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ON FIXED POINTS AND MULTIPARAMETER 
ERGODIC THEOREMS IN BANACH LATTICES 

ANNIE MILLET AND LOUIS SUCHESTON 

We present here multiparameter results about positive operators acting 
on a weakly sequentially complete Banach lattice. Sections 1, 2 and 3 
generalize results obtained by M. A. Akcoglu and the second author in the 
case of a contraction. Even in that case, the classical Lx theory extends to 
Banach lattices only under an additional monotonicity assumption (C), 
introduced in [3], without which the TL (or stochastic) ergodic theorem 
fails. The example proving this in [4] also shows that, without (C), the 
decomposition of the space into the "positive" part P, the largest support 
of a ^-invariant element, and the "null" part N on which the TL limit is 
zero (see, e.g., [22], p. 141), also fails. If T is not a contraction but only 
mean-bounded, then the space decomposes into the "remaining" part Y, 
the largest support of a r*-invariant element, and the "disappearing part" 
Z (see, e.g., [22], p. 172). Here we obtain, for Banach lattices and in the 
multiparameter case, a unified proof of both decompositions, and of 
the TL ergodic theorem. The main novelty in the argument is that the 
(difficult) proof of the TL convergence and the decomposition P + N 
under (C), establishes also the (easier) decomposition Y + Z. The idea is 
to apply this proof to semi-norms, which become norms contracted by the 
operators in the proof of the decomposition P + N, and expressions 
H( l/l ), H e E* + , in the proof of the decomposition Y + Z. 

The pointwise operator ergodic theorem (Cesaro convergence of 
iterates) cannot hold in Banach lattices including Lx since it fails in Lv 

However, one has demiconvergence: lim inf is equal to the TL (or 
stochastic) limit. In the last section this result is extended to the 
multiparameter case. This is accomplished by reducing this case to 
the one-parameter one by a general argument similar to the one given in 
[28] and [16]. However, these papers study convergence for operators that 
act both on Lx and L^ , in which case, as well known, pointwise 
convergence holds, but a higher degree of integrability is needed for higher 
dimension: in dimension d, f has to be in L log^ - 1 L. Demiconvergence 
results are simpler in that the integrability requirement does not change 
with the dimension. 
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430 A. MILLET AND L. SUCHESTON 

1. Definition and notation. Let E be a sigma-complete Banach lattice. 
We assume the knowledge of the elements of the Banach lattice theory, as 
presented, e.g., in the beginning pages of the book of Lindenstrauss-
Tzafriri [23]. Consider the following assumptions (A), (B) and (OCN) 
on E: 

(A). There exists an element u in E+, called a weak unit, such that if / i s 
in £ + and if uAf = 0, t h e n / = 0. The existence of a weak unit is assured 
if E is separable ( [23], p. 9). 

(B). Every norm-bounded increasing sequence in E has a strong limit. 
An equivalent condition is that E does not contain an isomorphic copy of 
c0 ( [23], p. 34). 

(OCN), or order continuity (of the norm). For every downward directed 
net ( / , / e / ) with A z G / / = 0, one has limJI/H = 0. An equivalent 
condition is that every order interval 

[/, g] = {/,:/ ^ ^ } 

is weakly compact ( [23], p. 28). 

We usually assume (A) and (B). It is known and easy to see that (B) 
implies (OCN). If E is a Banach lattice satisfying (A) and (OCN), then 
there exists a strictly positive element U in the positive cone of the dual, 
that is, a U such that if / e E+ and U(f) = 0, then / = 0 ( [23], p. 25). 
Therefore an order continuous Banach lattice with weak unit admits 
a representation as a Kôthe function space over a probability space 
(£2, ^ /x). In fact, we often prefer to allow \i to be sigma finite, because in 
the important case of operators induced by point-transformations 
preserving an infinite invariant measure, the reduction to an equivalent 
probability measure hinders the intuitive understanding of the action of 
the operators. The representation as a Kôthe space over a probability 
space means that E is order isometric to an order ideal X of L (£2, J^ /t) 
such that 

(i) X is dense in L](£2, j r ^ a n ( i L°°(Q, ^ u) is dense in X*, and 
(ii) The dual of the isometry between E and X maps E* onto the Banach 

lattice X* of all JU measurable functions g for which 

Hgll*. = sup{//grf/i:|l/ll^^ l} < o o . 

One has g(f) = j fgdfi for / e l a n d g G l * . 
We may and do assume that E is a Kôthe space of functions over a 

a-finite measure space. Strong convergence in E is denoted by slim; weak 
convergence by wlim. Order convergence for monotone nets will be 
denoted by Î or j . Since order convergence corresponds to essential 
convergence, which usually is simply almost everywhere (a.e.) con ver-
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gence, also the measure-theoretic terminology of a.e. convergence will 
be used. 

For each 8 G E+, there exists a linear operator P5, called band 
projection, defined by 

P8f = slimnfA(n8); 

the limit exists in the strong topology by (OCN), since / — fA(n8) j . In 
the functional representation, Psf is the restriction of / to the support 
of S. 

Assuming that the Banach lattice E satisfies (A) and (B), we now recall 
the properties of truncated limits, a notion introduced by Akcoglu and 
Sucheston [3] and [4]. We refer to these articles for proofs, where they are 
given only for sequences, but the arguments for nets are the same. Let / be 
a directed sets filtering to the right, let 8 e E+, and let (f, i e / ) be a net 
of elements of E + . The truncated limit of ̂  is 5, in symbols TLf = 8, if for 
a weak unit w, 

slim^fAku) = 8k 

exists for each k, and 8k Î 8. This definition does not depend on the choice 
of the weak unit u. For a net (f) in E such that TLf and TLf~ exist, 
one sets 

TLf = TLf+ ~ TL/T. 

It is shown [4] that TLf = 0 if and only if TL\f\ = 0, which holds if and 
only if f converges to zero in measure on sets of finite measure 
("stochastic" convergence). One defines analogously the weak truncated 
limit of/, in symbols WTLf, requiring only that fA(ku) converge weakly 
to 8k. If in these definitions the role of a weak unit u is played by an 
arbitrary fixed positive element g, one writes 

TLjt = S or WLTgft = 8. 

Thus for positive fi9 TLgft = 8 means that lim ftAkg = 8k and 8k f 8. 

1.1. Compactness for WTL. Every norm-bounded net has a subnet for 
which the weak truncated limit exists. 

It is this property which renders weak truncated limits useful. 

1.2. Let U be a strictly positive element in E* and let (f) be a net in E+ 

such that lim U(f) = 0. (a) Then TLf = 0. (b) If furthermore sup f G E, 
then slim f = 0. 

1.3. Additivity and Fatou for operators. Iff, gi9 ht are nets of elements in 
E+ with (W)TLfi = / , (W)TLgi = g, (W)TLh, = h, and f, + g, = A,, 
then 

(a)f+g = h; 
(b) / = g implies (W)TL\fi - g,\ = 0; 
(c) If T\E —> E is a positive linear operator and Tf = g-, then Tf = g. 
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432 A. MILLET AND L. SUCHESTON 

1.4. (a) Iff e £ + , suplUH < oo and WTLf = / , then WTLff = f 
(b) Let 8 e E+\ then TL8f = f if and only if TLP8f = f 

Order continuous seminorms. We wish to treat simultaneously certain 
asymptotic positivity conditions on functionals and certain strict mono-
tonicity conditions on the norm. For this purpose, we introduce order 
continuous (OC) seminorms. A seminorm is a map N:E+ —> R such that 
(1.5) holds; N is called order continuous if also (1.6) holds: 

1.5. (i) N(f + g) ^ N(f) + N(g)forf g e £ + . 
(ii) JV(O/) = aNffor a ^ 0, / G E+. 

