COMPLEXES OVER A COMPLETE ALGEBRA OF
QUOTIENTS

KRISHNA TEWARI

1. Introduction. Let R be a commutative ring with unit and 4 be a
unitary commutative R-algebra. Let 45 be a generalized algebra of quotients
of A4 with respect to a multiplicatively closed subset Sof 4. If €(4) and €(4s)
denote the categories of complexes and their homomorphisms over 4 and A4¢
respectively, then one easily sees that there exists a covariant functor T:
€(4) — €(4) such that T is onto and T'(X, d) is universal over 4 s whenever
(X, d) is universal over A. Actually the category €(4s) is equivalent to a
subcategory Rs(4) of €(4) where R5(4) contains all those complexes (X, d)
over A such that for each s in .S, the module homomorphism ¢: x — sx of X,
into itself is one—one and onto for each # > 1. In this paper, it is shown that
if 4 isan R-algebra such that every dense ideal in 4 contains a finitely generated
projective dense ideal, then there exists a covariant functor F: €(4)—€(Q(4)),
Q(4) being a complete algebra of quotients of 4, such that Fis onto and carries
universal complexes over 4 to the universal complexes over Q(4). In order to
deal with the problem, a particular covariant functor from the category of
A-modules to the category of Q(4)-modules is introduced and studied in some
detail.

2. Preliminaries. Let X and Y be two graded algebras over a commutative
ring R with unit; and let f: X — ¥V be a graded R-algebra homomorphism.
We recall (4) that an R-linear mapping d: X — Y is called an R-derivation of
degree 1 if (i) d is a homogeneous linear mapping of degree 1; and (ii) for any
%, ¥’ in X with x homogeneous of degree #,

d(xx') = dxf(x') + (—=1)" f(x)dx'.

In particular, if ¥ = X and f: X — Y is the identity mapping, then a derivation
of degree 1 of X into itself is called a derivation of degree 1 of X. For any unitary
commutative R-algebra 4, a pair (X, d) where X is an anticommutative graded
R-algebra (4) such that X, = 4 and where d: X — X is an R-derivation of
degree 1 of X such thatdod = 0, is called a complex over A. For any two com-
plexes (X, d), (Y, 6) over 4, a graded R-algebra homomorphism (4)f: X —» ¥
is called a complex homomorphism over A if (i) f maps A identically; and (ii)
fod = sof. We write f: (X,d) — (Y, ). Moreover, a complex (U, d) over 4
is called universal (5) if given any other complex (V, ) over 4 there exists a
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unique complex homomorphism f: (U, d) — (V, d) over A. Finally, a homo-
geneousideal J C X is called a complex idealif dJ C J.

Next, we shall recall some basic notions regarding a complete algebra of
quotients. An ideal D in an R-algebra A4 is called dense if for alla in 4,aD = 0
impliesa = 0. In the following we list some properties of dense ideals.

ProrosiTION 2.1. (i) 4 is dense.

(ii) If Disadenseidealin A and D S D', D' being an idealin A, then D' is dense.
(iii) If D and D’ are dense, then so are DD’ and D M D',

(iv) If D is a dense ideal and for each d in D, D 1s a dense ideal, then

2. dD, (d € D)
is a dense ideal.
(v) If R # 0, then 0 is not dense.

We give a proof of (iii) and (iv), the other properties being obvious. Let
aDD' = 0. Then for any d € D, adD’ = 0, and so ad = 0, since D’ is dense.
Thus aD = 0; hence a = 0, since D is dense. Therefore DD’ is dense. But
DD' C DN D'; and, so, DN D’ is dense by (ii). Now to prove (v), take
> sepadDy = 0. Then adD; = 0 for each d € D; and, so, aD = 0 since D,
isdense. Thusa = 0, since D isdense. Hence > dD, (d € D) isdense.

It follows by known methods, as for example in (6), that if D is the set of all
dense ideals of 4, then

lim Hom,(D, 4)

DeD
exists and is a unitary commutative R-algebra containing an isomorphic copy of
A. If we denote this injective limit by Q(4 ), then

Q(4) = UHom,(D, 4)/6
DeD

where O is the following equivalence relation: “‘f; 6 f» if and only if f; and f,
agree on the intersection of their domains.” This statement is equivalent to
saying that f; © f; if and only if f; and f, agree on some dense ideal. Q(4) is
called a complete algebra of quotients of A. The natural embedding of 4 into
Q(4) is given by the mapping ¢ — 6 (a/1) which is called the natural mapping.
For the sake of convenience, we shall identify 4 with its natural image in
Q(4). Finally we note that, for any gin Q(4), thesetg'4 = {a € 4 | ga € 4}
isadenseidealin 4.

We end this section by stating the following well-known lemma, which we
shall need later.

