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ELEMENTARY CHAINS OF INVARIANT SUBSPACES 
OF A BANACH SPACE 

JON M. CLAUSS 

ABSTRACT. We will generalize Ringrose's notion of a simple chain of closed in­
variant subspaces of a compact operator acting on a Banach space, to that of an ele­
mentary chain of invariant subspaces of a subalgebra of compact operators. With this 
we expand the notion of diagonal coefficients to that of diagonal representations and 
subsequently generalize Ringrose's theorem equating the spectrum of an operator to the 
collection of diagonal coefficients. This in turn, in conjunction with some results from 
the theory of Polynomial Identity algebras, allows us to generalize Murphy's theorem 
which states that a closed subalgebra ft of compact operators is simultaneously trian-
gularizable if and only if ft/ rad(-^) is commutative. Let ft be an algebra of compact 
operators acting on a Banach space with a norm || • ||^ which dominates the operator 
norm, and under which ft is complete. Then ft has an elementary chain of invari­
ant subspaces of bound n if and only if ft/ rad(j^) satisfies the standard polynomial 

P2n(X\,X2, • • • ,*2«) = £ T G S 2 „ Sgn(T)x r (i)XT(2) • • -XTç>n). 

0. Introduction. We are interested in characterizing subalgebras fft of the compact 
operators which have a collection of closed subspaces invariant under each of the op­
erators in our collection. In particular, we will consider conditions under which certain 
types of chains of closed A invariant subspaces exist. 

We denote by %(X) the set of compact operators acting on a Banach space X. 
Throughout this section, unless otherwise stated, we will assume that A is a norm-closed 
subalgebra of %{X). 

1. Elementary chains and the existence of idempotents. 

DEFINITION 1.1. h complete chain, !A£, of subspaces of a Banach space X is a linearly 
ordered set of closed subspaces of X, such that: 

i) { 0 } , I G ^ 
ii) For every subfamily 9\(Q of 1A£, the intersection and the closed linear span of the 

union of sets in 5\Q are in fA£. 
We denote the intersection, and the closed linear span of the union of elements of a 

subfamily 9/Q by /\{M : M G 9\(Q} and \J{M : M G 9^} respectively. 
To each element M G fA£ we associate its predecessor 

M_ =\/{Le 9C:LcMândL^M}. 

A chain 9^ will be called: 
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i) invariant for a collection of operators JÏ, if for each M G f7\£, and each f G ^ , 
r(M) Ç M; 

ii) simple if it is a complete chain such that for each M G fA£, dim(M/M_) < 1. 
iii) elementary if it is a complete chain such that for each M G 9\[, dim(M/M_) < oo. 
An elementary chain is bounded, of bound n, if there exists a natural number n such 

that max{dim(M/M_) : M G 9(} = n. 

9{^ will be said to have a gap at M whenever 0 < dim(M/M_). 
We begin by showing that the existence of non-zero idempotent elements in our alge­

bra imply the existence of gaps in our Jl-invariant chain 9\[. 

LEMMA 1.2. Let 9\[^be a complete maximal ^-invariant chain of closed subspaces. 
If there exists an idempotent G G A : G1 — G ^ 0 then there exists a corresponding 
M = MGe9£ such that dim(M/M_) > 0. 

PROOF. Note that dim(GN) is an increasing function of N e fA£, left continuous in 
the order topology on 9\[. It is also right continuous. For if A/o = inf/v>w0 N, then since G 
is finite rank, k = inf{dim(G/V) : N > A/o} is attained at some N\. Hence GN\ = GN for 
all No < N <N\. Consequently GN\ is contained in HN>NoN = Â o, so that GN\ = GN0 

also has dimension k. 
Now let MQ be the infimum of all elements N £ 9\[ such that dim(GN) ^ 0. • 
We denote the Jacobson radical of A by rad(JT). An irreducible representation will 

refer to a topologically irreducible representation, while a strictly irreducible represen­
tation is understood to mean an algebraically irreducible representation. 

Two subcollections of !A will play a central role in the development. 