(iii) 0 ^ / ^ g /w/?//ey 0 = N(0) ^ # ( / ) ^ 7V(g). 

1.6. Iffn 10 then Km N(fn) = 0. 

Note that an OC seminorm is necessarily continuous at every element of 
/ of E+, that is: 

1.7. If N is an OC seminorm, (f) is a net in E+ and slim f = / , //ze/? 
lim iV(^) = N(f). 

Proof. Clearly, / â ^ + | / - f,\ and / g / + \ft - f\. The sub-
additivity of TV on E+ now implies that 

|JV(/) - * ( / ) I ^ AT( |^ - / | ), 

which reduces the proof to the positive net \f — / ] , converging strongly to 
zero because the norm of an element is equal to the norm of its module. 
Therefore we may and do assume / = 0. Suppose that there is a number 
y > 0 and a net f in E+ with slim f=0 and N(f) > y. Let an be a 
sequence of numbers such that 2 «„ < oo, and for each positive integer «, 
choose an index i(n) so that | | / (w) | | < an. Let gn = supk^nfi{k); then 

llgjl ^ 2 « „ - > 0 and g „ | 0 . 

Now, by (1.6), N(g„) -> 0, while, by (1.5), 

iV(gJ â JV0f(fi)) ^ y. 

This is a contradiction. 

It will be sometimes useful to make an assumption going in the 
direction opposite to (1.7). 

1.8. Let N be an OC seminorm. The Banach lattice norm is said to be 
continuous with respect to N on E+ if for each sequence fn in E+ with 
sup^ fn^E and lim„ N(fn) = 0, one has slim fn = 0. 

We also consider the following strict monotonicity assumptions (Cj) 
and (C), made about the lattice norm in [4]. Clearly, (C) implies (C}). 
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(CO For any / , g e £ + , if N(f) > 0, then # ( / + g) > JV(g). 
(C) For every / e 2S+ and for every a > 0, there is a number 

0 = fi(f9 a) such that if g e £ + , # (g ) S l , 0 S A ^ / a n d N(h) g a, 
then 7V(g 4- A) ^ ]V(g) + j8. 

Examples. Clearly, an order continuous norm is an OC seminorm, and 
every element H of E\ defines an OC seminorm on E+ by N(f) = H(f). 
If H = [/, a strictly positive element of £ + , then, by (1.2), this seminorm 
satisfies (1.8). If E is an Orlicz space, then (C) is equivalent with (Cj), and 
both hold if and only if the Orlicz function satisfies the classical condition 
A2, as shown in [5]. 

2. Existence of invariant elements. Let at first T be a linear operator on 
a Banach space E. For each positive integer n, let 

A„ = An(T) = (1/n) 2 r 
0 ^ i < / i 

be the Cesaro average of iterates of T. We say that T is power-bounded if 
sup„ 11 Tn 11 < oo, mean-bounded if supn 11̂4„ 11 < oo. Given a seminorm TV on 
£, we say that T contracts N if iV(7/) ^ N(f) for each / e JE+. The 
ergodic theorem of Kakutani-Yosida (cf. [22], p. 72) states that if T is 
mean-bounded, / e 2£, slim rw / /« = 0, and there is a sequence of positive 
integers n^ / oo such that An^f converges weakly, then Anf converges 
strongly, to a limit invariant under T, here denoted A^f. It follows that if 
T is a positive mean-bounded operator on an order continuous Banach 
lattice, 8 e £ + , T8 ^ 8, and 0 ^ / ^ 8, then y4w/ converges strongly. 
Indeed, 

o ^ ry/w s 8/w j, o 
implies 

slim r y / / i = 0. 

Also, the sequence ^4W/ belongs to the interval [0, 8], and hence has a weak 
cluster point. 

We now consider several operators (equivalently, several parameters) at 
the same time. Let d ^ 1 be a fixed integer and let / = N^ be the index set, 
filtering to the right for the usual coordinatewise partial order: 

s = (s{9 ...9sd)^t= (tl9 ...,td) if st ^ /,- for i = 1, . . . , d. 

Given s, t in / , s < t means st < tt for all /. Instead of st we sometimes 
write s(i). We set 

[s, t[ = {u e I:s ^ u < t} and 

I I (0 = I I tt = card( [0, t[ ), 
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434 A. MILLET AND L. SUCHESTON 

where 0 = (0, . . . , 0). Given t e I and operators Th . . . , Td, we denote by 
Tl the product of powers determined by / of "coordinatewise" operators, 
that is, we set 

We set 

je[0,/[ 

At = IKO"1^. 
We say that the operators Tt commute if TfTj = T-Tl for 1 ^ /', j ta d. 

2.1 LEMMA. Let E be an order-continuous Banach lattice, T]9 . . . , Td 

positive mean-bounded operators on E, and 8 e E+ such that Tt8 = 8 for 
i = 1, . . . , d Then for eachf €E P8E, the nets (A^T^f « e N), 1 â / ë J, 
respectively (At\ t e / ) , converge strongly to A^^f 1 ^ i' ^ d; respectively 
A oof = ^ooO) . . . AOQ(d)f If the operators Tt commute, then the operators 
A^i) commute on P8E. 

Proof Let M = sup^-H^T].) ||, and let / e P8E+. Fix € > 0, and 
choose k so large that if g = fAkS, then \\f — g\\ < e. Then 

\\An(Tt)f - An(Ti)g\\ < eM for every n and / = 1,. . . , d. 

As noted, the Kakutani-Yosida theorem implies that An{Tt)g converges 
strongly to some 7] invariant element of i§£+, and since e is arbitrary, 
the same is true about the sequence An(Tj)f. Choose n0 so that for each 
i = 1, . . . , d, and each n ^ n0. 

|U4w(7ÎMoo0" + 1) • • • AJid)/ - A^O) ... AMfW < £. 

Then for each t S (w0,. . . , n0), one has that 

\\AJ - AJ\) ... AMf\\ Si 2 \\Al(X)(Jx) || 
is/erf 

•••Ut(i- yfJt- ,) l l 

X p, (0(7;.Moo(' + ! ) • • • AO.d)f - AO.i) . . . AMfW 

Thus ^4,/ converges strongly to A^il) . . . AQO(d)f If the operators Tt 

commute, then by the same argument the averages Atf converge strongly 
ioA^ioil) ) . . . A^o^d) ) for each permutation o of (1, . . . , n), and hence 
the operators A^i) commute. 

Capital letters below denote linear operators, and inequalities between 
operators are defined by their actions on E+, i.e., Q ^ R means that 
Qf = Rfîor e a c h / e E+. The symbols slim applied to operators denotes 
convergence in the strong operator topology. 
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2.2 LEMMA. Let T{,.. . , Td be positive mean-bounded operators on E that 
commute. Fix u e f S e E+, and an order continuous seminorm N with 
(1.8). Then one can write 

(i) Au+tf i= AJ + Gu(t) with slim, Gu(t) = 0. 
(ii) s l i m , ^ , - TuAt] = 0. 

(iii) If (T"/n; n = 1) converges strongly to zero for every /, then 

slim,[,4M+, - AJ = 0. 

(iv) If each Tt contracts N, then for each f e E+9 

lim, N( \Au+tf - AJ\ ) = 0, and slim,[,4M+,/A8 - AjAS] = 0. 

