lemma 2.1) 

~ lim Hom^(Z>, M) = M*. 

Thus it is enough to show that this isomorphism is given by q ® x —» qTM(x). 
But g (g) x = 9(f) (g) x -» [f ® x] where / € HomA(D, ^ ) such that 0(f) = q. 
We recall that the isomorphism HomA(D, A) ®A M —> HomA(D, ikf) is given 
b y / <8) x —> 0a; o/where 0^: 4̂ —-> Af is given by a —* ax for all a Ç ^.Therefore, 
[/ ® x] = [0a; of] = qwM(x). This proves (i). 

(ii) Now to prove that Q(A) is a flat A -module, we must show that for any 
exact sequence 

MXNXP 
of A -modules, the sequence 

Q(A) ®A ML^> Q(A) ®ANL®t Q(A) ®AP 
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is exact; here I denotes the identity mapping on Q(A) (1). Since Q(A) ®A M 
is isomorphic to M*, we only have to show that 

is exact. The exactness of the sequence 

M-^N^P 

implies ker (\p) = <j> {M) ; thus we have the following commutative diagram : 

N > P 

•i / 
N/4>(M) 

where v. N —-> N/<t>{M) is the natural ^4-homomorphism and x: N/<j>(M) —> P 
is the unique yl-monomorphism induced by v. But xo v = \^ implies x*o v* = ^*. 
Since x* is a monomorphism (Proposition 3.1), it follows that ker (i/'*) = ker(y*). 
Thus, we have to show that ker (v*) = <£*(Af*). 

For this consider the exact sequence 

0 -> <t>(M) -^ N A N/<t>(M) 

where r is the natural injection. By Proposition 3.1, the sequence 

0 -> (4>(M))* 4 N* £ (N/4>(M))* 

is also exact. So ker(*>*) = T * ( ( 0 ( M ) ) * ) . Thus, it only remains to show that 
4>*(ikf*) = T * ( ( 0 ( M ) ) * ) . This, however, follows from the fact that 

(j>* = lim <j)D » 

and that 0x>(HomA(D,M)) = r HornA(£>, <t>(M)) for each Z> G £)'. 
(iii) It remains to show that for any Q(^4)-module N, N* is isomorphic to N. 

This follows immediately from the following identities: 

N*~Q(A) ®AN<mdN = Q(A) ®QU) N = Q(4) ® A ^ ) ®ou)iV 

(since Q(^) = (Q(A))*). 
To prove that this isomorphism is equal to wNl take an arbitrary qx £ iV. 

Then 

gx —> g ® x —> 1 ® q ® x —» 1 ®gx—» irN(qx) 

gives the effect of the above isomorphism. 

COROLLARY. 7/ ey^r^ dense ideal in A contains a finitely generated projective 
dense ideal, then the natual homomorphism wM*- M* —> ^M** is an isomorphism. 
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We have seen in Proposition 3.1 that the functor M —* M* takes mono-
morphisms into monomorphisms. If A is an i^-algebra satisfying the conditions 
of Proposition 3.4, then the following holds: 

PROPOSITION 3.5. If <j>: M —> N is an epimorphism, then <£*: M* —• N* is an 
epimorphism. 

Proof. Since the domain of / contains a finitely generated projective dense 
ideal D'} there exists for any y = [f] in N* a g Ç HomA(D', M) such that 
<t>og = / on D'. Thus [f] = [0 o g] = 0*[g]. Since [g] G M*, 0* is an epi­
morphism. 

PROPOSITION 3.6. Let A be an R-algebra such that every dense ideal in A contains 
a finitely generated dense ideal. Let M be a free A-module. Then M* is isomorphic 
toQ(A) ®AM. 

Proof. Let (x r) r € / be an A -basis for M. Then 

M = 2 Ax* (direct). 

Let D be a finitely generated dense ideal. Then 

HomA(D,J^AxT\ 

is isomorphic to 

X) HomA(D, ^4xT). 

To see this, l e t / r : D —» ^4xT be an element of Hom^(Z), AxT). Then the family 
(/r) (r £ I ) , with / r = 0 for all but finitely many r, belongs to 

X H o m 4 ( D , i x T ) ; 

since if fT = 0 unless r 9e TI, . . . , rn, then 

]C /r,- (d) belongs to 2 ^ x ^ £= 23 AxT for each d £ D. 

Thus 

is an ^4-homomorphism of 

y^! Hom^(J9, ^4xT) into Hom^(D,X] AxT) . 

