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Summary
A solution of a triad of integral equations involving Bessel functions is

given. This, like earlier ones, is in the form of a pair of Fredholm integral
equations, which may be solved by iteration in certain cases. In spite of a slightly
more general formulation of the problem, the kernels of these equations are
simpler than those given in earlier solutions. Certain extensions are considered
and a formal solution given. Application is made to the problem of in-
compressible inviscid flow normal to an annular disc, and to the flow due to
the slow rotation of such a disc in a viscous fluid.

1. Introduction
The triple integral equations

f
Jo

I"" A(X)Jn(Xx)dX =f(x) (0<x<a), (1)
Jo

X2'A(X)Jn{Xx)dX = g(x) (a<x<b), (2)

f °° A(X)Jn{Xx)dX = h(x) (x>b), (3)
Jo

where / , g and h are known functions and A is to be determined, occur in
potential problems with boundary conditions taken on an annular disc. If
these conditions are axially symmetric the appropriate value for n is zero. If
they are not axially symmetric then other integral values of n will occur as well.
Such equations have also cropped up in more complicated form in a problem
of transonic flow, with n = —1/3 (1).

The first attempt at a solution seems to have been given by Tranter (2),
who reduced the problem to a pair of dual series of Jacobi polynomials, and
he was able to complete the solution of this problem only in the case n = \,
a = i. The obvious application in the case n = 0 is to an electrified annular
disc, or an annular punch on a plane surface and the first solution of this
problem is due to Gubenko and Mossakovskii (3), although they did not use
the triple integral equation formulation. Numerical results for the capacity
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of the electrified annular disc were given by Smythe (4), who obtained them by
approximate methods from physical arguments. Collins (5) has also given the
solution of this problem, obtained as a limit of an annular spherical ring as the
radius tends to infinity. Cooke (6) and Williams (7) independently solved the
equations for a general n, with a = — \ and the results were identical. Cooke
applied his method to the electrified annular disc and found close agreement
with the results of Smythe (4). Cooke (6) also gave a solution for a = \. Noble
(8) has also solved the problem for a = — \ by a different method.

In some ways the results of Cooke and Williams were not perhaps in the
most useful form. The integral equations found were not amenable to iteration
for small a\b and they did not reduce to those of Gubenko and Mossakovskii
for n = 0. Williams (9) has since given another solution for general n and
a = — i, and this solution does agree with the Russian solution for n = 0.

All the known solutions, except that of Tranter (2), give the results in the
form of one or two Fredholm integral equations of the second kind.

In this paper we give two forms of solution for general a and general n; in
each case they differ according to the sign of a. Some have been given before,
though not in so general a form, and others seem to be new. Once more the
problem is reduced to the solution of Fredholm integral equations. The present
method appears to have an advantage over previous methods in that the kernel
of the integral equations can be expressed in terms of elementary functions
whatever be the value of n (which need not be integral) or a. In certain cases at
least they can be solved by iteration for small values ofajb but they do not reduce
to the Russian solution for n = 0, a = — \ or to Tranter's for n = %, cc = \.

We give two examples. The first is flow past an annular disc, with a constant
velocity at infinity normal to the disc, together with some circulation. The
second example is the Stokes flow due to a slowly rotating disc in a viscous
fluid at rest at infinity. This case gives an interesting result as regards the
turning couple.

An attempt is also made to solve the problem when the kernel A{X) of
equation (2) is replaced by A{X)(l + R(X)). The solution in this case involves
four simultaneous integral equations instead of two, and does not seem to be
very amenable to computation.

2. Continuation of g(x)
Sometimes a device originally due to Gubenko and Mossakovskii (3) is

used. The function g(x) is only defined in the interval a<x<b, and so, if it is
continuous and possesses a derivative, it can be expressed in the form

£ anx"+f a_nx-"
o I

the first converging for 0<x<b and the second for a<x<oo. These intervals
overlap. We shall write
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with

Thus gt can be extended down as far as the origin and g2 up to infinity. It is
permissible for a0 to go into g2 instead of g1 if this is more convenient.