Proof It suffices to prove this lemma for u = (1, 0, . . . , 0), since the 
case of w = (0, . . . , 0, 1, 0 , . . . , 0) follows by a permutation of the 7), and 
the general case is proved by induction. Set u = (1, 0, . . . , 0), then for 
each / e 7, 

A>+» = A> + - 7 7 7 ^ 2 r ~ G" 
7T(t + U) ve[0,/[,v(l) = f(l) 

with 

G,= 
t{\) 1 1 

.t(\) t(\) + 1. 
2 r = [/(i) + îr1^, 

v£[0,/[ 

hich proves (i), since At is bounded. To prove (ii), observe that 

~ TxAt = Ht 

un 

—W— 2 r - r,Gr 
[?(1) + 1 M 0 ve[0,r[,v(l)=0 

which converges strongly to zero. Furthermore, (iii) follows from 

,f(2),...,/(</)! I-\\At+u-At\\ ^ \\Gt\\ + [ / ( ! ) + l l - ^ i r ^HIHo .K 

Finally, f i x / e £_,_, and set 

At+Uf - Atf= -GJ+RJ. 

Since 7̂  and ^o,t(2),...,t(d) contract A, 

JV( H,+„/A8 - AJA8\ ) ê 7V( \At+J - Atf\ ) 

â N{Gtf) + N(R,f) 

ë # « ? , / ) + [r(l) + l]~lN(f). 

By (1.7), lim N(Gj) = 0, and hence 
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lim, N( \At+uf - A,f\ ) = 0. 

Since 

\A[+JAS - A,fAS\ =i S, 

the condition (1.8) on TV concludes the proof of the lemma. 

We now show that unless the truncated limit of multiple averages is 
zero, there is in E a positive element 8 subinvariant under the semigroup 
generated by the 7 '̂s. The argument, a particular case of which appears in 
[3], is an application of compactness for weak truncated limits. 

2.3 PROPOSITION. Let Tl9. . . , Td be positive, mean-bounded commuting 
operators on E. Let f e E+ and let TJ G E+ be such that the net (P^J) is 
not TL null. Then there exists a sequence t(n) of multiparameter indices for 
which 

WTL{P^t(n)f) = 80 + 0, 

and there is in E a 8 ^ 80 such that Tt8 â 8 for every i = 1, . . . , d. If each 
sequence Tn

t/n, i = 1, . . . , d, converges strongly to zero, then one may 
choose 8 = WTL(At{n)f). 

Proof Let k be an integer such that the net (fcw)A(/^4,/) does 
not converge to zero. Let t(n) be a sequence of elements of I such that 
t (n) S ( « , . . . , « ) , and 

||(*«)A(PV4,( | | )/) || > a 

for some number a > 0. Suppose that there is an integer q i? k such that a 
subsequence of (qu)A(P71At(^nyf) converges weakly to zero. Then by (1.2) 
this subsequence also converges strongly, which is a contradiction. It 
follows that by the diagonal procedure one can obtain a subsequence of 
t(n), still denoted by t(n), such that 

winnow) A(P^4 / ( n )/) =fq*0 

for every q ^ k. Hence 

WTLiP^f) = 80*0. 

Applying again the diagonal procedure, we choose a further subsequence, 
still denoted t(n), such that 

WTL(Am+J) = K * 0 

exists for every u e / . Lemma 2.2 (i) shows that for every n e N and every 
u ^ v e /, one has 

with gn ^ 0 and slim gn = 0. This implies that the net (SM; w e / ) 
is increasing. Since this net is norm-bounded by | | / | | supj |yl j | , one 
has that 
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8 = lim f 8U e E, 

and 8U â 80 implies that 8 i^ 80. We now show that 8 is subinvariant under 
each Tt. Lemma 2.2(ii) implies that for every u e / , 

WTLTiAt{n) + uf = WTLAt{n) + u+(l0 0)f = SW+(1A 0), 

and by (1.3)(c), 

^l°w — ^w + (!,0,...,0)' 

Hence 

7^8 = limM 7 ^ ^ limw 8M+(1A...,0) = 5 ; 

a similar argument shows that 7̂ 8 ^ 8 for each /. 
If T"/n converges strongly to zero for every i, then 

shmn[At^+v — At(n) + U] = 0 

for every u ^ v e 7, hence 8 = WTLAt,n^f 

By a standard measure-theoretic argument, we now show that there 
always exists a subinvariant element 8 with the maximal support. Our 
settings are still appropriate, namely Kôthe, function spaces over 
sigma-finite measure spaces, but in search for maximality we pass to an 
equivalent probability measure. Part (iii) of the following lemma says that 
outside of the support of 8, the Cesaro averages of iterates converge 
stochastically to zero. They may of course converge stochastically to zero 
also on the support of 8, if 8 is only subinvariant and not invariant. 

2.4 LEMMA. Let Tx, . . . , Td be positive, mean-bounded commuting 
operators on E. Then there exists an 8 G E+, called maximal subinvariant 
element, such that 

(i) Tt8 ^ 8 for 1 ^ i ^ d, 
(ii) If y G E+ and Tty ^ y for 1 ^ / â d, then P8 y = y. 

(iii) For every f G E, TL(I - Ps)Atf = 0. 

Proof Let v be a probability measure equivalent with /i. Let SflT denote 
the class of functions in E+ subinvariant under all the 7]'s. Set 

a = sup{K/ > 0), / G yy). 

Let (7^) be a sequence in SfZTsuch that | | ^ | | = 1, and *>(/i > 0) —> a, 
set 

s = 2 2-y„. 

Then clearly (i) holds. Let y G 5^7 then 8 + y G ^ y and hence 
{8 -f y > 0} = {S > 0}, and T̂ y = y, which proves (ii). To prove (iii), 
let / G E+ be such that the relation 
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TL(I - Ps)Atf = 0 

fails. Let Pv be the projection I — P8, then by Proposition 2.3 there is a 
sequence t(n) contained in I such that 

WTLiP^f) = Yo # 0, 

hence Pvy0 = y0 ¥= 0, and there is a function y e ^ ^ w i t h y i^ y0. Then, 
by (ii) above, Psy = y, hence P8y0 = y0 , which contradicts 7^y0 T̂  0. 

It is of interest to determine when the subinvariant elements obtained 
above by the method of WTL are actually invariant. This holds if the 
operators Tt are contractions of an order continuous seminorm TV 
satisfying the conditions (1.8) and (C) above. If N is the norm || ||, and the 
7]'s are contractions, then (1.8) will be automatically satisfied, and (C) will 
be a known monotonicity assumption on the norm [4], implying the 
ergodic theorem for TL. If N is a linear functional, then (C) will hold 
automatically, and one will have to postulate that the functional N is, in 
the sense of (1.8), "stronger" than the norm. 

2.5 LEMMA. Let E be a Banach lattice satisfying (A) and (B). Let N be 
an order continuous seminorm with properties (1.8) and (C), and let Tt, 
i = 1, . . . , d be positive, mean-bounded, commuting operators on E, con­
tracting the seminorm N, i.e., such that N(Ttf) ^ N(f)for each i and each 
f e E+. Letf G E+9 and let K] e E+ be such that the net (P^J) is not TL 
null. Then there exists a sequence of indices t(n) for which 

WTLiP^f) = 50 * 0, 

and there is in E a 8 > 80 such that Tt8 = 8 for all i = 1, . . . , d. 

Proof Let t(n) be the sequence of indices constructed in Proposition 
2.3, such that 

WTL„(Al(n) + J) = Su # 0 

exists for every u G I. Then 8 = limw 8U satisfies 7]S ^ 8 for every 
i = \,...,d. 

Set 8' = 8 - Tx8 and suppose that 8' ¥= 0, and hence that N(8') > 0. 
Choose v G. I such that 

N(8 - 8V) < N(8')/S. 

Replacing t(n) by a further subsequence, we may assume that 

wlim„(/SMM(„) + M/) = Y«(0 

exists for each u e I and / > 0. The property (1.4) of weak truncated 
limits shows that 

yM(/) /» 8U as / - » +00. 
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Fix /0 such that 

# ( * v - yvUo)) = K(8yz. 

Lemma 2.2 shows that for every u Œ I, there exists a sequence gn e E+ 

with 

l imjlgjl - 0, 

such that 

^M + (l ,0, .- . ,0)^^/(n) + « + (l ,0,-- . ,0)/ = (^ir^t(n) + uf) ~ 8n 

for every / ^ 1. Hence letting w —» oo yields that 

rw-f(i,o,...,o)(0 = Y«(0, 

and a similar argument shows that for every / ^ 1 and every u < u' e 7, 
one has 

Y„(/) S Y„(/). 