LeEMMA 2.1. Let M and N be A-modules. If either N or M is a finitely generated
projective A-module, then the natural homomorphism

Hom (M, A) ® 4 N — Hom, (M, N)

is an isomorphism.
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3. The functor M*. The set D of dense ideals of 4 is directed under
inclusion since the intersection of any two dense ideals is again a dense ideal.
Also, for an 4A-module M, (Hom4(D, M)) (D € D) is a family of 4-modules
indexed by the directed set ©. For each D C E, for D and E in 9, the mappings

Apg: Hom,(E, M) — Homy, (D, M)

given by \px(f) = f| D, where f | D denotes the restriction of f to D, have the
following properties:
(1) Moz € Hom,(Hom,(E, M), Hom,(D, M)), for each D C E;
(ii) Appistheidentity on Hom, (D, M);and
(iii) D € E C F implies Apz 0 Agr = App since (| E) | D = f]|D for all
f € Homy, (F, M).
Hence, (Hom, (D, M), M\pz) (D C E) is an injective system of A-modules.

Set
M* = lim Homy, (D, M).
_—
DED
Then

M* = UHOmA(Dy M)/E
DED

where = is the following equivalence relation:
f1 = f2if and only if f; and f; coincide on some dense ideal.

Remarks. (1) If f belongs to Hom, (D, M) for some dense ideal D, then the
equivalence class of f will be denoted by [f].

(2) Each x € M determines the homomorphism a —ax of A into M;
if 7,(x) € M* denotes the equivalence class of this homomorphism, then the
mapping ma: & — my(x) is a homomorphism of M into M*, called the natural
homomorphism. 7y (x) = 0 if and only if the homomorphism a — ax is zero on
some dense ideal D, i.e., the order ideal {a|la € 4, ax = 0} of x is dense.

(3) If M isthe A-module 4, then 4* = Q(4).

ProprosiTION 3.1. M* is a Q(A)-module for each A-module M. Moreover, if
¢: M — N is an A-module homomorphism, then ¢ induces a unige Q(A)-module
homomorphism ¢*: M* — N* such that 7y 0 ¢ = ¢* © 74 Finally, if

o-uEn¥bp
1s an exact sequence of A-modules, then
% *
0— m+ & i ¥ pr
1s an exact sequence of Q(A)-modules.
Proof. To begin with, we have to define an additive mapping

h: Q(4) ® 4 M* — M*
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such that (1 ® x) = xforall xin M*. For this we first define
hpg: Hom, (D, A) X Hom,(E, M) — M*

for any two dense ideals D and E of 4 as follows. If ¢: D — 4, then ¢~ 1(E) is
again a dense ideal, for it contains ED since ¢ (ED) = E¢(D) C E, and ED is
dense. Thus the homomorphism fo (¢|¢p—1(E)) is defined on a dense ideal for
f: E— M, and we can put

hopg($, f) = [fo (el¢7"(E))].

Clearly, h%py is A-bilinear and hence determines an A-homomorphism
hpg: Hom, (D, A) ® 4 Hom,4 (E, M) — M*. Moreover, if D' C D and E' C E
are two other dense ideals and up/p and \g-p are the respective restriction
homomorphisms, then %pg = Ap/g O (upp’ ® Agrx). Therefore, hpg induces a
homomorphism into M* on the injective limit of the injective system,

(Hom (D, 4) ® 4 Hom(E, M), pp'p ® Ag'k).
Since the latter is isomorphic to Q(4) ® , M*, we have thereby obtained a

homomorphism 4: Q(4) ® 4 M* — M*. Now takex € M*. Letfc Hom,(D,M)

be chosen such that [f] = x. If 75, denotes the natural injection D — 4, one has
k0 (ip:f) = [foip] = [f]l = x,

and this shows that 2(1 ® x) = x for all x € M*.

Now, let (Hom, (D, M), Apg) and (Hom (D, N), upx) be in injective sys-
tems whose limits are M* and N* respectively. For each D in 3, ¢ induces
an A-module homomorphism ¢,: Hom,(D, M) — Hom (D, N) given by
op(f) = ¢ of for all f in Hom, (D, M). Moreover, for each E C D, the
diagram

Homy, (D, M)—— Homy (E, M)

A
¢Dl = ¢El
Hom, (D, N)—— Homy, (E, N)
MKED
commutes since

(60 Aep) (f) = (90 f)|E = (ugp 0 ép) (f)

for any f € Hom4(D, M). Thus (¢p) (D € D) is an injective system of A-
module homomorphisms. Set

d)* = lim ¢D-
—_
DeD
Clearly, ¢* is an A-homomorphism. In order to show that ¢* is a Q(4)-homo-
morphism, take any ¢ € Q(4) and m € M*. Then for some suitable dense
ideal D of A4, one has f € Hom,(D, M) and a € Hom4(D, 4) such that
m = [f],q = [a], and hence gm = [fo «]. Then

¢*(gm) = [p0 (foa)l,  qo*(m) =gl of] = [(40f)0al,
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which shows that ¢*(gm) = g¢*(m). Also, forany x € M,

¢
M——N

TMl 1WN

M*— N*
¢*
5 (¢(x)) = [¢(x)] = [hsw] where hyry: A — Nisgiven by
hyw @ = ag(x) = ¢(ax).
Since ¢*(my(x)) = ¢*[k,] = [¢ 0 k,] where k,: A — M maps each a onto ax,

it follows that my (¢ (x)) = ¢*my (x).
We next show that the exactness of the sequence

o-uwdn¥p

implies the exactness of the sequence

E3
0— M* ¢, N* ﬂ P*;
that is, we have to show that (i) ker(¢) = O implies ker(¢*) = 0 and (ii)
ker(¥) = ¢ (M) implies ker (y*) = ¢*(M*).