DEFINITION 1.3. i) We call a non-zero element G a minimal idempotent in A if, 
whenever E G A with 0 ^ E — E2 and GE = EG = E, it follows that E — G. We denote 
the set of minimal idempotents of !A by tM(J%). 

ii) The pullback, under the canonical quotient homomorphism, of the center of 
A J rad(J^) will be denoted by 2^(A). We have 

Zr{%) = {TeA:TS-STe rad(JT), for all S G A}. 

We will often use the notation of the Lie bracket, [T,S], to denote TS — ST. We use 
/< J, to indicate that / is a two-sided ideal in J, and / < J to indicate that / is a subalgebra 
of J, or simply a subspace when no other algebraic structure is present. 

LEMMA 1.4. Let A be an arbitrary subalgebra of<B(X) and let 9\£ be a complete 
maximal A-invariant chain with a gap at M. Define 

TTM: A —> B(M/M-) by 7rM(T)(x + M J) = Tx + M_. 

Ifdim(M/M-) > 1, or ifirM ^ 0 then 
i) TV M is an irreducible representation, and 
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it) tf^L has a finite dimensional gap at M then ix is strictly irreducible. 

PROOF. Notice that we are not assuming that J? is a subalgebra of %SX), nor that it 
is norm-closed. 

For i), suppose there exists a non-zero subspace of M/M_ which is invariant under 
7TA/(JT). Such a subspace is of the form {x + M_ : x G L} where M_ < L < M. If the 
norm closure of {x + M_ : x G L) is properly contained in M/M_ then it follows that 
M_ < L < M. By maximality of fA£, this implies that L — M. 

For ii), again suppose that there exists {x+M_ : i G l } a s above. Then since MjM- is 
finite dimensional, there exists {x/}"=1 C X such that {x+M__ : x e L } = span{x/+M_}. 
But then M_ < L <M and I = spanjx,} 0 M_. Hence by maximality of 9\[, L = M. m 

THEOREM 1.5. Let C\[bea complete maximal Si-invariant chain with a finite dimen­
sional gap at M, and define KM'-Si —> B(M/MJ) as in Lemma 1.4. Then there exists a 
corresponding G G fW(Zv(-#)) sucn that TTM(G) is the identity in B{M/MJ). 

PROOF. Define 

UM\ SAj rad(Jl) —> B(M/MJ) by IlM(T+ rad(JÏ))(jc + M_) = Tx + M_. 

Notice that rad(J^) Ç ker(7TA/), by Lemma 1.4, so that YIM is well defined. Furthermore, 
again by Lemma 1.4, Y\M is surjective by Burnside's Theorem, since 7TA/(-#) and hence 
also I\M{^) are transitive. Now let J = ker(ITA/). Since B{M/MJ) is a simple algebra 
with identity, it follows that J is a maximal modular ideal in Si / rad(J^). 

Denoting Si/ rad(J^) by Â, and the image of T in Si/ rad(JT) by t, note that since 
T G %iX), sp^(r) has no non-zero limit points. Furthermore, using Theorem 4.2 of 
[Bar2] we see that Â is a modular annihilator algebra. From this, and Lemma 2.8.10 of 
[Ric], it follows that the left and right annihilators of J (lan(J) and ran(J) respectively) 
are identical and are not equal to {0}. 

Now let K = lan(J) = ran(J). Note that, since (KP\J)2 = {0}, KH J = {0}. Then, 
since J is maximal and K is finite dimensional, J + K = Â, and therefore, J 0 K — Â. 