If 

n 

Z) /V,-(d) = 0 for each d G A 
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then the directness of the sum Y,rei AxT implies that fT. (d) = 0 for each i and 
each d Ç D ; thus <t> is one-one. To show that <t> is onto, take any 

/ 6 H 0 m A ( A E r € J ^ r ) . 

If, for each T Ç I, 7rT: £Te/ -4#T —» AxT denotes the natural projection, then 
/ = J^Tti TTTO/, where irTof = fT belongs to HomA(D, AxT) for each r. That 
fT = 0 for all but finitely many r follows from the fact that D is finitely 
generated. Thus (fT)T£i belongs to J^TeiKomA(Dy AxT) and #((/V)T£J) = / . 
Hence, 0 is an A -isomorphism. 

Now the proposition follows immediately from the identities: 

Q(A)®AM = Q(A)®AZAxT = Z {Q(A)®AA)XT 

and 

M * = lim HomÂD,^ AxT) = lim ^ HomA(D, AxT) 
» \ T6/ / >

 T€/ 

= ^ lim HomA(D, ^4xT), 
r € 7 > 

where the injective limit is taken over the set of all finitely generated dense 
ideals. 

PROPOSITION 3.7. If M is a finitely generated projective A-module, then the 
natural homomorphisrn Q(A) <8A M—+M*, given by q ® x—*qwM(x), is an 
isomorphism. 

Proof. 

Q(A)®AM= ( lim H o m A ( A ^ ) ) ®AM, 

^ lim (HomA(D,^) ®AM), 

^ lim HornA(A M) (Lemma 2.1), 

= M*. 

This isomorphism is given by 

q ® x —• 0(f) ® x -> [f ® x] 

where 0(f) = g, the domain of / being equal to D. Since the isomorphism 
HomA(D, ^4) ®A M—> HomA(D, ilf) is given by f ® x —> <l>xof where 
<£*: 4̂ —* M is given by a —> ax, it follows that 

[f ® x] —> [0X o / ] = gfaj = g7rM(x). 

PROPOSITION 3.8. Le£ Jlf be an A-module such that the order ideal of x is dense 
for each x in M. Then M* = 0. 
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Proof. Here M = T and so M/T = 0. Thus 0* = 0 implies M** = 0 
(Proposition 3.3). Since TTM*: M* —-> ilf** is one-one, it follows that M* = 0. 

4. Complexes over a complete algebra of quotients. 

THEOREM 4.1. Let M be an A-module; and let d: A —» M be an R-derivation. 
Then d induces a unique derivation d*: Q(A) —» M** such that 

d*\A = TTM* o irM o d. 

Proof. For each a Ç Ç(/4 ), let 0ff: q~xA —> if* be given by 

0ff(x) = TrMd(qx) - q(rM(dx)). 

One can easily check that <j>q is an ^4-homomorphism and so belongs to 
Hom^ {q~lA, M*). Since g_1^4 is a dense ideal in A, <£tf determines a class in M**m 

Let this class be denoted by d*q. Now consider the mapping d*: Q(A) —> M** 
given by d*: q —> d*g. We claim that d* is the required derivation. In order to 
prove this assertion take any qi, q2 in Q(A) and r, r' in i?. Then a straight­
forward calculation shows that for any x G qî~lA C\ q2~

lA : 

(i) *<nr+ff2r'(s) = (r0ffl + r'<bH){x). 

Thus 

on the dense ideal qrlA C\ q2~
lA and hence 

d*(qi r + q2 r') = (d* 3 l ) r + (d* g2)r. 

Therefore d* is i^-linear. Also, for any x G (q\ qi)~xA C\ q<rlA. 

(ii) <j}Qiq2(x) = TrMd{{q1q2)x) — (qx q2)irM(dx), 
= irMd{qi{q2x)) - (qiq2)7rM(dx), 
= TMd(q1(q2x))—q1irMd(q2x)+q1wMd(q2x) — (q1q2)TrM(dx), 
= < M # 2

X ) + g.i4>Q2{x). 

Hence , 

^Qiq2(y) = 4>QlQ2(pcy) = </>Ql(q2xy) + qi<t>Q2{xy) = x(q2<j>Ql{y) + qi<l>qi(y)) 

for a n y x and 3/ in (gi q2)~^A C\ q2~
1A. 

Since AT* is torsion free, we obta in 

tf><7i<72 6 0 = (?2 *ffl + qi <t>Q2)(y) for all y in (^ g2)-M H q2~
lA. 

Thus d*(gig2) = 2̂ ̂ *<?i + qid*q2. Therefore, (i) and (ii) together show that 
d is an .^-derivation. 