(i) Let m be any element in ker(¢*). Then ¢*(m) = 0 implies [p o f] = 0
for every f € Hom,(D, M) such that [f] = m. Therefore (¢ of) (D’) = 0 for
some dense ideal D’ in 4 ; and so f(D’) = O since ker ¢ = 0. Thus [f] = m =0
since D’ is dense. Hence ker ¢* = 0.

(ii) Take n € ker(y*) arbitrary. Then n = [g] for some g € Hom,(E, N),
E a dense ideal in 4. y*(n) = 0 implies (¢ 0 g)(D’) = 0 for some dense ideal
D’ in A. Thus, g(D’) € ¢(M). Define f: D' — M by f(d) = ¢~ (g(d)) = m,
for each d € D’. Since ¢ is one—one, f is well defined. Clearly, f € Hom (D', M)
andg¢of = gonD'.So

n = [g] = [¢pof] = ¢*[f] € ¢*(M*).
Therefore, ker (§*) C ¢* (M*).
Conversely, choose ¢*(m) € ¢* (M) arbitrarily. Then
Y*(¢*(m)) = Y odof]

where f € Hom, (D, M) such that [f] = m. Since f(D) C M, fo¢of) (D) &
Y(p(M)) =0. Thus [yopof] =0; and so o¢*(M*) C ker(¥*). Hence
¢* (M*) = ker(y¥*) and the proposition is proved.

Remark. The association of M* with every A-module M, and the association
of ¢* with every 4-module homomorphism ¢: M — N is a covariant functor
from the category of 4-modules into the category of Q (4 )-modules.

LEMMA 3.1. For any A-module M, waysx = 7* 4.
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Proof. Let x € M* arbitrary. Then x = [f] with f € Hom, (D, M) for some
dense ideal D in 4. Now 7+ (x) = [¢.] where ¢,: A — M*isgiven by

¢.(a) = ax = [af]
foreacha € 4. Thus, foreacha,din D,af(d) = df (@) = ¢ (d) implies

laf] = [$7@] = mu(f(a)) = (7x0[)(a)
foreacha € D.Thus¢,(a) = (mp0f)(a)foreacha € D;and so
[¢.] = [my o fl = 7*u[f] = 7*3 (x).
Therefore w0+ (x) = 7%,,(x); hence mhx = 7%y

DEFINITION. M is torsion free if x € M, Dx = 0 for some dense ideal D
impliesx = 0.

For any A-module M, the set T of those x € M for which there exists a dense
ideal D in 4 with Dx = 0 is an A-submodule of M and M/T is a torsion-free
A-module. Let v: M — M/T be the natural 4-homomorphism. Then

LEMMA 3.2. v*: M* — (M/T)* is one-one.

Proof. Let x € ker(v). Then x = [f] for some f € Hom, (D, M), D being a
dense ideal in 4. Now »*(x) = 0 implies [vof] = 0 and so (vof) (D’) =0
for some dense ideal D’ in A. Thusf(D’) C ker(v) = T In view of the definition
of T, foreach d € D’, there exists a dense ideal D, such that f(d)D,=f(dD;) =0.
Thus f vanishes on the ideal > 4pr dD,; which, by Proposition 2.1, is dense.
So[f] =x = 0.

LemMA 3.3. For any A-module M, M* is torsion free.

Proof. Let m be an element in M* such that Em = 0 for some dense ideal
E in A. To show that m = 0, we recall that m € M* implies m = [f] with
f € Homy, (D, M), D being a dense ideal. Since Em = 0 implies xm = x[f] =
[x o f] = 0 for each x € E, it follows that for each x € E, there exists a dense
ideal D, in A such that xf(D,) = f(xD,) = 0. Thus f(X.ex xD.) = 0. But,
by Proposition 2.1, (iv) > ;ecr xD, is dense; and, so [f] = m = 0. Hence M* is
torsion free.

PropoSITION 3.2. Let M be a torsion-free A-module and D be a dense ideal.
Thenf € Homy (D, M*) has a unique extension 4 — M*.

Proof (B. Banaschewski). First we show that the ideal
E = f(my(M)) = {x € D|f(x) € ma (M)}

is dense. For any a € D, f(a)"'M = {x| xf(a) € (M)} contains D,, the
domain of ¢ € f(a); and hence f(a)~'M is dense. Now let x € f(a)~!M. Then
flxa) = xf(a) € 7y (M). Thus xa € E; hence af(a)*M C E and so X .
af(@)~'M C E. Therefore, in view of Proposition 2.1, (iv), E is dense.
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Now, x € E implies f(x) = my(m,) for some m, in M; and so f(x) = he
with %, : D, — M given by h,(y) = ym, for each y € D,. For any z € 4,
zf(x) = f(zx) implies ym,, = zym, = xym, for all y in some dense ideal;
then forz € E,xym, = ym,,;or

y(xm, — m,) = 0 for all y in some dense ideal.