Now K = Â/J = B{M/M-\ so that there exists F e K < Â such that F is the 
identity in K and F2 = F ^ 0. In particular, by Theorem 2.3.9 of [Ric] there exists 
G G Si such that G2 — G ^ 0 and the image of G in A is equal to F. We claim finally 

tha tGG^(Zv(-#) ) . 
That G G Z^(Si) follows from the fact that G is the identity in K, the annihilator of J. 
G is a minimal idempotent in Z^{Si) since, given any E G Z^{Si) such that E2 = E ^ 0 

and FG = G£ = E, it follows that F = EG G Â  since K is an ideal in Â. Furthermore, Ë 
is a non-zero central idempotent in K = MW(C), where n — dim(M/M_). Hence Ë — G, 
the unique non-zero central idempotent in K. Since G — E G rad(J3) and G£ = EG = E 
implies that (G - E)2 = G - E,G = E. m 

We let QJ\C(Si) denote the set of topologically nilpotent or quasi-nilpotent elements 
of Si, and QJ{Si) denote the set of quasi-invertible elements of Si. 
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Denoting the bounded finite rank operators by SF(X), we let J-(SI) denote the set 
SF(X) H SA. It is easy to see that given T G SF(%) with dim(^(T)) = n it follows 
thatdim(TJAT)<n2. 

Recall that a Banach algebra SA is semiprime if, whenever J < SA such that J1 = 0, it 
follows that J = 0 . 

LEMMA 1.6. Let 9^ be a complete maximal SA -invariant chain. If there exists G G 
0i{(Z^(SA)\ then there exists a corresponding M G 9^ such that dim(M'/M J) = n < oo. 
Furthermore, if-KM'-SA —> B(M/M-) is defined as in Lemma 1.4, then TTM(G) is the 
identity in B(M/MJ). 

PROOF. Let M = MG G fA£ be as in Lemma 1.2, so that 0 < dim(M/M_). 
Notice that by Lemma 1.4, TTM is an irreducible representation. We claim that 

i) SAj ker7TA/ is semiprime; and 
ii) under the canonical quotient homomorphism SA —> SAj ker irM, rad(JT) maps into 

rad(J3/ ker TTM)-
Proof of i) Given J < JA/ ker 7r^, such that J2 = {0}, and 

UM: SAj ker irM —> B(M/MJ) 

the algebra homomorphism induced, as in Theorem 1.6 above, by 7TA/, then either 
UM(J)(M/M-) = {0} in which case nM(J) = {0}, which then forces J = {0}, or 
YIM(J)(M/M-) is dense in (M/M-), from which, since n^(J2) = {0}, it follows that 
J={0}. 

Proof of ii) This follows from Proposition 24.16.iii) of [BD]. 
Notice that if G G 0\f (Zr(JA)), then G G SF(SA). Using Proposition 32.5 of [BD], it 

follows that (rad(J^) + ker TTM)(G + ker7rM) = 0 + ker ITM. That is, if T G rad(JT), then 
TG(x +M_) = 0 +M_ for all x G M, so that TG(M) Ç M__. Therefore rad(JÏ) annihilates 
G(M/MJ) = {Gx + M_ : x G M}. 

Finally we claim that {0} ^ G(M/MJ) is invariant under Si. Since G G Zr(JA), for 
all T^SA,TG-GTe rad(^); hence (7G - G7XGx + M_) = 0, so 

T(Gx + M J) = TG(Gx + M__) = GT(Gx + MJ) = G(y + M_), 

where;; = TGx G M. Consequently, G(MjMJ) = M/M_, by maximality, and hence 
dim(M/M_) = ft < oo. • 

EXAMPLE 1.7. It is shown in Theorem 5 of [CD] that if X and Y are Banach spaces 
with Schauder bases, then a linear transformation T is in %{X, Y) if and only if 
linv_+oo ||r„|| = 0, where Tn(x) is defined by the matrix 

< 0, i f i < « 

where (ay) is the matrix representation of T, relative to the given bases of X and Y. 

https://doi.org/10.4153/CJM-1995-015-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-015-9


294 JON M. CLAUSS 

Fixing Xa Banach space with a Schauder basis, consider ft the algebra of all operators 
in OQX) of the following form: 

ft 

I A\ * * 
(0) A2 * 
(0) (0) A3 

• \ 

y\ 

G %iX) : At G M„,(C) 

/ 

If A G ft, then the "diagonal" of A is made up of blocks, each of which is itself a 
matrix. In fact, in each of these blocks of ft we have the entire matrix algebra, M„,(C). 
Consequently the (non-trivial) invariant subspaces of ft are Mk — {x G X : x, = 0 for 
/ > E L | «/}• Hence the complete maximal J^-invariant chain of closed subspaces fA£ 
consists of the chain M0 Ç M\ Ç M2 Ç • • • C A4 C • • • C X, where à\m{Mk / Mk-\) = 
nk. 

