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A b s t r a c t . Dynamics of the rotational motion of the Earth and Moon is investi­
gated numerically. Very convenient Rodrigues-Hamilton parameters are used for 
high-precision numerical integration of the rotational motion equations in the post-
newtonian approximation over a 400 yr time interval. The results of the numerical 
solution of the problem are compared with the contemporary analytical theories 
of the Earth's and Moon's rotation. The analytical theory of the Earth's rotation 
is composed of the precession theory (Lieske et al., 1977), nutation theory (Sou-
chay and Kinoshita, 1996) and geodesic nutation solution (Fukushima, 1991). The 
analytical theory of the Moon's rotation consists of the so-called Cassini relations 
and the analytical solutions of the lunar physical libration problem (Moons, 1982), 
(Moons, 1984), (Pesek, 1982). The comparisons reveal residuals both of periodic 
and systematic character. All the secular and periodic terms representing the be­
havior of the residuals are interpreted as corrections to the mentioned analytical 
theories. In particular, the secular rate of the luni-solar inclination of the ecliptic 
to the equator J2000.0 (—0"027, with a mean square error 0''000005) is very close 
to its theoretical value (Williams, 1994). 

1. S ta tement of t h e P r o b l e m 

The Earth and Moon, on a whole, in their physical properties are close to 
a rigid body and therefore the most essential features of their rotational 
motions can be reproduced well enough by the rotation of a rigid body. The 
rotational motions of the Ear th and Moon are the results of the gravitatio­
nal interaction of their bodies with the perturbing bodies (the Sun, Moon, 
and planets) in the post-newtonian approximation. The orbital motions of 
the disturbing bodies are defined by the DE200/LE200 ephemeris. The re­
ference frame of the problems is based on the fixed ecliptic J2000.0. The 
problem of the Earth rotation is solved separately from the lunar rotation 
problem. 
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2. M a t h e m a t i c a l M o d e l of t h e P r o b l e m 

The rotation of a celestial body about its center of mass is described 
as the rotation of its principal axes of inertia with respect to the non-
rotating body-centric coordinate system. As the variables of the problem, 
four Rodrigues-Hamilton parameters are taken. They are denned by the 
Euler angles il>,0,<j>: 

A0 = cos - c o s — - — , 

. • 0 . tl>-<f> 
A2 = s i n - s i n — — , 

Ai = s i n - c o s — - — , 

. 0 . il> + <f> 
A3 = cos - sin — — 

The Rodrigues-Hamilton parameters are bounded variables which is very 
important for the numerical solution of the problem. These variables de­
termine the orientation of the principal axes of inertia with respect to the 
fixed ecliptic and the fixed vernal equinox at the epoch J2000.0. The diffe­
rential equations of the problem are deduced from the Lagrange differential 
equations of the second kind: 

d dL 6L n . „ , „ „ 

n a r r ^ ' " 1 , = 0 ' u ' 3 

Here and subsequently, a dot over the letters means a differentiation with 
respect to the barycentric dynamical time. The Lagrange function has the 
form, L=zT + U + AL, where the kinetic energy of the rotational motion is 
T = \{Au\ + Bu\ + Cw3). In the case of the Earth rotation the equatorial 
moments of inertia A and B are equal. Projections of the angular velocity 
vector upon the axes of the principal moments of inertia are expressed via 
the Rodrigues-Hamilton parameters and their derivatives as follows: 

wi = 2(—A^Ao + AoAi + A3A2 — A2A3) 

u>2 = 2(—A2A0 — A3A1-(-A0A2-f A1A3) 

W3 = 2(—A3A0 + A2A1 — A1A2 + A0A3) 

The force function of the gravitational interaction of the Earth with the 
disturbing bodies is expressed as: 

" = £ 
j*® 

•j® \ \rj®) 2 [2 \rj®J 2 
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J4 
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where rjB = yjxf^ + y?e + zj@ and XjQ,yje,zjB are the geocentric equa­

torial coordinates of the disturbing body. Then the transformation matrix 

has a form: 

A2, + A2 - A2 - A2 2(A0A3 + AiA2) 2 ^ 3 - A0A2) 
2(AXA2 - A0A3) Ag - A? + A| - A2 2(A0A! + A2A3) 
2(A0A2 + AiA3) 2(A2A3-A0Ai) A2 _ A? - \\ + A§ 

The expression for the force function of the gravitational attraction of the 
Moon by the disturbing bodies contains all the harmonics up to the 4 t h 

order as well as the mixed harmonics, describing gravitational interaction 
of the lunar and terrestrial bodies. 