Since M is torsion free, it follows that xm, = m,, for all x, z in E; that is,
he(z) = zm, = xm, for all x, 2z in E. Since the natural homomorphism my:
M — M?* is one—one in this case, the mapping g: E — M given by g(x) =m,
is well defined and A-linear. Also, %,(z) = xg(z) implies f(x) = x[g] for all x,
zin E. Hence for x € E, y € D, x(f(y) — »[g]) = 0. Since E is dense and M
is torsion free, f(y) = ylg]forally € D. Then the mapping &: 4 — M given by
x — x[g] is an 4-module homomorphism and extends f. Since M is torsion free,
h is clearly unique.

COROLLARY. If M is torsion free, then mwys: M* — M** is an isomorphism.

Proof. Since M* is torsion free, ker my« = 0. To show my+ is onto, take any
[f] in M**. By the above lemma we can take f to be defined on 4. Then
f(1) € M*and clearly [f] = ma+f(1).

ProposITION 3.3. (M/T)* is isomorphic to M**.

Proof. We recall that ker (m,) = T = ker v. Therefore, there exists an
A-module monomorphism ¢: M/T" — M* such that the diagram

M—— M*

| %
M/T

commutes; thatis ¢ o » = 7. Butvinduces the monomorphism
v e M* — (M/T)*

such that the following diagram commutes:

™™
M—- M*

M/T—> (M/T)*

T™MIT
i.e., such that v* 0 my = mp,r 0 v. Since 7y = ¢ O v, it follows that
v¥ogpor = Tamir OV,
hence v* 0 ¢ = my,rsince v is an epimorphism. Thus

(V*O¢)* = V**O¢* = T*M/T = WM IT)*)
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where v**, ¢* are the monomorphisms induced by v* and ¢ respectively. Thus
we have the following diagram:

s Tpy* = T*py

M > M M**

M/T—— (M/T)*——— (M/T)**
M/ T T (M| T)*

Since mr is an isomorphism (by Proposition 3.2, Corollary), it follows that
v** is an epimorphism. Hence, v**: M** — (M/T)** is an isomorphism. Hence
¢* is an isomorphism, which proves that (M/7")* is isomorphic to M**,

LeEMMA 3.4. For any A-module M, M* is a rational extension of wy (M).
Proof. We first show that for any y € M, the ideal
y'M = fa € Al ya € my (M)}
is dense. For this recall that y = [f] with f € Hom, (D, M) for some dense D.
Therefore,
yd = [fld = [fod] = ¢pa = ma(f(d)) € w2 (M) for each d € D,

and hence D C y~'M. Since D isdense, it follows that y~1M is dense.

Now we show that M* is a rational extension of 7, (3). For this we have
to show that to any x, y € M*, x 0, there is an ¢ € 4 such that xa # 0
and ya € 7, (M). By its very definition for everya € y" 1M C A,va € my(M).
Moreover, since M* is torsion free, xa = 0 for at least one ¢ € y~1M. This
proves the assertion.

COROLLARY 1. If M is torsion free, then M* is a rational extension of M.
CoROLLARY 2. Q(4) = (Q(4))*

Proof. Since Q(A) is torsion free, (Q(4))* is a rational extension of Q(4).
Now our assertion follows from the fact that (Q(4))* is rationally complete.

PROPOSITION 3.4. Let A be an R-algebra such that every dense ideal in A contains
a finitely generated projective dense ideal. Then
(1) the natural mapping Q(A) @ 4 M — M* given by

g ® m— qmy(m) forallm € M, g € Q(4)

15 a Q(A)-module isomorphism.
(ii) Q(4)isa flat A-module.
(ili) For any Q(A)-module N, the natural homomorphism wy: N — N* is an
isomorphism.
Proof. (i) Let D’ denote the set of all finitely generated projective dense ideals
in 4. Then since for each dense ideal D in D there exists a D’ in 9’ with
D' C D, itfollows that ©'is a co-initial subset of D. Thus,

(HOITIA(D, A)) NDE) (‘D! E E @l)
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is an injective system of 4-modules and

Q'(4) = _lim_Hom,(D, 4)

’

. . . Deg
is isomorphic to

QM) = _anl_) Homy, (D, 4).

DeD
Similarly, (Hom (D, M), A\pg) (D, E € 9’) isan injective system and

M* = lim *HomA(D’, M)
Ded’
is isomorphic to
M* = lim Hom, (D, M)
_—

DED
as Q(4)-modules. Now

Q(A) ® 4 M= <m_) HOI'HA(D,A)> Q4 Ml

DeD

g( lim Hom, (D, A)) ®.4 M,
_—

De®’

= lim (Homy(D, 4) ®4 M),

De®’

~ lim Homy(D, M), (by Lemma 2.1)
DeD’

~ lim Homy,(D, M) = M*.

—_—

DeD
Thus it is enough to show that this isomorphism is given by ¢ ® x — gmry,(x).
But¢ ® x = 6(f) ® x — [f ® x] where f € Hom, (D, 4) such that 6(f) = q.
We recall that the isomorphism Hom, (D, A) ® 4 M — Hom (D, M) is given
byf ® x — ¢, 0 f where ¢,: 4 — Misgivenbya — ax foralla € 4. Therefore,
[f ® x] = [¢. 0 f] = gmy(x). This proves (i).