Notice that R = {/l G ft : A,•.= 0 for all /} = rad(J^). Consequently, 

ft J rad(^) S 

/ ^ , (0) (0) (0) 
(0) A2 (0) (0) 
(0) (0) A, (0) 

l \ 

A 

/ 

G %iX) : Ai G Mni(C) 

As in Theorem 1.5, to a gap that occurs at M, G 5\£ there corresponds a non-zero 
idempotent in 5Vf ̂ Zr(ft)). This is the element £, G .# such that the /-th diagonal block 
of E, consists of the identity matrix / G A/„;(C), and all of the other of whose entries are 
zero. First, clearly E, is a non-zero idempotent in ft. While given any A & ft, 

/(0) (0) (0) * (0) . . . \ 

(0) (0) * (0) ••• 

[E,,A] = 

\ 

(0) 

G rad(^). 

(0) . . . / 

Furthermore, E[ G fW(Zv(.#)), that is E{ is a minimal idempotent in Zv(-#). For 
suppose that there exists a G G Z>JlJ%) such that G2 = G ^ 0 and G£, = EjG = G. Then 
G must be of the form: 

/(0) (0) (0) \ 

(0) (0) 

G = 

\ 

G, (0) 

(0) / 

Furthermore, since G G £»•(.#), for all T G JÎ we have [G, 7] G rad(^). But this implies 
that GjTi — TjG, — 0 for all 7} G MBi.(C), that is G, is in the center of M„(C), and is an 
idempotent. It follows therefore, that G = Ej, and hence Et G 'M. (Z,{ft)\. 
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2. Characterizations of 9\f{A) and the diagonal representations. Recall (The­
orem 4.3.4 of [Rin]) that if T is a compact linear operator acting on a complex Banach 
space X, then there exists a simple chain, fA£, of closed, T-invariant subspaces. To each 
M G 9\C is associated an CCM, the diagonal coefficient of T at M. For a given T7, we wish 
to view aM(T) as the operator induced by T on M/M-, a subspace of dimension at most 
one. 

In Theorem 4.3.10 of [Rin], Ringrose shows that under the assumptions above, À ^ 0 
is an eigenvalue of T if and only if it is a diagonal coefficient of T. Furthermore, if we 
consider the nest algebra in %{X) associated to fA£, Alg(lA^), then for aM(T) defined 
as above, aM'. Alg(fAO —• C is a one-dimensional representation on Alg(fA£)> for each 
Me fA£ 

We establish the analogous notion in the case where A is a norm-closed subalgebra of 
^C(X) with a complete maximal chain of ̂ -invariant subspaces, fA£ which is elementary. 

DEFINITION 2.1. Let A be a subalgebra of ^C(X) with a maximal chain of closed A-
invariant subspaces, 9\[, which is elementary. Denote by !A£* the elements M G fA£ such 
that dim(M/M_) ^ 0. For M G !A£\ define TTM: -# —> B(M/MJ) as in Lemma 1.4. For 
M G fAt*, let aM(r) = s p ^ ^ 7rM(r), while if M = M_, let aM(T) = {0}. We call aM(T) 
the spectral coefficients of T at M. For M G 5Y/\ we will call TTM(T) the representation 
of r at M, and the collection {KM(T)\ M G fÂ *} the diagonal representations ofT. 

It is well known that, if # is a Banach algebra, then for each T G $, 

{0} U sp$(r> = U{sP7r((B)(7r(^)) • 7T is a strictly irreducible representation] U {0}. 

We wish to establish that any strictly irreducible representation of A is equivalent to 
7TM for some M G fA£*, hence that 

{0}Usp^(7) = U J s P ^ M n ) : M e 5\C} U {0}. 