Finally if a G A, then 

0a00 = irM d(ax) — airM(dx) = wM(xda) = xirM(da) for all x G .4, 
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Hence d*a = [<t>a] = TM*(irM(da)) ; that is, d*\A = wM* oirMod. Thus we have 
shown that d* is a derivation from Q(A) into M** with the required properties. 

To show the uniqueness of d*, let d be another ^-derivation from Q{A) into 
If** such that d*\A = TM*OTMod. Then d* — d = 0 on A. Since d* — d 
is a derivation on Ç(A ), it follows that for any q £ Q(A) and any x £ g-^4, 

(d* - <ï)(gx) = ((d* - d)g)* + g(d* - d)x. 

Since <2* — <ï = 0 on A, we have ((d* — d)q)x = 0; thus (d* — d)q is annulled 
by the dense ideal q~~xA. Since M** is torsion free, (d* — d) q = 0 for each 
q G Q (-4 ). Hence d* = d on Ç (̂ 4 ), which proves the uniqueness of d*. 

COROLLARY 1. If M is a torsion free A-module and d \ A —± Mis any R-deriva-
tion, then d induces a unique derivation d*\ Q{A) —» M* such that d\A = TMO d. 

Proof. This follows immediately from the Corollary of Proposition 3.2. 

As a special case we obtain: 

COROLLARY 2. Any R-derivation of A into itself has a unique extension to an 
R-derivation of Q{A) into itself. 

The Corollary to Proposition 3.4 also implies: 

COROLLARY 3. If every dense ideal of A contains a finitely generated projective 
dense ideal, then any R-derivation d: A —> M induces a unique R-derivation 
d*: Q(A)->M* such that d*\A = wM o d. 

THEOREM 4.2. Let A be an R-algebra and let (X, d) be a complex over A. 
Suppose 

(i) every dense ideal in A contains a finitely generated projective dense ideal; or 
(ii) every dense ideal in A contains a finitely generated dense ideal and X is a 

free A -module; or 
(iii) X is a finitely generated projective A-module. 

Then there exists a unique derivation d*: X* —» X* such that (X*, d*) is a complex 
over Q{A) and the natural homomorphism irx: X —» X* is a graded algebra 
homomorphism such that TX O d = d* o irx. 

Proof. Since X is an A -module, Propositions 3.4, 3.6, and 3.7 imply that X* 
is isomorphic to Q(A) ®AX under any of the conditions (i), (ii), or (iii). 
Therefore, X* is an anticommutative graded i£-algebra such that the module 
X*o of homogeneous elements of degree 0 is equal to Q(A ). Also since 

TX(XX') = 1 ® xxf — (1 ® x)(l ® xf) = TTXOXOTTXOK') so for each x, x' in X, 

it follows that irx is a graded algebra homomorphism. 

We now wish to define a derivation d*: X* —> X* of degree 1 such that 
d* o d* = 0. First, the derivation do: A —» X\ induces a unique derivation 
d*0: Q(A) —>X*i under any of the conditions (i), (ii), (iii). For (i), this is 
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Corollary 3 of Theorem 4.1 ; for (ii) and (iii), it results from Corollary 1 of that 
theorem since X is torsion free in these cases. Now consider the mapping 
S:Q(A) X X -* X* given by 

8(q,x) = q_TTX(dx) + ( — l)nirX2 x)d*0 q 

for all q 6 Q(A ) and all homogeneous x of degree n of X. Clearly, 8 is A -bilinear. 
Therefore ô induces a unique mapping d*: Q(A) (&AX = X* —> X* given by 

d*(2 ® x) = g*x(d*) + (-l)n7rx(z)(d*0g) 

for all q £ Q(-4 ) and all homogeneous # of degree n in X. Clearly, d* is a homo­
geneous i?-linear mapping of degree 1 such that d*(l ® x) = irx{dx) for each 
x £ X. We claim that d* is the required derivation. Checking of the product 
rule is straightforward and left to the reader. To show that d* o d* = 0, let 
q ® x be any element of degree n in Q (A ) ® A X. Then 

d*d*(g ® x) = d*(qwx(dx) + (-l)nTX(x)d*0q), 
= d*(q ® dx) + <- l )»d*(( l ® x)d*0q), 
= qirx{ddx) + (-ir+Wx(dx)(d*0q) + (-l)n(d*(l ®x) (d*0 q) 

+ ( - l ) w ( l ®x)d*d*q), 
= (1 ® x)d*d*q. 

Therefore, d*d*(g ® *) = 0 if and only if d*d*q = 0. But for all * in (d*q)~1X 

d*(d*q)x) = (d*(d*q))x- (d*q)(d*x). 