Hence the net (yM(/); / G N, W G 7) increases to 8, and 

#(« ~ Y„(0 ) < #(8 ' ) /4 for w ^ v and / ^ /0. 

Fix /, and set 

r(n, u) = (At{n)+uf)M89 s(n9 u) = At{n) + Uf - r(n9 u), 

r\n9 u) = (Tx{At{n) + uf)M89 s\n9 u) = TxAt{n) + uf - r\n9 u). 

Clearly, 

TlAt(n) + uf = T\r(n> U) + T\s(n> U) 

= r\n9 u) + s'(n, u). 

Since T̂ ô â 8, one has that Txr(n9 u) ^ /S, and hence that 

0 ^ Txr(n9 u) â ^(/i, w). 

Thus 

Txs(n9 u) = (r'(n9 u) — Txr(n9 u) ) 4- s'(n9 u) 

is the sum of two positive elements of E. Furthermore, by Lemma 2.2 (ii) 
and (iv) 

slimn[TxAt(n) + ufAl8 - ^,(„) + w+(i,o,...,o)/A/8] = 0 

= ùimn[TxAt{n)+ufM8 - At{n)+JM8\9 

and hence it follows that 

wlimw r(n9 u) = yM(/) = wlimn r\n9 u). 

Clearly 
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wlim„ Txr(n, u) = ^(wlim^ r(n, u) ) = Txyu(l), 

and hence 

wlim„[/(», «) - Txr{n, u) ] = yu(l) - Txyu(l) iï 0. 

Furthermore, 

Y„(0 - Txyu(l) = (5 - Tx8) + r,(fi - yu(/) ) - (8 - yu(l) ). 

Since Tx contracts N, we obtain that 

N(S') â N(yu(l) - Txyu(l) ) + 2N(S - yu(l) ). 

Fix u â v and / ^ /0; then 

#(?„(/) - Txyu(l) ) i? tf(8')/2 > 0. 

Suppose that 

lim infj|r ,(«, u) - Txr(n, u) || = 0, 

and let «^ be a sequence of integers such that 

\imk\\r\nh u) - Txr(nh u) || = 0. 

Since 

w\imk(r'(nh u) - Tx(nh u) ) = yu(l) - Txyu(l), 

one concludes that yu(l) — Txyu(l) = 0, which gives a contradiction. 
Hence 

lim infj|r'(«, u) - Txr(n, u) || > 0, 

and the property (1.8) of N implies that 

lim inf„ N(r'(n, u) - Txr(n, u) ) > a > 0. 

Then by condition (C) on N, there exists /? > 0 such that 

N(Txs(n, u)) = N[s'(n, u) + (r'(n, u) - Txr(n, u))] 

^ N(s'(n, u)) + P 

for large values of n. Lemma 2.2 (ii) and (iv) implies that 

lim„ N( \TxAt{n) + uf - At{n) + J\ ) = 0, 

and hence 

lim„ N( \s(n9 u) - s?(n9 u) | ) = 0. 

This yields that 

N(s(n9 u) ) ^ N(Txs(n, u) ) ^ N(s(n9 u) ) + 0/2 

for large values of n. This gives a contradiction, and hence proves that 
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TjS = 8. A similar argument shows that 8 is invariant under each operator 
Ti9 l ^ i ^ d . 

LEMMA 2.5 yields the following decomposition of the space E. 

2.6 PROPOSITION. Let E be a Banach lattice with (A) and (B), let N be an 
order continuous seminorm satisfying the conditions (1.8) and (C), and let 
Tu . . . , Td be positive, mean-bounded, commuting operators contracting the 
seminorm N. Then there exists 8 G E+ such that 

(i) Tt8 = 8fori = l,...,d. 
(ii) For each y G E+ such that Tty = y, for every i = 1, . . . , d, one has 

that P8y = y, 

(iii) For eachf G E, TL(I -P8)Atf = 0. 

Proof Let 

3T= {fŒE^:Tif = f \ ^ i ^ d l 

and let v be a finite measure equivalent with /x. Let 8 satisfy (i) and (ii), and 
suppose that there exists / e E+ such that 

TL(I - P8)Atf * 0. 

Then Lemma 2.5 yields the existence of a function y in ̂ "such that 

y g TL(I - Ps)At(n)f 

for some sequence of indices t(n). The function y — 8 belongs to ̂  and 
this contradicts the maximality of the support of 8 stated in (ii). 

3. On the existence of truncated limits of averages. We at first study the 
strong convergence of the net A J on the support of a function 8 invariant 
under every operator Tt. We first consider the particular case E = L . 

3.1 LEMMA. Let Tx,. . . , Td be positive commuting contractions on L , and 
let 8 e L+ be such that Tt8 = 8, 1 I i = i Then for each function 
/ _ £ L\(8 > 0), the net (Atf t G / ) converges in Ll(8 > 0) to f such that 

ll/ll = Il/Il-
Proof The strong convergence of the net A J follows from Lemma 2.1. 

Thus it suffices to show that the averages At are isometries of L\{8 > 0). 
Fix an / G L\{8 > 0) and let e > 0 be arbitrary. Let k be such that 

11/ - / M a n , < €. 

Then for each / G /, 

\\A,(kS) ||, = \\At(fAkS) ||, + \\At(k8 - fhkS) ||, 

ë H/MSII, + ||*5 - /MfiH, = 11*511,. 

Since 8 is invariant under the 7]'s, the extreme terms agree, 
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\\A,(fAkS)\U = ||/A/c5||„ 

and hence 

IK/H, ^ H/Mfill, ^ Il/Il, - c. 

The following lemmas show that one can approximate l r 5 > 0 ^ 4 , / by 
averages of a function in L+(8 > 0). A set A c fi is absorbing for T if for 
any function / with support included in A, the support of Tf is included 
in A. 

3.2 LEMMA. Let T be a positive contraction on L and let A c Q be 
absorbing for T. Then for any f e L . 

hmk lim $up„\\\AA„(T)f - An(T)(lAAk(T)f) ||, = 0. 

Proof Let TA be the positive contraction of l) defined by TAf = \AcTf 
Then the operator 

2 = 2 \AT(TAf 
A km 

is a positive contraction of L1 (see, e.g., [25], p. 193). Lemma 2.2 shows 
that for every k, 

limn\\An(T)f - An(T)Ak(T)f\\ = 0. 

Thus, it is enough to prove that 

lim, supn\\\AA„(T)Ak(T)f - An(T)(\AAk(T)f) || = 0, 

or that 

lim, suP„||i^„(r)(i^(r)/) || = o. 
Fix / G L + ; since A is absorbing for T, one has for each n and each 

k ^ / 

\\\AAn{T){\AcAk{T)f)\\ 

- 2 lAT'(\AcAk(T)f) 
n is ,<„ 

- 2 2 (\ATi-\\AcVAk{T)f) 

- 2 2 \\IMIJP-^ 
n is,<« leys/ M \ k I 

- 2 2 \\iAmAcpf) 
n \^i<n l^j<n + k-2 
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1 ' ( / + Vil + — 2 I», W/ii. 
n k n j^i 

Fix € > 0; since 

2/H = 2 \\\AT(TAW\\, 
A j^O 

we may choose / such that 

2 \wAT(TAyf\\ < £, 

and then choose &0 such that /(/ + 1)||/||/A;0 < e. 
Then for every k =£ k0 and every n, 

\\lAAn(T)(lAcAk(T)f)\\ <2t. 