We begin with an alternative characterization of M(A) in the following proposition, 
the proof of which, since G is finite rank, is straightforward. 

PROPOSITION 2.3. G G M(A) if and only if G is a non-zero idempotent and 

GAG Ç CG + rad(J3). 

With this characterization our definition of minimal idempotent agrees, in the case 
where A is semisimple, with the other more standard analytic definition (see e.g. Sec­
tion 30 of [BD]). It will also allow us to exploit some unpublished work on minimal 
idempotents supplied by Dr. Bruce A. Barnes (see Lemma 2.6 and Theorem 2.8 below). 
As preliminaries, we need the following proposition whose proof is also straightforward. 

PROPOSITION 2.4. Let Abe a subalgebra of %XX), and suppose that there exists an 
element G G A such that G2 = G ^ 0. Then 

i) there exists a non-zero F G 0\f(A) such that FG — GF — F and 
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ii) there exist {Ek}
n

x Ç M(A) such that EjEj = 0 ifi ^ j , and G = Ex +E2 + •••+£,,. 

COROLLARY 2.5. For A a closed subalgebra of "KiX), ifir: A—>L(Y) is a strictly 
irreducible representation on a linear space Y, then there exists G G 9\f(A) such that 
TT(G) ^ 0. 

PROOF. Note that if T is quasinilpotent, then so is ir(T). Since the image of A is 
semisimple, it follows that ir(T) = 0. Choose T G A such that ix(T) ^ 0, and note that 
the spectral radius p(ix(T)\ = p / 0. From the spectral theory for compact operators 
there exists a spectral idempotent P G A such that 

P = - Î - [(X - T)xdX with TT(P) = — f(X - 7r(T))~ldX ^ 0. 
Z7r/ -n Z7r/ -nv ; 

The result now follows from the above. • 

LEMMA 2.6. Let Abe a Banach algebra in which M (A) is not empty. Then 
i) IfL is a left ideal of A such that £} Ç rad(JT), then L Ç rad(JÏ). 

ii) If Lisa left ideal of A, and E G M {A), such that AE H rad(J2) Ç L Ç AE, 
then either L— AEH md(A), or L = AE. 

Hi) For E G M (A), the left regular representation of A on AE j AE D rad(A) is 
strictly irreducible. 

PROOF, i) Using Theorem 2.3.2 i) of [Ric], if L2 Ç rad(Jl), then Û is contained in 
every primitive ideal. Now using Theorem 2.2.9iv) of [Ric], this implies that L Ç P for 
every primitive ideal P. 

ii) Suppose that L ^ AE D rad(J^). Then from i) it follows that L1 g rad(J^). 
So we can choose TE and SE in L such that TESE $ rad(J^), hence ESE $ rad(A). 
Furthermore, ESE = XE + R, for some complex number À ^ 0 and some R G rad(JT). 
But ESE = XE + RE from which it follows that E = X~l(ESE - RE). But then E G L, 
and hence L = AE. 

iii) With the action of A on AE j AE n rad(J4) given by 

S( T + AE H md(A)) =ST + AEC\ rad(JT), 

strict irreducibility is an immediate consequence of ii) above. • 
Recall that if p:A—^ L{X) and TT: A —•> L{Y) are algebra homomorphisms of A into 

the set of linear maps of X and Y respectively, then we say that p and IT are equivalent 
representations, denoted p = TT, if there exists a linear bijection W.X —> Y such that, 
Wp(T) = ir(T)W for all T G A. 

Given E G M {A), let XE = AE / AE H rad(J^). Denote by TTE the left regular repre­
sentation of AonXE. 

THEOREM 2.7. Let TT be a strictly irreducible representation of A on a linear space 
Y. Ifir(E) ^ 0 for some E G M (A), then TT = irE. 

PROOF. Note first that the operator TT(E) is a non-zero projection. Choose a non­
zero yo G Y such that ir(E)yo = yo. From the strict irreducibility of 7r, it follows that 
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Y = {TT(7>O : T G A}. Define the linear map V: AE -» Y by 

V(TE) = TT(TE)y0 = 7r(7>0. 