The additional part of the Lagrange function generating geodetic per­
turbations in the Earth 's rotation is represented by the following expression: 

AL = Y ^ ^ - ^ ^ • [9fa® x F ® ) " 2fa® * " i M -

3 
- ^ - { ( C - B)uii(zjeyje + yjQzj9) + (A- C)ui2{xjezj(B + zjexje)+ 

+(B - A)u)3(yj@xje + Xj®yj®)+ 

+ J®2
 3[(C - B]uizj9yje + {A- C)ui2xj&Zj^ + (B - A)u>3xjeyje]}}. 

Here, the angular momentum vector is H = Auii + Auil2 + Cuii3, while Vj 
is the vector of the barycentric velocity of the disturbing body determined 
in the equatorial coordinate system. 

Now, the differential equations of the rotation in the Rodrigues-Hamil-
ton parameters have form, 

2 { 2 ' 

Ai = ~o{o w 2 Ai - ^l^o + w2A3 - w3A2} 

Ao = -x{xw 2 A 0 +wiAi +w2A2 +w3A3} 

2 l 2 

A2 = ~^{^w2A2 - wiA3 - w2A0 + w3Ai} 

^3 = - r { r W 2 A 3 + w i A 2 - w2Ai -w 3 A 0 } 

(1) 

where w2 = u\ + w| + u\ or w2 = 4(A2
) + \\ + A| + A|). 

The first derivatives of the angular velocity components are expressed 
by means of the Euler dynamical equations, 

B-C 
wi = 

C-A 
W2 = - 0 -

1 f, 3 . d , 5 . d \ .„ . r , 

1 f, d . 8 . d . fl 1 . . . . . , 
W 3 W 1 " 2 5 \X*W0

 + A 3 aAT" X o dT 2 ~^W3\
{u + AL) 
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The independent variable of system (1) is the barycentric dynamical time 
(TDB). For the problem of the Earth rotation the numerical values of the 
constants entering system (1) are taken from the system of the astronomical 
constants of the ephemeris DE200/LE200. For the lunar rotation problem 
the LURE2 system of astronomical constants is used. 

3 . Initial Condi t ions of t h e P r o b l e m 

The initial conditions of the numerical solution of system (1) are taken from 
the semi-analytical theories of the problems. The semi-analytical theory of 
the Earth rotation is composed of: 

a) semi-analytical precession theory (Lieske et al., 1977), 
b) mean sidereal time expression, 
c) semi-analytical nutation theory SKRE96 (Souchay, Kinoshita, 1996), 
d) geodesic nutation solutions (Fukushima, 1991). 

The semi-analytical theory of the nutation of the Earth figure equator 
SKRE96 contains harmonics with amplitudes not less than 0.0001 mas. 
When compiling the semi-analytical theory of the Earth rotation the har­
monics with periods less than 400 yr are retained in SKRE96. The semi-
analytical theory of the lunar rotation consists of: 

a) so-called Cassini relations, 
b) semi-analytical theory of the lunar physical libration (Moons, 1982), 

(Moons, 1984), (Pesek, 1982). 
The amplitudes of the harmonics in the semi-analytical theory of the phy­
sical libration of the Moon do not exceed 0''001. The power polynomials 
for the mean longitudes of the Moon and the ascending node of the lunar 
orbit entering the Cassini relations are taken from (Simon et al., 1993). 