(ii) Now to prove that Q(4) is a flat 4-module, we must show that for any

exact sequence

of 4-modules, the sequence

o) @, 128 o) 0. v L2 % oy @, P
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is exact; here I denotes the identity mapping on Q(4) (1). Since Q(4) ® 4 M
is isomorphic to M*, we only have to show that

M* ﬂ N* ﬂ pP*
is exact. The exactness of the sequence
uin¥bp
implies ker () = ¢ (M); thus we have the following commutative diagram:
N—P

14

X
+
N/¢ (M)

where v: N — N/¢ (M) is the natural 4-homomorphism and x: N/¢ (M) — P
is the unique 4-monomorphism induced by ». But x o » = ¢ implies x* o p* =¢*.
Since x* is a monomorphism (Proposition 3.1), it follows that ker (y*) = ker (v*).
Thus, we have to show that ker (*) = ¢* (M*).

For this consider the exact sequence

0— ¢(M) 5N N/o(M)
where 7 is the natural injection. By Proposition 3.1, the sequence

¥

¥
0 — ($(M))* 5 N* 5 (N/ & (M))*
is also exact. So ker (v*) = 7*((¢(M))*). Thus, it only remains to show that
¢*(M*) = v*((¢(M))*). This, however, follows from the fact that
¢* = lim ¢p
[
DeD

and that ¢, (Hom4 (D, M)) =  Hom4 (D, ¢(M)) foreach D € 2.
(iii) It remains to show that for any Q(4)-module N, N* is isomorphic to V.
This follows immediately from the following identities:

N*~Q(4) @4 Nand N = Q(4) Qawy N = Q(4) ®40(4) @ewy N
(since Q(4) = (Q(4))*).

To prove that this isomorphism is equal to y, take an arbitrary gx € N.
Then

x—=q®x—10q¢®x—1Q gr— my(gx)
gives the effect of the above isomorphism.

COROLLARY. If every dense ideal in A contains a finitely generated projective
dense ideal, then the natual homomorphism wym: M* — M** is an isomorphism.
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We have seen in Proposition 3.1 that the functor M — M* takes mono-
morphisms into monomorphisms. If 4 is an R-algebra satisfying the conditions
of Proposition 3.4, then the following holds:

ProPosITION 3.5. If ¢: M — N is an epimorphism, then ¢*: M* — N* is an
epimorphism.

Proof. Since the domain of f contains a finitely generated projective dense
ideal D’, there exists for any y = [f] in N* a g € Hom (D', M) such that
¢o0g =f on D'. Thus [f] = [p0g] = ¢*[g]. Since [g] € M*, ¢* is an epi-
morphism.

PROPOSITION 3.6. Let A be an R-algebra such that every dense ideal in A contains
a finitely generated dense ideal. Let M be a free A-module. Then M* is isomorphic
t0Q(4) @4 M.

Proof. Let (x,),¢; be an A-basis for M. Then
M =) Ax, (direct).
el

Let D be a finitely generated dense ideal. Then

H D, ) Ax.
OmA( ;I X )
is isomorphic to

E Hom (D, Ax,).

Tel

To see this, let f,: D — Ax. be an element of Hom (D, Ax.). Then the family
(f+) (r € I),with f, = 0for all but finitely many r, belongs to

Z HOmA (Dy Ax‘r) )

Ter
sinceif f, = Ounless7 5 11,..., 7, then

n n

> f+: (d) belongs to Z Ax,, Y Ax, for each d € D.
P

i=1 T€T

Thus
¢t (fr)rer -*;fr
is an A-homomorphism of

Z Hom, (D, Ax,) into HomA<D, Z Ax,) .

7€l T€l

If

> f.:(d) =0 foreachd€ D,
i=1
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then the directness of the sum 3 .¢; Ax, implies that f,,(d) = 0 for each 7 and
each d € D;thus ¢ is one—one. To show that ¢ is onto, take any

f E HOITIA(.D, ZTEI Axf).

If, for each 7 € I, m,: > ,e; Ax, — Ax, denotes the natural projection, then
f= > am0f, where m.0f = f, belongs to Hom, (D, Ax,) for each r. That
f- = 0 for all but finitely many 7 follows from the fact that D is finitely
generated. Thus (f:).e;r belongs to 3. Homy, (D, Ax.) and ¢((f-)rer) = f-
Hence, ¢ is an 4-isomorphism.

Now the proposition follows immediately from the identities:

Q) 4 M = Q(4) ®A;Axf = };,I (Q(4) ®44)x,
and

M* = lim HomA(D,Z Ax,) = lim ;HomA(D, Ax,)

Tel

= Z lim Homy, (D, Ax.,),

el

where the injective limit is taken over the set of all finitely generated dense
ideals.

ProrosiTION 3.7. If M is a finitely generated projective A-module, then the
natural homomorphism Q(A) @ 4 M — M*, given by ¢ ® x — qmwp(x), 15 an
isomorphism.

Proof.
Q(A) ®AM = <_1_12)H0mA(DyA)> ®A My

=~ lim (Hom,(D,4) ® . M),
—_—

=~ lim Hom, (D, M) (Lemma 2.1),
—

= M*.
This isomorphism is given by
I®x—6(f) ®x— [f® ]

where 6(f) = ¢, the domain of f being equal to D. Since the isomorphism
Hom (D, 4) ® 4 M — Hom, (D, M) is given by f® x— ¢,0f where
¢.: A — M isgiven by a — ax, it follows that

[f ® x] = [¢: 0 f] = glo:] = gmar(x).