The following lemma establishes an approximation for multiparameter 
averages of a semigroup, similar to that proved for one parameter in 
Lemma 3.2. 

3.3 LEMMA. Let tx,. . . , Td be positive, commuting contractions on L , and 
let 8 e L+ be invariant under each operator Tt, 1 = / e d. Then 

lim inf, lim supu\\\{8>0}Auf - Au(\[8>0)Atf) \\x = 0. 

Proof. Fix / e L]
+, and for each t e J, set 

ft = 1{5>o}^/-

Lemma 2.2 shows that for each index t, 

\imu\\Auf - AJLJW = 0. 

Since Augt â l^^A^f, one has 

lim s u p j | (Augt — gM) + || = 0 for each fixed /. 

Lemma 2.1 shows that for every /, the net (Augt; w e / ) converges in L1, 
say to gt. Hence 

sup, lim sup J | (gt - g j + | | = 0, 

and the proof of the lemma reduces to showing that 

lim inf, lim supjl (gu - gt)
+\\ = 0. 

Suppose the contrary; let en > 0 be a sequence such that 2 „ en < oo, and 
choose a > 0 such that 

lim inf, lim supjl (gu - g,)+ | | > a. 

Define a sequence of functions (hn) by induction as follows. Choose t0 

such that 
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lim sup J | (gu - gt) || > a for every t ^ t0, 

and set h0 = gt. Suppose that tn_x è t0 has been defined, and choose 
tn > /„_! such t°hat if hn = g v pn = (/*„ - / ^ - i ) + , 4„ = (hn-\ ~ K) +, 
then ||/?J| > a and | | ^ | | < en. Since 

** = **-l + Pn- 4n> 

one has 

*« = K-\ + Pn ~ 9n
 f o r e v e f y n = L 

Lemma 3.1 shows that ||/FJ| > a, and | |#J| < en; thus 

lim inf||^ - ÂW_!|| ^ a > 0. 

We also prove that the sequence (hn) converges strongly, which gives a 
contradiction. Indeed, the choice of (en) ensures the strong convergence of 
the sequence ( 2 ^ „ qk). The sequence (hn + 2 ^ „ qk) is increasing, 
norm-bounded, and hence converges in L1. Hence the sequence (hn) 
converges in L1, which completes the proof of the lemma. 

Let 8 be a positive function invariant under each Tt. The following 
proposition relates the limits of the nets l{s>0},4,, and \t8>^An(Ti), 
1 ^ i ^ d, in the particular case where E = Ll. 

3.4 PROPOSITION. Let Tl9 . . . , Td be positive, commuting contractions on 
L , and let 8 in L + be such that 8 = Tt8, \ ^ i tk d. Then for eachf e L , 
the nets 

(V>o}^(W; « ^ i) 
for i = 1, . . . , d, respectively 

0{8>0}Atf'> t €E / ) 

converge in L to A^T^f i = 1, . . . , d, respectively to A^T^ . . . 
Aoo(Td)f. 

Proof The strong convergence of the nets is a direct consequence of 
Lemmas 3.1, 3.2 and 3.3. Indeed, fix e > 0, and by Lemma 3.3 choose / 
and u0 such that 

Wl{S>0}Auf ~ Au(l[8>0}AtfW < € 

for each u ^ u0. Lemma 3.1 shows that the net 

(Au(\*>o)Atf)\ " G / ) 
converges strongly. This proves that the net ( l r 5 > 0 ^4 M / ) is Cauchy, and 
hence converges strongly, say to / . A similar argument shows that each 
sequence 

( i{«>o}^„(W; « ^ i) 

https://doi.org/10.4153/CJM-1988-017-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-017-5


B A N A C H LATTICES 445 

for / = 1,. . . , d converges strongly, say to A^ (Tt)f. 
Thus, it remains to prove that 

/ = AOT{) ... AJJd)f for/eLV: 
this is an immediate consequence of the equality 

XimtWX{8>0}Atf ~ A(t(\),...,t(d-\),0)(l{Ô>0}At(d)(Td)f) H = 0-

By Lemma 3.2, this equality follows from 

lim im\ lim supt\\l[8>0)Atf - At(\{8>0)Ak(Td)f) \\ = 0. 

Clearly, for / GE I + 

At(\{8>0]Ak(Td)f) ^ \{8>0)Ak(Td)Atf, 

and Lemma 2.2 show 

l i m f c l i m s u p j | ( ^ ( l { 5 > 0 } ^ ( ^ ) / ) - l { 5 > 0 } ^ / ) + l l = 0. 

Thus it suffices to show that 

lim inf* lim sup,|| (\{8>0)Atf 

~ At(d)(Td)(l{8>0}A(t(\),...,t(d-\),k)f)) H = °-

Suppose the contrary, and choose a > 0 and k0 such that for each 
k = KQ9 

lim supt\\(l{S>0]Atf - At(d)(Td)(l{S>0)Awl Ad_i)k)f))
 + \\ > a. 

Clearly 

lim* lim sup,|| (At(d){Td)(\{S>0)A(mt(d_X)k)f) 

~ l{S>o}^/)+H = 0. 

Set r0 = k0, and suppose that r„_, has been defined. Choose rn > /-„_,, 
and tn iï (n,..., n, r„) such that if 

sn = (t„(\),..., tn(d - 1), /•„), 

g(0 = l{s>o)A<f> 

P„ = (g«„) ~ Atn(d)(Td)g(sn))+, 

qn = (AtJid)(Td)g(sn) ~ g(t„))+, 

then \\p„\\ â a, and \\q„\\ â a/n. 
One has 

«On) = A,(d)(Td)g(sn) + Pn ~ 9n> 

applying At on both sides and letting t go to infinity yields that 

K'„) = g\s„) + P„ ~ 9n> 
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with \\pn\\ = a, and \\qn\\ ^ a/n by Lemma 3.1. Hence 

l imsupJIgOJ - g(sn)\\ ^ a. 

Since the net (g(t); t e / ) converges strongly, the sequences g(/„) and 
g(sn) have the same limit, which gives a contradiction, and completes the 
proof. 

3.5 Remark. Under the assumptions of Proposition 3.4, similar 
approximation properties show that the sequences 

(8KAn(T,)f; n ^ 1) 

for 1 ^ i ^ J, respectively the net 

(8AAtf; t e / ) , 

converge strongly to Ttf 1 ^ / ^ d, and, respectively, 7̂  . . . 7^/. 

Let 8 e £ + be an element invariant under each operator Tt. We give 
sufficient conditions for the strong convergence of the net P§Atf for each 
/ e E+\ this extends Proposition 3.4. 

3.6 LEMMA. Let Tx,. . . ,Td be positive commuting operators on E. Let 
8 e E+ be invariant under the Ti9 i.e., Tfi = 8 for i = 1, . . . , d, and 
suppose that there exists H e E\, subinvariant under the T*, i.e., such that 
Tt*H ^ H for i = 1, . . . , d. Then for eachf e 7^7?+, the sequences 

{&KP„An{Ti)f; n è 1) 

for i = 1, . . . , d and, respectively, the net 

(SAPffAj; t e / ) , 

converge strongly to Ttffor i = 1, . . . , d, and, respectively, to Tx . . . Tdf. 

Proof. For every function / e E+ with support included in the support 
of H, set 

rJ=HTl£j, i=\,...,d, 

with the convention// / / = 0 on {H = 0}. Then the operators ri commute, 
and are contractions of Ll((H > 0), JU). Indeed, 

/ r,\f\dn = / HT^d» = J T*Hlj^dn =S / \fW. 