3. Noble's dual integral equations solution
Noble (8) considers the equations

f
Jo

X2*A{X)Jn{xX)dX =/(x) (0<x<d), (4)

f
Jo

A(X)Jn(xX)dX = g(x) (x>d) (5)
/o

We suppose that e(x) and k(x) are the values of the right hand sides of equations
(4) and (5) for x>d, x<d respectively. The solutions differ according as
0 < a < l , n>\—2a, or — l < a < 0 , /i>max (—\—2a, — 1 —a). In the first case
Noble finds

O^-n-l

k{x) = t ^

1^ P -x2T-lGiWs (0<x<d), (7)

+\s2-x2y-ldx, (8)

+ TV ,1^ ^ Pr(a)r(l-a)J,
where

Jo

^ [" -"+\x2-s2y°= - ̂  [
dsjs

g(x)x-"+\x2-s2y°dx (9)

Noble does not appear to have noticed that some of the terms on the right
hand sides of (6) and (7) can be simplified. For instance the first term on the
right hand side of (6) may be written, excluding its coefficient,

n+i(d2-t2Tf(t)dtf"
Jo x*-t2

as shown in Appendix 1.
Again the last term on the right hand side of (7) is, excluding its coefficient,

f

by Appendix 1.
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For — 1 < a < 0 , Noble gives
I'd

0

h 2 s2"*2a+\x2-s2)-a-iG2{s)ds (x>d), (12)

ic""1 d

2X" - ^ - 1 s(s2-x2TG2(s)ds (0<x<d), (13)

where

=~ f x"+\s2-x2mx)dt (14)
dsj

G2(s)= fx-+1(x2-*2)"""^(x)dx (15)= f
As before certain terms can be simplified. The last term of (13), excluding

its coefficient, is

2
i2 — x

2Y \l a )
,2 Y 2

J<f ' — x

and the first term on the right hand of (12), excluding its coefficient, is

(x2-d2y* (dtn+1(d2-t2mt)dt ( 1 7 )

Jo x2-t2

If equation (4) has an additional factor 1 + R(X) in its kernel, where R(A) is
suitably restricted, it is possible to show from Noble's earlier analysis (10) that,
if - l < a < 0 ,

- 5 " " - " I t"+I+1K(t)P(s, t)dt
Jo

-TC-a)*"1 1"^"1"" tg(t)Q(s, t)dt (s<d), (18)

hwhere

-n+lk{x)(x2s2y-lx-n+1k(x)(x2-s2y-ldx, (19)
J S

P(s,
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s, t) = f °
Jo

and k(x) and F2(s) have the same values as before.
If equation (5) has an additional factor 1 + R(k) in its kernel, it is possible

to show that, if 0<a< 1,

E(s) =
r(l-a)

J<f

Jo

where
Jo

, t)dt

tf(t)S(s, )dt (s>d), (20)

E(s) I
foo

, 0 = A1

Jo

xn+\s2-x2y-1e(x)dx, (21)

and P, e and Gx have the same values as before.
Noble (10) gave the result (18) in the case g = 0.
The kernels are more complicated if we solve for k and e instead of K and E.

4. First solution of the triple integral equations
We write

f
Jo

A(k)X2 °Jn(kx)dX = (0 < x < a)

and determine/t(A:) and/2(x). Once these two functions are known the solution
for A(X) can be completed by Hankel's integral theorem. We have the two
pairs

Jo

r
Jo

Jo

f
Jo

= g(x) (a<x<b)j

A(k)Jn(kx)dk = h(x) (x > b)

A(k)Jn(kx)dk = f{x) (0 < x < a)

k2°A(k)Jn(kx)dk = g{x) (a < x < b))

= /2(x) J
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To solve the first pair for 0 < a < 1 we use equation (6) with its first integral
replaced by (10) and/ =f1(0<x<a),f = g(a<x<b), g = h, e = f2, d = b and
we find

T 2 ( l -a ) dxjb

n ' ' I In x2-*2

+ X —I

where

For the second pair with a > 0 we write X2xA(X) = B(X) and use equation (13)
with its last term modified as in (16) and with/ =fi,g =g(a<x<b),g =f(x>b),
k = / j , d = a, a. = —a. We obtain

2 sin no, , 2 ,
x(a — x

where

n+i(s2-x2)-"f(x)dx.