PROPOSITION 3.8. Let M be an A-module such that the order ideal of x is dense
foreach xin M. Then M* = 0.
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Proof. Here M = T and so M/T = 0. Thus 0* = 0 implies M** =0
(Proposition 3.3). Since m+: M* — M**is one—one, it follows that M* = 0.

4, Complexes over a complete algebra of quotients.

THEOREM 4.1. Let M be an A-module; and let d: A — M be an R-derivation.
Then d induces a unique derivation d*: Q(A) — M** such that

d¥|A = myxomyod.
Proof. Foreachq € Q(4), let ¢,: ¢7'4 — M* be given by
¢, (x) = myd(gx) — q(ru(dx)).

One can easily check that ¢, is an A-homomorphism and so belongs to
Hom, (g~'4, M*). Since ¢~'4 is a dense ideal in 4, ¢, determines a class in M**,
Let this class be denoted by d*q. Now consider the mapping d*: Q(4) — M**
given by d*: ¢ — d*q. We claim that d* is the required derivation. In order to
prove this assertion take any ¢i, g2 in Q(4) and 7, ' in R. Then a straight-
forward calculation shows that for any x € ¢;714 M ¢.714:

) buuriesr () = (rbyy + 7'0) (6).
Thus
Goyrtagrr = Tbgy — Vg, = 0
on the dense ideal ¢;7'4 M ¢»~'4 and hence
a*(qir + q27") = (@* q1)r + (@* g2)r.
Therefore d* is R-linear. Also, forany x € (g, ¢2)™'4 M g.7'4.

(1) bgyqp (x) = mar d((g192)%) — (g1 g2)mar(dx),

72 4(q1(g2 %)) — (g1 g2)mar (dx),

Ta A(q1(g2%)) — 17 a A (g2 %) +q1mar d(g2 %) — (g1 g2) 7ar (d),
g, (92 x) + q1 ¢y, (x)

Hence,

B0, (V) = boy0, (XY) = b, (q2%Y) + g1 ¢4, (xy) = x(q2 e, V) + q1 64, (¥))

forany x and yin (g1 ¢2)7'4 M g2 4.
Since M* is torsion free, we obtain

Ga10, (V) = (q2q, + q10,,) (V) for all y in (g1 ¢2)714 M g5 14.

Thus d*(q1 ¢2) = g2 d*q1 + ¢1 d*q2. Therefore, (i) and (ii) together show that
d is an R-derivation.
Finallyifa € 4, then

do(x) = 7y dlax) — amy(dx) = 7y (xda) = x7y(da) for all x € .
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Hence d*a = [¢,] = max(my(da)); thatis, d¥|4 = myx 0 w3 0 d. Thus we have
shown that d@* is a derivation from Q(4) into M** with the required properties.

To show the uniqueness of ¢*, let d be another R-derivation from Q(4) into
M** such that d*/4 = wy+omyod. Then d* —d = 0 on A. Since d* — d
isa derivation on Q(4), it follows that for any ¢ € Q(4) and any x € ¢4,

@ — d)(gx) = ((@* — d)g)x + q(@* — d)x.

Since @* — d = 0 on 4, we have ((d* — d)g)x = 0; thus (@* — d)q is annulled
by the dense ideal ¢g—24. Since M** is torsion free, (d* — d) ¢ = 0 for each
q € Q(4).Henced* = don Q(4), which proves the uniqueness of d*.

COROLLARY 1. If M is a torsion free A-module and d : A — M is any R-deriva-
tion, then d induces a unique derivation d*: Q(A) — M* suchthatd|A = 7, 0d.

Proof. This follows immediately from the Corollary of Proposition 3.2.

As a special case we obtain:

COROLLARY 2. Any R-derivation of A into itself has a unique extension to an
R-derivation of Q(A) into itself.

The Corollary to Proposition 3.4 also implies:

COROLLARY 3. If every dense ideal of A contains a finitely generated projective
dense ideal, then any R-derivation d: A — M induces a unique R-derivation
d*: Q(A) = M* such that d*|A = my 0d.

THEOREM 4.2. Let A be an R-algebra and let (X, d) be a complex over A.
Suppose

(i) every dense ideal in A contains a finitely generated projective dense ideal; or

(ii) every dense ideal in A contains a finitely generated dense ideal and X is a
free A-module; or

(ii1) X s a finitely generated projective A-module.
Then there exists a unique dertvation d*: X* — X* such that (X*, d*) is a complex
over Q(A) and the natural homomorphism wx: X — X* is a graded algebra
homomorphism such that rx od = d* o 7x.

Proof. Since X is an 4-module, Propositions 3.4, 3.6, and 3.7 imply that X*
is isomorphic to Q(4) ®4 X under any of the conditions (i), (ii), or (iii).
Therefore, X* is an anticommutative graded R-algebra such that the module
X*, of homogeneous elements of degree 0 is equal to Q(4 ). Also since

mx(xx’) =1Qxx' = (1 Qx)(1 @ x') = mx(x)7x(x’) so for each x, ' in X,
it follows that 7y is a graded algebra homomorphism.