For e a c h / e E, one has that / • H e L ' ( (H > 0), ju), and, if 

a, = 1 1 ( 0 " ' 2 T", 
we[0,r[ 

then Atf = (\/H)at(Hf) on {H > 0} for every t e / . 
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Since H8 is invariant under each operator T-, the Remark 3.5 shows that 
for e a c h / e PHE+, the sequences 

(H8AAn(Ti)(Hf); n è 1) 

for / = 1,. . . , d, and, respectively, the net 

(H8Aat(Hf); t e / ) 

converge in L1 to rt(Hf), \ ^ i ^ d, and, respectively to TX 

Hence for / = 1,. . . , d 

lim f HlôAPfjA^)/ - ^ T Z ( / / / ) L = 0, 

lim, / H\sAPHAn(T,)f - U\H • U2( ... QFd(Hf) ) ...) 

Am-

dfi = 0. 

Set 

T,f = ^(Hf) for every / e PHE, 

and apply (1.2) to the sublattice PHE to conclude the strong convergence 
of 

(8APHAtf t e / ) 

to r, i • u The following lemma compares the supports of elements of E+ 
invariant under each operator Tt with that of elements of E\ invariant 
under each adjoint operator 7/*, under the assumption (Cj) on the 
seminorm N. 

3.7 LEMMA. Let N be an order continuous seminorm with the properties 
(1.8) and (Cj). Let Tx, . . . , Td be positive, commuting operators on E, 
contracting N. Let H e E\ be such that T*H ^ H for i = 1, . . . , d, and 
TLAtg = 0ifH(\g\) = 0. Then for every element 8 e E+ invariant under 
each Ti9i = 1, . . . , d9 one has that P^ = S, i.e., {8 > 0} c {H > 0}. 

Proof. Let 8 = Tt8 for / = 1, . . . , d\ set 8 = f + g with 

f = PH8 and g = (I - PH)8. 

Then for each / e 7, 

8 = A J + Atg and 7L/l,g = 0. 

Since Atg belongs to the order interval [0, 5], we have that 

slim, Atg = 0, 
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and hence A J converges strongly to 8. Let (6„) be a sequence of positive 
reals, and let tn be a sequence of indices such that 

N(AJ) =i N(f) + £„. 

Then 

N(S) = N(AJ + A,jg) 

Si N(f) + e„ + N(AtJ>). 

Letting n —> oo yields that N(8) ^ N(f). Since 0 ^ / ^ ô, the assumption 
(C^ made on TV shows that N(8 - / ) = 0, and hence that (7 - PH)f = 0 
by (1.8). 

Finally, the following lemma shows the existence of a positive element 
77 G E* invariant under the adjoint operators 7]*, and satisfying the 
conditions in Lemma 3.7. 

3.8 LEMMA. Let Tx,. . . , Td be positive, mean-bounded operators on E 
which commute. Then there exists an 77 G E\ such that 

(i)T*H = H fori = l,...,d 
(ii) TLA J = 0 for eachf G E with H( \f\ ) = 0. 

Proof. Let U be a strictly positive element in E*. Since ||^4r|| is bounded, 
given any subset 7 c 7, there exists a subnet J c I such that the net 
(AfU; t G / ) is weak-star convergent to e0 G Ts5 .̂ Then 

Tfe0 = weak* l i m t e / TfAfU 

^ weak* lim L l / e / A*U J^Ah(2),--Ad)U\ 

^ <?, 0' 

and a similar computation shows that 7j*e0 = ô ^o r e v e rY * = 2 , . . . , d. 
Since the net (7"*'e0, / G 7) is increasing, the net (Afe0, t G 7) is also 
increasing, norm-bounded, and hence converges strongly to é G 7?^. 
Clearly 7JV = e' for every / = 1,. . . , d. Let 

JT* = {h G £*_, 7]*/* = A for / = 1,. . . , </}, 

and let ^ be a finite measure equivalent with /A. Choose a sequence 
hn G ^ * such that 

lim v(hn > 0) = sup{K^ > 0); h G ^ " * } . 

The case 

sup{*>(7* > 0 ) ; / i G f * } = 0 

is trivial. Thus we suppose that each hn is non-null, and set 
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i ï = 2 2~n\\hn\rxhn G E\. 

Then H G ^"*, and / / h a s the maximal support. L e t / G E+ be such that 
# ( / ) = 0' a n d suppose that 

lim sup, U(Atf) ¥= 0. 

Let tn G J be a subsequence such that 

lim £/(v4,/) = a > 0. 

Let (un) be a further subsequence such that wlim A*U= e, and let 

h = lim Afe. 

Then /* G ^"*, and hence A(/) = 0. Now 

h(f)^e(f) = limn AÏUif) 

= lim„ t / ^ / ) = a > 0, 

which gives a contradiction and concludes the proof. 

The following theorem proves the stochastic convergence of the net Atf 
and relates the limit of the averages of the semigroup to the stochastic 
limits of the averages of each operator. 

3.9 THEOREM. Let E be a Banach lattice with (A) and (B), let Tx, . . . ,Td 

be positive, commuting, mean-bounded operators on E. Let N be an order 
continuous seminorm on E with the properties (1.8) and (C), and such that 
each operator Tt contracts N. Then 

(i) If E is represented as a function space over (12, J^ JU), then Q, admits a 
decomposition £2 = Y+Z = P + D + Z such that: 

(a) There exists H G E\ with T*H = H for i = 1,. . . , d, and 
Y = {H > 0}. 

(b) There exists 8 G E+ with Tt8 = 8 for i = 1, . . . , d, and 
P = {8 > 0}. 

(c) Forf G E+ with {/ > 0} c Z, one has that TLAj = 0. 
(d) Forf G E+ with {/ > 0} c Y, one has that 

TL(lD+zAtf) = 0, 

and, letting s = (tx, . . . , /^- i ) , 0«e /îtfs f/ztftf 

lim, 8AAtf = lim, ^ ( , 0) lim^M^/). 

(ii) For each f G E, the truncated limits TL^A^T^f = A^T^f 
l ^ i ^ d , and TLAJ = AJTX) . . . AJJd)f exist. 

Proof (i) Lemma 3.8 shows the existence of H G E\, Proposition 2.6 
shows the existence of 8 G E+, and Lemma 3.7 relates the supports P of 5, 
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and P + D = Y of //, which proves (a) and (b). Part (c) is a consequence 
of Lemma 3.9, and (d) follows from Proposition 2.6 and Lemma 3.6. 

(ii) Apply part (i) with Tt = . . . = Td_x = J, and let 12 = P{d) + 
D(d) + Z(d) be the corresponding decomposition. Then 

P c P(d), 

TL ODidnzvyiniTd)/) = ° f o r e a c h / e £, and 

TLAn(Td)f = 0 for e a c h / G £ with { | / | * 0} c Z(d). 

Let y G E+ be such that 

^Y = Ï, {Y > 0} c P(rf), 

and fix / e £ + with 

{/ > 0} c Y(d) = P(rf) + D(d). 

Then for each k > 0, Lemma 3.6 shows that the sequence, 

(kyAA„(Td)f; n > 0) 

converges strongly, say to f(k). The sequence /(&) is increasing, and con­
verges strongly to 

TL(lP(d)An(Td)f). 

This completes the proof of the existence of 

TLAn(T)f = ^ Z for e a c h / G £ + , 

and hence for e a c h / G £ If { | / | > 0} c P(d\ then 

TLAn(Td)f= slim An(Td)f. 

Let / G i s + be such that {/ > 0} c Y. For each fixed £, the net 

(kSAAj; t e / ) 

converges strongly, say t o / , and the sequence/ increases t o / = 7X>!,/. 
Fix £ > 0; by the definition of TL, Proposition 3.4, Lemmas 3.6 and 3.7, 
we can choose k > 0, / e / such that 

11/ - *SA^„/ | | < c, 

II7-L PaA„(Td)f - k8KAn(Td)f\\ < e, 

II /CSJU,, / - ^ („ (1),....„ ( r f_1),0)(*8A^B(r r f)/)| | < e, 

and 

IMoo(^) • • • A^Tj^TLP^iTj)/) 

~ ^(B( .) . . . . .„(j-i) ,0)7^(^4„(^)/) H < « 

for every u = (w(l), . . . , w(d — 1), n) i5 r. Set M = sup ||>4J|, then 
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11/ - AJJ{) . .. AJJd_X)WL PsA„(Td)f) || ë £(3 + M). 