For — 1 < a < 0 the result for the first pair is found from equation (12). It is:fc

2 2 + 2a fx

T2(-a) Jj,

2sin««f 2 h2,-.[C'r+l(b2-t2yf1(t)dt
71 LJo x —t

(x>b), (24)
J a X f J

where

G2(s) •r
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We deal with the second pair by equation (7) with the sign of a changed.
Again we write X2" A(X) = B(X). The result is

-12 + 2a fa
/ iW-r»(-«)J,

2 sin

t2-x2

where

j-oo rn+l( /2_a2-)«y2^^-j
(25)

- J : =x-+ \s2 - x2yx-1f(x)dx.

The solution for 0 < a < l agrees with that of Cooke (6), who took a = i,
f = 0, h = 0, whilst the solution for - 1 <a<0 agrees with that of Noble (8),
who took a = -\,f = 0, h = 0.

5. Second solution of the triple integral equations
We divide up g as explained in Section 2, write A = Ax+A2 and solve the

equations in the form

I"" {A1
Jo

f
Jo

r
Jo

f
Jo

(0<x<a)

X2*Ax(X)Jn(kx)dk = gi(x) (0<x < b),

X2*A2(X)Jn(kx)dk = g2(x) ( a < x < 00),

! (A) + A2(A)] Jn(*x)dX = fc(x) (x > b).

We rewrite the equations as two pairs of dual integEal equations, namely

I"" VAM
Jo

r°° c
Al(X)Jn(Xx)dX = h(x)-

Jo J(

\™ A2{X)Jn{Xx)dX=f(x)- [
Jo Jc

(0<x<b) (26)

A2(X)Jn(Xx)dX (x>b) (27)

A2(X)Jn(Xx)dX=f(x)- !Al(X)JH(Xx)dX (0<x<a) (28)
Jo

= g2(x) (x>d) (29)

E.M.S.—X
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We assume

Ix)dk=f1{x) (0<x<fc)1o

f" A2(X)Jn(lx)dX = /2(x) (a<x< co),
Jo

and put in these values in the right hand sides of (28) and (27). This is possible
since b > a.

For 0 < a < l the solution of the first pair is given by equation (7) with
k =fi,f = g1,g = h—f2, d = b, and we have

2»-2°+v-*2r ^i

(fe2_x2), J -
(0<x<b) (30)

For 0 < a < 1 the solution of the second pair comes from (12) with e =f2,
f = f—fi, g = g2, d = a, a. = —a, and we have

where

s m na (x2 - a2)" ^——— [f{t) -/i(0]<*< (x>a), (31)
n Jo x -t

F(s)= P x"*1(s2-x2Y-1 ix)dx
1 S ~ J o X S X 9l X

« - -
G i p| — I Y I Y — C 1* /7 I Y|/JY

2\ J ~~ I V • J if 2\ J

J s
For — 1 < a < 0 the solution of the first pair is given by equation (13) and the

result is
2"2" d Cb

••••••:,-.; r 2 ( l + a ) d x j x

2 sin

(0<x<&) (32)
and for the second pair with - 1 <a<0 we use equation (6) with the sign of a
changed. This gives

x"+1/
2 ( l+a)d

Sm7iax(x2-a2)g ( g ,~V C/(0-/i(0]^
i Jo x2-(2

(33)
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where

^ [° xn+\s2-x2ygi(x)dx,

ds),

As to which of the methods it is better to use, consideration must be given
as to what functions of most physical interest are required. In the problems
to be considered later the second method is the better, since our main interest
is the determination o£fl+f2 in the range a<x<b. If, however, we wish to
know/i and/2 outside this range then the first method is better.

6. Extension to a more complicated kernel
We will illustrate the results for only one case, namely — 1 <<x<0, using the

second method of solution as in Section 5. We solve the equations

J:
f
Jo

A(X)Jn(Xx)dX = f{x) (0 < x < a),

= g(x) (a<x<b),

A(X)Jn(Xx)dX = h(x) (x > b).