We now wish to define a derivation d*: X* — X* of degree 1 such that
d* od* = 0. First, the derivation d¢: 4 — X induces a unique derivation
d*i: Q(4) — X*, under any of the conditions (i), (ii), (iii). For (i), this is
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Corollary 3 of Theorem 4.1; for (ii) and (iii), it results from Corollary 1 of that
theorem since X is torsion free in these cases. Now consider the mapping
8: 0(4) X X — X*¢given by

8(g, x) = grx(dx) + (—1)"mx,x)d*o q

forall¢ € Q(4) and all homogeneous x of degree # of X. Clearly, § is A-bilinear.
Therefore § induces a unique mapping d*: Q(4) ® 4 X = X* — X* given by

d*(g ® x) = grx(dx) + (—1)"rx(x)(d*0 q)

for all ¢ € Q(4) and all homogeneous x of degree # in X. Clearly, d* is a homo-
geneous R-linear mapping of degree 1 such that d*(1 ® x) = 7x(dx) for each
x € X. We claim that d* is the required derivation. Checking of the product
rule is straightforward and left to the reader. To show that d* o d* = 0, let
g ® xbeany element of degree #in Q(4) ® 4 X. Then

d*d*(q ® x) = d*(grx(dx) + (—1)"rx(x)d*o q),
= d*(g ® dx) + (—1)"d*((1 ® x)d* q),
= grx(ddx) + (—1)""'rx(dx) (d*oq) + (—1)"(@*(1®x) (d* q)
+ (=1)"(1 ® x)d*d*qg),
= (1 ® x)d*d*q.

Therefore, d*d* (¢ ® x) = 0 if and only if d*d*q = 0. But for all x in (d*q)—'X
Nqg4,

d*(d*q) x) = (2*(@*q))x — (d*q) (d*x).
Therefore (d* (d*q))x = d*(wx d(gx) — grx(dx)) + (d*q)7x(dx),

mx(dd(gx)) — d*(q ® dx) + (@*q)mx(dx),
= wx(d*x)d*q + d*qrx(dx) = 0,

I

I

by the anticommutativity of X. Hence d*(d*q) annihilates the dense ideal
(d*q)='X M ¢ 4. Since X* is torsion free, it follows that d* (d*q) = 0 for all
q € Q(4). Hence d*d*(¢ ® x) = 0 for all ¢ ® x in X*, which shows that
d*d* = 0. Hence (X*, d*) isa complex over Q(4). Also, since

mxdx =1 ® dx = d*¥*(1 @ x) = d*rx(x) for each x € X,

it follows that mx: X — X* satisfies the required condition. Thus the theorem is
proved.

THEOREM 4.3. Let (X, d) and (Y, 8) be two complexes over A; and let
[ (X, d) = (Y,9)

be a complex homomorphism over A. Under the hypotheses of Theorem 4.2, f
induces a unique complex homomorphism f*: (X*, d*) — (V™*, 6*) over Q(A4) such
tkatf* OnTx = Ty Of.
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Proof. Since the hypotheses of Theorem 4.2 are satisfied, we have X* = Q(4)
®4X and V* = Q(4) ®4 V. Let I denote the identity mapping on Q(4).
Then

F=10fQU)®X—-Q)®,+Y
is a graded Q (A4 )-algebra homomorphism such that f* o 7y = 7y o f. Moreover,

(f*od*)(g ® x) = f*(grx(dx) + (—1)"rx(x)d*q)
= grx(f(dx)) + (—1)"rx(f(x))f*(d*q)
foranyq¢ @ xin Q(4) ® 4 X. But, foranyx € (dg)~'X,

(f*@*q))x = f*((@*q)x) = f*(rx(d(gx)) — grx(dx)) = wx(f(dgx))
— grx(f(dx)).

By definition of f* thisisequal to
Ty (8(gx)) — gmy(6x) = (8*g)x.

Thus, (f*(d*q) — 6*¢)x = 0 for all x € (dg)~'X, which is a dense ideal. Since
Y* is torsion free, it follows that f*(d*q) = 6%q¢ for all ¢ € Q(4). Therefore,

(ffod*)(g ® x) = qry(3f(x)) + (=1)"ry(f(x))0*q = 6*(q ® f(x))
= (8*of*) (g ® x).

Hence f*od* = §of* on X*. Hence f*: (X* d*) — (V¥ 6*) is a complex
homomorphism over Q(4).

Remark. Suppose every dense ideal in 4 contains a finitely generated pro-
jective dense ideal. Let F: €(4) — €(Q(4)) be the mapping that associates
with each complex (X, d) in €(4) the complex (X*, d*) in €(Q(4)) and with
every complex homomorphism f: (X, d) — (¥, 8) over 4 the complex homo-
morphism f*: (X*, d*) — (V*, 6*) over Q(4). Then F is a covariant functor.
Also, since X* = Q(4) ®4 X, it follows that (X* d*) is generated by
d*(Q(4)) whenever X is generated by d4.

Next, let f,(4) denote the subcategory of €(4) consisting of those complexes
(X, d) over A which have the following property:

For each n > 1, the natural homomorphism =g, : X, —» X*, is an iso-
morphism.

TueEOREM 4.4. €(Q(4)) is equivalent to R,(4).