Then F(J2£) = Y. Let I = {S G A£ : F(5) = 0}, so that I is a left ideal in A. Notice 
that ifRG rad(JT), then 7r(7?) = 0, as 7r is a strictly irreducible representation. Therefore 
AE H rad(JT) Ç L C J?£. As L is properly contained in AE, it follows from Lemma 2.6 
ii) above that L = AEH rad(JÏ). 

Def ine^:X £ ->7by 

^ ( 7 ^ + J ^ n r a d ( ^ ) ) = V(TE). 

With this definition it now follows easily that W is bijective, and that, for all T G A, 
^7T£(r) = 7r(r)^. • 

We now apply these results in 

THEOREM 2.8. Let Abe a closed subalgebra ofJÇfX) and fA£ « complete maximal 
A-invariant chain which is elementary. Ifir'.A —> MY) is a strictly irreducible repre­
sentation of Aon a linear space Y, then IT is equivalent to a representation on MjM-
for some M e 9\[*. 

PROOF. By Corollary 2.5, there exists G G M{A) such that n(G) ^ 0. By 
Lemma 1.2, there exists a corresponding M = MQ G fA£*, such that 0 < dim(M/A/_), 
and this dimension is finite, as fA£ is elementary. Therefore if p is the left regular repre­
sentation of A on M/M-, p is strictly irreducible, and by the construction of M = M G 
in Lemma 1.2, the image of G under p is not 0. Hence by Theorem 2.7 it follows that 
7T = 7TG = p . • 

If 9\[ is an elementary chain then every strictly irreducible representation IT of A is 
(equivalent to) a representation on a finite dimensional vector space. 

COROLLARY 2.9. Let A and 9£ be as above. For M G 9\[* let nM be the left regular 
representation of A on M/M-. Then for all T G A, 

{0} u sp̂ (f) = Usp^M?1)) : M e *C} u {o}. 

As a particular case we have the following 

COROLLARY 2.10 (RINGROSE, 1962). Let T G 9({X) and let 9s[bea complete sim­
ple T-invariant chain. Then the eigenvalues ofT, with the possible exception of 0, are 
precisely the diagonal coefficients {OLM{T) : M G 9sf}. 

COROLLARY 2.11. Let A and 9\t be as in Theorem 2.8. Then the Jacobson radical 
and the Brown-McCoy radical coincide. 
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3. Elementary chains and polynomial identity algebras. At this point we would 
like to explore the relationship between the type of subalgebras JA of the compact opera­
tors acting on a Banach space that we have been considering, and the theory of Polyno­
mial Identity Algebras. In particular, we would like to generalize a result due to Murphy, 
([Mur], Theorem 1), which states that a closed subalgebra JA of the compact operators 
%{X) has a complete maximal chain which is simple if and only if the algebra SAj rad(J^) 
is commutative. 

DEFINITION 3.1. We say that an «-tuple (T\, T2,..., Tn) satisfies a non-commuting 
polynomial P whenever it satisfies P(T\, 72, . . . , Tn) — 0. Similarly, the algebra J? itself is 
said to satisfy the polynomial identity P if any ordered «-tuple (T\, T2,..., Tn) of elements 
from SA satisfies P. The algebra A is said to satisfy a polynomial identity of degree m if 
it satisfies some non-commuting polynomial of degree m. Finally, an algebra SA is said to 
be a Pi-algebra if JA satisfies a multilinear polynomial identity all of whose coefficients 
are ± 1. 

Throughout this section, Sn will denote the symmetric group on n elements, that is, 
the group of permutations of the set {1,2 , . . . ,«} . For each element r G 5W, sgn(r) = ± 1 , 
according as r is an even or odd permutation. 