4 . M e t h o d of N u m e r i c a l Integrat ion 

For the solution of system (1) the high-precision numerical integration me­
thod (Belikov, 1990) with a number of modifications (Eroshkin et al., 1993) 
was applied. For the problem of the Ear th rotation the numerical integra­
tion was performed with a constant step size of one day and a 16t h degree 
Chebyshev polynomial approximating the right-hand sides of the differen­
tial equations. In the case of the lunar rotation the size of the step equals 
24 days when choosing a 24 t h degree of the approximating polynomials. 
The integration of the problems is carried out over the time interval 1750 
- 2169 from the initial epoch JD 2440400.5. The initial conditions of the 
numerical integration are taken from the semi-analytical theories reduced 
to the fixed ecliptic J2000.0. 
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5. Resul ts 

A comparison of the results of the numerical integration in Euler angles 
with the semi-analytical theories revealed discrepancies, both of systema­
tic and periodic character. In the case of the Earth rotation problem the 
discrepancies were analyzed by means of the least squares method. The 
systematic trends in the luni-solar precession and inclination were appro­
ximated by third order power polynomials in time. A number of periodic 
harmonics were also evaluated. Then these corrections were added to the 
semi-analytical theory and the process of the numerical integration was 
repeated anew. After several iterations the following corrections to the ex­
pressions of the luni-solar precession and inclination of the precessional 
theory (Lieske et ah, 1977) were found, 

dxj> = - 0".0051 ±4».io-« -0".0144 ±2,,.10-*T + 

+ 0".0004 ± 2 „ . 1 0 - .T 2 + 0".0001 ± 5 » . I O - T T 3 

du = - 0".0089 ±2».io-« -0" .0271 ± 1 » . 1 0 -«r + 

+ 0 " . 0 0 0 0 4 ± 1 » . 1 0 - T T 2 + 0 " . 0 0 0 0 2 ± 7 „ . 1 0 - T T 3
) 

and a number of correcting harmonics to the KSRE96 nutation theory, 

AV> = 0".000238 cos(ft) + 0".000073cos(-3Iv + 5LE + 2pA)+ 
- 0".001126sin(ft) + 0".000322sin(F - D + ft - 8LV + 12LE)+ 
+ 0".000041 cos(2Lj + 2pA) - 0".000096 sin(2F -2D + 2ft) 

A e = 0".000594 cos(ft) + 0".000040 cos(2F - 2D + 2ft) 

where Q. is the mean node longitude of the lunar orbit, IM is the mean 
anomaly of the Moon, F is the mean argument of the Moon's latitude, Is is 
the mean anomaly of the Sun, D is the difference of the mean longitudes of 
the Moon and the Sun, LV,LE,LJ are the mean longitudes of the Venus, 
Earth, Jupiter, respectively and PA is the general precession in longitude. 

The secular trend was discovered when comparing the values of the pro­
per rotation angle and the apparent sidereal time. There is no explanation 
of its appearance. Left part of the Figure 1 depicts the results of compa­
ring the "corrected" semi-analytical theory with results of the numerical 
integration. The results of the comparison of the semi-analytical theory of 
the lunar rotation with the numerical integration are presented on the right 
side of the Figure 1. The residuals do not reveal secular trends. The most 
essential harmonics of the residuals in the inclination (g) and the node (la) 
are periodic harmonics with the period of the lunar node revolution and a 
time dependent amplitude. Probably the presence of these harmonics in the 
residuals can be explained by the absence of terms of such kind in the semi-
analytical theory of the lunar rotation. The behavior of the residuals in the 
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Figure 1. Comparison of the numerical solution of the Earth's (left figure) and Moon's 
(right figure) rotation problem with the semi-analytic one at the fixed ecliptic J2000.0. 

longitude ( r ) is more complicated. It can be described by the superposi­
tion of the harmonics representing both the forced physical libration and 
the Active free physical libration. In the present case the initial conditions 
are defined by the not precise enough semi-analytical theory. It seems that 
for a better agreement between the numerical solutions and semi-analytical 
theories it is necessary to improve the precessional quantities determining 
the motion of the ecliptic of date. 
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