Hence 

/ = AJT,) ... A,JTd_{XTL PsA„(Td)f) 

^ AJTX) . . . AJTd_ÙAJTd)f S 7 

which identifies / . 
Clearly i f / e £ + , then 

7 g ^ ( r , ) . . . Ajjd)f. 

Thus for / G. E+ with support / c Z, one has 

0 = 7 = ^oo(TÏ) • . • AJ,Td)f. 

This completes the proof of (ii). 

We say that the Banach lattice satisfies the condition (C) if the norm | | | | 
satisfies (C) (cf. [3], [4], [5] ). Theorem 3.9 yields the existence of truncated 
limits for averages of a semigroup of contractions of a Banach lattice with 
the properties (A), (B) and (C); the one parameter case was proved in [4]. 
More precisely, we have the following: 

3.10 COROLLARY. Let E be a Banach lattice with (A), (B) and (C), let 
T], . . . , Td be positive commuting contractions of E. Then for each f e E, the 
truncated limits 

TLA„(T,)f = AJJdf, l ^ i ^ d , and 

TLA J = AJJx) • • • AJTd)f 

exist. 

Proposition 2.6, Lemma 3.6 and Theorem 3.9 also yield the existence of 
truncated limits for averages of a semigroup, provided there is a strictly 
positive subinvariant element for the adjoint semigroup, without any extra 
assumption on the norm of the Banach lattice. 

3.11 COROLLARY. Let E be a Banach lattice with (A) and (B), let 
Tj, . . . , Td be positive, commuting mean-bounded operators on E. Let 
H G E\ be strictly positive and such that T*H = H for every / = 1, 
. . . , d. Then 

(i) If E is represented as a function space over (Œ, J^ ju), there exists a 
decomposition £2 = P 4- D such that 

(a) There exists 8 e E+, with Tt8 = 8 for every i = 1, . . . , d, and 
{8 > 0} = P. 

(b) For eachf e E, TL XjyAj = 0. 
(c) For eachf G 2£+, the net (8AAtf) converges strongly to 

l i m , %0)( l i m » 8AAn(Td)fl 
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where s = (th .. .9td_x). 
(ii) For each f e E, the truncated limits 

TLn{An<Ji)f) = AOT,/), and 
TL/LJ = AM) . .. AJJd)f 

exist. 

Proof. Set N(f) = H( \f\ ) for each / e E; then N is an order 
continuous seminorm with the properties (1.8) and (C). Apply Proposition 
2.6 and Lemma 3.6 to prove (i), and Theorem 3.9 to prove (ii). 

4. Demiconvergence and pointwise convergence. In this section we 
relate the truncated limit for semigroups of positive operators, obtained in 
Section 3, to the pointwise lower limit. We prove one-parameter results 
which we extend to several parameter semigroups by a simple general 
argument. 

Recall that an order continuous Banach lattice with a weak unit admits 
a representation as a Kôthe function space. Hence the Banach lattice E we 
consider is assumed to be a function space over a a-finite measure space 
(Q, J^ ju). Let / be directed set filtering to the right, and let (ft\ t G / ) be a 
net of real-valued functions in E such that TL ft exists. Then 

lim inf ft^TLft^ lim sup ft. 

We say that the net (ft) is lower (upper) demiconvergent if 

lim inf ft = TLft (lim sup ft = TLft). 

First, in the setting of the previous section, there is a one-parameter 
demiconvergence result. 

4.1 THEOREM. Let E be a Banach lattice satisfying (A) and (B), let N be 
an order continuous seminorm on E with the properties (1.8) and (C), and let 
T be a positive linear, mean-bounded operator on E, contracting N. Then, for 
each f e E+, the sequence An[T)f is lower demiconvergent, i.e., 

TLA„(T)f= lim M A„(T)f. 

Proof. Apply Theorem 3.9 with d = 1 and Tx = T. For / e E+ with 

{/ > 0} c {H > 0} = Y = P + D, 

set 

T/ = HT(f/H); 

T is a positive contraction of Ll( (H > 0), ju). Then 

T(H8) = HS, 

and the Chacon-Ornstein theorem [9] implies that the ratio 
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2 rlg/nHS 

converges \i a.e. on {H8 > 0} = {8 > 0} for each 

g e L\{ {H > 0}, /i). 

Hence for / e E+ with {/ > 0} c { # > 0}, the sequence An(T)f 
converges a.e. on P = {8 > 0}, so that 

lim M An{T)f = TLAn(T)f 

on P. For f <ï E+ with {/ > 0} c {// > 0} = Y9 set 

and f o r / e E+ with support contained in Z, s e t / = An{T)f. In both 
cases the inequalities 

0 ^ 1 i m i n f / „ ^ TL/„ = 0 

conclude the proof. 

We now extend demiconvergence to multiparameter semigroups by an 
argument similar to that given in [28]; see also [16]. Let E be a Banach 
lattice, and let F c E. 

A map T.F —» £ is positively homogeneous if T(af) = aT(f) for each 
« G R + and / e F; increasing if / ^ g implies 7 / ë 7g; subadditive 
{superadditive) if F ( / + g) ^ ( = )Tf 4- 7g; continuous at zero if for every 
net (gr) in F, | |g j | —> 0 implies ||7gJ| —» 0. We call Tmonotonely continuous 
for order (MCO) if for every net (ft)9 ft \ f (resp. ft\f) implies that 
7 £ 4 77(resp. Tft\Tf\ 

4.2 LEMMA. Le/ E be a Banach lattice with order continuous norm, let F be 
a {closed) sublattice of E, and let T be a positively homogeneous increasing 
map on F + . Then T is continuous at zero. 

Proof Let / be a directed set and let {f\ t e / ) be a net of elements of 
F+ such that 

l im| | / | | = 0 and lim sup| |7/ | | > € > 0. 

Choose a sequence {t{n)) of indices such that 

2 2"\\fl(n)\\ < oo and inf 117^11 i£ e; 

set 

gn = ^ 2/ ( A : ) . 

The sequence (g„) increases to some element g <E E+. Since F is closed, 
one has that g & F+, and for every «, 
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Tg â Tg„ è T(2"fl{n)) = 2"T(ft{n)) ê 2"c. 

This gives a contradiction, and hence proves the lemma. 

4.3 LEMMA. Let E be a Banach lattice with an order continuous seminorm, 
let F be a closed sublattice of E, and let T:F+ —> E be an increasing, 
positively homogeneous, subadditive map. Then T is monotonely continuous 
for order. 

Proof. Let (ft) be a net of elements of F+ such that ft | / (f I f). 
Then 

Mmt\\f, - / | | = 0, 
and Lemma 4.2 shows that 

lim,||7U - /I II = 0. 

Now, for every index /, 

Tft^Tf^Tft + nf - ft) 
(respectively Tf ^ Tft ^ Tf + T(ft - f) ); 

thus \Tf - Tft\ ^ T\f - ft\, which concludes the proof. 

4.4 PROPOSITION. Let E be a Banach lattice with a weak unit and an order 
continuous norm, and let F be a closed sublattice of E. Let I, J be directed 
sets with countable cofinal subsets. Let Tt:F —> E be a net of positive linear 
operators indexed by I. 

(i) Let (fj\ j E: J) be a net of elements of F+ such that (a) and (b) 
hold: 

(a ) /^ = l i m i n g G F+. 