The standard polynomial in n non-commuting variables is defined by 

Pn(xux2, •.. ,xn) = J2 sgn(r)xr(i)Xr(2) • • • xT{n), 
resn 

and will also be denoted [x\,x2,... ,x„], generalizing the Lie bracket notation. 
Notice that [x\,x2,... ,x„] is an «-linear, alternating polynomial of degree n, so that an 

algebra JA satisfies [x\,x2,... ,xn] if and only if every set of « distinct elements chosen 
from a basis for SA is a root of the polynomial. Furthermore, if SA satisfies Pn, then SA 
satisfies P„+k, for all natural numbers k. 

We will need several results from the theory of Pi-algebras, which we will state with­
out proof. The first result is due to Shimon Amitsur and Jacob Levitzki (1950), and can 
be found in Theorems 1.4.1 and 1.4.5 of [Row]. 

THEOREM 3.2 (AMITSUR-LEVITZKI, 1950). The algebra Mn(C) satisfies the standard 
polynomial P2n of degree In and does not satisfy any polynomial identity of degree less 
than 2n. 

A fundamental result in the theory is due to Irving Kaplansky and is stated as Theo­
rem X.5.1 of [Jac]. 

THEOREM3.3 (KAPLANSKY, 1948). Let SA be a primitive algebra over afield k which 
satisfies a polynomial identity of degree n. Then the center of JA is a field and JA has 
dimension over its center less than or equal to ( |)2. 

In the development we will need the following immediate corollary to this theorem, 
which follows from the Gelfand-Mazur theorem. 
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COROLLARY 3.4. If SA is a primitive Banach algebra satisfying a polynomial identity 
of degree n, then Si is finite dimensional. 

As the algebras that we are most concerned with are non-unital subalgebras of the 
compact operators on an infinite dimensional Banach space, we make a slight alteration 
of a definition found in Section 22 of [Krup]. 

DEFINITION 3.5. An algebra SA over the complex field will be said to possess a suf­
ficient family of «-dimensional representations if there exists a collection of non-zero 
algebra homomorphisms O = {(pa}aeA, 

tpa\SA —> M*(C), k = k(a) < n, 

such that S G QI(JA) if and only if det[/ - <pa(S)] ^ 0 for all a G A. 
Notice that T G Inv(J^) if and only if det[cpa(T)] ^ 0 for all a G A whenever 

*£ — {^a}a£A is a sufficient family of «-dimensional representations on SA. 

LEMMA 3.6. If A is a Banach algebra which has a sufficient family ofn-dimensional 
representations, then Si/ rad(J^) satisfies the standard polynomial of degree 2n. 

PROOF. First, if tp is an algebra homomorphism on a non-unital algebra JA into 
the matrix algebra M^(C), then we extend ip to the unitization of JA, SAu, by defining 
ip(\ 1 + T) = XI + (p(T), where / is the identity in Mk(C). 

Now let O = {(fa}aGA be a sufficient family of «-dimensional representations on JA. 
For all T G f){ker((pa) : a G A}, if A 7̂  0, then det[A7 - ipa(T)] -f- 0, for all a G A, so 
that n{ker((/?a) : a G A} Ç vad(JA). While by Amitsur-Levitzki, for all cpa G O, and for 
all ordered 2«-tuples, (T\, T2,..., T2n) chosen from JA, [T\,T2,...,T2n] G f]{ker((pa) : 
a G A} Ç rad(J3). • 

THEOREM 3.7. Let A be a closedsubalgebra of%{X), with fA£ a complete maximal 
Si-invariant chain. Then fA£ is a bounded elementary chain with bound n if and only if 
Si/ rad(JT) satisfies [x\,%2, • • • ,*2«]. 

Before we begin the proof of the theorem, we return to material developed above. 
For Si as in the theorem and 9\[ a complete maximal J^-invariant chain we define the 
subcollection 9\[* = {M G fA£ : dim(M/M_) > 0}. Recall that the associated maps TTM 

and UM defined in Lemma 1.4 and Theorem 1.5 are irreducible representations of J?. 

LEMMA 3.8. Let TTM be the representation defined above and %^ — ker(7TA/). Then 
Si/ Ĵ C is a i) prime, ii) semi-simple, Hi) modular annihilator algebra. 