We subdivide as in equations (26), (27), (28) and (29) with equations (26)
and (29) having an additional factor 1 + R(X) in their kernels. Equation (20)
and equation (21) with the sign of a changed are applicable and the results are

\

K(s) = r ( ~ a ) 2-x-2*s-2n-2°-lF2{s)
T(l+a)

\ 1 s , t)dt
a, '

T (0<s<b), (34)

Ja

Jb

iG1(s)- f"X^
Jor(i+«)

r rn+"+1E(t)R(s, i)dt

Jo
\ l j s , t)dt (s>a), (35)

Jo
where

( " 2 ( 3 6 )= ("
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F2(s)=~ (x" + \s2-x2ygi(x)dx, (37)

P(s, 0 = f" ARWJn ^{Xs)Jn+x{h)dX, (38)
Jo

Q(s,t)= f" kl+'R{k)Jn+I{Xs)Jn{h)dk, (39)
Jo

E(s)= f"xn+1(,s2-x2y"-if2(x)dx, (40)

Gt(s) = - L f °° x-+\x2-s2yg2(x)dx, (41)
dsjs

R(s, 0 = f" ARCAV,, _tfs)Jm.J,Xt)dk, (42)
J

s,t)= f
J(

i, 0 = f
Jc

(43)
o

Thus we have four equations (34), (35), (36) and (40) for the four unknowns
fltf2,K and E.

This solution is very much more complicated than those given so far and it is
to be doubted as to whether it has any practical value.

7. Redaction to two equations with the same kernel
Noble (8) gave an ingenious transfonnatioh for performing this reduction.

We will generalise his method to equations (32) and (33) as an illustration. In
these equations we write

a x

In (32) we write t = b\u, x = av and in (33) we write t = au, x = bjv, and we
find

p2(v) = _ 2 s i n na
 v"+ik"+ » - I*' Pl(u)K(u, v)du + q2(v),

J
= _ 2 s in na

 v"+ik"+ » - I*'
n Jo

Joo
where k = ajb, qx and q2 are known functions and

K(u ,A - " " ( l - " 2 ) " ( l - f c 2
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Thus the two equations have the same kernel and thus, by adding and
subtracting, we obtain two independent equations for/?! ±p2. Similar reductions
are applicable to the other pairs of equations in Sections 4 and 5.

8. Examples
The obvious choice for the first example is the electrified annulus. The

method may be used quite simply for this problem and it gives the same results
as those given by Collins (5) and Gubenko and Mossakovskii (3) though the
integral equations to be solved are different. As this problem has now been
solved in several different ways already we shall not deal with it here but proceed
to problems which seem to be new.

8.1. Flow past an annular disc
We take cylindrical coordinates r, z with z measured along the axis, z being

zero at the centre of the annulus. Assuming a velocity at infinity equal to U
normal to the disc and assuming a Stokes stream function >J/, we have ij/ = \Ur2

at infinity, and we write
«A = ±l /r2-[ /<A0.

We find that \J/0 must be of the form

vanishing at infinity.
The boundary conditions on z = 0 are \p = constant on the disc and

difijdz = 0 elsewhere. These reduce to equations (1), (2) and (3) with n = 1,
a = — i , / = 0, h = 0, g = \r—7dab\Tir. We have taken the constant value of
ij/ on the disc to be 2dabU\ii. The solution by the method of Section 5 is

C"> (i2 — h2\±

Jo X —t

(45)

= - dab + f^f, ~'/fMdt (46)
Jo X —t

There is an undetermined constant here. This occurs because there can be
a circulation round the annulus. In the classical case of the complete disc
(a = 0) in this flow there is no circulation and so fz(.X) = 0 and

2r
Air) = n{b2-r2?'

which is the well-known solution of this problem. See for instance Lamb (11).
The velocity on the annulus is

= U(f1+f2) (a<r<b)
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and the circulation round the annulus is therefore

2U
Ja

Thus if the circulation is known the constant d can be found.
Equations (45) and (46) can be solved by iteration if the ratio a\b(=x) is

small. We have considered the case x = 0-3 and zero circulation. Expanding
in powers of x up to x4 we find the condition for zero circulation to be d = 0-701
and for this value of d the velocity on the disc can be calculated. On plotting it
we find a stagnation point at rjb =0-59.