Proof. First, we shall define a covariant functor F': €(Q(4)) — K.(4).
Let (X, d) be any complex over Q(4). Then X can be made into an 4-algebra
as follows. Define ax = 6(a)x for each ¢ € 4 and x € X. Then X, is an 4-
module with respect to this scalar multiplication for each # > 1. Thus
A+ Y1 X, (X, being considered as A-module) is an anticommutative
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graded R-algebra such that the module of homogeneous elements of degree 0
is equal to 4. Moreover,

a: 4 + Zn>1 Xn"')A + Zn>1 Xn

given by d~y = dyomy = dol4 on 4 and d~, =d, on X, (n > 1) is an R-
derivation of degree 1 of A 4+ Y ,51 X, such that d~d~ = 0. Therefore,
A+ X1 X4 d™) is a complex over 4. By proposition 3.4, the natural
homomorphism =y, is an isomorphism for each n > 1. Therefore, (4 + > .>1
X,, d~) belongs to §:(4). Moreover, for each complex (Y, ) over Q(4) and
every complex homomorphism f: (X, d) — (Y, §) over Q(4), the mapping

f~: A + Zn)l Xn_)A + Zn)l Yn

which is equal to the identity on A and to f on Y .51 X, is clearly a graded
A-algebra homomorphism. One can easily check that f~od~ =8 of".
Therefore, f~ is a complex homomorphism over 4.

Now, consider the mapping F': €(Q(4)) — f:(4) given by

FI(X) d) = (A + Zn)l Xm d~)
and F'(f) = f~. Then, obviously, F’is a covariant functor. Moreover,
FoF(X,d) = F(A4 + X1 X d™) = (Q(4) @ (4 + L1 X,),d7¥)
= x,d)

since Q(4) ® 4 X, ~ X*, for each n. We claim that d~* = d. This, however,
follows from the observation that both d and d~* extend the derivation do|4 of
A. Therefore, Fo F' (X,d) = (X,d) and hence Fo F’ is the identity on
€(Q(4)).

Conversely, take a complex (Y, §) in £:(4). Then (Y, §) is a complex over 4
such that ry,: ¥, — Y*,isan isomorphism for eachn > 1. Now

F(Y,8) = (Q(4) ®4 V,6%) = (Q(4) + Zu>1 Vi, 6%);
hence F'o F(Y,8) = (4 + X1 Yy, 6%) = (Y, 8*). In order to show that
&*~ = §, werecall that 6*~y = 6*|4 = §pand 6*~, = &*,. But
*(1®y) =my,(0y) =08yforeachy € ¥V, (n > 1)

since Ty, is an isomorphism. Therefore 6*, = §, (# > 1). Hence 6*~ = § and
(Y, 6*) = (Y, d), which proves that F’ o F is the identity on &:(4). Hence
the two categories €(Q(4)) and K, (4) are equivalent.

THEOREM 4.5. F: €(4) — C(Q(A)) takes the universal complexes over A to
the universal complexes over Q(A4).

Proof. Let (U, d) be a universal complex over 4. Then (U*, d*) = F(U, d)
is a complex over Q(4). We claim that (U*, d*) is universal over Q(4). Let
(V,8) be any complex over Q(4). By Theorem 4.4, (4 + > .51 V,,87) is a
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complex over 4. By the universality of (U, d), there exists a unique complex
homomorphism f: (U,d) = A(+ X1 Vs 6~) over A. Then F(f) = f*:

(U*,d*) — (V, 8) is a complex homomorphism over Q(4). Since (U*, d*) is
generated by d*(Q(4)), f* is unique. Hence (U*, d*) is a universal complex
over Q(4).

PROPOSITION 4.1. Let A be an R-algebra such that every dense ideal in A contains
a finitely generated demse ideal and let (U, d) be a universal complex over A.
If Uiis a free A-module, then (U*, d*) is a universal complex over Q(A4).

Proof. Let (V, 8) be any other complex over Q(4). We recall that (U, d) is a
universal complex over 4 if and only if (U, do) is a universal derivation module
of A and U is the exterior algebra of U;. Since V; can be considered as an
A-module, the universality of (U, do) implies that there exists a unique
A-homomorphism f: U; — V; such that fod, = 8, on 4. We know that f
induces a unique Q(4)-homomorphism f*: U*; — V* ~ V,. Thus since V is
anticommutative, f* extends uniquely to a Q(4)-algebra homomorphism g:
E(U*)) — V where E(U*;) denotes the exterior algebra of U*; over Q(4).
Since U*; >~ Q(4) ® 4 Uy, it follows that E(U*) ~Q(4) ® 4 E(U,) =~ U*.
Thus g maps U* into V. One can easily check that g o d* = & o g. The unique-
ness of g, however, follows from the fact that U* is generated by d*Q(4).
Hence (U*, d*) is a universal complex over Q(4).

The following proposition is proved by similar arguments; it is left to the
reader.

ProposiTioN 4.2. If (U, d) is a universal complex over A such that U, is a
finitely generated and projective A-module, then (U*, d*) is a universal complex
over Q(4). )

Finally, we observe that if a universal complex (U, d) over 4 is such that the
order ideal of every element of U, is dense, then (U*, d*) is trivial; and hence a
universal complex over Q(4) is trivial.
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