Therefore (d*(d*q))x = d*(wxd(qx) — qirx(dx)) + (d*q)irx(dx), 
= irx(dd(qx)) — d*(q ® dx) + {d*q)irx{dx), 
= 7rx(d*x)d*q + d*qwx(dx) = 0, 

by the anticommutativity of X. Hence d*(d*q) annihilates the dense ideal 
{d*q)~lX H ç- 1^. Since X* is torsion free, it follows that d*(d*g) = 0 for all 
q £ (?G4), Hence d*d*(q ® x) = 0 for all q ® x in X*, which shows that 
d* d* = 0. Hence (X*, d*) is a complex over Q(A). Also, since 

TTX dx = 1 ® dx = d*(l ® x) = d*TX(x) for each x £ X, 

it follows that irx: X —» X* satisfies the required condition. Thus the theorem is 
proved. 

THEOREM 4.3. Ze£ (X, d) and (F, ô) be two complexes over A; and let 

f: (X,d)->(Y,Ô) 

be a complex homomorphism over A. Under the hypotheses of Theorem 4.2, / 
induces a unique complex homomorphism /*: (X*, d*) —» (F*, ô*) az/er Q(-<4 ) s weft 
thatf* o TX = 7rYof. 
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Proof. Since the hypotheses of Theorem 4.2 are satisfied, we have X* = Q(A ) 
®AX and F* = Q(A) ®A Y. Let J denote the identity mapping on Q(A). 
Then 

f* = I®f:Q(A)®X->Q(A)®AY 

is a graded Q(A )-algebra homomorphism such tha t /* o wx — TYof. Moreover, 

(f*od*)(q ® *) = f*(qirx(dx) + {-l)n*x(x)d*q) 

= q^x(J{dx)) + (- l)Vx(f(*))/*(d*g) 

for any q ® xmQ(A) ®A X. But, for any x € (dg)_1X, 

(f(d*q))x=f*«d*q)x) =f*(TX(d(qx)) - girx(d*)) = *x(f(dqx)) 

~ qvx(f(dx)). 

By definition of/* this is equal to 

irY(ô(qx)) — qwY(èx) = (ô*g)x. 

Thus, (f*(d*q) — ô*q)x = 0 for all # G {dq)~lX, which is a dense ideal. Since 
F* is torsion free, it follows that/*(d*g) = <5*g for all g € 0 ( 4 ) . Therefore, 

(fod*)(q ® *) = girr(«/(*)) + ( - l )V F ( / (x) )ô*g = ô*(g ®/(*) ) 

= («*o / * ) ( f f ® JC). 

Hence f*od* = oof on X*. Hence /*: (X*, d*) -> (F*, 5*) is a complex 
homomorphism over (?C4 ). 

Remark. Suppose every dense ideal in A contains a finitely generated pro­
jective dense ideal. Let F: (&(A) —> Ç£(Q(A)) be the mapping that associates 
with each complex (X, d) in (£(A) the complex (X*, d*) in &(Q(A)) and with 
every complex homomorphism / : (X, d) —> (F, ô) over 4̂ the complex homo­
morphism/*: (X*, d*) —» (F*, ô*) over Ç(^4). Then F is a covariant functor. 
Also, since X* = Q(A) ®AX, it follows that (X*,d*) is generated by 
d* (Q(A)) whenever X is generated by dA. 

Next, let $T(A ) denote the subcategory of Ç£(A ) consisting of those complexes 
(X, d) over A which have the following property: 

For each n > 1, the natural homomorphism wXn : Xn —> X*n is an iso­
morphism. 

THEOREM 4.4. S(QG4 )) w equivalent to ^T(A). 

Proof. First, we shall define a covariant functor T7': fë (Ç C<4 ) ) —» $T (4 ). 
Let (X, d) be any complex over Q(A). Then X can be made into an A -algebra 
as follows. Define ax = 9(a)x for each a £ A and x f I . Then Xw is an A-
module with respect to this scalar multiplication for each n > 1. Thus 
A + Ytn>iXn(Xn being considered as A -module) is an anticommutative 
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graded i^-algebra such that the module of homogeneous elements of degree 0 
is equal to A. Moreover, 

d~: A + Zn>i Xn-+A + Zn>i Xn 

given by d~o = d0 o wA = d0\A on A and d~n = dn on Xn (n > 1) is an in­
dentation of degree 1 of A + £n>i ^ s u c n that d~d~ = 0. Therefore, 
(A + ]Cn>i-X"«»^) is a complex over ^4. By proposition 3.4, the natural 
homomorphism 7rXn is an isomorphism for each n > 1. Therefore, (A + J^n>i 
Xni d~) belongs to $r(A). Moreover, for each complex (F, 5) over Q(A) and 
every complex homomorphism/: (X, d) —» (F, ô) over QG4)> the mapping 

/~: A + Y,n>\ Xn->A+ Y,n>i Yn 

which is equal to the identity on A and to / on Y,n>i Xn is clearly a graded 
A -algebra homomorphism. One can easily check that f~ od~ = 5~ of~. 
Therefore,/"' is a complex homomorphism over A. 