PROOF. For i), suppose that I, J< JA/ % such that IJ = 0 G SA/X- L e t / = {T G SA : 
T + Ĉ G / } , the pullback of / under the canonical homomorphism SA —> JA/ %^, and 
similarly for J. Then/, J<JA, and TTM(IJ) = {0}. But if TTM(J)(M/M-) ^ {0}, then since 
TTM is an irreducible representation and J is an ideal in JA, it follows that the norm closure 
TTM (J)(M/M_) = M/M_. Hence since irM(I)(M/M-) = 7rM(/)7rM(J)(M/M_) = {0}, 
we must have 7TMC0 = {0}, /.<?., / Ç kQr(7TM) = ^C Consequently 7 = {0}. 
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For ii), note that !Aj JÇ is semiprime. Furthermore, 2Lj 9<C is not a radical algebra. 
To see this, we may assume dim(M/M_) > 1. If J?/^C is a radical algebra, using 
Corollary 3.5 of [LNRR], it follows that there exists a simple chain of closed fl.j %r 
invariant subspaces of M/A/_, contradicting the maximality of fA£ Consequently, by 
Proposition 32.5 of [BD], the socle exists and is non-zero. So from i) above it follows 
thatrad(J?/^) = {0}. 

For iii), we use Theorem 4.2 of [Bar2] to see that SAj %^ is a modular annihilator 
algebra. • 

As established in Definition 3.1 of [Barl], given E G M{A), 5\E is a minimal left 
ideal and J?(l — E) is a maximal modular left ideal of J?. Consequently PE = {T G A : 
TA Ç J?(l — £)} is a primitive ideal. Furthermore Barnes proves in Proposition 3.1 that 
PE = lan(J^) = mn(EA). 

LEMMA 3.9. For A and %^ as above, Aj ^C is a primitive algebra. 

PROOF. We temporarily denote A/ ^ by A. Then from above À is a modular an­
nihilator algebra, which is prime. Furthermore, as in Section 3 of [Barl], since soc(A) 
exists and is non-zero, there exists E G 9\{(A). Then from above, PE(AE) = {0} implies 
that PE(AEA) = {0}, hence PE = {0}. • 

PROOF OF THEOREM 3.7. Suppose that 9£ is a bounded elementary chain with bound 
n. For each M G 5^*, let TTM denote the associated representation as above. It is clear 
that O = {TTM : M G ^Y?} is a sufficient family of representations. Consequently by 
Lemma 3.6, it follows that A/ rad(J^) satisfies \x\,x2,... ,x2n\. 

Conversely, suppose that Aj rad(JÏ) satisfies [JCI ,x2,... ,x2n\, so that for all {7}}^ Ç 
-#> [T\,T29...,T2n] G rad(J^). To see that fA£ is an elementary chain, assume that there 
is an M G fA£ such that dim(M/M_) = oo. Using Corollary 1.5.28 of [Row], we see that 

vad(A)/ rad(^C) = rad(J?)/[rad(J?) H 3Q 9* [rad(JÏ) + 3Q/3C Ç rad(.#/30-

Since rad(-#/ 9Q = {0} by Lemma 3.8, md(A) = rad(X) from which it follows that 

that is, Aj ker(7TA/), satisfies \x\,x2,... ,X2«]-
By the corollary to Kaplansky's theorem it follows that Aj ker(7r^) is finite dimen­

sional, contradicting the assumption that dim(M/M_) = oo. We conclude that 9\[ is an 
elementary chain. 

Finally, that fA£ is a bounded elementary chain with bound n, follows from Amitsur-
Levitzki. • 

Recall that an algebra A of operators on a Banach space X is simultaneously trian-
gularizable if there exists a maximal chain of closed subspaces of X invariant under all 
elements of A. 
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COROLLARY 3.10 (MURPHY). Let Si be a closed subalgebra of the compact opera­
tors acting on a Banach space X. Then A is simultaneously triangularizable if and only 
if Si J rad(JT) is commutative. 

PROOF. Lemma 4.3.3 of [Rin]. • 
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