The values of/^r) and/2(r) have been calculated up to terms in x5. We give
a shortened version of the result here. They are

= -pxdll-y\ i + 0(x5),

where /? = 2/rc.
The hypergeometric functions are expressible in terms of elementary

functions.

8.2. Annulus rotating slowly in a viscous fluid
This case presents some features of interest. We assume Stokes flow in a

fluid at rest at infinity. If the angular velocity of the disc is co the velocity v at
any point of the fluid may be written

f°
V = ft)

Jo

(z ^

with v = cor on the disc, and dvjdz = 0 elsewhere on the plane of the disc.
Hence the equations reduce to (1), (2) and (3) with w = l , a = — \, h = 0,

f = 0, g(r) = r. Thus the solution is the same as in the last section, with
d = 0, iU = co.

The main interest lies in the turning couple. Taking both sides of the disc
we may write the local shear stress as

: = 0

and hence the turning couple is

'" r2{A+f2)dr.
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For a complete disc we have a = 0 and equations (45) and (46) reduce to

and the couple is then 16jui3/3. These are well-known results. See Jeffery (12).
We have worked out the ratio of the couple on the annular disc to that on

the complete disc of the same external radius b. We find

couple on annulus

couple on complete disc

The first power of x occurring, namely xs, seems surprisingly high. Consider
the difference between the situation when the disc is solid and when there is a
hole. In the first case the shear stress at the centre is zero. When a piece is
cut out, however small, the shear stress at the inner edge is infinite. One would
have thought that this would make a considerable difference. Similar effects
occur in the other cases considered here. In the case of the charged electric
disc the total charge ratio is

Even the power x3 seems surprising in view of the sudden change in the physical
situation.

Appendix 1
Evaluation of certain integrals

Consider

= A. \ S(x
2-s2y"ds \

dxjo J
f{t)f+\s2-t2)'-ldt

o

which is the first term on the right of equation (6) excluding its coefficient, with
equation (8) substituted in it.

Performing the differentiation under the integral sign and inverting the order
of integration we find

Jt
/ = - 2 a x I" tn+1f(t)dt

Jo
Write

s2 = t2 cos2 0+d2 sin2 0

in the inner integral and it becomes

f'n/2

0 \x2-t2-{d2-t2) sin2 ff]
_ 2 C*'2 sin2'"1 9 cos
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which, by Erdelyi (13), equation (2.12.7), is equal to

2oc(x2-t2)1+°
Hence we have

d2-t2~}-*
x2-t2\ '

The evaluation of the last term on the right hand side of equation (7)
involves an integration by parts followed by an inversion of the order of in-
tegration. We omit the details. The result is equation (11). Similar work
leads to equation (16) and (17) for the relevant terms in (13) and (16).

REFERENCES

(1) J. B. HELLIWELL, J. Math. Phys., 40 (1961), 1.

(2) C. J. TRANTER, Proc. Glas. Math. Assoc, 4 (1960), 401.

(3) V. S. GUBENKO and V. I. MOSSAKOVSKII, P.M.M., 24 (1960), 200.

(4) W. R. SMYTHE, Amer. J. App. Phys., 22 (1951), 1499.

(5) W. D. COLLINS, Arch. Rat. Mech. Anal., 11 (1962), 122.

(6) J. C. COOKE, Quart. J. Mech. App. Math., 16 (1963), 193.

(7) W. E. WILLIAMS, Quart. J. Mech. App. Math., 16 (1963), 204.

(8) B. NOBLE, Proc. Camb. Phil. Soc, 59 (1963), 351.

(9) W. E. WILLIAMS, to be published.

(10) B. NOBLE, / . Math. Phys., 37 (1958), 128.

(11) H. LAMB, Hydrodynamics (Cambridge, 1932).

(12) G. B. JEFFERY, Proc. Lond. Math. Soc. (2), 14 (1915), 327.

(13) A. ERDELYI (ed.), Higher Transcendental Functions, Vol. 1 (New York, 1953).

ROYAL AIRCRAFT ESTABLISHMENT

FARNBOROUGH

https://doi.org/10.1017/S0013091500025608 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025608