Now, consider the mapping F': &(Q(A)) —> $ x(A) given by 

F'(X,d) = (A+Zn>iXn,d~) 

and Ff (f) = /~. Then, obviously, i7' is a covariant functor. Moreover, 

FoF(X,d) = F (4 + E » > i * » , 0 = (Q(A) ® (A+ Xn>iXn),d~*) 
= (X, d~*) 

since Q(^4) ® A Xn ~ X*n for each n. We claim that d~* = J. This, however, 
follows from the observation that both d and d~* extend the derivation d0\A of 
^4. Therefore, FoF' (X, d) = (X, d) and hence F o F' is the identity on 
G(Q(4)). 

Conversely, take a complex (F, ô) in St*(A). Then (F, 5) is a complex over A 
such that 7rFn: Yn —> F*w is an isomorphism for each n > 1. Now 

F(Y, *) = (<2C4) ®A F, $*) = (Q(A) + Ln>i F„ 5*); 

hence F o F(Y, Ô) = (A + Zn>i Yn, 5*~) = (F, 5*~). In order to show that 
8*~ = 5, we recall that <5*~0 = <5*oM = 80 and <5*~w = ô*n. But 

ô*(l <S> 3>) = wr»(ôy) = ô^ for each y Ç Yn (n > 1) 

since 7rFw is an isomorphism. Therefore ô*n = ôn (n > 1). Hence ô*" = ô and 
(F, ô*~) = (F, 5), which proves that F' o F is the identity on $ , ( 4 ) . Hence 
the two categories S ((? (-4 ) ) and ^ (̂ 4 ) are equivalent. 

THEOREM 4.5. F: Ê(-4) —* fë((?C4)) fo&es' //ze universal complexes over A to 
the universal complexes over Q(A). 

Proof. Let ([/, d) be a universal complex over ^4. Then ([/*, d*) = ^(C/, d) 
is a complex over QC4). We claim that ([/*, d*) is universal over Ç(^4). Let 
(F, ô) be any complex over Q(A). By Theorem 4.4, 04 + Hn>i Vnt 8~) is a 
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complex over A. By the universality of (U, d), there exists a unique complex 
homomorphism / : (U, d) -» A ( + L«>i Vn, r ) over A Then F(jf) = / * : 
(£/*, d*) —> (F, ô) is a complex homomorphism over Q(A). Since (£/*, J*) is 
generated by d*(Q(A)), f* is unique. Hence (U*,d*) is a universal complex 
over Q (A). 

PROPOSITION 4.1. Let A be an R-algebra such that every dense ideal in A contains 
a finitely generated dense ideal and let (U, d) be a universal complex over A. 
If U\ is a free A -module, then (U*,d*) is a universal complex over Q{A). 

Proof. Let (V, 8) be any other complex over Q(A). We recall that (U, d) is a 
universal complex over A if and only if (Ui, d0) is a universal derivation module 
of A and U is the exterior algebra of U\. Since Vi can be considered as an 
A -module, the universality of (Ui, d0) implies that there exists a unique 
A -homomorphism / : C7i —>- V\ such that / o do = 50 on A. We know that / 
induces a unique Q(A)-homomorphism /*: Z7*i —» F*i c^ Fi. Thus since V is 
anticommutative, f* extends uniquely to a ()(^4)-algebra homomorphism g: 
E(U*i) —> F where E(U*i) denotes the exterior algebra of U*i over Q(A). 
Since f/*i ~ Q U ) ® A Ult it follows that E(U*i) c~Q(A) ®AE(Ui) ^ U*. 
Thus ^ maps if* into F One can easily check that god* = 5 o g. The unique­
ness of g, however, follows from the fact that U* is generated by d*Q(A). 
Hence ([/*, d*) is a universal complex over Q(A). 

The following proposition is proved by similar arguments; it is left to the 
reader. 

PROPOSITION 4.2. If ([/", d) is a universal complex over A such that U\ is a 
finitely generated and projective A-module, then (£/*, d*) is a universal complex 
over Q(A). 

Finally, we observe that if a universal complex (27, d) over A is such that the 
order ideal of every element of U\ is dense, then ([/*, d*) is trivial ; and hence a 
universal complex over Q(A)is trivial. 
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