(b) There exists an increasing, positively homogeneous, subadditive map 
T^.F^ —» E such that 

T^f â lim inf, Ttf for every f G F+. 

Then 7 ^ ^ lim inf,, Ttfr 

(ii) Let (fj\ j G J) be a net of elements of F+ such that 
(c)sxxvjfj G F + . 
(d) Toof = lim sup, Ttf G F / o r eac/î / G F+.Setf^ = lim supy j£; 

^ooXo = lim sup, y Ttfj. 

(iii) Le/ (jÇ; 7 ^ J) be a net of elements of F such that 
(e) Umj/j = f^e Fand s u p ^ l G F; 
(f) lim, 7 ) / = T^f for eachjŒ F, and T^ is monotonely continuous for 

order (MCO). 
Then lim • 7 ^ = 7 ^ . 
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Proof. We assume, to simplify the proof, that both directed sets I and / 
are filtering to the right, 

(i) For each j G / , set 

ntj = inî^jfj G F+. 

By assumption, the net (m ; j G / ) increases t o / ^ e ^+- Furthermore, for 
every / G 7, 

infwi>, Mfej Tjj ^ infwi>, Tjnr 

Let / —> oo; then 

lim inf, inf,^ T , / = lim inf, r,m = 7^/w-. 

Since 7 ^ is (MCO) by Lemma 4.3, we obtain, by letting j —> oo, 

lim inf, y Ttfj ^ J e X . 

(ii) For each y G / , let Mj = sup7^y / G F+. For each t e l , one has 
that 

supMi>, sup,^, 7 ^ g supMi>, 7 ^ , 

Letting / —» oo yields that 

lim sup, sup ,^ 7 ] / ^ lim sup, r,M7 - T^A/,, 

The map 7 ^ is clearly subadditive, increasing and positively homogen­
eous; hence Lemma 4.3 shows that 7 ^ is (MCO). Let y —» oo; the net M-
decreases to f^ G F+, which concludes the proof. 

(iii) Apply (i) and (ii), and analogous results for nets in F_. 

4.5 THEOREM. Let L(\) D L(2) D . . . D L(d) be Banach lattices with 
order continuous norm, each with weak unit, and let /(/'); 1 = / = d be 
directed sets with countable cofinal subsets. For each i G {1, . . . , d}, let 
(T(i, t); t G I(i)) be a net of positive linear operators from L(i) to L(l) . 
Suppose that 

(i) lim sup, T(i, t)f G L(\) for each f G L(/) + 
and 

(ii) sup, T(i, t)f G L(i - I) for each f G L(/) + , 2 ^ i ^ d. 
Then for each f G L(d) + 

lim sup, r(i, /(i) ) . . . r(rf, /(</) ) / ë r(i, oo)... r(d, oo)/. 
Pr<9o/. For d = 2y one has sup, 7\2, * ) / G •£(!)+ f o r / G L(2) + ; hence 

Proposition 4.4 (ii) applied with E = T7 = 7,(1), and the nets 

Uj = T{2, j)f; j e 1(2)) and (J, = 7(1, /) ; / e 7(1) ) 

gives the inequality. 
We suppose that the thoerem holds for d, and prove it for d + 1. Let 

feL(d + 1)+ , F = L(d\ E = L(l), J = I(d + 1), C£ = J(rf + 1, j)f\ 
j G / ) , I = / ( l ) x . . . X /(d), and for f = ( r ( l ) , . . . , t(d) ) G /, set 
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Ut = T(\,t(l))...T(d,t(d)). 

Apply Proposition 4.4 (ii) with 

fn = lim sup,- T(d + 1, j)f e F+, and 

U^ = lim sup, 7(1, f(l) ) ... T(d, t(d) ). 

Then 

UcJ» g lim sup ( ( 1 ) , . . . , ( < / + 1 )t/ rr(J + 1, t(d + 1)) / , 

and the induction assumption applied to L(l) o> . . . o> L(d), the opera­
tors ({/,; f e 7(1) X . . . X 7(d) ) a n d ^ e L(d) + proves the inequality 
for the product of d -f 1 operators. 

4.6 THEOREM. Le/ E be a Banach lattice with a weak unit and an order 
continuous norm, and let / ( / ) , i = 1, . . . , d be directed sets with countable 
cofinal subsets. For each i = 1, . . . , d, let {T{i, / ) ; / e I(i) ) be a net of 
positive linear operators on E such that there exists a positively homogeneous 
subadditive map T(i, oo):E+ —-> E such that 

7\z, oo ) / ^ lim inf, T(i9 t)f e E+ for every f e £ + . 

Then for each f e L + 

lim inf, r ( l , r (1) ) . . . T(d, t(d) )f ^ 5T(1, oo) . . . T(d, o o ) / 

Proof In the case d = 2, the inequality is a direct consequence of 
Proposition 4.4 (i). Suppose that the inequality holds for any product of d 
operators, and prove it for a product of d 4- 1 operators. Let / G E+, 
F = £, and let 7 and 7, ( / ) and (Ut) be defined as in the proof of Theorem 
4.5. Set 

U^ = 7X1, oo) . . . 7(m, oo); 

since each map T(i, oo), 1 ë / ë d, is increasing, positively homogeneous 
and subadditive on 7s + , the map U^ has the same properties. The 
induction hypothesis and Proposition 4.4 show that 

Xo = lim infy T(d + 1, t)f ^ T(d + 1, G O ) / 

hence 

t ^ T ^ + 1, oo) / s i / J ^ 

= l i m i n fr(i)„. . . /(^(rf+n r ( l , r ( l ) ) 

. . . T(d,t(d))T(d+ \,t(d+ 1 ) ) / 

Since the truncated limit of a net of positive linear operators on a 
Banach lattice E defines a new linear positive operator on E, Theorem 4.6 
immediately yields the following: 
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4.7 PROPOSITION. Let E be a Banach lattice with (A) and (B). Fix d ^ 1 
and for every i = 1 , . . . , d, let I(i) be a directed set with a countable cofinal 
subset, and let (T(i, t); / e /(/ ')) be a net of positive linear operators on E. 
Suppose that: 

(i) For each i = 1, . . . , d, and each f e E+, the net T(i, t)f is lower 
demiconvergent, i.e., 

T(i, oo ) / = TLT(i, t)f = lim inf T(i, t)f 

(ii) For eachf €E E+9 TL(T(l, t(\) ) . . . T(d, t(d) ) / ) exists and is equal 
to T(h oo) . . . T(d, oo)/. 

Then 

lim mît(]h t(d)T(l, t(l)) ... T(d, t(d))f 

= 7X1, oo) . . . T(d, oo ) / 

= TL(T(\, t{\)) . . . T(d, t(d)f) 

for every f e E+. 

Now the Theorems 3.9, 4.1 and 4.7 yield demiconvergence of multi­
parameter semigroups, the main result of the present section. 

4.8 THEOREM. Let E be a Banach lattice with (A) and (B), let N be an 
order continuous seminorm with (1.8) an (C), let Th . . . , Td be positive, 
me an-bounded, commuting operators which contract N. Then for each 

TLA J = lim inf Atf 

Specifying the seminorm N, we obtain the following corollaries, which 
strengthen Corollaries 3.10 and 3.11. 

4.9 COROLLARY. Let E be a Banach lattice with (A), (B) and (C), let 
Tx, . . . ,Td be positive, commuting contractions of E. Then for each 

TLA J = lim inf, A J. 

4.10 COROLLARY. Let E be a Banach lattice with (A) and (B), let 
Tx, . . . ,Td be positive, commuting mean-bounded operators on E, and 
let H e E*+ be strictly positive, such that T?H ^ H for i = \, . . . , d. Then 
for eachf e E+, 

TLAtf = lim, inf A J. 
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